LI-LON/POLYMER 1CELL PROTECTOR

R5460xxxxxx SERIES (Preliminary)

OUTLINE

KUGOL

The R5460xxxxx Series are high voltage CMOS-based protection ICs for over-charge/discharge of rechargeable two-cell Lithium-ion (Li+) / Lithium polymer, further include a short circuit protection circuit for preventing large external short circuit current and the protection circuits against the excess discharge-current and excess charge current.

Each of these ICs is composed of six voltage detectors, a reference unit, a delay circuit, a short circuit protector, an oscillator, a counter, and a logic circuit. When the over-charge voltage threshold crosses the each detector threshold from a low value to a high value, the output of Cour pin switches to "L" level after internal fixed delay time. To release over-charge detector after detecting over-charge, the detector can be reset and the output of Cour becomes "H" when a kind of load is connected to V_{DD} after a charger is disconnected from the battery pack and the cell voltage becomes lower than over-charge detector threshold. If a charger is continuously connected to the battery pack, even if the cell voltage becomes lower than the over-charge detector threshold, over-charge state is not released.

The output of D_{OUT} pin, the output of the over-discharge detector and the excess discharge-current detector, switches to "L" level after internally fixed delay time, when discharged voltage crosses the detector threshold from a high value to a value lower than V_{DET2} .

To release over-discharge detector, after detecting over-discharge voltage, connect a charger to the battery pack, and when the battery supply voltage becomes higher than over-discharge detector threshold, in case that the charger is not connected, when the cell voltage becomes equal or more than the released voltage from over-discharge, over-discharge detector is released. In case that a charger is connected, and when the cell voltage becomes the released voltage from over-discharge, the over-discharge detector is released.

If a battery is discharged to 0V, charge current is acceptable.

After detecting excess-discharge current or short current, when the load is disconnected, the excess discharged or short condition is released and DOUT becomes "H".

After detecting over-discharge voltage, supply current will be kept extremely low by halting internal circuits' operation.

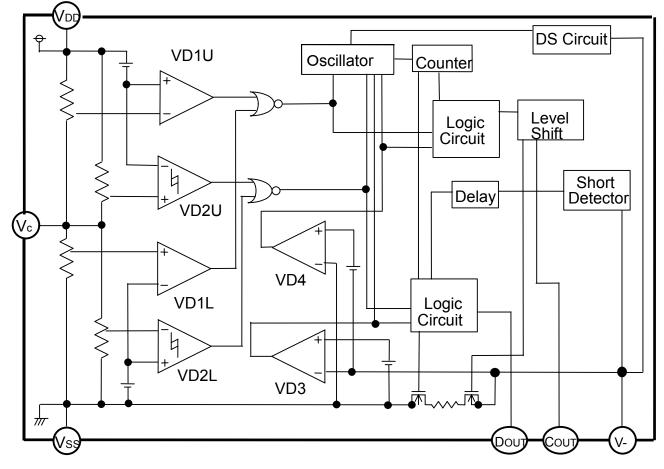
When the output of COUT is "H", if V- pin level is set at -3V, the delay time of detector can be shortened. Especially, the delay time of the over-charge detector can be reduced into approximately 1/60 and test time for protection circuit PCB can be reduced. The output type of COUT and DOUT is CMOS.

If two cell is unbalanced, if one side cell detects over-charge, even if the other side cell detects over-charge, over-discharge, or short circuit, the output of COUT keeps "L".

If one side cell detects over-discharge voltage and the other side cell detects over-charge, the delay time is sum of the over-charge detector delay time and released delay time from over-discharge, and the output of the COUT becomes "L", and the output of the DOUT becomes "H".

Thus, one cell detects the over-charge, and the other cell detects over-discharge, the over charge detector will be dominant and the output of COUT becomes "H".

While one cell detects over-discharge voltage, and the other cell is released from the over-charge, after the delay time of released from over-charge, the output of COUT becomes "H", then, output delay time of over-discharge, the output of DOUT becomes "L".


FEATURES

Manufactured with High Voltage Tolerant Process Absolute Maximum Rating			35V		
Low supply current Supply current (At normal mode)			Тур. 4.0μА		
	Standby current			Тур. 1.2	2µA
• High accuracy detector threshold	Over-charge detector	(Topt=25°C)	±25mV	
		(Topt=-5 to	55°C)	±30mV	
	Over-discharge detector			±2.5%	
	Excess discharge-current detector		±15mV		
	Excess charge-current detector			±30mV	
• Variety of detector thresholdOver-charge detector threshold		4.1V-4.5V	' step of 0.00	5V(VD1U/V	VD1L)
Over-disch.	arge detector threshold	2.0V-3.0V	step of 0.00	5V(VD2U/VD2L)	
	Excess discharge-current three	eshold	0.05V-0.20	V step of 0.005V	
	Excess charge-current t	threshold		Fixed at	-0.4V
• Internal fixed Output delay time	. Over-charge detector Outp	out Delay 1.5s			
Over-discharge detector Output Delay 20ms					
Excess discharge-current detector Output Delay				Delay 1	l2ms
	Excess charge-curren	nt detector O	utput Dela	ay 1	l6ms
	Short Circuit detector	r Output Del	lay	400µs	
• Output Delay Time Shortening Function	n. At COUT is "H", if V- level is set at $-3V$, the Output Delay				
	time of detect an	d release	the over	-charge	and
	over-discharge can	be reduc	ed. (Dela	ıy Time	for
	over-charge becomes	about 1/60	of normal	state.)	
• 0V-battery charge	acceptable				
• Ultra Small package	. SOT-23-6, PLP1820-6	5			

RIGOH

APPLICATIONS

- Li+ / Li Polymer protector of over-charge, over-discharge, excess-current for battery pack
- High precision protectors for cell-phones and any other gadgets using on board Li+ / Li Polymer battery

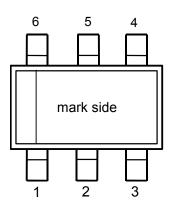
BLOCK DIAGRAMS

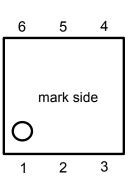
SELECTION GUIDE

In the R5460xxxxx Series, input threshold of over-charge, over-discharge, excess discharge current, and the package and taping can be designated.

Part Number is designated as follows:

R5460x <u>xxxxx-xx</u> \leftarrow Part Number $\uparrow \uparrow \uparrow \uparrow \uparrow$ a b cd e


RIGOH


Code	Contents
а	Package Type N: SOT-23-6 K: PLP1820-6
b	Serial Number for the R5460 Series designating input threshold for over-charge, over-discharge, excess discharge-current detectors.
с	Designation of Output delay option of over-charge and excess discharge-current.
d	Designation of version symbols.
e	Taping Type: TR (refer to Taping Specification)

PIN CONFIGURATIONS

SOT-23-6

PIN DESCRIPTION

Pin No.		Symbol	Description
SOT23-6	PLP1820-6		
1	3	Dout	Output pin of over-discharge detection, CMOS output
2	1	Cout	Output pin of over-charge detection, CMOS output
3	2	V-	Pin for charger negative input
4	6	VC	Input Pin of the center voltage between two-cell
5	5	V _{DD}	Power supply pin, the substrate voltage level of the IC.
6	4	Vss	Vss pin. Ground pin for the IC

RIGOH

ABSOLUTE MAXIMUM RATINGS

Symbol	Item	Ratings	Unit
$V_{\rm DD}$	Supply voltage	-0.3 to 12	V
V-	Input Voltage Charger negative input V- pin	$V_{\rm DD}$ -35 to $V_{\rm DD}$ +0.3	V
	Output voltage		
VCout	Cout pin	$V_{\rm DD}$ -35 to $V_{\rm DD}$ +0.3	V
VDout	Dout pin	$V_{\rm SS}$ -0.3 to $V_{\rm DD}$ +0.3	V
PD	Power dissipation	150	mW
Topt	Operating temperature range	-40 to 85	°C
Tstg	Storage temperature range	-55 to 125	°C

ELECTRICAL CHARACTERISTICS Unless otherwise specified, Topt=25°C

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
$V_{\rm DD1}$	Operating input voltage	Voltage defined asVDD-VSS	1.5		10.0	V
Vst	Minimum operating Voltage for 0V charging *Note 1	Voltage defined as VDD-V-, V_{DD} -Vss=0V			1.8	V
Vdet1u	CELL1 Over-charge threshold	Detect rising edge of supply voltage R1=330 Ω R1=330 Ω (Topt=-5 to 55°C)*Note3	Vdet1u-0.025 Vdet1u-0.030	Vdetiu Vdetiu	Vdet1u+0.025 Vdet1u+0.030	v V
$tV_{\rm DET1}$	Output delay of over-charge	VDD= $3.5V$ to $4.5V$, V _C -V _{SS} = $3.5V$		1.5		s
tV_{REL1}	Output delay of release from over-charge	VDD=4.5V to 3.5V, V _c -V _{ss} =3.5V		16		ms
V_{DET1L}	CELL2 Over-charge detector threshold	Detect rising edge of supply voltage R1=330 Ω R1=330 Ω (Topt=-5 to 55°C) ^{*Note3}	Vdet1u-0.025 V _{det1u} -0.030	Vdetiu Vdetiu	Vdet1u+0.025 Vdet1u+0.030	v V
Vdet2u	CELL1 Over-discharge threshold	Detect falling edge of supply voltage	$V_{DET2U} \times 0.975$	Vdet2u	$V_{DET2U} \times 1.025$	V
V_{REL2U}	CELL1 Released Voltage from Over-discharge	0 0 110 0	$V_{REL2U} \times 0.975$	VREL2U	$V_{REL2U} \times 1.025$	V
tVdet2	Output delay of over-discharge	V _{DD} -V _C =3.5V to 2.2V, V _C -V _{SS} =3.5V		20		ms
tVrel2	Output delay of release from over-discharge	V _{DD-VC} =2.2V to 3.5V, V _C -V _{SS} =3.5V		1.2		ms
Vdet2l	CELL2 Over-discharge threshold	Detect falling edge of supply voltage	V _{DET2L} ×0.975	Vdet2l	V _{DET2L} ×1.025	V
V_{REL2L}	CELL2 Released Voltage from Over-discharge	Detect rising edge of supply voltage	V _{REL2L} ×0.975	VREL2L	V _{REL2L} ×1.025	V
Vdet3	Excess discharge-current threshold	Detect rising edge of 'V-' pin voltage	Vdet3-0.015	Vdet3	V _{DET3} +0.015	V
tVdet3	Output delay of excess discharge-current	V_{DD-VC} =3.5V, V_{C} - V_{SS} =3.5V, V-=0V to 0.5V		12		ms
tVrel3	Output delay of release from excess discharge-current	V _{DD-} Vc=3.5V, V _C -Vss=3.5V, V-=3V to 0V		1.2		ms
Vdet4	Excess charge-current threshold	Detect falling edge of 'V-' pin voltage	-0.43	-0.40	-0.37	V
tVdet4	Output delay of excess charge-current	$V_{DD-VC}=3.5V, V_{C}-V_{SS}=3.5V, V_{-}=0V \text{ to } -1V$		16		ms
tVrel4	Output delay of release from excess charge-current	$V_{DD-VC}=3.5V, V_{C}-V_{SS}=3.5V, V_{-}=-1V \text{ to } 0V$		1.2		ms
Vshort	Short protection voltage	V_{DD-VC} =3.5V, V_{C} - V_{SS} =3.5V		1.0		V
	Output Delay of Short protection	V _{DD-VC} =3.5V, V _C -V _{SS} =3.5V, V-=0V to 2V		400		μs

Rshort	Reset resistance for Excess discharge-current protection	V _{DD} =7.2V, V-=1V	40	kΩ
Vds	Delay Shortening Mode input voltage	VDD-VC=4.4V, V _C -V _{SS} =4.4V	-2.0	V
Vol1	Nch ON voltage of Cour	Iol=50μA, V _{DD-} Vc=4.5V, V _C -V _{SS} =4.5V	0.4	v
Voh1	Pch ON voltage of Cour	Ioh=-50μA, Vdd-Vc=3.9V, Vc-Vss=3.9V	7.4	v
Vol2	Nch ON voltage of Dout	Iol=50μA, VDD-VC=2.0V, V _C -Vss=2.0V	0.2	v
Voh2	Pch ON voltage of Dour	Ioh=-50μA, Vdd-Vc=3.9V, Vc-Vss=3.9V	7.4	v
Idd	Supply current	VDD-VC=3.9V, V _C -V _{SS} =3.9V	4.0	μΑ
Is	Standby current	VDD-VC=2.0V, VC-VSS=2V	1.2	μΑ

*Note: We compensate for this characteristic related to temperature by laser-trim, however, this specification is guaranteed by design, not production tested.

production tested.

OPERATION

VDET1U, VDET1L / Over-Charge Detectors

The VDET1U and VDET1L monitor the voltage between V_{DD} pin and V_c pin (the voltage of Cell1) and the voltage between V_c pin and V_{SS} pin (the voltage of Cell2), if either voltage becomes equal or more than the over-charge detector threshold, the over-charge is detected, and an external charge control Nch MOSFET turn off with Cour pin being at "L" level.

VDET1U is the detector of Cell1, and the VDET1L is the detector of Cell2.

To reset the over-charge and make the Cour pin level to "H" again after detecting over-charge, in such conditions that a time when the both Cell1 and Cell2 are down to a level lower than over-charge voltage, by connecting a kind of load to V_{DD} after disconnecting a charger from the battery pack. Then, the output voltage of C_{OUT} pin becomes "H", and it makes an external Nch MOSFET turn on, and charge cycle is available. In other words, once over-charge is detected, even if the supply voltage becomes low enough, if a charger is continuously connected to the battery pack, recharge is not possible. Therefore this over-charge detector has no hysteresis. To judge whether or not load is connected, the built-in excess-discharge current detector is used. By connecting some load, V- pin voltage becomes equal or more than excess-discharge current detector threshold, and reset the over-charge detecting state.

Further, in case that VDD pin level is higher than the over-charge detector threshold, if a charger is removed and some load is connected, COUT outputs "L", however, load current can flow through the parasitic diode of the external charge control Nch MOSFET. After that, when the VDD pin voltage becomes lower than the over-charge detector threshold, COUT becomes "H".

Internal fixed output delay times for over-charge detection and release from over-charge exist. If the voltage of Cell1 or Cell2 keep its level more than the over-charge detector threshold, and output delay

time passes, over-charge voltage is detected. Even when the voltage of Cell1 or Cell2 pin level becomes equal or higher level than V_{DET1} if these voltages would be back to a level lower than the over-charge detector threshold within a time period of the output delay time, the over-charge is not detected. Besides, after detecting over-charge, while the V_{DD} is lower than the over-charge detector threshold, even if a charger is removed and a load is connected, if the voltage is recovered within output delay time of release from over-charge, over-charge state is not released.

A level shifter incorporated in a buffer driver for the C_{OUT} pin makes the "L" level of C_{OUT} pin to the V - pin voltage and the "H" level of C_{OUT} pin is set to V_{DD} voltage with CMOS buffer.

• VDET2U, VDET2L / Over-Discharge Detectors

The VDET2U and VDET2L monitor the voltage between V_{DD} pin and V_C pin (Cell1 voltage) and the voltage between V_C pin and V_{SS} pin (Cell2 Voltage). When the either voltage becomes equal or less than the over-discharge detector threshold, the over-discharge is detected and discharge stops by the external discharge control Nch MOSFET turning off with the D_{OUT} pin being at "L" level.

To reset the over-discharge detector, if both voltages of Cell1 and Cell2 are equal or lower than the over-discharge detector threshold, a charge current flows through the parasitic diode of the external MOSFET. Then, when the VDD voltage becomes higher than the over-discharge detector threshold, DOUT becomes "H" and the external MOSFET turns on and discharge will be possible. Even if a charger is not connected, when the Cell1 and Cell2 voltages become equal or more than the released voltage from over-discharge, the over-discharge is released and the voltage of the DOUT pin becomes "H".

When a cell voltage equals to zero, if the voltage of a charger is equal or more than 0V-charge minimum voltage (Vst), Cour pin becomes "H" and a system is allowable to charge.

The output delay time for over-discharge detect is fixed internally. Even if the voltage of Cell1 or Cell2 is down to equal or lower than the over-discharge detector threshold, if the voltage of Cell1 or Cell2 would be back to a level higher than the over-discharge detector threshold within a time period of the output delay time, the over-discharge is not detected. Output delay time for release from over-discharge is also set.

After detecting over-discharge, supply current would be reduced and be into standby by halting unnecessary circuits and consumption current of the IC itself is made as small as possible.

The output type of Dout pin is CMOS having "H" level of VDD and "L" level of VSS.

VDET3 /Excess discharge-current Detector, Short Circuit Protector

Both of the excess current detector and short circuit protection can work when the both of control FETs are in "ON" state.

When the V- pin voltage is up to a value between the short protection voltage Vshort /V_{DD} and excess discharge-current threshold V_{DET3}, VDET3 operates and further soaring of V- pin voltage higher than Vshort makes the short circuit protector enabled. This leads the external discharge control Nch MOSFET turns off with the D_{OUT} pin being at "L" level.

An output delay time for the excess discharge-current detector is internally fixed.

A quick recovery of V- pin level from a value between Vshort and V_{DET3} within the delay time keeps the discharge control FET staying "H" state. Output delay time for Release from excess discharge-current detection is also set.

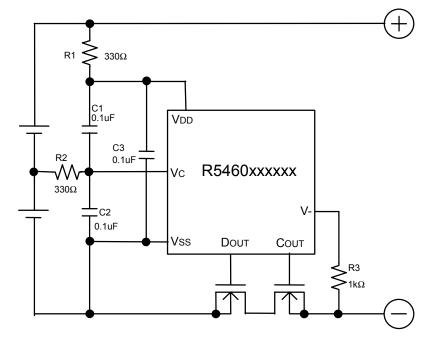
When the short circuit protector is enabled, the DOUT would be "L" and the delay time is also set.

The V - pin has a built-in pull-down resistor to the Vss pin, that is, the resistance to release from excess-discharge current.

After an excess discharge-current or short circuit protection is detected, removing a cause of excess discharge-current or external short circuit makes an external discharge control FET to an "ON" state automatically with the V- pin level being down to the Vss level through the built-in pulled down resistor. The reset resistor of excess discharge-current is off at normal state. Only when detecting excess discharge-current or short circuit, the resistor is on.

Output delay time of excess discharge-current is set shorter than the delay time for over-discharge detector. Therefore, if V_{DD} voltage would be lower than V_{DET2} at the same time as the excess discharge-current is detected, the R5460xxxxxx is at excess discharge-current detection mode. By disconnecting a load, VDET3 is automatically released from excess discharge-current.

VDET4/ Excess charge-current detector


When the battery pack is chargeable and discharge is also possible, VDET4 senses V- pin voltage. For example, in case that a battery pack is charged by an inappropriate charger, an excess current flows, then the voltage of V- pin becomes equal or less than excess charge-current detector threshold. Then, the output of C_{OUT} becomes "L", and prevents from flowing excess current in the circuit by turning off the external Nch MOSFET.

Output delay of excess charge current is internally fixed. (Typ. 16ms) Even the voltage level of V- pin becomes equal or lower than the excess charge-current detector threshold, the voltage is higher than the VDET4 threshold within the delay time, the excess charge current is not detected. Output delay for the release from excess charge current is also set. (Typ. 1.2ms)

VDET4 can be released with disconnecting a charger and connecting a load.

• DS (Delay Shorten) function

Output delay time of over-charge, over-discharge, and release from those detecting modes can be shorter than those setting value by forcing equal or less than the delay shortening mode voltage to Vpin when the COUT is "H". **TYPICAL APPLICATION**

APPLICATION HINTS

R1, R2, C1 and C2 stabilize a supply voltage to the R5460xxxxxx. A recommended R1, R2 value is less than $1k\Omega$.

A larger value of R1 and R2 makes the detection voltage shift higher because of some conduction current in the R5460xxxxx.

To stabilize the operation, the value of C1 and C2 should be equal or more than $0.01\mu F$.

R1 and R3 can operate also as parts for current limit circuit against reverse charge or applying a charger with excess charging voltage beyond the absolute maximum rating of the R5460xxxxx, the battery pack. Small value of R1 and R3 may cause over-power consumption rating of power dissipation of the R5460xxxxx. Thus, the total value of 'R1+R3' should be equal or more than $1k\Omega$.

