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Abstract -- The aim of this paper is to present a 
comprehensive design methodology for an LLC resonant 
converter, based on a detailed quantitative analysis of the 
steady-state operation of the circuit. This analysis follows 
the first harmonic approximation (FHA) approach, which 
tremendously simplifies the system model, leading to a 
linear circuit, which can be dealt with through the classical 
complex ac-circuit analysis. 
Two of the major benefits of the LLC resonant topology are 
the ability of the Power MOSFETs and secondary rectifiers 
to be soft-switched and the capability of operating down to 
zero load. The design-oriented steady-state analysis 
presented in this paper addresses these two constraints 
quantitatively, allowing the designer to derive the circuit 
parameters which not only fulfill input voltage and output 
power specification data but also soft-switching and no-load 
operation constraints. 

Index Terms – Ac-circuit analysis, first harmonic 
approximation, LLC resonant converter, soft-switching, 
zero-current switching, zero-voltage switching. 

I.  INTRODUCTION

The LLC resonant converter is recently getting more 
and more popular in its half-bridge implementation (see 
figure 1) because of its high efficiency, low level of EMI 
emissions and its ability to achieve high power density. 
Such features excellently fit the power supply demand of 
many modern applications such as LCD and PDP TV or 
80+ initiative compliant ATX silver box. It is felt that one 
of the major difficulties that engineers are facing with 
this topology is the lack of information concerning the 
way the converter operates and, thereby, the way to 
design it in order to get the most of its features. 

The purpose of this paper is to provide a detailed 
quantitative analysis of the steady-state operation of the 
topology that can be easily translated into a design 
procedure. 

Exact analysis of LLC resonant converters [1] leads to 
a complex model that cannot be easily used to derive a 
handy design procedure. R. Steigerwald [2] has described 
a simplified method, applicable to any resonant topology, 
based on the assumption that input-to-output power 
transfer is essentially due to the fundamental Fourier 
series components of currents and voltages.  

This is what is commonly known as “first harmonic 
approximation” (FHA) technique, which enables the 
analysis of resonant converters by means of classical 
complex ac-circuit analysis. This is the approach that has 
been used in this paper. 
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Fig. 1. LLC resonant half-bridge converter 

The same methodology has been used by Duerbaum 
[3] who has highlighted the peculiarities of this topology 
stemming from its multi-resonant nature. Although 
providing an analysis useful to set up a design procedure, 
the quantitative aspect is not fully satisfying since some 
practical design constraints, especially those related to 
soft-switching, are not addressed. In [4] a design 
procedure that optimizes transformer’s size is given but, 
again, many other significant aspects of the design are not 
considered. 

The paper starts with a brief summary of the first 
harmonic approximation approach, warning of its 
limitations and highlighting the aspects it cannot predict. 
Then, the LLC resonant converter is characterized as a 
two-port element, considering the input impedance, and 
the forward transfer characteristic. The analysis of the 
input impedance is useful to determine a necessary 
condition for Power MOSFETs’ ZVS to occur and allows 
the designer to predict how conversion efficiency 
behaves when the load changes from the maximum to the 
minimum value. The forward transfer characteristic (see 
figure 2) is of great importance to determine the input-to-
output voltage conversion ratio and provides considerable 
insight into converter’s operation over the entire range of 
input voltage and output load. In particular, it provides a 
simple graphical means to find the condition for the 
converter to regulate the output voltage down to zero 
load, which is one of the main benefits of the topology as 
compared to the traditional series resonant converter. 

II.  FHA CIRCUIT MODEL

The FHA approach is based on the assumption that the 
power transfer from the source to the load through the 
resonant tank is almost completely associated to the 
fundamental harmonic of the Fourier expansion of the 
currents and voltages involved. This is consistent with the 
selective nature of resonant tank circuits. 
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Fig. 2. Conversion ratio of LLC resonant half-bridge 

The harmonics of the switching frequency are then 
neglected and the tank waveforms are assumed to be 
purely sinusoidal at the fundamental frequency: this 
approach gives quite accurate results for operating points 
at and above the resonance frequency of the resonant tank 
(in the continuous conduction mode), while it is less 
accurate, but still valid, at frequencies below the 
resonance (in the discontinuous conduction mode). 

It is worth pointing out also that many details of circuit 
operation on a cycle-to-cycle time base will be lost. In 
particular, FHA provides only a necessary condition for 
MOSFETs’ zero-voltage switching (ZVS) and does not 
address secondary rectifiers’ natural ability to work 
always in zero-current switching (ZCS). A sufficient 
condition for Power MOSFETs’ ZVS will be determined 
in section IV still in the frame of FHA approach. 

Let us consider the simple case of ideal components, 
both active and passive. 

The two Power MOSFETs of the half-bridge in figure 
1 are driven on and off symmetrically with 50% duty 
cycle and no overlapping. Therefore the input voltage to 
the resonant tank vsq(t) is a square waveform of amplitude 
Vdc, with an average value of Vdc/2. In this case the 
capacitor Cr acts as both resonant and dc blocking 
capacitor. As a result, the alternate voltage across Cr is 
superimposed to a dc level equal to Vdc/2. 

The input voltage waveform vsq(t) of the resonant tank 
in figure 1 can be expressed in Fourier series: 
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whose fundamental component vi.FHA(t) (in phase with the 
original square waveform) is: 
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π

⋅=  (2) 

where fsw is the switching frequency. The rms value 
Vi.FHA of the input voltage fundamental component is: 

dcFHAi VV
π
2

. =  (3) 

As a consequence of the above mentioned 
assumptions, the resonant tank current irt(t) will be also 
sinusoidal, with a certain rms value Irt and a phase shift Φ
with respect to the fundamental component of the input 
voltage:  

=Φ−⋅= )2sin(2)( tfIti swrtrt π  (4) 
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This current lags or leads the voltage, depending on 
whether inductive reactance or capacitive reactance 
dominates in the behavior of the resonant tank in the 
frequency region of interest. Irrespective of that, irt(t) can 
be obtained as the sum of two contributes, the first in 
phase with the voltage, the second with 90° phase-shift 
with respect to it. 

The dc input current Ii.dc from the dc source can also be 
found as the average value, along a complete switching 
period, of the sinusoidal tank current flowing during the 
high side MOSFET conduction time, when the dc input 
voltage is applied to the resonant tank: 
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where Tsw is the time period at switching frequency. 
The real power Pin, drawn from the dc input source 

(equal to the output power Pout in this ideal case) can now 
be calculated as both the product of the input dc voltage 
Vdc times the average input current Ii.dc and the product of 
the rms values of the voltage and current’s first harmonic, 
times cosΦ:

Φ⋅== cos.. rtFHAidcidcin IVIVP  (6) 

the two expressions are obviously equivalent. 
The expression of the apparent power Papp and the 

reactive power Pr are respectively: 

rtFHAiapp IVP .= Φ⋅= sin. rtFHAir IVP  (7)  

Let us consider now the output rectifiers and filter 
part. In the real circuit, the rectifiers are driven by a 
quasi-sinusoidal current and the voltage reverses when 
this current becomes zero; therefore the voltage at the 
input of the rectifier block is an alternate square wave in 
phase with the rectifier current of amplitude Vout.

The expressions of the square wave output voltage 
vo.sq(t) is: 
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which has a fundamental component vo.FHA(t): 
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whose rms amplitude is: 
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where Ψ is the phase shift with respect to the input 
voltage. The fundamental component of the rectifier 
current irect(t) will be: 

)2sin(2)( Ψ−⋅= tfIti swrectrect π   (11) 

where Irect is its rms value. 
Also in this case we can relate the average output 

current to the load Iout and also derive the ac current Ic.ac
flowing into the filtering output capacitor: 
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where Pout is the output power associated to the output 
load resistance Rout.

Since vo.FHA(t) and irect(t) are in phase, the rectifier 
block presents an effective resistive load to the resonant 
tank circuit, Ro.ac, equal to the ratio of the instantaneous 
voltage and current: 
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Thus, in the end, we have transformed the non linear 
circuit of figure 1 into the linear circuit of figure 3, where 
the ac resonant tank is excited by an effective sinusoidal 
input source and drives an effective resistive load. This 
transformation allows the use of complex ac-analysis 
methods to study the circuit and, furthermore, to pass 
from ac to dc parameters (voltages and currents), since 
the relationships between them are well-defined and fixed 
(see equations (3), (5), (6), (10) and (12) above). 

The ac resonant tank in the two-port model of figure 3 
can be defined by its forward transfer function H(s) and 
input impedance Zin(s): 
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For the discussion that follows it is convenient to 
define the effective resistive load reflected to the primary 
side of the transformer Rac:

acoac RnR .
2=   (17) 

and the so-called “normalized voltage conversion ratio” 
or “voltage gain” M(fsw): 
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It can be demonstrated (by applying the relationships 
(3), (10) and (18) to the circuit in figure 3) that the input-
to-output dc-dc voltage conversion ratio is equal to: 
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In other words, the voltage conversion ratio is equal to 
one half the module of resonant tank’s forward transfer 
function evaluated at the switching frequency. 

III.  VOLTAGE GAIN AND INPUT IMPEDANCE

Starting from (18) we can obtain the expression of the 
voltage gain: 

(20)

with the following parameter definitions: 

resonance frequency:   

characteristic impedance:  

quality factor:      

inductance ratio:     

normalized frequency:   

Under no-load conditions, (i.e. Q = 0) the voltage gain 
assumes the following form: 

(21)

Figure 2 shows a family of plots of the voltage gain 
versus normalized frequency. For different values of Q, 
with  = 0.2, it is clearly visible that the LLC resonant 
converter presents a load-independent operating point at 
the resonance frequency fr (fn = 1), with unity gain, where 
all the curves are tangent (and the tangent line has a slope 
–2 ). Fortunately, this load-independent point occurs in 
the inductive region of the voltage gain characteristic, 
where the resonant tank lags the input voltage square 
waveform (which is a necessary condition for ZVS 
behavior). 

The regulation of the converter output voltage is 
achieved by changing the switching frequency of the 
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square waveform at the input of the resonant tank: since 
the working region is in the inductive part of the voltage 
gain characteristic, the frequency control circuit that 
keeps the output voltage regulated acts by increasing the 
frequency in response to a decrease of the output power 
demand or to an increase of the input dc voltage. 
Considering this, the output voltage can be regulated 
against wide loads variations with a relatively narrow 
switching frequency change, if the converter is operated 
close to the load-independent point. 

Looking at the curves in figure 2, it is obvious that the 
wider the input dc voltage range is, the wider the 
operating frequency range will be, in which case it is 
difficult to optimize the circuit: this is one of the main 
drawbacks common to all resonant topologies. 

This is not the case, however, when there is a PFC pre-
regulator in front of the LLC converter, even with a 
universal input mains voltage (85Vac – 264Vac). In this 
case, in fact, the input voltage of the resonant converter is 
a regulated high voltage bus of ~400Vdc nominal, with 
narrow variations in normal operation, while the 
minimum and maximum operating voltages will depend, 
respectively, on the PFC pre-regulator hold-up capability 
during mains dips and on the threshold level of its over 
voltage protection circuit (about 10-15% over the nominal 
value). Therefore, the resonant converter can be 
optimized to operate at the load-independent point when 
the input voltage is at nominal value, leaving to the step-
up capability of the resonant tank (i.e. operation below 
resonance) the handling of the minimum input voltage 
during mains dips. 

The red curve in figure 2 represents the no-load 
voltage gain curve MOL; for normalized frequency going 
to infinity, it tends to an asymptotic value M :
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Moreover, a second resonance frequency fo can be 
found, which refers to the no-load condition or when the 
secondary side diodes are not conducting, that is the 
condition where the total primary inductance Lr + Lm
resonates with the capacitor Cr; it is defined as: 
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or in normalized form: 
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At this frequency the no-load gain curve MOL tends to 
infinity.  

By imposing that the minimum required gain Mmin (at 
max. input dc voltage) is greater than the asymptotic 
value M , it is possible to ensure that the converter can 
work down to no-load at a finite operating frequency 
(which will be the maximum operating frequency of the 
converter): 
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Fig. 4. Shrinking effect of  value increase 

The maximum required gain Mmax (at min. input dc 
voltage) at max. output load (max. Pout), that is at max. Q, 
will define the min. operating frequency of the converter: 
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Given the input voltage range (Vdc.min - Vdc.max), three 
types of operation are possible: 
  - always below resonance frequency (step-up operation) 
  - always above resonance frequency (step-down operat.) 
  - across the resonance frequency (shown in figure 2). 

Looking at figure 4, we can see that an increase of the 
inductance ratio value  has the effect of shrinking the 
gain curves in the M - fn plane toward the resonance 
frequency fnr (which means the no-load resonance 
frequency fno increases) and contemporarily reduces the 
asymptotic level M  of the no-load gain characteristic; at 
the same time the peak gain of each curve increases. 

Starting from (16) we can obtain the expression of the 
normalized input impedance Zn of the resonant tank: 
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whose magnitude is plotted in figure 5, at different Q 
values, with  = 0.2. 

The red and blue curves in the above mentioned figure 
represent the no-load and short circuit cases respectively, 
and are characterized by asymptotes at the two 
normalized resonance frequencies fno and fnr (= 1). All the 
curves at different values of Q intercept at normalized 
frequency fn.cross:

λ
λ
21

2
. +

=crossnf   (28) 

At frequencies higher than the crossing frequency 
fn.cross, the input impedance behaves such that at 
increasing output current Iout (that is at increasing Pout and 
Q) it decreases (coherently to the load resistance); the 
opposite happens at frequencies lower than fn.cross, where 
the input impedance increases, while the output load 
resistance decreases. 
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Fig. 5. Normalized input impedance magnitude 

The ac analysis can also help to estimate converter’s 
efficiency  and predict how this changes with the load. 
Considering the generic model similar to the one in figure 
3, where the resonant tank includes also the dissipative 
elements (i.e. series resistors for magnetic components 
winding losses and capacitor’s ESR, and parallel resistors 
for magnetic losses of inductors and transformer), we can 
compute the transfer function HLOSS(j ) and the input 
impedance Zin.LOSS(j ). By calculating input and output 
power in terms of HLOSS and Zin.LOSS, we get: 
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where Yin.LOSS is the admittance (reciprocal of Zin.LOSS)
and the input and output power are expressed as: 
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The region on the left-hand side of the diagram in 
figure 5, i.e. for a normalized frequency lower than fno, is 
the capacitive region, where the tank current leads the 
half-bridge square voltage; at normalized frequency 
higher than the resonance frequency fnr (= 1), on the 
right-hand side region, the input impedance is inductive, 
and the resonant tank current lags the input voltage. In 
the region between the two resonance frequencies the 
impedance can be either capacitive or inductive, 
depending on the value of the impedance phase angle. 

By imposing that the imaginary part of Zn(fn, , Q) is 
zero (which means imposing that Zin has zero phase 
angle, as Zo is real and does not affect the phase), we can 
find the boundary condition between capacitive and 
inductive mode operation of the LLC resonant converter. 

The analytical results are the following: 
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Fig. 6. Capacitive and inductive regions in M – fn plane 

2

21
),( −

+
=

nn
nZ ff

fQ λλλ   (33) 

where fnZ represents the normalized frequency where, for 
a fixed couple (  - Q), the input resonant tank impedance 
is real (and only real power is absorbed from the source); 
while QZ is the maximum value of the quality factor, 
below which, at a fixed normalized frequency and 
inductance ratio (fn - ) the tank impedance is inductive; 
hence, the maximum voltage gain available in that 
condition is also found: 
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By plotting the locus of operating points [MMAX( , Q), 
fnZ( ,Q)], whose equation on M – fn plane is the 
following: 
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we can draw the borderline between capacitive and 
inductive mode in the region between the two resonance 
frequencies, shown in figure 6. It is also evident that the 
peak value of the gain characteristics for a given quality 
factor Q value, already lays in the capacitive region. 

Moreover, by equating the second term of (35) to the 
maximum required gain Mmax (at minimum input 
voltage), and solving for fn, we get the minimum 
operating frequency fn.min which allows the required 
maximum voltage gain at the boundary between 
capacitive and inductive mode: 
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Furthermore, by substituting the minimum frequency 
(36) into the (33), we get the maximum quality factor 
Qmax which allows the required maximum voltage gain at 
the boundary between capacitive and inductive mode: 
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Finally, by equating the second term of the no-load 
transfer function (21) to the minimum required voltage 
gain Mmin, it is possible to find the expression of the 
maximum normalized frequency fn.max:
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IV.  ZVS CONSTRAINTS

The assumption that the working region lays inside the 
inductive region of operation is only a necessary 
condition for the ZVS of the half bridge MOSFETs, but 
not sufficient; this is because the parasitic capacitance of 
the half bridge midpoint, neglected in the FHA analysis, 
needs some energy to be charged and depleted during 
transitions. In order to understand the ZVS behavior, 
refer to the half bridge circuit in figure 7, where the 
capacitors Coss and Cstray are, respectively, the effective 
drain-source capacitance of the Power MOSFETs and the 
total stray capacitance present across the resonant tank 
impedance; so that the total capacitance Czvs at node N is: 

strayosszvs CCC += 2   (39) 

which, during transitions, swings by V = Vdc. To allow 
ZVS, the MOSFET driving circuit is such that a dead 
time TD is inserted between the end of the ON-time of 
either MOSFET and the beginning of the ON-time of the 
other one, so that both are not conducting during TD.

Due to the phase lag of the input current with respect 
to the input voltage, at the end of the first half cycle the 
inductor current Irt is still flowing into the circuit and, 
therefore it can deplete CZVS so that its voltage swings 
from V to zero (it will be vice versa during the second 
half cycle). 

In order to guarantee ZVS, the tank current at the end 
of the first half cycle (considering the dead time 
negligible as compared to the switching period, so that 
the current change is negligible as well) must exceed the 
minimum value necessary to deplete CZVS within the dead 
time interval TD, which means: 
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This current equals, of course, the peak value of the 
reactive current flowing through the resonant tank (it is 
90° out-of-phase); the one that determines the reactive 
power level into the circuit: 

Φ⋅= sin2 rtzvs II   (41) 

Moreover, as the rms component of the tank current 
associated to the active power is: 
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Fig. 7. Circuit behavior at ZVS transition 

hence we can derive also the rms value of the resonant 
tank current and the phase lag  between input voltage 
and current (that is the input impedance phase angle at 
that operating point): 
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Thus we can write the following analytic expression: 
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which is the sufficient condition for ZVS of the half-
bridge Power MOSFETs, to be applied to the whole 
operating range. The solution of (45) for the quality 
factor Qzvs that ensures ZVS behavior at full load and 
minimum input voltage is not handy. Therefore, we can 
calculate the Qmax value (at max. output power and min. 
input voltage), where the input impedance has zero phase, 
and take some margin (5% - 10%) by choosing:  

max1. %95%90 QQzvs ⋅÷=   (46) 

and check that the condition (45) is satisfied at the end of 
the process, once the resonant tank has been completely 
defined. The process will be iterated if necessary. 

Of course the sufficient condition for ZVS needs to be 
satisfied also at no-load and maximum input voltage; in 
this operating condition it is still possible to find an 
additional constraint on the maximum quality factor at 
full load to guarantee ZVS. In fact the input impedance at 
no-load Zin.OL has the following expression: 
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Taking into account that: 

aco RQZ =   (48) 

and writing the sufficient condition for ZVS in this 
operating condition, that is: 
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we get the constraint on the quality factor for the ZVS at 
no-load and maximum input voltage: 
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Therefore, in order to guarantee ZVS over the whole 
operating range of the resonant converter, we have to 
choose a maximum quality factor value lower than the 
smaller of Qzvs.1 and Qzvs.2.

V.  MAGNETIC INTEGRATION

The LLC resonant half-bridge lends itself to magnetic 
integration, i.e. to combine the inductors as well as the 
transformer into a single magnetic device. This can be 
easily recognized looking at transformer’s physical model 
(fig. 8), where the topological analogy with the inductive 
part of the LLC tank circuit is apparent. However, the 
real transformer has leakage inductance on the secondary 
side as well, which is completely absent in the model 
considered so far. To include the effect of secondary 
leakage in the FHA analysis, we need a particular 
transformer model and a simplifying assumption. 

It is well-known that there are an infinite number of 
electrically equivalent models of a given transformer, 
depending on the choice of the turn ratio of the ideal 
transformer included in the model. With an appropriate 
choice of this “equivalent” turn ratio n (obviously 
different from the “physical” turn ratio nt = N1/N2) all the 
elements related to leakage flux can be located on the 
primary side.  

This is the APR (All-Primary-Referred) model shown 
in fig. 9, which fits the circuit considered in the FHA 
analysis. It is possible to show that the APR model is 
obtained with the following choice of n: 
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L
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with k transformer’s coupling coefficient, L1 inductance 
of the primary winding and L2 inductance of each 
secondary winding. Note that Lr still has physical 
meaning: it is the primary inductance measured with the 
secondary windings shorted. Note also that the primary 
inductance L1 must be unchanged; it is only differently 
split, hence, Lm will be the difference between L1 and Lr.
In the end, the analysis done so far is directly applicable 
to real-world transformers provided they are represented 
by their equivalent APR model. Vice versa, a design flow 
based on the FHA analysis will provide the parameters of 
the APR model; hence, an additional step is needed to 
determine those of the physical model. In particular this 

applies to the turn number nt, since Lr and Lm still have a 
connection with the physical world (Lr+Lm = LL1+Lμ=L1). 
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Fig. 8. Transformer’s physical model 
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Ideal Transformer

n : 1 : 1
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Fig. 9. Transformer’s APR (All-Primary-Referred) model 

The problem is mathematically undetermined: there 
are 5 unknowns (LL1, Lμ, nt, and LL2a, LL2b) in the 
physical model and only three parameters in the APR 
model. The simplifying assumption that overcomes this 
issue is that of magnetic circuit symmetry: flux linkage is 
assumed to be exactly the same for both primary and 
secondary windings. This provides the two missing 
conditions: 
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With this assumption it is now possible to find the 
relationship between n and nt:
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  (53) 

Fig. 10. Transformer construction: E-cores and slotted bobbin 

It is not difficult to find real-world structures where 
the condition of magnetic symmetry is quite close to 
reality: consider for example the ferrite E-core plus 
slotted bobbin assembly, using side-by-side winding 
arrangement, shown in fig. 10. 

VI.  DESIGN PROCEDURE

Based on the analysis presented so far, a step-by-step 
design procedure of an LLC resonant converter is now 
proposed, which fulfills the following design 
specification and requires the additional information 
listed below: 
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- Design Specification: 
• Input voltage range:      Vdc.min – Vdc.max

• Nominal input voltage:     Vdc.nom

• Regulated output voltage:    Vout

• Maximum output power:    Pout
• Resonant frequency:      fr

• Maximum operating frequency:  fmax

- Additional Info: 
• Parasitic capacitance at node N:  Czvs

• Dead time of driving circuit:   TD

- General criteria for the design will be the following: 
• The converter will be designed to work at resonance 

at nominal input voltage. 
• The converter must be able to regulate down to zero 

load at maximum input voltage. 
• The converter will always work in ZVS in the whole 

operating range. 

Step 1 – to fulfill the first criterion, impose that the 
required gain at nominal input voltage equals unity and 
calculate the transformer turn ratio: 
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Step 2 – calculate the max. and min. required gain at 
the extreme values of the input voltage range: 
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Step 3 – calculate the maximum normalized operating 
frequency (according to the definition): 
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Step 4 – calculate the effective load resistance 
reflected to transformer primary side, from (14) and (17): 

out

out
ac P

VnR
2

2
2

8
π

=

Step 5 – impose that the converter operates at 
maximum frequency at zero load and maximum input 
voltage, calculating the inductance ratio from (38): 
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Step 6 – calculate the max Q value to work in the ZVS 
operating region at minimum input voltage and full load 
condition, from (37) and (46): 
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Step 7 – calculate the max Q value to work in the ZVS 
operating region at no-load condition and maximum input 
voltage, applying (50): 
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Step 8 – choose the max quality factor for ZVS in the 
whole operating range, such that: 
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Step 9 – calculate the minimum operating frequency at 
full load and minimum input voltage, according to the 
following approximate formula: 
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Step 10 – calculate the characteristic impedance of the 
resonant tank and all component values (from definition): 
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VII.  CONCLUSIONS

The LLC resonant converter, whose peculiarities and 
advantages have been introduced in the first section, has 
been modeled as a linear circuit through the FHA 
technique presented in the second section, where the 
input controlled switch network, the output rectifiers and 
filter have been modeled neglecting all the harmonics 
above the fundamental component of voltages and 
currents involved. The resulting two-port model is fully 
characterized by the input impedance Zin(j ) and the 
voltage gain function M(j ) of the resonant tank. These 
two functions have been quantitatively analyzed in the 
third section, where the conditions to operate on the 
boundary between capacitive and inductive regions and 
to regulate down to zero load have been mathematically 
derived. In the fourth section, the ZVS constraints have 
been addressed, and a sufficient condition has been found 
(within the limitations of the FHA approach) to guarantee 
ZVS even at the extremes of output load and input 
voltage. In the fifth section the integration of all magnetic 
parts of the LLC tank into a single transformer has been 
addressed.  

Finally, in the sixth section a simple step-by-step 
design procedure has been outlined, which enables to 
fulfill a set of specification data concerning output power 
and input voltage, as well as ZVS and zero load operation 
requirements. 
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