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Abstract—In this paper, a three-phase six-switch standard voltage is sensed for the six-step operation and multipliers are
boost rectifier with unity-power-factor correction is investi- necessary to implement the three-phase current references.
gated. A general equation is derived that relates the input phase |, this paper, a general equation that relates input phase volt-
voltages, output dc voltage, and duty ratios of the switches in tout d It d dut fi f switches is derived
continuous conduction mode. Based on one of the solutions and 29€S: ou.pu ,C Vo gge, and duty r‘?'os Of switches Is derive
using one-cycle control, a unified constant-frequency integration for the six-switch bridge boost rectifier based on an average
controller for PFC is proposed. For the standard bridge boost model in continuous conduction mode (CCM). This equation of
rectifier, a unity power factor and low total harmonic distortion  the average model is singular and has infinite solutions. Based
can be realized in all three phases with a simple circuit that is com- on the one-cycle control concept [6]-[10] and one solution of

posed of one integrator with reset along with several flips-flops, thi | fi ified tant-f int f
comparators, and some logic and linear components. It does not IS general equation, a unined constant-frequency ntegration

require multipliers and three-phase voltage sensors, which are (UCI) controller is introduced that realizes three-phase unity
required in many other control approaches. In addition, itemploys power factor and low total harmonic distortion (THD). The pro-
constant-switching-frequency modulation that is desirable for posed controller features the following:

industrial applications. The proposed control approach is simple

and reliable. All findings are supported by experiments. * constant switching frequency;

* no need for the multipliers that are required to scale the
current reference, according to load level, as used in many
other control approaches;

* three-phase voltage sensors are eliminated;

I. INTRODUCTION * only one integrator with reset, along with some logic and

RADITIONAL diode rectifiers and thyristor rectifiers linear components, is required; it is simple and reliable.
draw pulsed current from the ac main, causing signifi-
cant current harmonics pollution, elevated power rating, and
harmonic/reactive power losses. The international standardShe analysis in this section is based on following assump-
presented in IEC 1000-3-2 and EN61000-3-2 imposed hépns.
monic restrictions to modern rectifiers, which have resulted « The switches in each arm operate in a complementary
in a focused research effort on the topic of unity-power-factor  tashion, e.g., the duty ratios for switch8ss,, S., ared,,,
rectifiers. Three-phase power-factor-correction (PFC) rectifiers  and1 — d,,,, respectively, etc.
are preferred for high-power applications due to their sym- « Three-phase system is symmetrical.
metric current-drawing characteristics. Many topologies have « Switching frequency is much higher than line frequency.
been proposed recently [1]-{4]. Among them, the Six-SWitch gix-switch standard bridge boost rectifier is shown in
bridge boost rectifier is a commonly used topology. In thpig_ 1(a). The average voltages at the nodes A, B, and C,

previously proposed rectifiers, hysteresis control @nagltrans-  roferred to node N. are given by
formation control were frequently used to control six-switch

Index Terms—One-cycle control, power-factor correction
(PFC), power quality control, three-phase rectifier.

Il. PROPOSEDUCI CONTROLLER

bridge boosts. Hysteresis control results in variable switching van = (1 —dan) - E
frequency, which can cause difficulties for electromagnetic vpN = (1 —dp,) - B (1)
interference (EMI) filter design. Théd—g approach leads to vonN = (1 —den) - F

complicated systems. An encouraging analog solution, Wiﬂ]ﬂered dy. andd.., are the duty ratios for switche,
constant switching frequency modulation, was provided in [ any Tbn e y »

. . . o »,» andS., . The equivalent average model for the rectifier in
for a six-switch bridge boost rectifier. However, three-phai?_él’g. 1(a) is shown ?n Fig. 1(b). Thg average vector voltage at

nodes A, B, and C, referred to the neutral point “O,” equal the

Manuscript received February 19, 2001; revised March 15, 2002. Abstrgdiase vector voltages minus the voltage across the inductors
published on the Internet September 13, 2002. This paper was presented affheand L., as given by
7th IEEE International Power Electronics Congress (CIEP 2000), Acapulco,
Mexico, October 15-19, 2000.
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Substituting (7) and (3) into (6) results in
Va
VAO = VAN — % -(vaN +vBN + VON) R Vg
0 YBO = VBN — ? - (van +vBN +VvoN) R v 8)
veo = VeN — 3 - (VAN + VBN + VON) R V.
v Simplification yields
%1 _2% _$ vAN Va
—§ 3 3 UBN | = | Vb | - 9)
4 7] L] e

The combination of (1) and (9) yields the relationship between
duty ratiod,,,, dy,, d., and voltagev,, vy, v., Which is shown

as follows:
_2 1 1 d v
3 3 an 1 a
% _1% %2 db’n = E . Vp . (10)
3 3 —3] Lden Ve

This equation relates the average duty ratio of switches to the
(b) line voltage. Since the matrix of (10) is singular, (10) has no
Fig. 1. (a) Three-phase six-switch bridge boost rectifier. (b) Average modellnique solution. One possible solution for (10) is as follows:

where L is the inductance of input inductors (assuming the Z‘m f[[? +[[§2 ’ vf: 1
three-phase inductors are identical)js the line angular fre- d”” - Kl + K2 r (11)
quency, andr,, iz, andirz. are the inductor current vectors. en = 1+ Ko g

Since these inductors are operating at high frequency, and th

inductancel is very small as regards a 60-Hz utility SystemSl?bstituting the above equation into (10) results in the fol-

the voltages across the inductors, such@$ - ip,, are very lowing: parameterk; = -1 and K, can be any number.

small, compared to the phase voltage, and may be neglec%ﬁcause the duty ratio is less than unity and greater than zero,
t

Therefore, (2) can be simplified as e following limitation holds:

Uq
’l.}AOz’l.}a vAOzva:\/gVi-sin(wt) Ogdan:Kl_Egl. (12)
o ~ Uy = { vBo ~ vy = V2.V - sin (wt — 120°)
Voo = Ve Voo X v = V2V - sin (wt 4 120°). The parametek; is limited by
3)
For a symmetric three-phase system, it holds that Ya K <1+ Ya (13)
Vg + v +ve = 0. (4) Equation (11) can be rewritten as
. Vg 1— dan
This leads to EK; ;{1
e (14)
va0 +vBo +vco = 0. (5) 15 il Bl o

The voltages at nodes A, B, and C, referred to the neutral poiR@r an ideal three-phase rectifier with unity power factor, the

are given by three-phase currents should follow the three-phase sinusoidal
voltages. Therefore, the impedance looking into the three-phase
VA0 = VAN + UNO rectifier from the_utility side should bg resistive. Defiig as
vBO = VBN + VNO (6) the gmu]ated resistance, where the smefeflects the power
Voo = VeN + UNO. flowing into the rectifier. The control goal is to realize the fol-

lowing relationship between the input voltages and currents:
Combining (5) and (6) yields
Vo = Re +ia
1 Vg = Re “ig (15)
UNO = -3 (vaN +vBN + vON). (7) Vg = Re - ig.
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Combining the above equation and (14) yields Set the time constant of the integratoe= K, - Ts, whereTs
R Re i o is the .swit_ching period anfl; is a positive constant. The above
Er R Als ta=1—- 3> equation is reduced to
g Rs iy =1— 9= (16)
ﬁRSZC:l_% Rs'iLapk:Vm_Vm'l;;:~

where parameteR; is the equivalent current-sensing resistor. _ o )
The proposed diagram in Fig. 2(a) realized the control key (19)

Define
for unity PFC. As a result, the phase current will follow the
V,, = E-R, Ky (17) phase voltage and unity power factor is achieved. For conve-
R nience,K is chosen to be 0.5. In this case, the carkigr —

where V,,, is the output of the feedback error compensatolm - (t/K1 - Ts) is symmetric to ther axis. _ _
Equation (16) can be simplified as For the boost rectifier in Fig. 1(a), the control of switches in

each leg, such aS,,, S,p, are complementary. Due to the fi-

Ry-iqg=Vy — Vi - ‘kl nite switching speed, both switches in one leg magibduring
Ry iy =V =V, - G (18) commutation interval. Thus, the dc capacitor will be discharged
1

through the two switches and a short through current will occur,
resulting in failure of the converter. In order to prevent short

Three-phase PFC can be achieved by controlling the switclfgguit during the commutation time, a dead time for the com-
in such a way that the duty ratios and input currents satisfy (1@jementary switches such &s,,, S., is implemented. Further-
Assuming that the input inductor currents operate in the CCMore, because the energy flows only from the ac to dc side in
with small ripple, in each switching cycle, the average induct&C application, a dc block diode may be inserted in the dc
current, which equals phase current, is approximately equalfés of the topology in Fig. 1(a) to provide safer operation. The
the peak inductor current in each switching cycle, thatis, ~ Schematic for the power stage is shown in Fig. 3.

; den
Rs'lc:Vm_Vm'K_l-

ia = (iLa) X iLapk ll. STABILITY CONSIDERATION
b= {ir0) ~ LLbpk With the proposed approach, the inductor current may
e = (iLe) & iLepk experience a large distortion at light load. It is found that, in

. . . . certain regions of the line cycle, the inductor current could
where{ira), {irs), and(ir.) are inductor cycle average currentg, “partly uncontrolled.” From (19), the signaf,, reflects

andiLapr, irop, ANdirey. are inductor peak currents during,, power level of the rectifier. The high&f, is, the larger
each switching cycle. The control key equations for peak "Current will flow to the load a.nd the higher ’ower will be
ductor current sensing are derived as . 9 P
delivered. The “partly uncontrolled” phenomena occurs when

R -ipoon = Viy — V,,, - dan V. is small and load is light (for example, 10% of nominal
R' ¥ e v - v Ny ﬁ (19) load). The open-loop simulation under this condition is shown

R K in Fig. 4, when the output voltage feedback compensator is
Rsinepk = Vin = Vin - T disabled and a constant reference voltage is applied to node

The above equation can be implemented by the one-cycle ¢ ), iwhe;;/% ' (} - ;tr/eo.%éjéc)a)rnslsetjtk}?] d(l:irtrclnfr,c]j?r.erithman q
rol circuit, i.e., an integrator with r her with some* ~ "Lb’ s 7 ULe AT : :
trol cireult, 1.e., an integrator with reset, together with so Qv Q.,, are driving signals for switches,,,, Sy,., and

linear and logic components. The overall schematic for the prg<” ! . . .
g P P respectively. Simulation conditions are as follows: the

posed three-phase UCI PFC controller with peak inductor cur<™’ . . ) - . i
rent sensing is shown in Fig. 2(a). No voltage sensors and m@\pm inductance is 1 mH; the switching frequency is 10 kHz;

tipliers are required. The operational waveforms are shown i eacr::é"tigt \s/glqjéng/res_lstfr\l;:elzlisgﬂit(g? 2%%;’;‘;%?&;;28
Fig. 2 whereQ.,, Qun - .- Q.. are the driver signals for ) m o ) _ .
svgitch(ebs)é g eqQ p:S,Q res gctivile the driver signals fo cycle operation waveforms and Fig. 4(b) shows the line-cycle
ap Dan - - Ocn, [ESPECUVELY. inductor current. In this case, the sensed sigtali;,, is above
In the beginning of each switching cycle, the clock sets tQﬁe envelope of carrier signal,, - (1 — (£/0.5 - T.)), which
H H i~ 1/ : m [ Y. s/))s
output of fI|p-rops 0 high Qap, Qup, Qep = I_oglc 1" and in- indicates uncontrolled operation in a small region
ductor currents increase. When a sensed inductor current, € he reason for this uncontrolled operation is due to the re-

phaseA current, reaches the ramp signiah — (Vin/7) - £ In dundancy of switching states during each switching cycle. In

Fig. 2(a), wherer is the time constant of integrator that is thl?he beginning of each switching cycle, all the lower switches

roduct of resistance and capacitance in Fig. 2(a)), the corre- . S
P P g- 2(a)) Sefm Spn, Sen are turned on and the equivalent circuit is shown

sponding flip-flop is reset to zero an@,,, = logic’0’. Then, ™. S
the inductor current starts to decrease and the on-time of the c'nr!:'g' 5(@). Ngar the end of the switching cycle when qll of
these three switches are turned off, all the upper leg switches

responding switch is determined. From Fig. 2(b), the foIIowing Sy, S, are turned on, The equivalent circuit is shown in
bpy “cp .

. . S . Saps
equation holds for all three phases in each switching cycle: Fig. 5(b). The electrical property for these two states is identical

Vi to each other and the equivalent circuit for both cases is shown

Vm = ==t =Re-irapr;  t=Dan-Is. in Fig. 5(c). For both cases, the inductor
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(a) Schematic of proposed UCI controller for three-phase PFC with peak inductor current sensing. (b) Operating waveforms.
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Fig. 3. Three-phase six-switch boost rectifier with a dc diode.
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Fig. 4. (a) Simulated waveforms when inductor current is “partIyA/%iv. R4 i, SpA/div. "2 'z

uncontrolled.” (b) Phasd inductor current.

voltage equals phase voltage and inductor currents increasfé.the inductor currentr, increases with a slope of, (¢)/L
Take phasé3 as an example as shown in Fig. 4(a). Witgpis (at this time, phase, is negative).
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Fig. 7. Schematic of proposed controller for three-phase boost rectifier. ~

g

If the slope of inductor current is greater than the equivalefhe inductor should be chosen according to (20)
slope of ramp signal;,, - (1 — (¢/0.5 - Ts)), the current will

grow beyond the envelope. To avoid this situation, a circuit lim- L>R,- M . (20)
itation is required, that is, min(V;)
oy (t) _ Vim whereR; is the current-sensing resistan®gmax is the peak of
R, - 7, < o the input phase voltage;is the integration time constant (in this
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Fig. 8. Power stage of three-phase boost rectifier. -
paper; is chosen as = 0.57%); andmin (V,,,) is the minimum APPENDIX

voltage ofV,,, as determined by the minimum load through (17). CIRCUIT SCHEMATIC OF THREE-PHASE BOOST RECTIFIER
WITH PROPOSEDCONTROLLER

IV. EXPERIMENTAL VERIFICATION See Figs. 7 and 8.
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