LI-LON/POLYMER 1CELL PROTECTOR

R5402xxxxx SERIES (Preliminary)

KUGOH

OUTLINE

The R5402xxxxx Series are high voltage CMOS-based protection ICs for over-charge/discharge of rechargeable one-cell Lithium-ion (Li+) / Lithium polymer excess load current, further include a short circuit protector for preventing large external short circuit current and Excess charge/discharge-current.

Each of these ICs is composed of four voltage detectors, a reference unit, a delay circuit, a short circuit protector, an oscillator, a counter, and a logic circuit. When the over-charge voltage or the excess charge-current threshold crosses the each detector threshold from a low value to a high value, the output of Cour pin switches to low level after internal fixed delay time. The conditions to release over-charge detector are different by mask options. In terms of so called "Latch function" version, after detecting over-charge or excess charge current, these detectors can be reset and the output of Cour becomes "H" when a kind of load is connected to VDD after a charger is disconnected from the battery pack, and the cell voltage becomes lower than over-charge detector threshold. If a charger is continue to be connected to the battery pack, even the cell voltage becomes lower than over-charge detector threshold, over-charge state is not released. On the other hand, in terms of so called, " Released by voltage level" version, after detecting over-charge, when the cell voltage reaches the released voltage from over-charge, the output of COUT becomes "H"

The output of Dour pin, the output of Over-discharge detector and Excess discharge-current detector, switches to "L" level after internally fixed delay time, when discharged voltage crosses the detector threshold from a high value to a value lower than V_{DET2}.

The conditions to release over-discharge detector are also different by mask options. In terms of so called "Latch function" version, after detecting over-discharge voltage, connect a charger to the battery pack, and when the battery supply voltage becomes higher than over-discharge detector threshold, VD2 is released and the voltage of Dour pin becomes "H" level. On the other hand, in terms of so called "Released by voltage level" version, in case that the charger is not connected, when the cell voltage becomes equal released voltage from over-discharge, over-discharge detector is released. In case that a charger is connected, and when the cell voltage becomes the released voltage from over-discharge, the over-discharge detector is released.

An excess discharge-current and short circuit state can be sensed and cut off through the built in excess current detector, VD3, with Dout being enabled to low level. Once after detecting excess discharge-current or short circuit, the VD3 is released and Dout level switches to high by detaching a

battery pack from a load system.

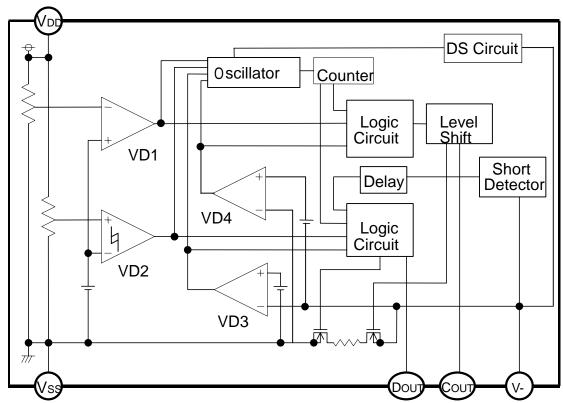
After detecting over-discharge, supply current will be kept extremely low by halting internal circuits' operation.

When the output of COUT is "H", if V- pin level is set at Vss-2V, the delay time of detector can be shortened. Especially, the delay time of over-charge detector can be reduced into approximately 1/57. Therefore, testing time of protector circuit board can be reduced. Output type of Cour and Dour are CMOS. 6-pin, SOT-23-6 is available.

FEATURES

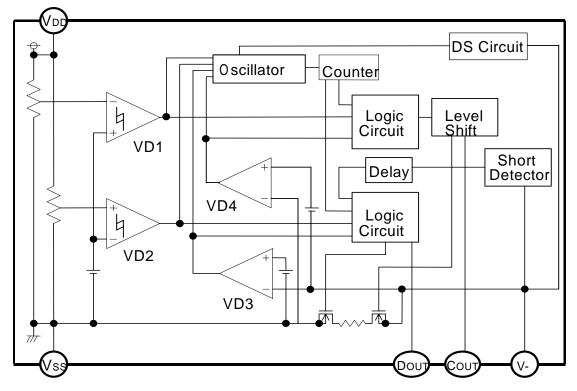
• Manufactured with High Voltage Tolerant Process .	Absolute Maximum Rating	35V
Low supply current	Supply current (At normal mode)	Тур. 4.0µА
	C version: (detecting over-dischar	rge) Max. 0.1µA
B/D	version: (detecting over-discharge)	Typ. 1.2µA/Max. 2.0µA
• High accuracy detector threshold	Over-charge detector (Topt=25°C) ±25mV
	(Topt=-5 to	55°C) ±30mV
	Over-discharge detector	$\pm 2.5\%$
	Excess discharge-current detector	r ±15mV
	Excess charge-current detector	±30mV
• Variety of detector threshold	Over-charge detector threshold	4.0V-4.5V step of 0.005V
	Over-discharge detector threshold	2.0V-3.0V step of 0.005V
	Excess discharge-current threshold	0.05V-0.20V step of 0.005V
	Excess charge-current threshold	Fixed at -0.1V
	Short Detector Threshold	Fixed at 0.8V
• Internal fixed Output delay time	Over-charge detector Output Delay 250m	ns(F type) /1s (C, K type)
(Select among the options)	Over-discharge detector Output I	Delay 20ms
	Excess discharge-current detector	r Output Delay 12ms
	Short Circuit detector Output Del	lay 300µs
Exces	s charge-current detector Output Delay 8m	s(K Type) /16ms(C,F Type)
Output Delay Time Shortening Function	At COUT is "H", if V- level is set a	at –2V, the Output Delay
	time of all items except short-o	circuit can be reduced.
	(Delay Time for over-charge be	ecomes about 1/57 of
	normal state.)	
OV-battery charge option	acceptable/unacceptable	
Conditions for release over-charge	e detector With Latch fun	action (B/C version)
	With Released v	voltage, (D version)
Conditions for Release over-discharge de	tector Latch Type: (C version)	

..... Released Voltage (B/D version)

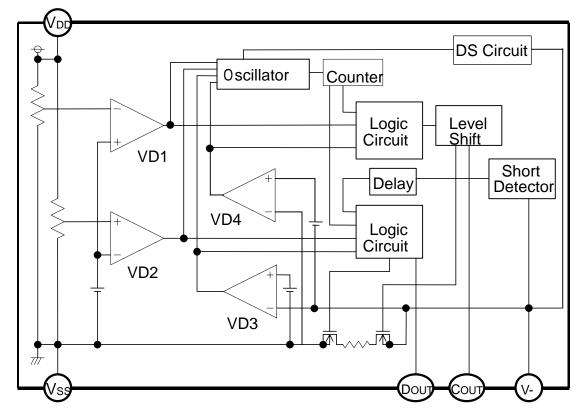

• Ultra Small package SOT-23-6

APPLICATIONS

- Li+ / Li Polymer protector of over-charge, over-discharge, excess-current for battery pack
- \bullet High precision protectors for cell-phones and any other gadgets using on board Li+ / Li Polymer battery


BLOCK DIAGRAMS

B version



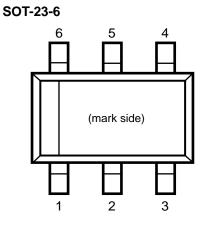
R5402xxxxx (Preliminary)

D version

C version

RIGOH

SELECTION GUIDE


In the R5402xxxxx Series, four of the input threshold for over-charge, over-discharge, excess discharge current, and excess charge current detectors can be designated.

Part Number is designated as follows:

 $\begin{array}{rcl} \text{R5402x} & \underline{\text{xxx}\text{xx}}\underline{\text{-xx}} & & \leftarrow \text{Part Number} \\ & \uparrow & \uparrow & \uparrow & \uparrow \\ & a & b & cd & e \end{array}$

Code	Contents
а	Package Type N: SOT-23-6
b	Serial Number for the R5402 Series designating input four threshold for over-charge, over-discharge, excess discharge-current, and excess charge-current detectors.
с	Designation of Output delay option of over-charge, excess charge-current, and excess discharge-current.
d	Designation of version symbols B version: With Latch function after over-charge, Released by voltage level from Over-discharge C version: With Latch function after Over-charge and Over-discharge D version: Released by voltage level from Over-charge and Over-discharge
е	Taping Type: TR (refer to Taping Specification)

PIN CONFIGURATIONS

RIGOH

PIN DESCRIPTION

Pin No.	Symbol	Description
1	Dout	Output of over-discharge detection, CMOS output
2	V-	Pin for charger negative input
3	Соит	Output of over-charge detection, CMOS output
4	NC	No Connection
5	VDD	Power supply pin, the substrate voltage level of the IC.
6	Vss	Vss pin. Ground pin for the IC

ABSOLUTE MAXIMUM RATINGS

			Vss=0V
Symbol	Item	Ratings	Unit
Vdd	Supply voltage	-0.3 to 12	V
V-	Input Voltage V- pin	Vdd -35 to Vdd +0.3	v
	Output voltage		
VCout	Cout pin	VDD -35 to VDD +0.3	V
VDout	Dout pin	Vss -0.3 to Vdd +0.3	V
PD	Power dissipation	150	mW
Topt	Operating temperature range	-40 to 85	°C
Tstg	Storage temperature range	-55 to 125	°C

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, Topt=25°C

Symbol	ltem	Conditions	Min.	Тур.	Max.	Unit
VDD1	Operating input voltage	Voltage defined asVDD-VSS	1.5		5.0	V
Vst	Minimum operating Voltage for OV charging *Note 1	Voltage defined asVDD-V-, VDD-Vss=0V			1.8	v
Vdet1	Over-charge threshold	Detect rising edge of supply voltage $R1=330\Omega$ $R1=330\Omega$ (Topt=-5 to 55°C)*Note3	Vdet1-0.025 Vdet1-0.030	Vdet1 Vdet1	Vdet1+0.025 Vdet1+0.030	v v
tVdet1	Output delay of over-charge	VDD=3.6V to 4.4V	0.7	1.0	1.3	s
tVREL1	Output delay of release from over-charge	VDD=4.5V to 3.6V	11	16	21	ms
VDET2	Over-discharge threshold	Detect falling edge of supply voltage	VDET2×0.975	VDET2	VDET2×1.025	v
V _{REL2}	Released Voltage from Over-discharge	Detect rising edge of supply voltage	VREL2×0.975	VREL2	Vrel2×1.025	v
tVdet2	Output delay of over-discharge	VDD=3.6V to 2.2V	14	20	26	ms
tVrel2	Output delay of release from over-discharge	VDD=3V V-=3V to 0V	0.7	1.2	1.7	ms
Vdet3	Excess discharge-current threshold	Detect rising edge of 'V-' pin voltage	VDET3-0.015	VDET3	VDET3+0.015	v
tVdet3	Output delay of excess discharge-current	VDD=3.0V, V-=0V to 1V	8	12	16	ms
tVREL3	Output delay of release from excess discharge-current	VDD=3.0V, V-=3V to 0V	0.7	1.2	1.7	ms
VDET4	Excess charge-current threshold	Detect falling edge of 'V-' pin voltage	-0.13	-0.10	-0.07	v
tVdet4	Output delay of excess charge-current	VDD=3.0V V-=0V to -1V	11	16	21	ms
tVREL4	Output delay of release from excess charge-current	VDD=3.0V, V-=-1V to 0V	0.7	1.2	1.7	ms
Vshort	Short protection voltage	VDD=3.0V	0.55	0.8	1.0	v
Tshort	Output Delay of Short protection	VDD=3.0V, V-=0V to 3V	230	300	500	μs
Rshort	Reset resistance for Excess discharge-current protection	VDD=3.6V, V-=1V	25	50	75	kΩ
VDS	Delay Shortening Mode input voltage	VDD=4.4V	-2.6	-2.0	-1.4	v
VOL1	Nch ON voltage of COUT	Iol=50µA, Vdd=4.5V		0.4	0.5	v
VOH1	Pch ON voltage of Cout	Ioh=-50µA, Vdd=3.9V	3.4	3.7		v
VOL2	Nch ON voltage of DOUT	Iol=50µA, Vdd=2.0V		0.2	0.5	v
VOH2	Pch ON voltage of DOUT	Ioh=-50µA, Vdd=3.9V	3.4	3.7		v
Idd	Supply current	VDD=3.9V, V- =0V		4.0	8.0	μΑ
Is	Standby current	VDD=2.0V		1.2	2.0	μA

*Note: We compensate for this characteristic related to temperature by laser-trim, however, this specification is guaranteed by design, not production tested.

R5402xxxxx (Preliminary)

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
VDD1	Operating input voltage	Voltage defined asVDD-VSS	1.5		5.0	v
Vst	Minimum operating Voltage for OV charging *Note 1	Voltage defined asVDD-V-, VDD-Vss=0V			1.8	v
VDET1	Over-charge threshold	Detect rising edge of supply voltage $R1=330\Omega$ $R1=330\Omega$ (Topt=-5 to 55°C)*Note3	VDET1-0.025 VDET1-0.030	Vdet1 Vdet1	Vdet1+0.025 Vdet1+0.030	v v
V _{REL1}	Released Voltage from Over-charge	Detect falling edge of supply voltage	V_{REL1} -0.05	V _{REL1}	V _{REL1} +0.05	v
tVdet1	Output delay of over-charge	VDD=3.6V to 4.4V	0.7	1.0	1.3	s
tVREL1	Output delay of release from over-charge	VDD=4.5V to 3.6V	11	16	21	ms
VDET2	Over-discharge threshold	Detect falling edge of supply voltage	VDET2×0.975	VDET2	VDET2×1.025	V
V _{REL2}	Released Voltage from Over-discharge	Detect rising edge of supply voltage	VREL2×0.975	VREL2	Vrel2×1.025	V
tVdet2	Output delay of over-discharge	VDD=3.6V to 2.2V	14	20	26	ms
tVrel2	Output delay of release from over-discharge	VDD=3V V-=3V to 0V	0.7	1.2	1.7	ms
Vdet3	Excess discharge-current threshold	Detect rising edge of 'V-' pin voltage	VDET3-0.015	VDET3	VDET3+0.015	v
tVdet3	Output delay of excess discharge-current	VDD=3.0V, V-=0V to 1V	8	12	16	ms
tVREL3	Output delay of release from excess discharge-current	VDD=3.0V, V-=3V to 0V	0.7	1.2	1.7	ms
VDET4	Excess charge-current threshold	Detect falling edge of 'V-' pin voltage	-0.13	-0.10	-0.07	v
tVdet4	Output delay of excess charge-current	VDD=3.0V V-=0V to -1V	5	8	11	ms
tVrel4	Output delay of release from excess charge-current	VDD=3.0V, V-=-1V to 0V	0.7	1.2	1.7	ms
Vshort	Short protection voltage	VDD=3.0V	0.55	0.8	1.0	v
Tshort	Output Delay of Short protection	VDD=3.0V, V-=0V to 3V	230	300	500	μs
Rshort	Reset resistance for Excess discharge-current protection	VDD=3.6V, V-=1V	25	50	75	kΩ
VDS	Delay Shortening Mode input voltage	VDD=4.4V	-2.6	-2.0	-1.4	V
VOL1	Nch ON voltage of Cour	Iol=50µA, Vdd=4.5V		0.4	0.5	V
VOH1	Pch ON voltage of COUT	Ioh=-50µA, Vdd=3.9V	3.4	3.7		V
VOL2	Nch ON voltage of DOUT	Iol=50µA, Vdd=2.0V		0.2	0.5	V
VOH2	Pch ON voltage of DOUT	Ioh=-50µA, Vdd=3.9V	3.4	3.7		V
Idd	Supply current	Vdd=3.9V, V- =0V		4.0	8.0	μΑ
Is	Standby current	VDD=2.0V		1.2	2.0	μΑ

*Note: We compensate for this characteristic related to temperature by laser-trim, however, this specification is guaranteed by design, not production tested.

R5402Nxxxxx (Preliminary)

Symbol	Item	Conditions	Min.	Тур.	Max.	Unit
VDD1	Operating input voltage	Voltage defined asVDD-VSS	1.5		5.0	V
Vst	Minimum operating Voltage for OV charging *Note 1	Voltage defined asVDD-V-, VDD-Vss=0V			1.8	v
VDET1	Over-charge threshold	Detect rising edge of supply voltage $R1=330\Omega$ $R1=330\Omega$ (Topt=-5 to 55°C) ^{*Note3}	Vdet1-0.025 Vdet1-0.030	Vdet1 Vdet1	Vdet1+0.025 Vdet1+0.030	V V
tVdet1	Output delay of over-charge	VDD=3.6V to 4.4V	175	250	325	ms
tVREL1	Output delay of release from over-charge	VDD=4.5V to 3.6V	11	16	21	ms
VDET2	Over-discharge threshold	Detect falling edge of supply voltage	VDET2×0.975	VDET2	VDET2×1.025	V
tVdet2	Output delay of over-discharge	VDD=3.6V to 2.2V	14	20	26	ms
tVrel2	Output delay of release from over-discharge	VDD=3V V-=3V to 0V	0.7	1.2	1.7	ms
VDET3	Excess discharge-current threshold	Detect rising edge of 'V-' pin voltage	VDET3-0.015	VDET3	Vdet3+0.015	V
tVdet3	Output delay of excess discharge-current	VDD=3.0V, V-=0V to 1V	8	12	16	ms
tVREL3	Output delay of release from excess discharge-current	VDD=3.0V, V-=3V to 0V	0.7	1.2	1.7	ms
VDET4	Excess charge-current threshold	Detect falling edge of 'V-' pin voltage	-0.13	-0.10	-0.07	V
tVdet4	Output delay of excess charge-current	VDD=3.0V V-=0V to -1V	11	16	21	ms
tVREL4	Output delay of release from excess charge-current	VDD=3.0V, V-=-1V to 0V	0.7	1.2	1.7	ms
Vshort	Short protection voltage	VDD=3.0V	0.55	0.8	1.0	v
Tshort	Output Delay of Short protection	VDD=3.0V, V-=0V to 3V	230	300	500	μs
Rshort	Reset resistance for Excess discharge-current protection	VDD=3.6V, V-=1V	25	50	75	kΩ
VDS	Delay Shortening Mode input voltage	VDD=4.4V	-2.6	-2.0	-1.4	v
VOL1	Nch ON voltage of COUT	Iol=50µA, Vdd=4.5V		0.4	0.5	V
VOH1	Pch ON voltage of Cour	Ioh=-50µA, Vdd=3.9V	3.4	3.7		v
VOL2	Nch ON voltage of DOUT	Iol=50µA, Vdd=2.0V		0.2	0.5	V
VOH2	Pch ON voltage of DOUT	Ioh=-50µA, Vdd=3.9V	3.4	3.7		V
Idd	Supply current	VDD=3.9V, V- =0V		4.0	8.0	μA
Is	Standby current	VDD=2.0V		1.2	2.0	μA

Unless otherwise specified, Topt=25°C

*Note: We compensate for this characteristic related to temperature by laser-trim, however, this specification is guaranteed by design, not production tested.

OPERATION

VD1 / Over-Charge Detector

The VD1 monitors V_{DD} pin voltage while charge the battery pack. When the V_{DD} voltage crosses over-charge detector threshold V_{DET1} from a low value to a value higher than the V_{DET1}, the VD1 can detect over-charge and an external charge control Nch MOSFET turn off with C_{OUT} pin being at "L" level.

In terms of B /C version, to reset the VD1 making the Cout pin level to "H" again after detecting over-charge, in such conditions that a time when the VDD voltage is down to a level lower than over-charge voltage, by connecting a kind of loading to VDD after disconnecting a charger from the battery pack. Output voltage of Cout pin becomes "H", and it makes an external Nch MOSFET turn on, and charge cycle is available. In other words, once over-charge is detected, even if the supply voltage becomes low enough, if a charger is continuously connected to the battery pack, recharge is not possible. Therefore this over-charge detector has no hysteresis. To judge whether or not load is connected, the built-in excess-discharge current detector is used. In other words, by connecting some load, V- pin voltage becomes equal or more than excess-discharge current detector threshold, and reset the over-charge detecting state.

In terms of D version, after detecting over-charge, if VDD pin voltage is lower than released from over-charge, even if a charger is connected, over-charge detector is released. Further, in case that VDD pin level is lower than detector threshold and higher than released voltage from over-charge, if a charger is removed and some load is connected, over-charge detector is also released.

After detecting over-charge with the V_{DD} voltage of higher than V_{DET1} , connecting system load to the battery pack makes load current allowable through parasitic diode of external charge control FET.

The Cour level would be "H" when the VDD level is down to a level below the VDET1 by continuous drawing of load current.

Internal fixed output delay times for over-charge detection and release from over-charge exist. Even when the V_{DD} pin level becomes equal or higher level than V_{DET1} if the V_{DD} voltage would be back to a level lower than the V_{DET1} within a time period of the output delay time, VD1 would not output a signal for turning off the charge control FET. Besides, after detecting over-charge, while the V_{DD} is lower than over-charge detector, even if a charger is removed and a load is connected, if the voltage is recovered within output delay time of release from over-charge, over-charge state is not released.

A level shifter incorporated in a buffer driver for the Cout pin makes the "L" level of Cout pin to the V - pin voltage and the "H" level of Cout pin is set to VDD voltage with CMOS buffer.

• VD2 / Over-Discharge Detector

The VD2 is monitoring a VDD pin voltage. When the VDD voltage crosses the over-discharge detector threshold VDET2 from a high value to a value lower than the VDET2, the VD2 can detect an over-discharge and the external discharge control Nch MOSFET turns off with the DOUT pin being at "L" level.

In terms of C version, to reset the VD2 with the Dour pin level being "H" again after detecting over

discharge, it is necessary to connect a charger to the battery pack. When the V_{DD} voltage stays under over-discharge detector threshold V_{DET2}, charge-current can flow through parasitic diode of an external discharge control MOSFET, then after the V_{DD} voltage comes up to a value larger than V_{DET2}, then, D_{OUT} becomes "H" and discharging process would be able to advance through ON state MOSFET for discharge control.

Connecting a charger to the battery pack makes the D_{OUT} level being "H" instantaneously when the V_{DD} voltage is higher than V_{DET2} .

In terms of B/D version, released operation by connecting a charger is same as C version. However, without a charger, if VDD pin voltage is equal or more than the released voltage from over-discharge, DOUT pin becomes "H" immediately.

When a cell voltage equals to zero, if the voltage of a charger is equal or more than 0V-charge minimum voltage (Vst), Cour pin becomes "H" and a system is allowable to charge.

An output delay time for over-discharge detection is fixed internally. When the V_{DD} level is down to a equal or lower level than V_{DET2} if the V_{DD} voltage would be back to a level higher than the V_{DET2} within a time period of the output delay time, VD2 would not output a signal for turning off the discharge control FET. Output delay time for release from over-discharge is also set.

After detecting over-discharge by VD2, supply current would be reduced and be into standby by halting unnecessary circuits and consumption current of IC itself is made as small as possible.

The output type of Dour pin is CMOS having "H" level of VDD and "L" level of VSS.

• VD3 /Excess discharge-current Detector, Short Circuit Protector

Both of the excess current detector and short circuit protection can work when the both of control FETs are in "ON" state.

When the V- pin voltage is up to a value between the short protection voltage Vshort /VDD and excess discharge-current threshold VDET3, VD3 operates and further soaring of V- pin voltage higher than Vshort makes the short circuit protector enabled. This leads the external discharge control Nch MOSFET turns off with the Dout pin being at "L" level.

An output delay time for the excess discharge-current detector is internally fixed.

A quick recovery of V- pin level from a value between Vshort and VDET3 within the delay time keeps the discharge control FET staying "H" state. Output delay time for Release from excess discharge-current detection is also set.

When the short circuit protector is enabled, the Dour would be "L" and the delay time is also set.

The V - pin has a built-in pull-down resistor to the Vss pin, that is, the resistance to release from excess-discharge current.

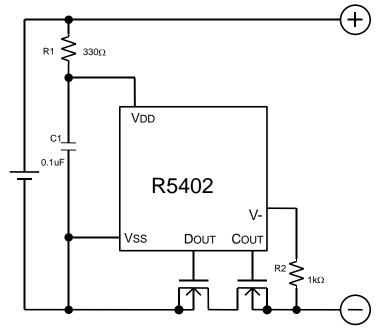
After an excess discharge-current or short circuit protection is detected, removing a cause of excess discharge-current or external short circuit makes an external discharge control FET to an "ON" state automatically with the V- pin level being down to the Vss level through built-in pulled down resistor.

The reset resistor of excess discharge-current is off at normal state. Only when detecting excess discharge-current or short circuit, the resistor is on.

Output delay time of excess discharge-current is set shorter than the delay time for over-discharge detector. Therefore, if V_{DD} voltage would be lower than V_{DET2} at the same time as the excess discharge-current is detected, the R5402xxxxx is at excess discharge-current detection mode. By disconnecting a load, VD3 is automatically released from excess discharge-current.

VD4/ Excess charge-current detector

When the battery pack is chargeable and discharge is also possible, VD4 senses V- pin voltage. For example, in case that a battery pack is charged by an inappropriate charger, an excess current flows, then the voltage of V- pin becomes equal or less than excess charge-current detector threshold. Then, the output of C_{OUT} becomes "L", and prevents from flowing excess current in the circuit by turning off the external Nch MOSFET.


Output delay of excess charge current is internally fixed. Even the voltage level of V- pin becomes equal or lower than the excess charge-current detector threshold, the voltage is higher than the VD4 threshold within the delay time, the excess charge current is not detected. Output delay for the release from excess charge current is also set.

VD4 can be released with disconnecting a charger and connecting a load.

• DS (Delay Shorten) function

Output delay time of over-charge, over-discharge, and release from those detecting modes can be shorter than those setting value by forcing equal or less than the delay shortening mode voltage to Vpin.

TYPICAL APPLICATION

APPLICATION HINTS

R1 and C1 will stabilize a supply voltage to the R5402xxxxxx. A recommended R1 value is less than $1k\Omega$.

A larger value of R1 leads higher detection voltage, makes some errors because of some conduction current may flow in the R5402xxxxxx. To stabilize the operation, the value of C1 should be equal or more than 0.01μ F.

R1 and R2 can operate also as parts for current limit circuit against reverse charge or applying a charger with excess charging voltage to the R5402xxxxx, battery pack. Small value of R1 and R2 may cause over-power consumption rating of power dissipation of the R5402xxxxx. Thus, the total value of 'R1+R2' should be equal or more than $1k\Omega$.

On the other hand, if large value of R2 is set, release from over-discharge by connecting a charger might not be possible. Recommended R2 value is equal or less than $10k\Omega$.