Synchronous Rectifier in

Forward Converter

A. Rectifier Circuit
 B. Rectifier Concept
 C. Synchronous Rectifier

C-1: RCD Clamp \& Self - Driven SRs
C -2 : Active Clamp \& Self - Driven SRs
C-3: Control - Driven

D. Power Loss Comparisons
 E. Efficiency Curve

A. Rectifier Circuit

Fig1 : Forward Converter with MOSFET

Fig2 : Forward Converter with Diode

SYNC POWER CORP.

B. Rectifier Concept

The switching losses caused by the reverse recovery current of the body - diode will be dependent of the carried current in the instant in the which the voltage between anode and cathode reverses become negative

C. Synchronous Rectifier

C-1 RCD Clamp \& Self - Driven SRs

(a) Gate -Driver signal
(b) Drain to Source voltage of primary switch
(c) Secondary winding voltage
(d) Current through SR2
(e) Current through SR3

C. Synchronous Rectifier

C-2 Active Clamp \& Self - Driven SRs

(a) Gate -Driver signal
(b) Drain to Source voltage of primary switch
(c) Secondary winding voltage
(d) Current through SR2
(e) Current through SR3

C. Synchronous Rectifier

D. Power Loss Comparisons

$$
\eta=\frac{P_{o}}{P_{o}+P_{\text {loss }}+P_{R E C}}
$$

\longrightarrow Converter efficiency

$$
\eta_{S H}=\frac{P_{o}}{P_{o}+P_{\text {loss }}+P_{S H}}
$$

Converter Efficiency (For Schottky Rectifiers)

$$
\eta_{S R}=\frac{P_{o}}{P_{o}+P_{\text {loss }}+P_{S R}}
$$

$$
\longrightarrow \quad \text { Converter Efficiency }
$$

(For Synchronous Rectifiers)

Po : Output Power
Psh : Schottky Rectifiers Loss

Ploss: Total Loss;
PSR : Synchronous Rectifiers Loss

D. Power Loss Comparisons

$$
\begin{aligned}
P_{S H}= & V_{S H} I_{0} \longrightarrow \text { Schottky Power Loss } \\
P_{S R}^{s d}= & \left.R_{D S(o n)}\right)_{0}^{2}\left(1-D_{\text {dead }}\right)+V_{D} I_{0} D_{\text {dead }}+P_{\text {gate }}+P_{\text {RREC }} \longrightarrow \text { Self }- \text { Drivens SR Loss } \\
P_{S R}^{c d}= & R_{D S(o n)} I_{0}^{2}\left(1-D_{\text {dead }}\right)+R_{D S(o n)}\left(I_{0}-I_{m}^{-}\right)^{2}\left(D_{\text {dead }}-D_{\text {delay }}\right) \longrightarrow \text { Control - Drivens SR Loss } \\
& +V_{D} I_{m}^{-} D_{\text {dead }}+V_{D}\left(I_{0}-I_{m}^{-}\right) D_{\text {delay }}+P_{\text {gate }}+P_{R R E C}
\end{aligned}
$$

D. Power Loss Comparisons

$$
\begin{aligned}
\frac{1}{\eta_{S R}^{s d}}= & \frac{1}{\eta_{S H}}-\frac{V_{S H}}{V_{o}}\left[1-\frac{R_{D S(o n)} I_{o}}{V_{S H}}\left(1-D_{\text {dead }}\right)-\frac{V_{D}}{V_{S H}} D_{\text {dead }}\right] \longrightarrow \\
\frac{1}{\eta_{S R}^{a c l}}= & \frac{1}{\eta_{S H}}-\frac{V_{S H}}{V_{o}}\left[1-\frac{R_{D S(o n)} I_{o}}{V_{S H}}\right] \longrightarrow \begin{array}{l}
\text { Efficiency } \\
(\text { RCD Self -Driven SRs) } \\
\\
\frac{1}{\eta_{S R}^{c d}}= \\
\\
\\
\\
\eta_{S H} \\
\text { Efficiency } \\
\text { (Active Self -Driven SRs) } \\
V_{S H} \\
V_{o}
\end{array} 1-\frac{R_{D S(o n)} I_{o}}{V_{S H}}\left(1-D_{\text {dead }}\right)-\frac{R_{D S(o n)} I_{o}}{V_{S H}}\left(1-\frac{I_{m}^{-}}{I_{o}}\right)^{2}\left(D_{\text {dead }}-D_{\text {delay }}\right) \\
& \text { Efficiency } \\
& \text { (Control -Driven SRs) }
\end{aligned}
$$

$\mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{SH}}=$ Body Diode Voltage ; $\mathrm{D}_{\text {dead }}=$ dead time duty cycle ; Delay $=$ delay time duty cycle

E. Efficiency Curve

$$
D_{\text {delay }} \approx 0
$$

E. Efficiency Curve

