

EMI 滤波器的精确设计

Design of Precise EMI Filter

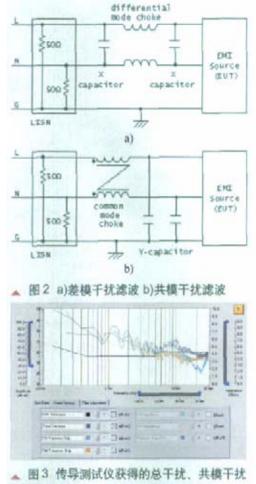
中船重工第七一二研究所 冯成

摘要: 本文介绍了一种精确设计EMI滤波器的方法。为了得到合适

的滤波器插入损耗 滤波器设计中不但要考虑电路的干扰特

性还要考虑电路的输入阻抗特性。

关键词: EMI 滤波器;插入损耗;干扰特性;阻抗特性

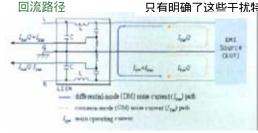

随着电子技术的发展, 电磁兼容性问题 成为电路设计工程师极为关注和棘手的问题。 根据多年的工程经验 大家普遍认为电磁兼容 性标准中最重要的也是最难解决的两个项目就 是传导发射和辐射发射。为了满足传导发射限 制的要求,通常使用电磁干扰(EMI)滤波器来 抑制电子产品产生的传导噪声。但是怎么选择 一个现有的滤波器或者设计一个能满足需要的 滤波器?工程师表现得很盲目 只有凭借经验 作尝试。首先根据经验使用一个滤波器,如果 不能满足要求再重新修改设计或者换另一个新 的滤波器。因此,要找到一个合适的EMI滤波 器就成为一个费时且高成本的任务。

电子系统产生的干扰特性

解决问题首先要了解电子系统产生的总 干扰情况 需要抑制多少干扰电压才能满足标 准要求?共模干扰是多少 差模干扰是多少? 只有明确了这些干扰特性我们才能根据实际的

需要提出要求。

从被测物体的电 流路径来看,干扰信 号回流路径可能通过 地线,或者通过其它



和差模干扰

电网,如图1所示。通过地线的干扰电流在电 源网上产生同相位的共模干扰电压。通过其它 线在两根电源线上产生反相的差模干扰电压。 干扰电流的路径如图2所示。

通常有四种技术可进行电源滤波,以便 抑制干扰噪声。在实际使用中,经常是混合使

▼ 图1 干扰信号的

Corridor

图4 (a)100μH电感 (理想的)的衰减和 (b)100nF电容器(理 想的)的衰减

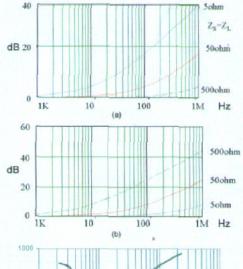
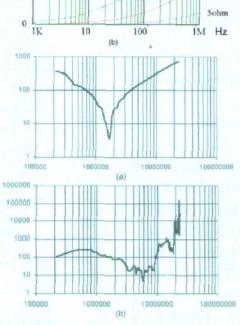



图 5 (a)共模阻抗
(Ω/Hz)和(b)差模阻抗
抗(Ω/Hz)的变化

用其中的两种,甚至多种技术。它们是:

- ■正负极电源线之间添加电容 即X电容;
- 每根电源线和地线之间添加电容,即Y 电容;
- + 共模抑制(两根电源线上的抑制线圈同 向绕线);
- 差模抑制(每根电源线有它自己的抑制 线圈)。

电容的作用是将高频干扰电压"短路", 另外,当干扰信号频率很高时,抑制线圈将产 生很大的交流阻抗。图2显示了两种滤波类型 的结构,其中,LISN是用于测量目的的线性 阻抗稳定网络。如果是共模问题引起的干扰, X类型电容基本上没有作用 因为两线上的干扰电压是一样的。因此,了解干扰类型对于选 择合理的电路结构将起重要作用,并为解决问 **题提供技术依据。**

在标准电磁兼容性测试实验室可得到设备的总干扰情况。但无法了解设备的共模干扰和差模干扰特性。为了在测量中分辨共模或者差模干扰信号,通用的仪器是很难实现的。使用专用的传导测试仪,可获得设备的总干扰、共模干扰和差模干扰。测试结果如图3所示。

电源输入阻抗特性

滤波器的制造商给出的滤波器插损是在 50Ω标准阻抗系统中的性能。众所周知,电 源的输入阻抗随着频率的变化具有不连续性。 阻抗的改变导致滤波器的插损特性产生很大 的变化。

由图 4 可见,在一个 50Ω 的系统中, 100μ H的滤波器提供约18dB的衰减,但是在一个 500Ω 系统中只提供约4dB的衰减。同样对于100nF电容器;在 50Ω 系统中,1MHz时大约23dB的衰减在 5Ω 系统中降至7dB。

上面的例子说明,选择一个具有很高插 损的滤波器也不能很好抑制传导噪声的原因 是,电源输入端阻抗的影响。因此,设计者 除了选择一个合适的滤波器之外,还需要了 解电源的阻抗特性、共模阻抗和差模阻抗。阻 抗测试可以借助专用的阻抗测试仪或者传导分 析仪。一种滤波器的共模阻抗(a)和差模阻抗 (b)的变化如图5所示。

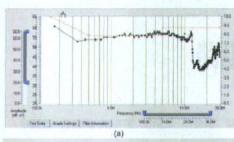
滤波器的设计

知道设备的干扰特性和输入阻抗特性后,设计或者选择一个滤波器就变得简单了。如果使用一个现成的滤波器,可以调用过去积累的滤波器数据库,比对滤波器参数,找到一个合适的滤波器。如果没有合适的或者想专门设计一个专用滤波器,可以借助专用的滤波器设计软件。在确定一个滤波器模式后输入滤波器一些简单的约束条件,设计软件根据阻抗特性自动计算出最合适的组件值,以及提供最合适的衰减。(如图 6 所示)

Technolo

Corridor

▲ 图6 一种由设计软 件计算的最佳滤波器


设计结果

在对某产品进行了干扰特性和阻抗特性 测试后,需要解决一个低于5MHz的低频干扰 问题。专用滤波器设计软件结合前面得到的测 试数据给出了滤波器的元件参数:包括470nF 的 X 电容器, 2.2nF的 Y 电容器和 15.1mH的 共模电感。但是有经验的滤波器设计人员认为 采用一个13.5mH 共模电感的滤波器是足够 了。使用一个13.5mH包括额外高频组件的滤 波器的发射情况如图7所示。

为了验证软件的设计数据,将470nF、 2.2nF和18mH的非定制的滤波器迅速连接到 系统中,获得中心频率小于5MHz,并且无需 高频滤波器。结果清楚地表明,最小15mH的 限制是合适的。

结语

EMI 滤波器的设计应该充分考虑干扰特 性和阻抗特性 在阻抗测试和干扰特性测试数 据基础上进行设计是精确滤波设计的唯一方 法。

◀ 图7 最小15mH的 系统使用 13.5mH 时 (a)和使用18mH时(b) 的测试结果

参考文献:

- 1, PREMI PRO manual
- 2, ESA2000产品手册
- 3,黄席椿等编滤波器综合法设计原理人民

邮电出版社 .1978

4 118

连线变得相当简单,我们只需要将双端口RAM 映射到其中一个局部地址空间 然后使用其中 的一个片选信号连接到双端口RAM的 \overline{CE} ,最 后将PCI9052的读写信号(R/W)和 \overline{oE} 对应连接 到双端口 RAM 的 R/W 和 $\overline{o_E}$ 。这样就省去了地 址译码等外围逻辑电路。

软件系统设计

IP电话系统要实现的算法就是语音编码算 法,还要完成与计算机的数据交换。

软件部分的主要作用是用嵌入式操作系统 中的TCP/IP协议对需要传送的语音编码信号进 行打包,再通过计算机上的网卡将数据通过 Internet传送到接收方 并把接收到的TCP/IP包 还原为原来的语音编码信号,最后通过PCI总 线传输给 DSP 进行语音解码。

结语

实践证明 本系统设计方案的主要优点是 对计算机硬件的要求不高,处理速度快,语音 的输入输出系统单独集成 信噪比(SNR)高 具 有相当的适用和推广价值。

参考文献:

- 1. 舒华英 赖平漳 JP电话技术及其应用 人民邮 电出版社 ,1999
- 2. 王炳锡 语音编码 西安电子科技大学出版社, 2002
- 3. 糜正琨 ,IP网络电话技术 人民邮电出版社 , 2000
- 4. 林宇 杨霞 张光昭 JP电话系统语音终端的设 计及实现 电讯技术 2000 .6