DESCRIPTION

The AMC3202 is a 280 kHz switching regulator with a high efficiency, 1.5 A integrated switch. The part operates over a wide input voltage range, from 2.7 V to 30 V . The AMC3202 utilizes current mode architecture, which allows excellent load and line regulation, as well as a practical means for limiting current. Combining high frequency operation with a highly integrated regulator circuit results in an extremely compact power supply solution.

Build-in thermal protection to prevent the chip over heat damage.

TYPICAL APPLICATION CIRCUIT

1.5A 280kHz Boost Regulators

FEATURES

■ Integrated Power Switch: 1.5A Guaranteed.
■ Wide Input Range: 2.7 V to 30 V .

- 40V Build-in Power Switch Input Voltage.
- High Frequency Allows for Small Components.
- Minimum External Components.

- TFT-LCD Power Management
- LED Backlight

PACKAGE PIN OUT

SO-8 (Top View)

ORDER INFORMATION

DM	SO
	8 pin
Note:All surface-mount packages are available in Tape \& Reel. Append the letter "T" to part number (i.e. AMC3202DMFT). The letter "F" is marked for Lead Free process.	

AMC3202

ABSOLUTE MAXIMUM RATINGS (Note)

Input Voltage, V_{CC}	30 V
Switch Input Voltage, V_{SW}	40 V
Maximum Operating Junction Temperature, T_{J}	$150^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering, 10 seconds)	$260^{\circ} \mathrm{C}$
Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal.	

BLOCK DIAGRAM

PIN DESCRIPTION	
Pin Name	Pin Function
COMP	Loop compensation pin. This pin is the output of the error amplifier and is used for loop compensation. Loop compensation can be implemented by a simple RC network.
FB	Feedback pin. Sense the output voltage and referenced to 1.276 V . When the voltage at this pin falls below 0.4 V , chip switching-frequency reduces to a much lower frequency.
NC	No connection. Keep floating.
EN	Enable pin. A TTL low will shut down the chip and high enable the chip. This pin may also be used to synchronize the part to nearly twice the base frequency. If synchronization is not used, this pin should be either tied high or left floating for normal operation.
VCC	Input power supply pin. Supply power to the IC and should have a bypass capacitor connected to AGND.
AGND	Analog ground. Provide a clean ground for the controller circuitry and should not be in the path of large currents. This pin is connected to the IC substrate.
PGND	Power ground. This pin is the ground connection for the emitter of the power switching transistor. Connection to a good ground plane is essential.
V_{SW}	High current switch pin. Connect to the collector of the internal power switch. The open voltage across the power switch can be as high as 40 V . To minimize radiation, use a trace as short as practical.
Exposed Pad (PGND)	Heat pad. Connect to power ground. Must be soldered to electrical ground on PCB.
THERMAL DATA	
Thermal Resist	are from Junction to Ambient, $\theta_{\text {JA }} \quad 165^{\circ} \mathrm{C} / \mathrm{W}$
Junction Temperatu The θ_{IA} numbers ar Connect the groun All of the above as	Calculation: $\quad T_{J}=T_{A}+\left(P_{D} \times \theta_{J A}\right)$. guidelines for the thermal performance of the device/pc-board system. in to ground using a large pad or ground plane for better heat dissipation. me no ambient airflow.

Maximum Power Calculation:

$\mathrm{P}_{\mathrm{D}(\mathrm{MAX})}=\frac{\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}-\mathrm{T}_{\mathrm{A}(\mathrm{MAX})}}{\theta_{\mathrm{JA}}}$
$\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right): \quad$ Maximum recommended junction temperature
$\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right): \quad$ Ambient temperature of the application
$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{C}\right): \quad$ Junction-to-Ambient thermal resistance of the package, and other heat dissipating materials.

The maximum power dissipation for a single-output regulator is:

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Min	Typ	Max	Unit
Supply Voltage	V_{IN}	2.7		30	V
Average Supply Current	I_{IN}			1.3	A
Output Voltage	$\mathrm{V}_{\text {OUT }}$			39	V
Operating Free-air Temperature Range	T_{A}			$85^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, (Unless otherwise noted)					
Parameter	Conditions	Min	Typ	Max	Unit
FB Reference Voltage	COMP tied to FB; Measure at FB; $2.7 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{CC}} \leqq 30 \mathrm{~V}$	1.246	1.276	1.300	V
FB Input Current	$\mathrm{FB}=\mathrm{V}_{\text {REF }}$	-1.0	0.1	1.0	uA
FB Reference Voltage Line Regulation	$\mathrm{COMP}=\mathrm{FB}, 2.7 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{CC}} \leqq 30 \mathrm{~V}$	-	0.01	0.03	\%/V
Error Amp Transconductance	$\mathrm{I}_{\text {COMP }}= \pm 25 \mathrm{uA}^{\text {(Note) }}$	300	550	800	uMho
Error Amp Gain	(Note)	200	500	-	V/V
COMP Source Current	$\mathrm{FB}=1.0 \mathrm{~V}, \mathrm{COMP}=1.25 \mathrm{~V}$	25	50	90	uA
COMP Sink Current	$\mathrm{FB}=1.5 \mathrm{~V}, \mathrm{COMP}=1.25 \mathrm{~V}$	200	625	1500	uA
COMP High Clamp Voltage	$\mathrm{FB}=1.0 \mathrm{~V}, \mathrm{COMP}$ sources 25 uA	1.5	1.7	1.9	V
COMP Low Clamp Voltage	$\mathrm{FB}=1.5 \mathrm{~V}, \mathrm{COMP}$ sinks 25 uA	0.25	0.50	0.65	V
COMP Threshold	Reduce COMP from 1.5 V until switching stops	0.75	1.05	1.30	V
Base Operating Frequency	$\mathrm{FB}=1 \mathrm{~V}$	230	280	310	kHz
Reduced Operating Frequency	$\mathrm{FB}=0 \mathrm{~V}$	30	52	120	kHz
Maximum Duty Cycle	$\mathrm{FB}=1 \mathrm{~V}$	90	94	-	\%
FB Frequency Shift Threshold	Frequency drops to reduced operating frequency	0.36	0.40	0.44	V
Synchronization Range		320	-	500	kHz
Synchronization Pulse Transition Threshold	Rise time $=20 \mathrm{~ns}$	2.5	-	-	V
EN Bias Current	$\begin{aligned} & \mathrm{EN}=0 \mathrm{~V} \\ & \mathrm{EN}=3.0 \mathrm{~V} \end{aligned}$	-15	$\begin{gathered} -3.0 \\ 3.0 \\ \hline \end{gathered}$	8.0	uA
Shutdown Threshold		0.50	0.85	1.20	V
Shutdown Delay	$\begin{aligned} & 2.7 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{CC}} \leqq 12 \mathrm{~V} \\ & 12 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{CC}} \leqq 30 \mathrm{~V} \\ & \hline \end{aligned}$	$\begin{aligned} & 12 \\ & 12 \end{aligned}$	$\begin{aligned} & 80 \\ & 36 \\ & \hline \end{aligned}$	$\begin{aligned} & 350 \\ & 200 \\ & \hline \end{aligned}$	uS

Switch Saturation Voltage	$\begin{aligned} & \mathrm{I}_{\text {SWITCH }}=1.5 \mathrm{~A} \\ & \mathrm{I}_{\text {SIITCH }}=1.0 \mathrm{~A}, 0^{\circ} \mathrm{C} \leqq \mathrm{~T}_{\mathrm{J}} \leqq 85^{\circ} \mathrm{C}^{\text {(Note) }} \\ & \mathrm{I}_{\text {SIITCH }}=1.0 \mathrm{~A},-40^{\circ} \mathrm{C} \leqq \mathrm{~T}_{\mathrm{J}} \leqq 0^{\circ} \mathrm{C} \text { (Note) } \\ & \mathrm{I}_{\text {SWITCH }}=10 \mathrm{~mA} \end{aligned}$		$\begin{gathered} 0.8 \\ 0.55 \\ 0.75 \\ 0.09 \end{gathered}$	$\begin{gathered} 1.4 \\ - \\ - \\ 0.45 \end{gathered}$	V
Switch Current Limit	$\begin{aligned} & 50 \% \text { duty cycle }^{\text {(Note) }} \\ & 80 \% \text { duty cycle }^{\text {(Note) }} \\ & \hline \end{aligned}$	$\begin{aligned} & 1.6 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.9 \\ & 1.7 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.2 \end{aligned}$	A
Minimum Pulse Width	COMP $=1.4 \mathrm{~V}, \mathrm{I}_{\text {SW }}=1.0 \mathrm{~A}$	100	250	300	nS
Switch Leakage	$\mathrm{V}_{\mathrm{SW}}=40 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=0 \mathrm{~V}$	-	2.0	100	uA
$\Delta \mathrm{I}_{\mathrm{CC}} / \Delta \mathrm{I}_{\text {sw }}$	$\begin{aligned} & 2.7 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{CC}} \leqq 12 \mathrm{~V}, 10 \mathrm{~mA} \leqq \mathrm{I}_{\mathrm{SW}} \leqq 1.0 \mathrm{~A} \\ & 12 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{CC}} \leqq 30 \mathrm{~V}, 10 \mathrm{~mA} \leqq \mathrm{I}_{\mathrm{SW}} \leqq 1.0 \mathrm{~A} \\ & 2.7 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{CC}} \leqq 12 \mathrm{~V}, 10 \mathrm{~mA} \leqq \mathrm{I}_{\mathrm{SW}} \leqq 1.5 \mathrm{~A} \\ & 12 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{CC}} \leqq 30 \mathrm{~V}, 10 \mathrm{~mA} \leqq \mathrm{I}_{\mathrm{SW}} \leqq 1.5 \mathrm{~A} \\ & \hline \end{aligned}$	-	10 17	$\begin{gathered} 30 \\ 100 \\ 30 \\ 100 \\ \hline \end{gathered}$	mA / A
Operating Current	$\mathrm{I}_{\mathrm{SW}}=0 ; 2.7 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{CC}} \leqq 30 \mathrm{~V}$	-	5.5	8.0	mA
Shutdown Mode Current	COMP $<0.8 \mathrm{~V}, \mathrm{EN}=0 \mathrm{~V}, 2.7 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{CC}} \leqq 12 \mathrm{~V}$ COMP $<0.8 \mathrm{~V}, \mathrm{EN}=0 \mathrm{~V}, 12 \mathrm{~V} \leqq \mathrm{~V}_{\mathrm{CC}} \leqq 30 \mathrm{~V}$	-	12	$\begin{gathered} 60 \\ 100 \\ \hline \end{gathered}$	uA
Minimum Operation Input Voltage	V_{SW} switching, maximum $\mathrm{I}_{\mathrm{SW}}=10 \mathrm{~mA}$		2.45	2.70	V
Thermal Shutdown		150	-	-	${ }^{\circ} \mathrm{C}$
Thermal Hysteresis		-	25	-	${ }^{\circ} \mathrm{C}$

Note: Guaranteed by design, not 100% tested in production.

CHARACTERIZATION CURVES

Switch Frequency vs. FB

Reference Voltage vs. Temperature

$\mathrm{V}_{\mathrm{CE}(\mathrm{SAT})} \mathrm{vS} . \mathrm{I}_{\mathrm{SW}}$

Icc vs. V_{cc} During Shutdowm

COMP Threshold vs. Temperature

Shutdown Delay vs. Temperature

Minimum V_{cc} vs. Temperature

Max Duty Cycle vs. Temperature

APPLICATION INFORMATION

Operation:

The AMC3202 incorporates a current mode control scheme, in which the duty cycle of the switch is directly controlled by switch current rather than by output voltage. The output of the oscillator turns on the power switch at a frequency of 280 kHz as shown in the block diagram. The power switch is turned off by the output of the PWM comparator.

A TTL low voltage will shut down the chip and high voltage enable the chip through EN pin. This pin may also be used to synchronize the part to nearly twice the base oscillator frequency. In order to synchronize to a higher frequency, a positive transition turns on the power switch before the output of the oscillator goes high, thereby resetting the oscillator. The synchronization operation allows multiple power supplies to operate at the same frequency. If synchronization is not used, this pin should be either tied high or left floating for normal operation.

Component Selection:

The $\mathrm{V}_{\text {IN }}$ ripple is determined by the product of the inductor current ripple and the ESR of input capacitor, and the $V_{\text {out }}$ ripple comes from two major sources, namely ESR of output capacitor and the charging/discharging of the output capacitor. Ceramic capacitors have the lowest ESR, but too low ESR may cause loop stability problems. Aluminum Electrolytic capacitors exhibit the highest ESR, resulting in the poorest AC response. One option is to parallel a ceramic capacitor with an Aluminum Electrolytic capacitor.

Frequency Compensation

The goal of frequency compensation is to achieve desirable transient response and DC regulation while ensuring the stability of the system. A typical compensation network, as shown in the typical application circuit, provides a frequency response of two poles and one zero. The loop frequency compensation is performed on the output of the error amplifier (COMP pin) with a series RC network. The main pole is formed by the series capacitor and the output impedance of the error amplifier. The series resistor creates a zero, which improves loop stability and transient response. A second capacitor is sometimes used to reduce the switching frequency ripple on the COMP pin.

$f_{P 1}=\frac{1}{2 \pi C_{P 1} R_{O}} \quad$ where, $\mathrm{R}_{\mathrm{O}}=$ error amplifier output resistance; $f_{Z 1}=\frac{1}{2 \pi C_{P 1} R_{P}}$ $f_{P 2}=\frac{1}{2 \pi C_{P 2} R_{P}}$

PACKAGE

8-Pin Plastic S.O.I.C.

SYMBOLS	MIN.	MAX.	
A	0.053	0.069	
A1	0.002	0.006	
A2	-	0.059	
D	0.189	0.196	
E	0.150	0.157	
H	0.228	0.244	
L	0.016	0.050	
θ°	0	8	
UNIT: INCH			

THERMALLY ENHANCED DIMENSIONS

PAD SIZE	E1	D1
$90 \times 90 E$	0.081 REF	0.081 REF
$95 X 13 E$	0.086 REF	0.117 REF

NOTES:

1. JEDEC OUTLINE. N/A
2. DIMENSIONS "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 15 mm (.005in) PER SIDE.
3. DIMENSIONS "E" DOES NOT INCLUDE INTER-LEAD FLASH, OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED .25 mm (.010in) PER SIDE.

E.P. VERSION ONLY

IMPORTANT NOTICE

ADDtek reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. ADDtek integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of ADDtek products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

ADDtek assumes to no liability to customer product design or application support. ADDtek warrants the performance of its products to the specifications applicable at the time of sale.

for

ADDtek Corp.

9F, No. 20, Sec. 3, Bade Rd., Taipei, Taiwan, 105
TEL: 2-25700299
FAX: 2-25700196

