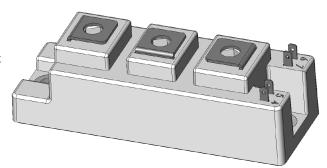
STARPOWER

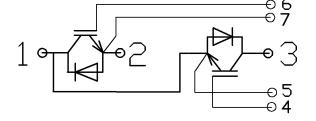
SEMICONDUCTOR™

IGBT


GD50HFU120C1S

Molding Type Module

1200V/50A 2 in one-package


General Description

STARPOWER IGBT Power Module provides ultrafast Switching speed as well as short circuit ruggedness. It's designed for the applications such as electronic welders and Inductive heating.

Features

- High short circuit capability, self limiting to 6*I_{Cnom}
- Rugged with ultrafast performance
- Low t_{rr} and I_{rr}
- Low inductance case
- Fast & soft reverse recovery anti-parallel FWD
- 10us short circuit capability
- Isolated copper baseplate using DCB Direct Copper Bonding technology

Typical Applications

- Switching mode power supplies at f_{sw}>20kHz
- Resonant inverters up to 100kHz
- Inductive heating
- UPS
- Electronic welders at f_{sw}>20kHz

Absolute Maximum Ratings Tc=25℃ unless otherwise noted

Symbol	Description	GD50HFU120C1S	Units
V_{CES}	Collector-Emitter Voltage	1200	V

Symbol	Description	GD50HFU120C1S	Units
V _{GES}	Gate-Emitter Voltage	±20V	V
$I_{\rm C}$	Collector Current @80°C	50	A
$I_{CM(1)}$	Pulsed Collector Current @80°C	100	A
I_{F}	Diode Continuous Forward Current	50	A
I_{FM}	Diode Maximum Forward Current	100	A
P_D	Maximum power Dissipation @	480	W
	Tc=25℃		
T_{SC}	Short Circuit Withstand Time @Tc=125°C	10	us
T_{J}	Operating Junction Temperature	-40 to +150	$^{\circ}\!\mathbb{C}$
T_{STG}	Storage Temperature Range	-40 to +125	$^{\circ}\!\mathbb{C}$
V _{ISO}	Isolation Voltage RMS, f=50Hz, t=1min	2500	V
Mounting Torque	Power Terminal Screw:M5	2.5 to 5	N.m
Mounting Torque	Mounting Screw:M5	3 to 6	N.m

Notes:

Electrical Characteristics of IGBT Tc=25°C unless otherwise noted

Off Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
B _{VCES}	Collector-Emitter	T _J =25℃	1200			V
	Breakdown Voltage					
I _{CES}	Collector Cut-Off Current	$V_{\text{CE}}=V_{\text{CES}}, V_{\text{GE}}=0V$			5	mA
I_{GES}	Gate-Emitter Leakage	$V_{GE}=V_{GES},V_{CE}=0V$			100	nA
	Current	@ T _J =25℃				

On Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
V _{GE(th)}	Gate-Emitter Threshold	$I_{C}=2mA, V_{CE}=V_{GE}$	3.5	4.2	5.5	V
	Voltage					
V _{CE(sat)}	Collector to Emitter	$I_{C}=50A, V_{GE}=15V,$		3.5	3.7	V
	Saturation Voltage	@25℃				
		$I_{C}=50A, V_{GE}=15V,$		3.6		
		@125℃				

Switching Characteristics

Symbol	Parameter	Test Conditions	Min.	Typ.	Max.	Units
$t_{d(on)}$	Turn-On Delay Time			70		ns
t _r	Rise Time	V_{CC} =600V, I_{C} =50A, R_{G} =5.9		30		ns
$t_{d(off)}$	Turn-Off Delay Time	Ω , $V_{GE} = \pm 15$ V, Inductive		280		ns
$t_{\rm f}$	Fall Time	Load, $T_C = 25^{\circ}C$		20		ns
Eon	Turn-On Switching			2.5		mJ

⁽¹⁾ Repetitive rating: Pulse width limited by max. junction temperature

	Loss				
E _{off}	Turn-Off Switching			3.3	mJ
	Loss				
t _{d(on)}	Turn-On Delay Time			78	ns
t _r	Rise Time			36	ns
t _{d(off)}	Turn-Off Delay Time	V (00VI 50AD 90		320	ns
$t_{\rm f}$	Fall Time	$V_{CC}=600V,I_{C}=50A,R_{G}=8\Omega$		20	ns
Eon	Turn-On Switching	, $V_{GE} = \pm 15V$, Inductive		4	mJ
	Loss	Load, $T_C = 125^{\circ}C$			
E _{off}	Turn-Off Switching			6.5	mJ
	Loss				
T_{SC}	Short Circuit	$V_{CC}=600V, V_{GE} = 20V$	10		us
	Withstand Time	$@T_{C} = 125^{\circ}C$			
Cies	Input Capacitance			6.215	nF
Coes	Output Capacitance	V_{CE} =25V, f=1MHz, V_{GE}		0.505	nF
Cres	Reverse Transfer	=0V		0.195	nF
	Capacitance				

Electrical Characteristics of DIODE Tc=25°C unless otherwise noted

Symbol	Parameter	Test C	onditions	Min.	Тур.	Max.	Units
V_{FM}	Diode Forward	I _F =50A	$T_C = 25^{\circ}C$		2.13	2.5	V
	Voltage		$T_{\rm C} = 125^{\circ}{\rm C}$		2.25		
t _{rr}	Diode Reverse	I _F =50A,	$T_C = 25^{\circ}C$		150		ns
	Recovery Time	V _R =600V,di	$T_{\rm C} = 125^{\circ}{\rm C}$				
I_{rr}	Diode Peak	/dt=-800A/u	$T_{\rm C} = 25{}^{\circ}{\rm C}$		42		A
	Reverse Recovery	s, $V_{GE}=0V$	$T_{\rm C} = 125{}^{\circ}{\rm C}$		50		
	Current						
Q _{rec}	Reverse Recovery		$T_C = 25^{\circ}C$		3		uC
	Charge		$T_{\rm C} = 125{}^{\circ}{\rm C}$		9.2		

Thermal Characteristics

Symbol	Parameter		Max.	Units
$R_{ heta JC}$	Junction-to-Case (IGBT Part, per 1/2 Module)		0.35	°C/W
$R_{\theta JC}$	Junction-to-Case (DIODE Part, per 1/2 Module)		0.7	°C/W
$R_{\theta CS}$	Case-to-Sink (Conductive grease applied)	0.05		°C/W
Weight	Weight of Module	150		g

Fig 1. Typical Output Characteristics

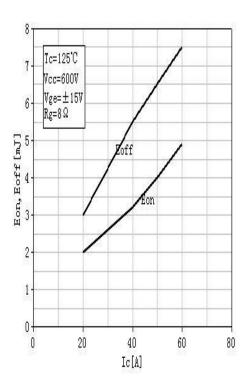


Fig 3.Total Switching Loss vs. Collector Current

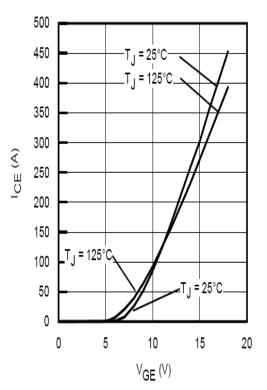


Fig 2. Typical transfer Characteristics

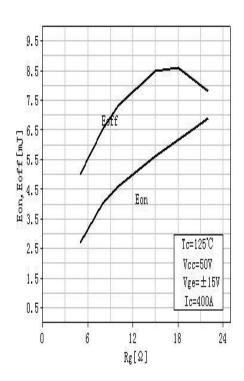


Fig 4. Total Switching Loss vs. Gate
Resistance

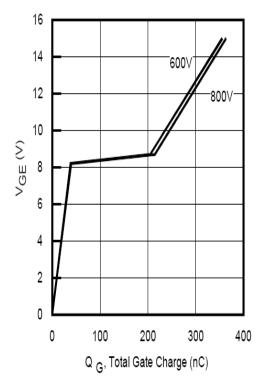


Fig 5. Gate Charge Characteristics.

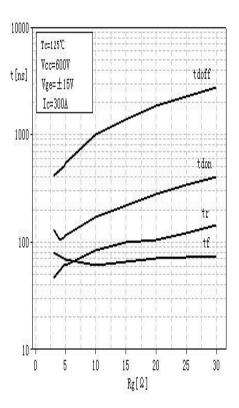


Fig 7. Typical Switching Times vs. I_C

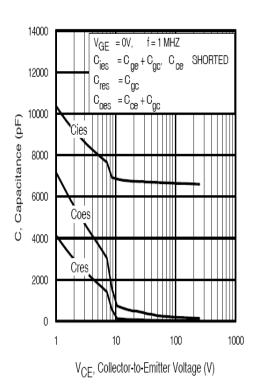


Fig 6. Typical Capacitance vs.

Collector-Emitter Current

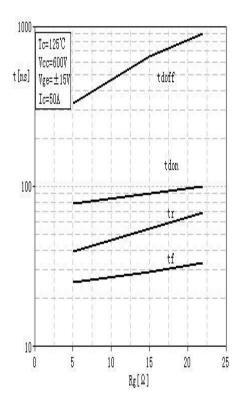
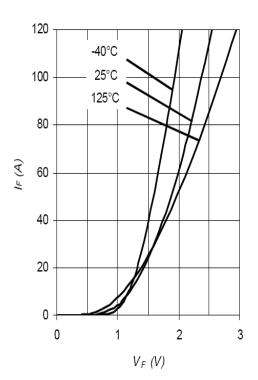



Fig 8. Typical Switching Times vs. Gate Resistance R_G

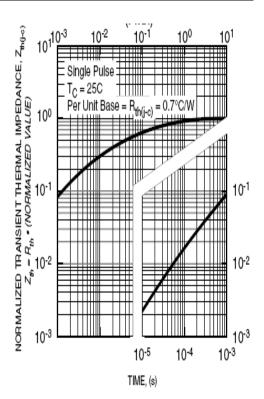
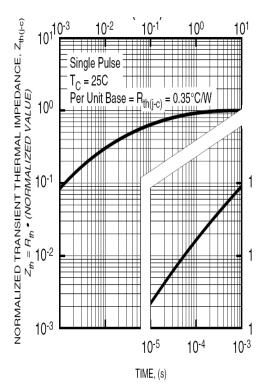



Fig 9.Typical Forward Characteristics(diode)

Fig 10. transient thermal impedance diode

100 80 60 20 0 20 40 60 80 100 120 140 160 T_C (°C)

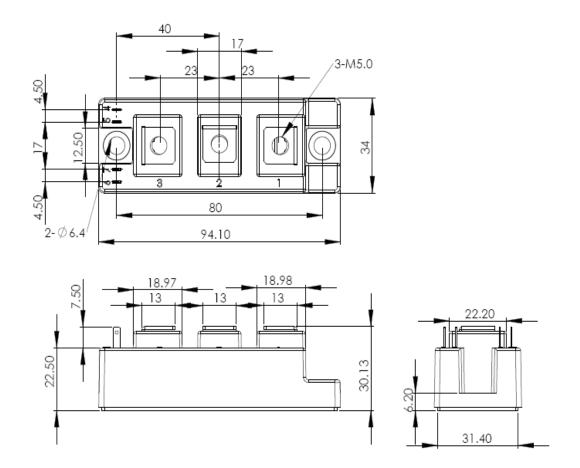

Fig 11. Transient thermal impedance IGBT

Fig12. Maximum DC Collector Current vs.

Case Temperature

Package Dimension

Dimensions in Millimeters

GD50HFU120C1S IGBT Module

Terms and Conditions of usage

The data contained in this product datasheet is exclusively intended for technically trained staff. you and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see www.powersemi.com), For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers. Changes of this product data sheet are reserved.