TRUNK INTERFACE

- ON CHIP POLARITY GUARD
- MEETS DC LINE CHARACTERISTICS OF EITHER CCITT AND EIA RS 464 SPECS
- PULSE FUNCTION
- HIGH AC IMPEDANCE
- OFF HOOK-STATUS DETECTION OUTPUT
- LOW EXTERNAL COMPONENT COUNT

DESCRIPTION

The circuit provides DC loop termination for analog trunk lines.
The V-I characteristics is equivalent to a fixed voltage drop (zener like characteristic) in series with an external resistance that determines the slope of the DC characteristic.
An external low voltage electrolytic capacitor causes the circuit to exhibit a very high impedance to all $A C$ signal above a minimum frequency that is determined by the capacitor itself and by a 20 K nominal resistor integrated on the chip.
The Off-Hook status is detected all the time a typic of 8 mA is flowing into the circuit. In this condition a constant current generator is activated to
circuit.
When Pulse Dialing is required the PULSE input (pin 3) connected to V - causes the device to reduce the fixed DC voltage drop and to exhibit a pure resistive impedance equal to the external resistor.

supply an external device (typically an optocou-
pler) without affecting the AC characteristic of the pler) without affecting the AC characteristic of the

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{L}	Max Line Voltage (pulse duration 10 ms max$)$	20	V
$\mathrm{~L}_{\mathrm{L}}$	Max Line Current	150	mA
$\mathrm{P}_{\text {tot }}$	Total Power Dissipation at Tamb $=70^{\circ} \mathrm{C}$	800	mW
$\mathrm{~T}_{\text {op }}$	Operating Temperature	-40 to +70	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {srg }}, \mathrm{T}_{\mathrm{j}}$	Storage and Junction Temperature	-55 to +150	${ }^{\circ} \mathrm{C}$

PIN CONNECTION (Top view)

THERMAL DATA

Symbol	Parameter	Minidip	SO8	Unit
$\mathrm{R}_{\mathrm{th} \mathrm{j} \text {-amb }}$	Thermal Resistance Junction-ambient $\left(^{*}\right)$	Max.	80	140 to 180
${ }^{\circ} \mathrm{C} / \mathrm{W}$				

(*) Mounted on FR4 Boards

DC ELECTRICAL CHARACTERISTICS ($\mathrm{l}=10 \mathrm{~mA}$ to $100 \mathrm{~mA}, \mathrm{R}_{1}=56 \Omega, \mathrm{~S}_{1}=$ Open, $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
V_{L}	Line Voltage (normal mode)	$\begin{aligned} & \text { PULSE }=\text { Open } \\ & I_{L}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA} \\ & \hline \end{aligned}$			$\begin{gathered} 5 \\ 6 \\ 12 \\ \hline \end{gathered}$	V V
VLP	Line Voltage (pulse mode)	$\begin{aligned} & \text { PULSE }=V \\ & I_{L}=20 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=35 \mathrm{~mA} \\ & \mathrm{~L}_{\mathrm{L}}=80 \mathrm{~mA} \end{aligned}$			$\begin{gathered} 4 \\ 5.5 \\ 9.5 \end{gathered}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$
1 nn	ON/OFF-Hook Line Current Detection Threshold		6.5		9.5	mA
I_{hf}	OFF/ON-Hook Line Current Detection Threshold		5		9.2	mA
lout	OFF-Hook Output Drive Current at Pin HDO	$\begin{aligned} & \mathrm{IL}=10 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}} \geq 20 \mathrm{~mA} \end{aligned}$	$\begin{gathered} 1.5 \\ 2 \end{gathered}$			$\underset{\mathrm{mA}}{\mathrm{~mA}}$
$V_{\text {PM }}$	Pulse Input Low Voltage				0.8	V
IPM	Pull-up Input Current at Pin PULSE (pulse mode)	$\begin{aligned} & \text { IL }=100 \mathrm{~mA} \\ & \text { Pulse }=\mathrm{V}^{-} \end{aligned}$			20	$\mu \mathrm{A}$
$I_{\text {NM }}$	Imput Current at Pin Pulse (normal mode)				3	$\mu \mathrm{A}$

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{I}_{\mathrm{L}}=10 \mathrm{~mA}\right.$ to $100 \mathrm{~mA}, \mathrm{R}_{1}=56 \Omega, \mathrm{R}_{2}=470 \mathrm{~K} \Omega, \mathrm{R}_{3}=130 \mathrm{~K} \Omega$, $\mathrm{T}_{\mathrm{amb}}=+25^{\circ} \mathrm{C}$, unless otherwise specified)

Symbol	Parameter	Test Condition	Min.	Typ.	Max.	Unit
Z_{L}	AC Line Impedance	$\mathrm{S}_{1}=$ Open, $\mathrm{S}_{2}=$ Open $\mathrm{C}_{1}=2.2 \mathrm{mF}$ $\mathrm{f}=1 \mathrm{KHz}$		20		$\mathrm{~K} \Omega$
	Sending/Receiving Distortion	$\mathrm{S}_{1}=$ Open, $\mathrm{S}_{2}=$ Open $\mathrm{f}=1 \mathrm{KHz}$ $\mathrm{V}_{\mathrm{AC}-\mathrm{L}=775 \mathrm{mVrms}}$ $\mathrm{I}_{\mathrm{L}}=15$ to 100 mA				
	Sending/Receiving Distortion	$\mathrm{S}_{1}=$ Closed; $\mathrm{S}_{2}=$ Open $\mathrm{V}_{\mathrm{AC}-\mathrm{L}}=1.3 \mathrm{Vrms}$		2	$\%$	
	Sending/Receiving Distortion	$\mathrm{S}_{1}=$ Open; $\mathrm{S}_{2}=$ Closed $\mathrm{V}_{\mathrm{AC}-\mathrm{L}=1.9 \mathrm{Vrms}}$		$2\left(^{*}\right)$		$\%$

(*) Not tested, guaranteed only by design.

APPLICATION INFORMATION

With the use of this circuit it is possible to terminate an analog trunk so that all the DC current component is flowing in the TRUNK TERMINATION CIRCUIT while the AC component is decoupled with a low voltage capacitor and can be used with a small and low cost audio coupler transformer to provide the AC balancing termination and two to four wire conversion.

Therefore it is usefull both for MODEM and PABX systems

Figure 1 gives the typical application circuit ; it is worth to note that the TRUNK TERMINATION CIRCUIT, together with the LS5018 transient suppressor provides a compact and low cost module fully protected against lightning or overvoltages frequently present on telephone lines.
The PULSE input when connected to V- allows the device to reduce the Line Voltage and to show a resistive impedance equal to R1 to the line. When PULSE input is left open, this function is disable.

Figure 1: Typical Application.

MINIDIP PACKAGE MECHANICAL DATA

DIM	mm			inch		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A		3.32			0.131	
a1	0.51			0.020		
B	1.15		1.65	0.045		0.065
b	0.356		0.55	0.014		0.022
b1	0.204		0.304	0.008		0.012
D			10.92			0.430
E	7.95		9.75	0.313		0.384
e		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			6.6			0260
i			5.08			0.200
L	3.18		3.81	0.125		0.150
Z			1.52			0.060

SO8 PACKAGE MECHANICAL DATA

DIM	mm			inch		
	Min.	Typ.	Max.	Min.	Typ.	Max.
A			1.75			0.069
a1	0.1		0.25	0.004		0.010
a2			1.65			0.065
a3	0.65		0.85	0.026		0.033
b	0.35		0.48	0.014		0.019
b1	0.19		0.25	0.007		0.010
C	0.25		0.5	0.010		0.020
c1	45° (typ.)					
D	4.8		5.0	0.189		0.197
E	5.8		6.2	0.228		0.244
e		1.27			0.050	
e3		3.81			0.150	
F	3.8		4.0	0.150		0.157
L	0.4		1.27	0.016		0.050
M			0.6			0.024
S						

Information furnished is believed to be accurate and reliable. However, SGS-THOMSON Microelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of SGS-THOMSON Microelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. SGS-THOMSON Microelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of SGS-THOMSON Microelectronics.
© 1994 SGS-THOMSON Microelectronics - All Rights Reserved
SGS-THOMSON Microelectronics GROUP OF COMPANIES
Australia - Brazil - France - Germany - Hong Kong - Italy - Japan - Korea - Malaysia - Malta - Morocco - The Netherlands
Singapore - Spain - Sweden - Switzerland - Taiwan - Thaliand - United Kingdom - U.S.A.

