IGBT Module

IGBT

STARPOWER

SEMICONDUCTOR[™]

GD100HFU120C2S

Molding Type Module

1200V/100A 2 in one-package

General Description

STARPOWER IGBT Power Module provides ultrafast Switching speed as well as short circuit ruggedness. It's designed for the applications such as electronic welders and Inductive heating.

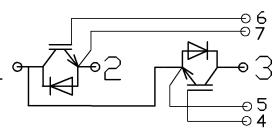
Features

- High short circuit capability, self limiting to 6*I_{Cnom}
- Rugged with ultrafast performance
- Low t_{rr} and I_{rr} •
- Low inductance case
- Fast & soft reverse recovery anti-parallel FWD
- 10us short circuit capability •
- Isolated copper baseplate using DCB Direct Copper Bonding technology

Typical Applications

- Switching mode power supplies at f_{sw}>20kHz
- Resonant inverters up to 100kHz
- Inductive heating
- UPS
- Electronic welders at fsw>20kHz

Absolute Maximum Ratings Tc=25°C unless otherwise noted


Symbol	Description	GD100HFU120C2S	Units
V _{CES} C	Collector-Emitter Voltage	1200	V

©2007 STARPOWER Semiconductor Ltd.

7/21/2007

อ 5

Equivalent Circuit Schematic

IGBT Module

Symbol	Description	GD100HFU120C2S	Units
V _{GES}	Gate-Emitter Voltage	$\pm 20V$	V
I _C	Collector Current @80°C	100	А
I _{CM(1)}	Pulsed Collector Current @80°C	200	А
$I_{\rm F}$	Diode Continuous Forward Current	100	А
I _{FM}	Diode Maximum Forward Current	200	А
P _D	Maximum power Dissipation @ Tc=25°C	800	W
T _J	Operating Junction Temperature	-40 to +150	°C
T _{STG}	Storage Temperature Range	-40 to +125	°C
I ² t-value, Diode	$V_{R}=0V$, t=10ms, T _j =125 °C	4000	A^2s
V _{ISO}	Isolation Voltage	2500	V
Mounting Torque	Power Terminal Screw:M6	2.5 to 5	N.m
Mounting Torque	Mounting Screw:M6	3 to 5	N.m

Notes:

(1) Repetitive rating: Pulse width limited by max. junction temperature

Electrical Characteristics of IGBT Tc=25°C unless otherwise noted

Off Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
B _{VCES}	Collector-Emitter	T _J =25℃	1200			V
	Breakdown Voltage					
I _{CES}	Collector Cut-Off Current	$V_{CE}=V_{CES}, V_{GE}=0V$		0.15	0.45	mA
I _{GES}	Gate-Emitter Leakage	$V_{GE} = V_{GES}, V_{CE} = 0V$			200	nA
	Current	@ T _J =25℃				

On Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
V _{GE(th)}	Gate-Emitter Threshold	$I_C = 4mA, V_{CE} = V_{GE}$	4.4	5.02	6.0	V
	Voltage					
V _{CE(sat)}	Collector to Emitter	$I_{C}=100A, V_{GE}=15V$,		3.46	3.7	V
	Saturation Voltage	@25°C				
		$I_{C}=100A, V_{GE}=15V,$		3.52		
		@125°C				

Switching Characteristics

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
t _{d(on)}	Turn-On Delay Time			100		ns
t _r	Rise Time	$V_{CC}=600V,I_{C}=100A,R_{G}=9$ $\Omega,V_{GE} = \pm 15V,Inductive$ Load, $T_{C} = 25^{\circ}C$		50		ns
t _{d(off)}	Turn-Off Delay Time			460		ns
t _f	Fall Time			21		ns
Eon	Turn-On Switching			9		mJ
	Loss					

©2007 STARPOWER Semiconductor Ltd.

7/21/2007

IGBT Module

E _{off}	Turn-Off Switching			5		mJ
	Loss					
t _{d(on)}	Turn-On Delay Time			110		ns
t _r	Rise Time			62		ns
t _{d(off)}	Turn-Off Delay Time			500		ns
t _f	Fall Time	$V_{CC}=600V, I_{C}=100A, R_{G}=9$		30		ns
Eon	Turn-On Switching	Ω, V _{GE} =±15V, Inductive Load, T _C = 125°C		9		mJ
	Loss	Load, $1_{\rm C} = 123$ C				
E _{off}	Turn-Off Switching			5		mJ
	Loss					
T _{SC}	Short Circuit	V _{CC} =600V, V _{GE} =	10			us
	Withstand Time	$20V@T_{C} = 125$ °C				
C _{ies}	Input Capacitance			13.6		nF
C _{oes}	Output Capacitance	V_{CE} =20V, f=1MHz, V_{GE}		1.11		nF
C _{res}	Reverse Transfer	=0V		0.82		nF
	Capacitance					
L _{CE}	Stray inductance			20	25	nH
R _{CC'+EE'}	Module lead			0.8		mΩ
	resistance, terminal to					
	chip					

Electrical Characteristics of DIODE Tc=25°C unless otherwise noted

Symbol	Parameter	Test C	onditions	Min.	Тур.	Max.	Units
V _{FM}	Diode Forward	I _F =100A	$T_C = 25^{\circ}C$		2.10	2.5	V
	Voltage		$T_C = 125$ °C		2.25		
t _{rr}	Diode Reverse	I _F =100A,	$T_C = 25^{\circ}C$		180		ns
	Recovery Time	V _R =600V,di	$T_C = 125$ °C				
I _{rr}	Diode Peak	/dt=-1000A/	$T_{\rm C} = 25 ^{\circ}{\rm C}$		50		А
	Reverse Recovery	us, V _{GE} =0V	$T_C = 125$ °C		75		
	Current						
Q _{rec}	Reverse Recovery		$T_C = 25^{\circ}C$		6		uC
	Charge		$T_C = 125$ °C		15		

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case (IGBT Part, per 1/2 Module)		0.15	°C/W
$R_{\theta JC}$	Junction-to-Case (DIODE Part, per 1/2 Module)		0.30	°C/W
$R_{\theta CS}$	Case-to-Sink (Conductive grease applied)	0.03		°C/W
Weight	Weight of Module	300		g

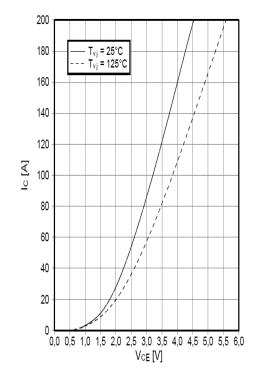


Fig 1. Typical Output Characteristics

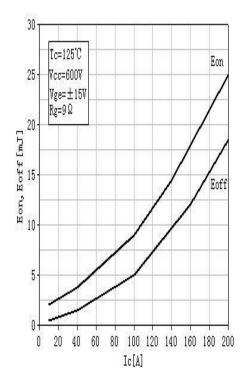


Fig 3.Switching Loss vs. Collector Current

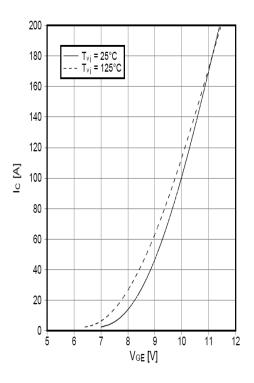


Fig 2. Typical transfer Characteristics

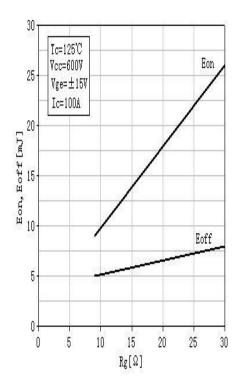


Fig 4. Switching Loss vs. Gate Resistance

IGBT Module

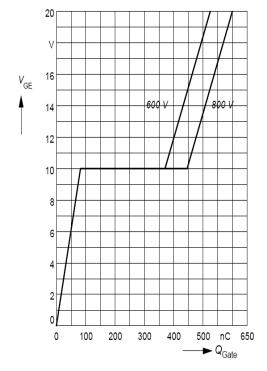


Fig 5. Gate Charge Characteristics.

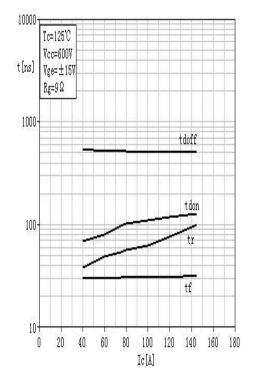


Fig 7. Typical Switching Times vs. I_C

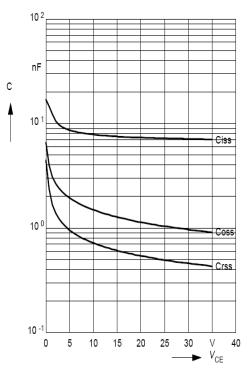


Fig 6. Typical Capacitance vs. Collector-Emitter Current

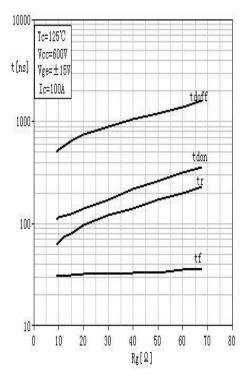


Fig 8. Typical Switching Times vs. Gate Resistance R_G

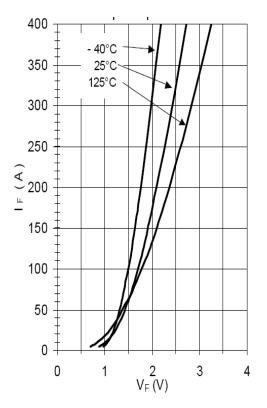


Fig 9.Typical Forward Characteristics(diode)

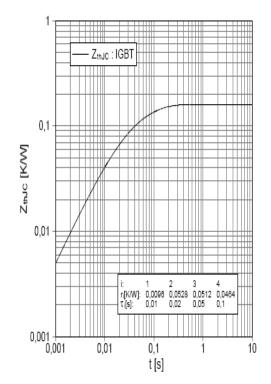


Fig 11. transient thermal impedance IGBT

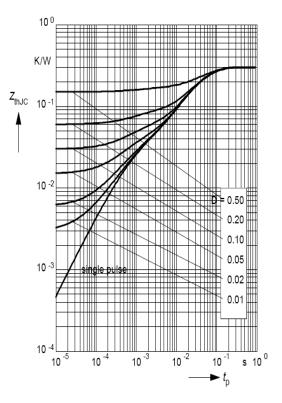
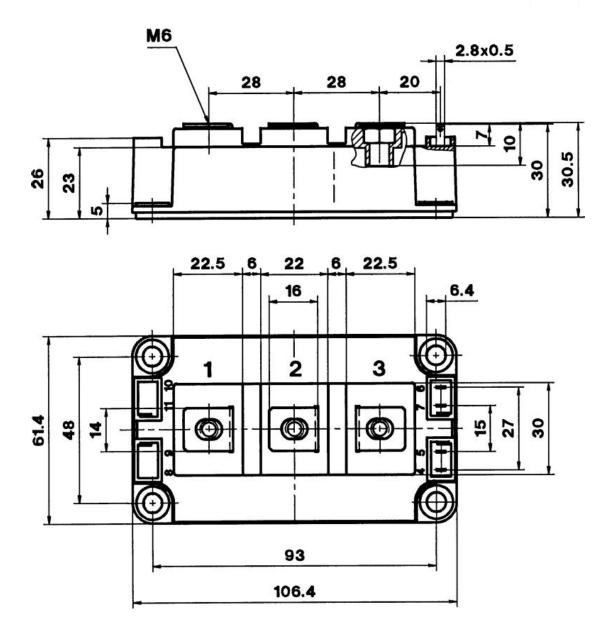


Fig 10. transient thermal impedance diode




Fig 12. Reverse bias safe operating area of IGBT

IGBT Module

IGBT Module

Package Dimension

Dimensions in Millimeters

Terms and Conditions of usage

The data contained in this product datasheet is exclusively intended for technically trained staff. you and your technical departments will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to such application.

This product data sheet is describing the characteristics of this product for which a warranty is granted. Any such warranty is granted exclusively pursuant the terms and conditions of the supply agreement. There will be no guarantee of any kind for the product and its characteristics.

Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of our product, please contact the sales office, which is responsible for you (see <u>www.powersemi.com</u>), For those that are specifically interested we may provide application notes.

Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you.

Should you intend to use the Product in aviation applications, in health or live endangering or life support applications, please notify.

If and to the extent necessary, please forward equivalent notices to your customers. Changes of this product data sheet are reserved.

©2007 STARPOWER Semiconductor Ltd. 7/21/2007