LM432

Dual Op Amp with On-Chip Fixed 2.5V Reference

General Description

The LM432 integrates two operational amplifiers and one 2.5 V reference. The reference is based on the LMV431 adjustable shunt regulator with the output voltage adjusted to a fixed 2.5 V . The Op Amps are similar to the LM358 with a common-mode input range that includes ground. Integrating the reference and Op Amps creates a solution for low cost charging applications.

Applications

- Low cost charging circuitry
- Power supplies and adapters

Features

Dual Op Amp Circuitry
(Typical for $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}$)

- Input offset voltage
0.6 mV
- Input offset current

1nA
3nA

- Common-mode input voltage range

0 V to $\mathrm{V}_{\mathrm{S}}-1 \mathrm{~V}$
$150 \mu \mathrm{~A}$

- Power supply current
,
- Reference voltage
2.5 V
- Reference voltage deviation ($-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$) 4 mV
- Sink Current Capability
0.2 mA to 10 mA

Connection Diagram

10139001
Top View

Application Circuit

10139002
Optocoupler Driver Circuit for Power Supply Isolation

Ordering Information

Package	Part Number	Package Marking	Transport Media	NSC Drawing
8-Pin SOIC	LM432MA	LM432MA	Rails	M08A
	LM432MAX	LM432MA	2.5 k Unit Tape and Reel	

Absolute Maximum Ratings
(Notes 1, 3)
If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Suppy Voltage $\left(V_{s}\right)$	20 V
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Junction Temperature $\left(\mathrm{T}_{\mathrm{J}}\right)$	$150^{\circ} \mathrm{C}$
ESD Human Body Model	2 kV

Input Voltage Range
-0.3 V to 20 V

Operating Ratings(Note 2),(Note 3)

Temperature Range
$-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Supply Voltage (Note 8)
2.5 V to 16 V

Thermal Resistance(θ_{JA})
$162^{\circ} \mathrm{C} / \mathrm{W}$

Electrical Characteristics

The following specifications apply for both amplifiers at $\mathrm{V}_{\mathrm{S}}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=\infty$, and $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, unless otherwise noted.

Symbol	Parameter	Conditions	$\begin{gathered} \text { Min } \\ (\text { Note 5) } \end{gathered}$	$\begin{gathered} \text { Typ } \\ \text { (Note 4) } \end{gathered}$	$\begin{gathered} \text { Max } \\ \text { (Note 5) } \end{gathered}$	Units
OP Amp Circuitry						
$\mathrm{V}_{\text {OS }}$	Input Offset Voltage	Amplifier B only	-4	0.6	4	mV
I_{OS}	Input Offset Current	Amplifier B only		1	50	nA
I_{B}	Input Bias Current	Amplifier B only		3	150	nA
V_{CM}	Common-Mode Input Voltage Range	Amplifier B only, CMRR > 50dB	0		$\mathrm{V}_{\mathrm{S}}-1$	V
$\mathrm{I}_{\text {S }}$	Power Supply Current	Total for both amplifiers		150	500	$\mu \mathrm{A}$
A_{V}	Voltage Gain	$\begin{array}{\|l\|} \hline \mathrm{V}_{\mathrm{S}}=16 \mathrm{~V}, 1 \mathrm{~V}<\mathrm{V}_{\mathrm{O}}<11 \mathrm{~V}, \\ \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { connected to } \mathrm{V}_{\mathrm{S}} / 2 \\ \hline \end{array}$	65	100		dB
V_{OL}	Output Voltage Low			2	50	mV
V_{OH}	Output Voltage High		$\mathrm{V}_{\mathrm{S}}-1.5$	$\mathrm{V}_{\mathrm{S}}-1.3$		V
$\mathrm{I}_{\text {SOURCE }}$	Output Current Source		20	30		mA
$\mathrm{I}_{\text {SINK }}$	Output Current Sink		5	11		mA

Reference Circuitry For Op Amp A The following specifications apply for $\mathrm{I}_{\mathrm{z}}=200 \mu \mathrm{~A}$ and $\mathrm{T}_{J}=25^{\circ} \mathrm{C}$, unless otherwise noted.

V_{Z}	Reference Voltage at IN ${ }^{+}$Terminal		2.450	2.5	2.550	V
$\mathrm{~V}_{\mathrm{ZDEV}}$	Reference Voltage Deviation at IN^{+} Terminal Over Temperature (Note 6),(Note 9)	$-40^{\circ} \mathrm{C} \leq \mathrm{T}_{J} \leq 85^{\circ} \mathrm{C}$	4	65	mV	
$\mathrm{I}_{\mathrm{Z} \text { (MIN) }}$	Minimum Cathode Current for Regulation at IN ${ }^{+}\left(\mathrm{V}_{\mathrm{Z}}\right)$ Terminal			150	200	$\mu \mathrm{~A}$
r_{z}	Dynamic Output Impedance (Note 7)	$200 \mu \mathrm{~A}<\mathrm{I}_{\mathrm{Z}}<1 \mathrm{~mA}$, Freq $=$ 0 Hz		0.2		Ω

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.
Note 2: Operating Rating indicate conditions for which the device is functional. These rating do not guarantee specific performance limits. For guaranteed specifications and test conditions, see the Electrical Characteristics. The guaranteed specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Note 3: All voltages are measured with respect to $\mathrm{GND}=0 \mathrm{~V}_{\mathrm{DC}}$, unless otherwise specified.
Note 4: Typicals represent the most likely parametic norm.
Note 5: Guaranteed to National's Average Outgoing Quality Level (AOQL).
Note 6: Reference voltage deviation, $\mathrm{V}_{\mathrm{ZDEV}}$, is defined as the maximum variation of the reference input voltage over the full temperature range.
Note 7: The Dynamic Output Impendance, r_{z}, is defined as $\mathrm{r}_{\mathrm{z}}=\Delta \mathrm{V}_{\mathrm{Z}} / \Delta \mathrm{I}_{\mathrm{z}}$

Note 8: Minimum value of operating voltage is for Amplifier B only.
Note 9: Typical Temperature drift $\Delta \mathrm{V} / \Delta \mathrm{T}=12.8 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$

Physical Dimensions inches (millimeters)

unless otherwise noted

8-Pin SOIC
NS Package Number M08A

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

BANNED SUBSTANCE COMPLIANCE

National Semiconductor certifies that the products and packing materials meet the provisions of the Customer Products Stewardship Specification (CSP-9-111C2) and the Banned Substances and Materials of Interest Specification (CSP-9-111S2) and contain no "Banned Substances" as defined in CSP-9-111S2.
\(\left.\begin{array}{lllll}\hline National Semiconductor \& National Semiconductor \& \begin{array}{l}National Semiconductor

Americas Customer\end{array} \& Europe Customer Support Center \& Asia Pacific Customer\end{array}\right]\)| National Semiconductor |
| :--- |
| Supan Customer Support Center |

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

