Active Clamp Forward Converters

Design Using UCC2897

Hong Huang
August 2007

Presentation Content

Behind Your Designs

- Review of Active Clamp and Reset Technique in Single-Ended Forward Converters
- Design Material/Tools
- Design procedure and concern
- Common Problems in Self-driven Sync Rectifier
- Control-driven and TPS28225
- Main switch ZVS / VVS
- Comparison ACFC and HB in telecom applications
- Gate Drive Signals
- Solution to the problem of power-off oscillation

Review of Active Clamp Reset Technique

Behind Your Desians

Typical configurations (a) Low side clamp

(b) high side clamp

- Detailed comparison can be found in TI Application Note (SLUA322) Active Clamp Transformer Reset: High Side or Low Side?
- Main differences:
(a) Gate driving scheme
(b) Clamp and Reset voltage ratings
(c) MOSFET type for clamping

Review of Active Clamp Reset Technique
Behind Your Desians

PARAMETER	HIGH-SIDE CLAMP	
$V_{D S}$	$\left(\frac{1}{1-D}\right) \times V_{I N}$	$\left(\frac{1}{1-D}\right) \times V_{I N}$
$V_{\text {RESET }}$	$\left(\frac{D}{1-D}\right) \times V_{I N}$	$\left(\frac{D}{1-D}\right) \times V_{I N}$
V_{C}	$\left(\frac{D}{1-D}\right) \times V_{I N}$	$\left(\frac{1}{1-D}\right) \times V_{I N}$

Comparison of High- and Low-Side Clamp

Review of Active Clamp Reset Technique

- Voltage Clamp
- Transformer reset

Design Material/Tools

Behind Your Designs

- Step-by-Step Design Procedure
- Designing for High Efficiency with the Active Clamp UCC2891 PWM

Controller (SLUA303)

- Advances / Differences of UCC2897 from UCC2891
(a) 20 -pin, QFN
(b) LineOV
(c) PGND
(d) Hiccup OCP
(e) Bi-directional f-sync
(d) FB and SS 2.5 V instead of 1.25 V
- MathCad Design Files (Power stage and Loop design)
- EVMs (UCC2891, UCC2897, UCC2894)

Behind Your Designs \qquad

- EVM Specs: Vin $=36 \mathrm{~V}$ to $75 \mathrm{~V}, \mathrm{Vo}=3.3 \mathrm{~V}$, $\mathrm{Io}=30 \mathrm{~A}, \mathrm{Po}=100 \mathrm{~W}$

UCC2891 EVM

UCC2897 EVM

UCC2984 EVM

Behind Your Designs
Input voltage: 390 Vdc
Rated Power: 320W
Output voltage: 12Vdc
Output current: 26A

Design Procedures and Concerns

Behind Your Designs

- Power stage design
- Program IC
- Switching frequency, magnetizing inductance, two resonant frequencies, and dead-time
- Switching losses and ZVS/VVS
- Capacitance at Vref and VDD should be minimum ratio 1:10 (e.g. if Vref cap is .1uF then VDD cap minimum 1.0uF)
- Observing Vref maximum load capability, less than 5 mA . If tie a resistor between FB and Vref, that resistor typical value is about 2 k ohm.
- Duty cycle (D) and turns ratio (N) to balance MOSFET voltage ratings
- $\mathrm{N} \uparrow \rightarrow \mathrm{D} \uparrow \rightarrow$ more stress on main FET (primary)
- $\mathrm{N} \downarrow \rightarrow \mathrm{D} \downarrow \rightarrow$ more stress on catch FET (secondary)
(a) forward FET Vds $=(\mathrm{Vin} / \mathrm{N}) \times \mathrm{D} /(1-\mathrm{D})+\mathrm{Vo}$;
(b) catch FET Vds $=\mathrm{Vin} / \mathrm{N}$;
(c) primary main FET Vds $=\operatorname{Vin} \times 1 /(1-\mathrm{D})$;
(d) clamp FET Vds $=\operatorname{Vin} \times 1 /(1-\mathrm{D})-\mathrm{Vin}=\mathrm{Vin} \times \mathrm{D} /(1-\mathrm{D})$
\qquad

- If the secondary side leakage is small the magnetizing energy necessary to turn D1 on will be diverted through D3 (Q3) during the reverse recovery of D4 (or Q4 reverse conduction)
- After the reverse recovery of D4, the magnetizing energy will continue discharging through the loop shown in blue
- Since there is no energy to turn D1 ON, ZVS of Q1 does not take place.

Principle of ZVS/VVS turning on

Behind Your Designs

Vds reversed and clamped by the body diode.

$$
\left.\left.\sqrt{\frac{L_{m}}{C_{s}}}\left(\frac{N V_{o}}{2 L_{m} f_{s}}\right) \cos \frac{1}{{\sqrt{L_{m} C_{c l}}}^{t}+f \mid} \right\rvert\,-\frac{I_{o}}{N}\right) \geq V_{i n}+V_{c l}
$$

(b) Theoretical waveforms

Fundamentals of LC Resonance

Behind Your Designs

- LC resonance as its nature can recycle the energy back to the source.
- MOSFET turn-on at reduced voltages will
 make less power losses.
- Efficiency is then improved.

UCC2891/2/3/4/7 achieves ZVS / VVS

Behind Your Designs
Two resonance present:

- Magnetizing inductance and clamp capacitor
- Magnetizing inductance and equivalent Cds
$\omega_{C L}=\frac{1}{\sqrt{L_{M} \times C_{C L}}}$

$$
\omega_{R}=\frac{1}{\sqrt{L_{M} \times C_{D S}}}
$$

Vin

$$
\sqrt{\frac{L_{M}}{C_{D S}}}\left(\frac{N \times\left(V_{O}+V_{O, \text { misc }}\right)}{2 \times L_{M} \times f_{s w}}\left|\cos \left(\frac{1}{\sqrt{L_{M} \times C_{C L}}} \times t_{\text {off }}\right)\right|-\frac{I_{O}}{N}\right) \geq V_{i n}+V_{C L}
$$

Review of Active Clamp Reset Technique

- Voltage Clamp
- Transformer reset

How to get ZVS?

Behind Your Designs

- Magnetizing current direction reversed before clamp FET turns off
- Magnetic field energy (current) sufficient:
- lower the magnetizing inductance
- Primary side:
- a higher primary leakage or an external saturable inductor (MagAmp)
- Secondary side:
- an external saturable inductor (MagAmp) to block magnetizing current discharging from the secondary loop for a short time.

Switching Power Loss due to Cds Energy Discharged at Turn-on with respect to the Vds
Behind Your Designs \qquad

The efficiency drops when turn on at different Vds from a 300W converter at 20\% load level:

- Turn on at Vds = 350V, -2.64\%
- Turn on at Vds = 150V, -0.71\%

In lower voltage applications, efficiency improvement may not be significant.

- Efficiency drop vs Vds variation.
$f s w=200 \mathrm{kHz}$ and Cds = 500pF @ Vds = 25V.

ZVS / VVS Observation Using UCC2984

Behind Your Designs

ZVS/VVS can be achieved by properly and adequately lowering the magnetizing inductance Lm to improve the efficiency in off-line applications.

$$
\mathrm{Vin}=390 \mathrm{~V}, \mathrm{Vo}=12 \mathrm{~V}, \mathrm{Lm}=0.65 \mathrm{mH}
$$

UCC2984 EVM Efficiency Test Results and Comparison

Behind Your Designs

Efficiency results from different design of magnetizing inductance:

- Lm $=3.08 \mathrm{mH}$, valley voltage about 350 V
- Lm $=0.65 \mathrm{mH}$, valley voltage about 180 V
- test conditions:
- fsw $=160 \mathrm{kHz}$
- Vin $=390 \mathrm{~V}$
$-\mathrm{Vo}=12 \mathrm{~V}$
- Full load = 320W

Load Level $=1$ representing full load 320W

ZVS observations on ACFC (UCC2891/7 EVM)

Behind Your Designs
$L \mathrm{~m}=95 \mu \mathrm{H}$
$\mathrm{Vin}=42 \mathrm{~V}, \mathrm{Vo}=3.3 \mathrm{~V}$, $\mathrm{lo}=0 \mathrm{~A}$

$$
\mathrm{Lm}=25 \mu \mathrm{H}
$$

$$
\mathrm{Vin}=40 \mathrm{~V}, \mathrm{Vo}=3.3 \mathrm{~V}, \mathrm{lo}=0 \mathrm{~A}
$$

ZVS observations on Active Clamp Forward Converter

Behind Your Designs

$$
\begin{aligned}
& \mathrm{Lm}=95 \mu \mathrm{H} \\
& \mathrm{Vin}=42 \mathrm{~V}, \mathrm{Vo}=3.3 \mathrm{~V}, \mathrm{Io}=15 \mathrm{~A}
\end{aligned}
$$

$$
\mathrm{Lm}=25 \mu \mathrm{H}
$$

$$
\mathrm{Vin}=40 \mathrm{~V}, \mathrm{Vo}=3.3 \mathrm{~V}, \mathrm{lo}=10 \mathrm{~A}
$$

Issues from self-driven SR in ACFC

Behind Your Designs

- Power shutdown oscillation
* cause: self-driven SR feedback the capacitor stored energy to the primary
* solutions:
- soft stop to control secondary capacitor discharge - most effective way
- using control-driven SR
- rating the avalanche energy high enough ($\frac{1}{2} C_{o} V_{o}^{2}$), or the voltage rating high enough
- Oscillation from fast load step down change
* cause:
- control lost after duty cycle reached zero from the load step down change
- self-driven SR feedback the capacitor stored energy to the primary
* solutions:
- slower loop response design;
- higher Dmax design
- Reversing current at light load and no load
* cause: self-driven SR catch FET conducting
* Solutions:
- Using control-driven SR
- Turning off SR

Power Shutdown (LineUV) Oscillation
Behind Your Designs

- Observations

Mechanism of the Oscillation during Power Shutdown

Behind Your Designs

- Oscillation from secondary energy feedback to the primary from self-driven SR during power shutdown

LineUV (power shutdown) \rightarrow

T1 a(+) and $c(+) \rightarrow$
Q4 on and reverse Lo current \rightarrow
T1 b(+) and d(+) \rightarrow
Q3 on (energy transfer to primary) \rightarrow
Magnetizing current reduction \rightarrow

T1 a(+) and c(+) \rightarrow Loop...

With soft stop, both Q1 and Q2 are controlled during power down. The secondary stored energy will be discharged in control manner. The oscillation then will be eliminated, refer to the 2nd slide.

Power Shutdown (LineUV) Oscillation

Behind Your Designs

- Oscillation does not appear during power shutdown with soft stop
- using SS/SD pin and a comparator
- feature to be added

Load Transient Ringing

Behind Your Designs
——

- Load step down change (30A to 3A) at 72Vin, 3.3Vo:

High voltage swing across Q1 drain and source

Load Transient Ringing

Behind Your Designs

- Mechanism
- control lost after duty cycle reached zero from load step down change
- secondary self-driven SR oscillation
- Fast loop compensation, or
- High maximum duty cycle setup

- With slower loop compensation or reduced maximum duty cycle
- Vds swing peak reduced
- Vo load transient response becomes slower

Gate Drive Signal Jitter - solutions
Behind Your Designs

- Jitter: 120 ns (VDD $\geq 9.2 \mathrm{~V}$)

- Jitter 12 ns (VDD < 9.2V)

Gate Signal Jitter (root cause) - fixed and tested

Behind Your Designs

Persistence $=13.2 \mathrm{~ns}$ (rising edge)

$\xrightarrow[T]{ } \rightarrow \nabla-1.62640 \mu \mathrm{~s}$
$\Delta: \quad 3.30 \mathrm{~V}$
@: $\quad 3.12 \mathrm{~V}$
$\Delta: \begin{array}{r}13.2 \mathrm{~ns} \\ \text { @: } \\ -1.65 \mu \mathrm{~s}\end{array}$

Persistence $=\mathbf{1 0 . 2 n s}$ (falling edge)

- Fix gate signal jitter
- Keep LineUV as before (latch off)
- Add soft stop feature

Volt x second clamp: external solution

Behind Your Designs
Off-time and On-time

- inversely proportional to Ich1 and Ich2, respectively

$$
\begin{aligned}
\text { Ich } 1 & =I 2-I 1 \\
& =\frac{2.5 \mathrm{~V}}{R_{\text {OFF } 1}}-\frac{\text { Vin }-2.5 \mathrm{~V}}{R_{\text {OFF } 2}}
\end{aligned}
$$

$$
\operatorname{Vin} \uparrow \rightarrow \text { Ich } 1 \downarrow \rightarrow \operatorname{toff} \uparrow
$$

$I c h 2=I 3+I 4$

$$
\begin{aligned}
& =\frac{2.5 V}{R_{O N 1}}+\left(\frac{R_{O N 3} \times V_{I N}}{R_{O N 3}+R_{O N 4}}-V_{B E}\right) \times \frac{1}{R_{O N 2}} \\
& \text { Vin } \uparrow \rightarrow \text { Ich } 2 \uparrow \rightarrow \text { ton } \downarrow
\end{aligned}
$$

Volt x second clamp: external solution

Behind Your Designs
Off-time and On-time

- inversely proportional to Ich1 and Ich2, respectively

$$
\begin{aligned}
& \begin{aligned}
& \text { Ich } 1=I 2-I 1 \\
&=\frac{2.5 V}{R_{\text {OFF } 1}}-\frac{\text { Vin }-2.5 \mathrm{~V}}{R_{\text {OFF } 2}} \\
& \text { Vin } \uparrow \rightarrow \text { Ich } 1 \downarrow \rightarrow \text { toff } \uparrow \\
& \text { Ich2 }=I 3+I 4 \\
&= \frac{2.5 V}{R_{O N 1}}+\left(\frac{R_{O N 3} \times V_{I N}}{R_{O N 3}+R_{O N 4}}\right) \times \frac{1}{R_{O N 2}} \\
& \text { Vin } \uparrow \rightarrow I \text { Ich } 2 \uparrow \rightarrow \text { ton } \downarrow
\end{aligned}
\end{aligned}
$$

Vref-pin Glitch 1V During Power Up

Behind Your Designs

- By adding R2, the 1-V spike influence on the transistor can be eliminated.

Comparison between Active Clamp Forward and HB in telecom applications
Behind Your Designs

Low-side Active Clamp Forward Converter

Symmetrical HB Converter

Comparison between Active Clamp Forward and HB in

 telecom applicationsBehind Your Designs \qquad

- Efficiency
- Symmetrical HB may not provide ZVS
- ACFC ZVS/VVS
- Critical with higher switching frequency and power density in $1 / 4$ or $1 / 8$ bricks
- Switching frequency:
- HB doubled FET's frequency seen at input and output - may help to reduce the caps but the switching losses proportional to $0.5 \times$ Vin hard switching
- ACFC: MOSFET freq seen at input/output. VV Switching losses - partially soft
- Components and board space
- HB: (a) High side gate driver, (b) flux imbalance caps, (c) caps for center tap point, (d) same size of high- and low side MOSFETs
- ACFC: (a) - (b) no, (c) clamp cap, (d) clamp FET smaller one, (e) x2 voltage rating
- Cost
- HB: cost for (a) - (c)
- ACFC: cost for (c) - (e)
- Secondary Sync Rectifier (control-driven SR)

Comparison between Active Clamp Forward and HB in telecom applications
Behind Your Designs

- Current sensing:
- HB: current sensing transformer or floating sensing resistor (OpAmp may need)
- ACFC: CT or resistor - flexibility, cost and board space
- Transformer:
- HB: two windings at secondary - PCB design complication, center-tap, more space
- ACFC: single winding at secondary
- Critical with higher switching frequency and power density in $1 / 4$ or $1 / 8$ bricks
- Transient response:
- HB may be faster than ACFC (clamp cap)
- Secondary Sync Rectifier
- HB: not able to make self-driven (extra winding may need)
- ACFC: self-driven ok (control-driven available with TPS28225 or similar)
- Summary:
(a) Similar total cost with ACFC slightly lower
(b) ACFC slightly less component count
(c) ACFC higher efficiency and less board space - higher power density possible for the same cost and board space

THANK YOU!

Contact Info:
Hong Huang
+(603)-222-8533
hong_huang@ti.com

