MC34063A

MC34063E

直流-直流转换器控制电路

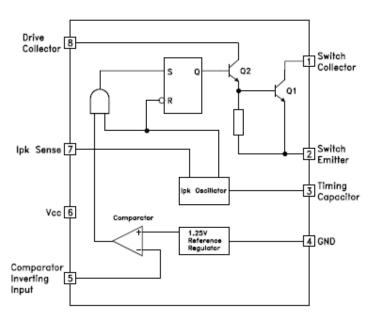
- ■输出开关电流超过 1.5A
- ■参考精度为 2%
- ■低静态电流: 2.5mA(TYP.)
- ■工作电压 3V 到 40V
- ■工作频率 100KHz
- ■有效电流受限

描述

MC34063A/ E 系列是单块集成电路控制电路以实现直流- 直流电压转的主要功能。

芯片包含内在的温度补偿叁考,比较器,一个含有动态电流控制电路的受限周期 振荡器

有一个活跃的现在界限的受约束的振动者,驱动器和高电流输出开关。 输出电压通过两个具有 2% 参考精度的外部电阻器变成可调。


带有最简外围元件的 MC34063A/ E 系列芯片是设计来作升压、降压和极性反转的应用。

双式直插式封装-8 单式直插式封装-8

模块图表

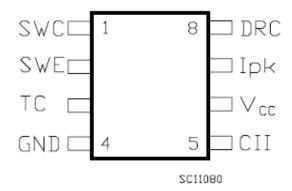
SC11071

绝对最大额定值

标	参数	数值	单位
号			
V_{CC}	电源电压	50	V
V_{ir}	输入边沿比较器转换电压	-0.3~40	٧
V_{swc}	集电极转换电压	40	V
V_{swe}	射极转换电压	40	V
V_{ce}	集电极一射极转换电压	40	V
V_{dc}	集电极驱动电压	40	V
I_{dc}	集电极驱动电流	100	mA
I_{sw}	转换电流	1.5	A
P_{tot}	25℃时的功耗 (塑膜封装) (小输出线集成电路封装)	1.25 0.625	W
	工作环境温度范围	0.020	°C
T_{op}	(AC 和 EC 系列)	0~70	$^{\circ}$ C
	(AB 系列)	-40~85	$^{\circ}\mathbb{C}$
	(EB 系列)	-40~125	

T_{\perp}	储藏温度范围	-40~150	$^{\circ}$ C
2 stg			

绝对最大额定值是指超过这些参数值可能会损坏器件


不建议在如下情况下进行功能操作

热值

标号	参量	双式直插式封装-8	单式直插式封装-8	单位
$R_{thj-amb}$	结点外部热阻(*) 最大值	100	160	°C /W
ing unio				

(*)此参数值取决于固定器件的 pcb 板的导热性能设计。

连线图 (顶视图)

管脚连接

管脚标号	符 号	名称和功能
1	SWC	集电极选择器
2	SWE	射集选择器
3	TC	定时电容
4	GND	地
5	CII	输入反相比较器
6	VCC	电源电压
7	I_{pk}	感应电流
8	DRC	集电极电压驱动

分类

74 75			
类 型	双式直插式封装-8	单式直插式封装	单式直插式封装-8(磁带或卷
		-8	轴)
MC34063AB(*)	MC34063ABN	MC34063ABD	MC34063ABD- TR
MC34063AC(*)	MC34063ACN	MC34063ACD	MC34063ACD- TR
MC34063EB	MC34063EBN	MC34063EBD	MC34063EBD- TR
MC34063EC	MC34063ECN	MC34063ECD	MC34063ECD- TR

(*)新的设计不推荐使用"A"版本。

电学特性

(参考测试电路, V_{cc} =5V, T_a = T_{LOW} to T_{HIGH} ,若有其他特殊情况参考注意 2)

振荡器

标号	参数	测试环境	最小值	典型值	最大值
f_{osc}	频率	$V_{pin5} = 0$ V $C_T = 1$ nF $T_a = 25$ °C	24	33	42
I_{chg}	充电电流	V_{CC} = 5~40V T_a =25°C	24	33	42
$I_{\it dischg}$	放电电流	$V_{CC} = 5 \sim 40 \text{V} T_a = 25 ^{\circ}\text{C}$	140	200	260
I _{dischg} / I _{chg}	充放电流比	管脚7=V _{CC} T _a =25℃	5.2	6.2	7.5
$V_{ipk(sense)}$	电流限制感应 电压	$I_{chg} = I_{dischg}$ $T_a = 25$ °C	250	300	350

输出开关

标号	参数	测试环境	最小值	典型值	最大值
かっ		火が以ずいる	取/1.旧	严至ഥ	
$V_{CE(sat)}$	饱和电压, 达林顿连接	I_{SW} =1A		1	1.3
		管脚 1,8 相连			
$V_{CE(sat)}$	饱和电压	I_{SW} =1A R_{pin8} 欧到 V_{CC} ,		0.45	0.7
$h_{\scriptscriptstyle FE}$	直流电流增益	I_{SW} =1A V_{ce} =5V T_a =25 °C	50	120	
$I_{C(\mathit{off})}$	集电极开路电流	V_{ce} =40V		0.01	100

比较器

N H						
标号	参数	测试环境	最小值	典型值	最大值	单位
$V_{\scriptscriptstyle th}$	初始电压	T_a = 25°C	1.225 1.21	1.25	1.275 1.29	< <
		$T_a = T_{LOW} \sim T_{HIGH}$				
$\operatorname{Re} g_{line}$	校准初始电压	<i>V_{CC}</i> =3~40 ∨		1	5	mV
I_{IB}	输入偏置电流	$V_{IN} = 0 \text{ V}$		-5	-400	nA

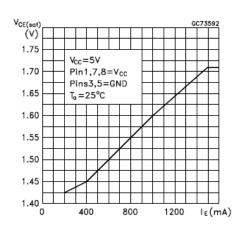
标号	参数	测试环境	最小值	典型
I_{CC}	供电电流	V_{CC} =5~40V C_T =1nF 管脚7= V_{CC} V_{pin5} > V_{th}		
		管脚2=GND 其他管脚悬空		2.5
		MC34063A		1.5
		MC34063E		
$V_{\scriptscriptstyle START-UP}$	启动电压(注意4)	T_a =25° \mathbb{C} C_T =1 F 管脚5=0V		2.1
		MC34063A		1.5
		MC34063E		

注意:

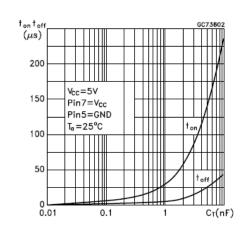
- 1) 必须遵循最大包装功耗限
- 2) $T_{LOW}=0^{\circ}$ C, $T_{HIGH}=70^{\circ}$ C(AC和EC系列); $T_{LOW}=-40^{\circ}$ C, $T_{HIGH}=85^{\circ}$ C(AB系列);

$$T_{LOW}$$
 = -40°C, T_{HIGH} =125°C (EB系列)

3) 如果不使用 Darlington 结构,一定要避免输出选择器深度饱和。选择器开路时输出可能反向。达林顿装置建议采用以下驱动配置。

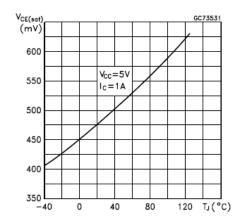

输出选择器电流增益 b= $I_{COUTPUT}$ / (I_{CDRNER} -1mA*) \geq 10

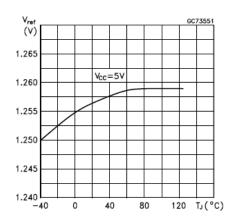
电流大小取决于内置的 1k 的反漏极电阻器


4) 启动电压是内部振振荡器开始工作时最小电源电压。

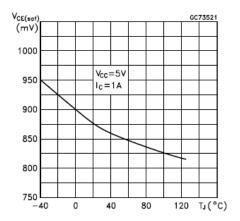
典型电学特性

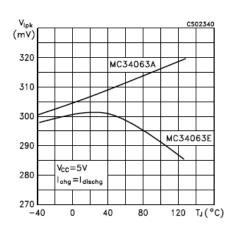
射极跟随器输出饱和电压/射集输出 电容

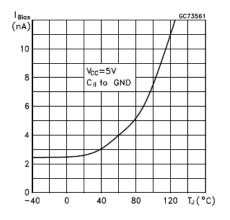

输出选择器开合时间/振荡器定时 电流


共射级输出选择器饱和电压/集电极 电流

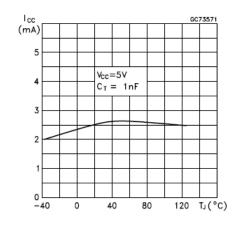
V_{CE(sat)} (V) 1.0 Darlington Connection 0.8 V_{cc}=5V 0.6 Pin7=V_{CC} Pins2,3,5=GND $T_a = 25$ °C 0.2 Forced $\beta = 20$ ا ٥ 400 800 1200 lc(mA)

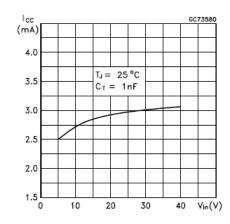

集电极-射极饱和电压/温度


参考电压/温度

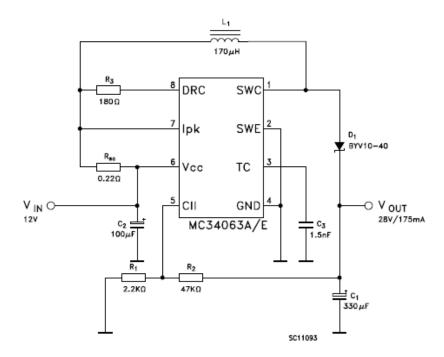

达林顿结构集电极-射极饱和电压/ 温度

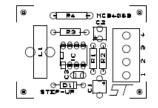
电流限制感应电压/温度




偏置电流/温度

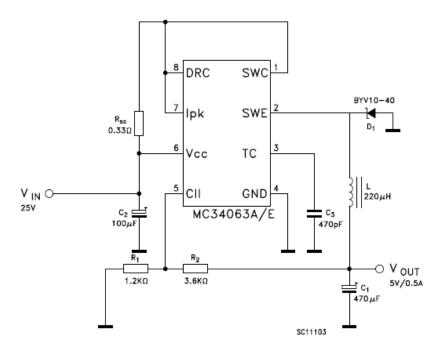
供给电流/温度


供给电流/输入电压


典型应用电路

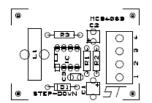
递升转换器

印刷样板



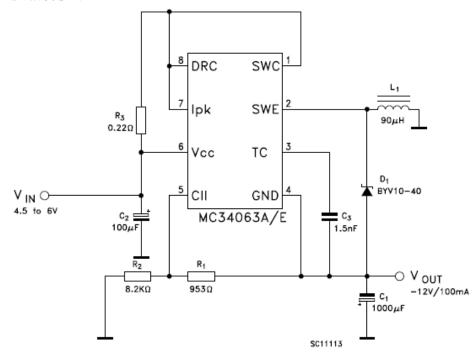
Symbol	Pin
Vout	1
GND	2
GND	3
Vin	4

测试环境(VOUT = 28V)

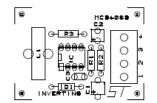

测试	条件	值(典型)	单位
线路调节	$V_{IN} = 8 \sim 16 \text{V}$, $I_{O} = 175 \text{mA}$	30	mV
负载调节	$V_{I\!N}\!=\!$ 12V, $I_{O}\!=\!$ 75~175mA	10	mV
输出波纹	$V_{IN} = 12 \text{V}, I_O = 175 \text{mA}$	300	mV
效率	$V_{IN} = 12 \text{V}, I_O = 175 \text{mA}$	89	%

递降转换器

印刷样板



Symbol	Pin
Vout	1
GND	2
GND	3
Vin	4


测试	条件	值(典型)	单位
线路调节	$V_{\scriptscriptstyle IN}$ =15~25V, $I_{\scriptscriptstyle O}$ =500 mA	5	mV
负载调节	$V_{IN} = 25$ V, $I_{O} = 50$ ~ 500mA	30	mV
输出波纹	V_{IN} =25V, I_{O} =500mA	100	mV
效率	V_{IN} =25V, I_{O} =500mA	80	%
ISC	V_{IN} =25V, R_{LOAD} =0.1 $\stackrel{\textstyle \smile}{\boxtimes}$	1.2	A

电压反相转换器

印刷样板

Symbol	Pin
Vout	1
GND	2
GND	3
Vin	4

测试情况(VOUT = -12V)

测试	条件	值(典型)	单位
线路调节	$V_{IN} = 4.5 \sim 6 \text{V}, I_{O} = 100 \text{mA}$	15	mV
负载调节	$V_{IN} = 5 \text{V}, I_{O} = 10 \sim 100 \text{mA}$	20	mV
输出波纹	V_{IN} =5V, I_O =100mA	230	mV
效率	$V_{IN} = 5$ V, $I_O = 100$ mA	58	%
I_{SC}	V_{IN} =5V, R_{LOAD} =0.1 ØX	0.9	A

计算

参量	递升	递降	电压反相
	(不连续情形)	(连续情形)	(不连续情形)
t_{on} / t_{off}	$\frac{V_{out} + V_F - V_{in(\min)}}{V_{in(\min)} - V_{sat}}$	$\frac{V_{out} + V_F}{V_{in(\min)} - V_{sat} - V_{out}}$	$\frac{ V_{out} + V_F}{V_{in} - V_{sat}}$
$(t_{on} + t_{off})$ max	$1/f_{\mathrm{min}}$	$1/f_{\min}$	$1/f_{\min}$
C_T	$4.5 X_{10}^{-5} t_{on}$	$4.5 \times 10^{-5} t_{on}$	$4.5 \times 10^{-5} t_{on}$
$I_{PK(swicth)}$	$2I_{out(max)}[(t_{on}+t_{off})+1]$	2 I _{out(max)}	$2I_{out(max)}[(t_{on}/t_{off})+1]$
R_{SC}	$0.3/I_{PK(swicth)}$	$0.3/I_{PK(swicth)}$	$0.3/I_{PK(swicth)}$
C_o	$\cong \frac{I_{out}t_{on}}{V_{ripple(p-p)}}$	$\frac{I_{PK(switch)}(t_{on} + t_{off})}{8V_{ripple(p-p)}}$	$\cong \frac{I_{out}t_{on}}{V_{ripple(p-p)}}$
L(min)	$\frac{V_{in(\min)} - V_{sat}}{I_{PK(switch)}} t_{on(\max)}$	$\frac{V_{in(\min)} - V_{sat} - V_{out}}{I_{PK(switch)}} t_{on(\max)}$	$\frac{V_{in(\min)} - V_{sat}}{I_{PK(switch)}} t_{on(\max)}$

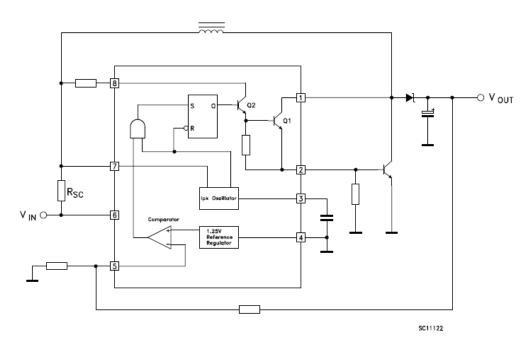
注意:

V_{sat} 为输出开关电压

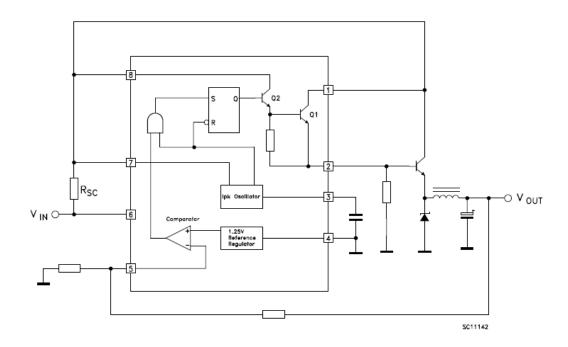
 V_F 为输出整流器前向压降

须采用如下方式供电

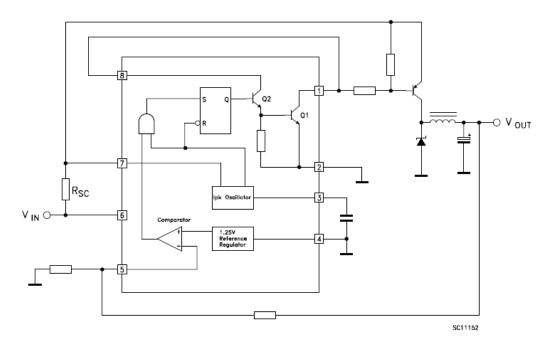
 V_{IN} 为(*)名义上的输入电压

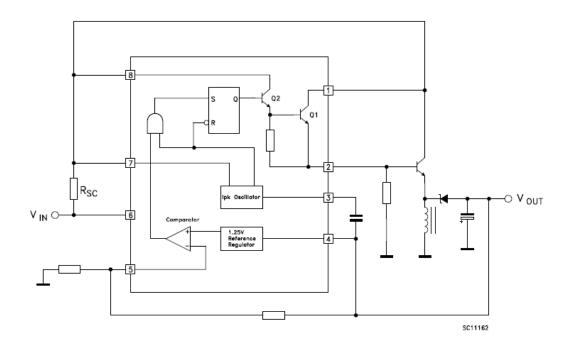

 V_{out} 为期望输出电压, $|V_{out}| = 1.25(1+R_2/R_1)$

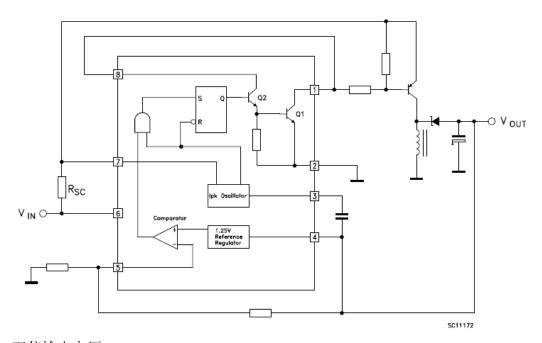
 I_{out} 为期望输出电流

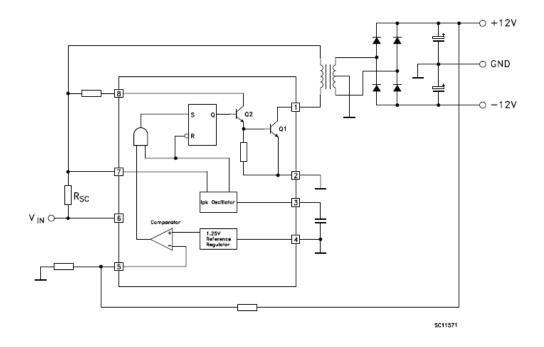

 F_{\min} 为在变换 V_{IN} 和 I_o 值时期望最小输出转换频率

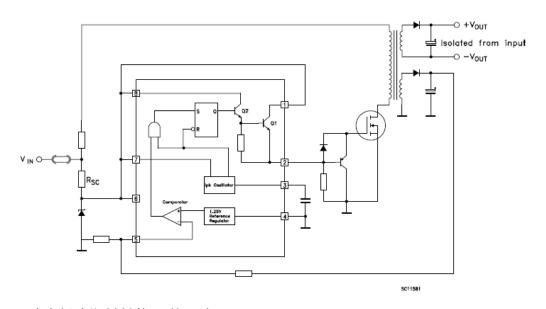
 V_{ripple} 为期望输出电压峰峰值。实际中,计算电容值会因为等效电阻和电路板设计而增大。波纹电压值应该控制在比较小的值否则会直接影响线路调节和负载调节。


带有外部 NPN 开关的递升转换器

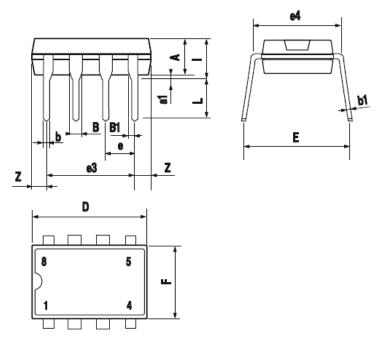

带有外部 NPN 开关的递降转换器


带有外部 PNP 开关的递降转换器


带有外部 NPN 开关的电压反相转换器


带有外部 PNP 饱和开关的电压反相转换器

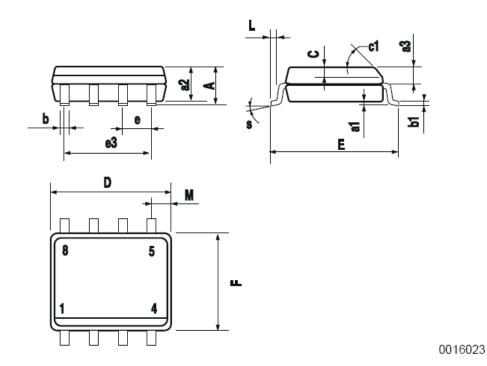
双倍输出电压


高输出功率, 高输入电压

双式直插式塑料封装-8的尺寸

简称	毫米			英寸		
	最小值	典型值	最大值	最小值	典型值	最大值

Α		3.3			0.130	
a1	0.7			0.028		
В	1.39		1.65	0.055		0.065
B1	0.91		1.04	0.036		0.041
b		0.5			0.020	
b1	0.38		0.5	0.015		0.020
D			9.8			0.386
E		8.8			0.346	
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			7.1			0.028
1			4.8			0.189
L		3.3			0.130	
Z	0.44		1.6	0.017		0.063



P001F

单式直插式塑料封装-8的尺寸

简称		毫米			英寸	
	最小值	典型值	最大值	最小值	典型值	最大值
Α			1.75			0.068
a1	0.1		0.25	0.003		0.009
a2			1.65			0.064
a3	0.65		0.85	0.025		00.33
b	0.35		0.48	0.013		0.018
b1	0.19		0.25	0.007		0.010

С	0.25		0.5	0.010		0.019
c1		4:	5(典型值)			
D	4.8		5.0	0.188		0.196
Е	5.8		6.2	0.228	0.50	0.244
е		1.27			0.150	
e3		3.81				
F	3.8		4.0	0.14		0.157
L	0.4		1.27	0.015		0.050
М			0.6			0.023
S		8	(最大值)			

以上提供的数据精确可靠的,但STMicroelectronics不对由于使用以上信息而形成任何侵权后果负责。STMicroelectronics没有许可或授权任何其他组织。本次发行的说明书内容变更恕不另行通知。本次发行的说明书代替以前所提供数据。STMicroelectronics的产品未经授权应用于日常生活中关键设备或未经STMicroelectronics公司书面认可的设备。

©2001 STMicroelectronics-Italy印刷-版权所有 STMicroelectronics 公司

澳洲 - 巴西 - 中国 - 芬兰 - 法国 - 德国 - 香港 - 印度 - Italy- 日本 - 马来西亚 - Malta- 摩洛哥-新加坡 - 西班牙 - 瑞典 - 瑞士 - 英国 - 美国

直流-直流转换器控制电路

- ■输出开关电流超过 1.5A
- ■参考精度为2%
- ■低静态电流: 2.5mA(TYP.)
- ■工作电压 3V 到 40V
- ■工作频率 100KHz
- ■有效电流受限

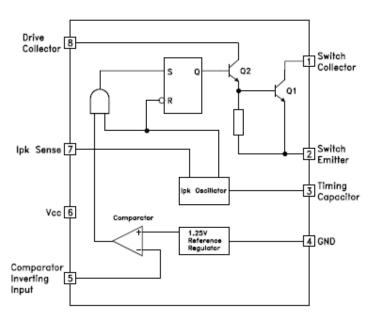
描述

MC34063A/ E 系列是单块集成电路控制电路以实现直流- 直流电压转的主要功能。

芯片包含内在的温度补偿叁考,比较器,一个含有动态电流控制电路的受限周期 振荡器

有一个活跃的现在界限的受约束的振动者,驱动器和高电流输出开关。输出电压通过两个具有 2% 参考精度的外部电阻器变成可调。

带有最简外围元件的 MC34063A/ E 系列芯片是设计来作升压、降压和极性反转的应用。


双式直插式封装-8

单式直插式封装-8

模块图表

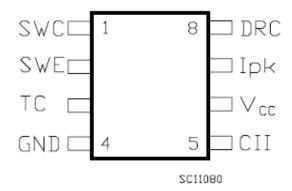
SC11071

绝对最大额定值

标	参数	数值	单位
号			
V_{CC}	电源电压	50	V
V_{ir}	输入边沿比较器转换电压	-0.3~40	٧
V_{swc}	集电极转换电压	40	V
V_{swe}	射极转换电压	40	V
V_{ce}	集电极一射极转换电压	40	V
V_{dc}	集电极驱动电压	40	V
I_{dc}	集电极驱动电流	100	mA
I_{sw}	转换电流	1.5	A
P_{tot}	25℃时的功耗 (塑膜封装) (小输出线集成电路封装)	1.25 0.625	W
	工作环境温度范围	0.020	°C
T_{op}	(AC 和 EC 系列)	0~70	$^{\circ}$ C
	(AB 系列)	-40~85	$^{\circ}\mathbb{C}$
	(EB 系列)	-40~125	

T	储藏温度范围	-40~150	$^{\circ}\!\mathbb{C}$
1 stg			

绝对最大额定值是指超过这些参数值可能会损坏器件


不建议在如下情况下进行功能操作

热值

标号 参量		双式直插式封装-8	单式直插式封装-8	单位
R _{thj-amb} 结点点	外部热阻(*) 最大值	100	160	℃/W

(*)此参数值取决于固定器件的 pcb 板的导热性能设计。

连线图 (顶视图)

管脚连接

管脚标号	符 号	名称和功能
1	SWC	集电极选择器
2	SWE	射集选择器
3	TC	定时电容
4	GND	地
5	CII	输入反相比较器
6	VCC	电源电压
7	I_{pk}	感应电流
8	DRC	集电极电压驱动

分类

74 75			
类 型	双式直插式封装-8	单式直插式封装	单式直插式封装-8(磁带或卷
		-8	轴)
MC34063AB(*)	MC34063ABN	MC34063ABD	MC34063ABD- TR
MC34063AC(*)	MC34063ACN	MC34063ACD	MC34063ACD- TR
MC34063EB	MC34063EBN	MC34063EBD	MC34063EBD- TR
MC34063EC	MC34063ECN	MC34063ECD	MC34063ECD- TR

(*)新的设计不推荐使用"A"版本。

电学特性

(参考测试电路, V_{cc} =5V, T_a = T_{LOW} to T_{HIGH} ,若有其他特殊情况参考注意 2)

振荡器

标号	参数	测试环境	最小值	典型值	最大值
f_{osc}	频率	$V_{pin5} = 0$ V $C_T = 1$ nF $T_a = 25$ °C	24	33	42
I_{chg}	充电电流	V_{CC} = 5~40V T_a =25°C	24	33	42
$I_{\it dischg}$	放电电流	V_{CC} =5~40V T_a =25°C	140	200	260
I _{dischg} / I _{chg}	充放电流比	管脚7=V _{CC} T _a =25℃	5.2	6.2	7.5
$V_{ipk(sense)}$	电流限制感应 电压	$I_{chg} = I_{dischg}$ $T_a = 25$ °C	250	300	350

输出开关

标号	参数	测试环境	最小值	典型值	最大值
$V_{CE(sat)}$	饱和电压, 达林顿连接	I_{SW} =1A		1	1.3
		管脚 1,8 相连			
$V_{CE(sat)}$	饱和电压	I_{SW} =1A R_{pin8} 欧到 V_{CC} ,		0.45	0.7
h_{FE}	直流电流增益	I_{SW} =1A V_{ce} =5V T_a =25 °C	50	120	
$I_{C(\mathit{off})}$	集电极开路电流	<i>V_{ce}</i> =40V		0.01	100

比较器

VO IX HI						
标号	参数	测试环境	最小值	典型值	最大值	单位
$V_{\scriptscriptstyle th}$	初始电压	T_a = 25°C	1.225 1.21	1.25	1.275 1.29	\ \ \
		$T_a = T_{LOW} \sim T_{HIGH}$				
$\operatorname{Re} g_{line}$	校准初始电压	<i>V_{CC}</i> =3~40 ∨		1	5	mV
I_{IB}	输入偏置电流	$V_{IN} = 0 \text{ V}$		-5	-400	nA

总体装置

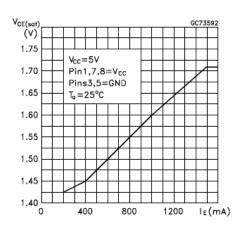
标号	参数	测试环境	最小值	典型
I_{CC}	供电电流	V_{CC} =5~40V C_T =1nF 管脚7= V_{CC} V_{pin5} > V_{th}		
		管脚2=GND 其他管脚悬空 MC34063A MC34063E		2.5 1.5
$V_{\scriptscriptstyle START-UP}$	启动电压(注意4)	T _a =25℃ C _T =1 F 管脚5=0V MC34063A MC34063E		2.1

注意:

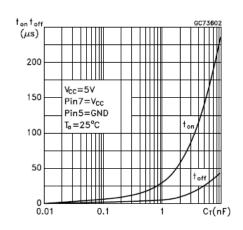
- 1) 必须遵循最大包装功耗限
- 2) T_{LOW} =0°C, T_{HIGH} =70°C(AC和EC系列); T_{LOW} =-40°C, T_{HIGH} =85°C(AB系列);

 T_{LOW} =-40°C, T_{HIGH} =125°C (EB系列)

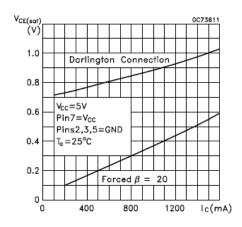
3) 如果不使用 Darlington 结构,一定要避免输出选择器深度饱和。选择器开路时输出可能反向。达林顿装置建议采用以下驱动配置。

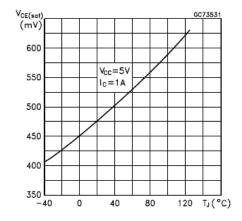

输出选择器电流增益 b= $I_{COUTPUT}$ / (I_{CDRNER} -1mA*) \geq 10

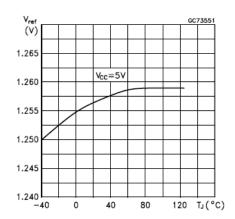
电流大小取决于内置的 1k 的反漏极电阻器

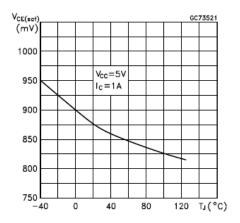

4) 启动电压是内部振振荡器开始工作时最小电源电压。

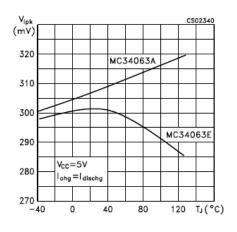
典型电学特性

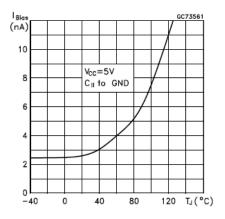

射极跟随器输出饱和电压/射集输出 电容


输出选择器开合时间/振荡器定时 电流

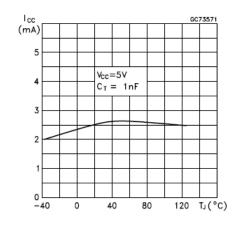

共射级输出选择器饱和电压/集电极 电流

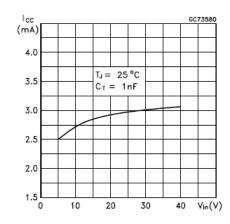

集电极-射极饱和电压/温度


参考电压/温度

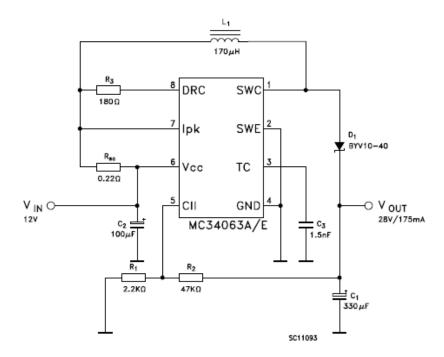

达林顿结构集电极-射极饱和电压/ 温度

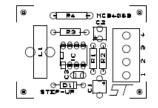
电流限制感应电压/温度




偏置电流/温度

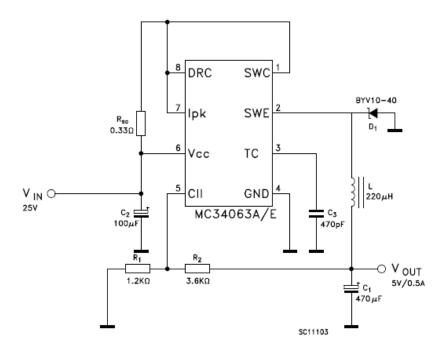
供给电流/温度


供给电流/输入电压


典型应用电路

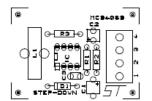
递升转换器

印刷样板



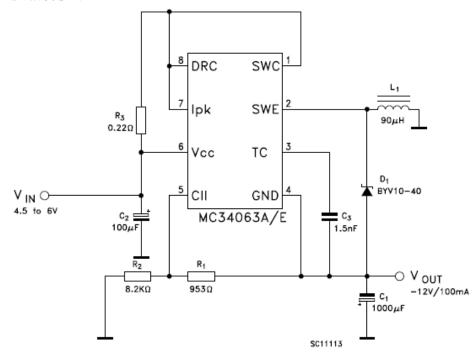
Symbol	Pin
Vout	1
GND	2
GND	3
Vin	4

测试环境(VOUT = 28V)

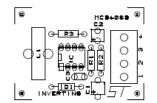

测试	条件	值(典型)	单位
线路调节	$V_{\scriptscriptstyle IN}$ =8~16V , $I_{\scriptscriptstyle O}$ =175mA	30	mV
负载调节	$V_{\scriptscriptstyle IN}$ =12V , $I_{\scriptscriptstyle O}$ =75~175mA	10	mV
输出波纹	V_{IN} =12V, I_O =175mA	300	mV
效率	$V_{\scriptscriptstyle IN}$ =12V , $I_{\scriptscriptstyle O}$ =175mA	89	%

递降转换器

印刷样板



Symbol	Pin
Vout	1
GND	2
GND	3
Vin	4


测试	条件	值(典型)	单位
线路调节	$V_{\scriptscriptstyle IN}$ =15~25V, $I_{\scriptscriptstyle O}$ =500 mA	5	mV
负载调节	$V_{IN} = 25$ V, $I_{O} = 50$ ~ 500mA	30	mV
输出波纹	V_{IN} =25V, I_{O} =500mA	100	mV
效率	V_{IN} =25V, I_{O} =500mA	80	%
ISC	V_{IN} =25V, R_{LOAD} =0.1 $\stackrel{\textstyle \smile}{\boxtimes}$	1.2	A

电压反相转换器

印刷样板

Symbol	Pin
Vout	1
GND	2
GND	3
Vin	4

测试情况(VOUT = -12V)

测试	条件	值(典型)	单位
线路调节	$V_{IN} = 4.5 \sim 6 \text{V}, I_{O} = 100 \text{mA}$	15	mV
负载调节	$V_{IN} = 5 \text{V}, I_{O} = 10 \sim 100 \text{mA}$	20	mV
输出波纹	V_{IN} =5V, I_O =100mA	230	mV
效率	$V_{IN} = 5$ V, $I_O = 100$ mA	58	%
I_{SC}	V_{IN} =5V, R_{LOAD} =0.1 ØX	0.9	A

计算

参量	递升	递降	电压反相
	(不连续情形)	(连续情形)	(不连续情形)
t_{on} / t_{off}	$\frac{V_{out} + V_F - V_{in(\min)}}{V_{in(\min)} - V_{sat}}$	$\frac{V_{out} + V_F}{V_{in(\min)} - V_{sat} - V_{out}}$	$\frac{ V_{out} + V_F}{V_{in} - V_{sat}}$
$(t_{on} + t_{off})$ max	$1/f_{\mathrm{min}}$	$1/f_{\min}$	$1/f_{\min}$
C_T	$4.5 X_{10}^{-5} t_{on}$	$4.5 \times 10^{-5} t_{on}$	$4.5 \times 10^{-5} t_{on}$
$I_{PK(swicth)}$	$2I_{out(max)}[(t_{on}+t_{off})+1]$	2 I _{out(max)}	$2I_{out(max)}[(t_{on}/t_{off})+1]$
R_{SC}	$0.3/I_{PK(swicth)}$	$0.3/I_{PK(swicth)}$	$0.3/I_{PK(swicth)}$
C_o	$\cong \frac{I_{out}t_{on}}{V_{ripple(p-p)}}$	$\frac{I_{PK(switch)}(t_{on} + t_{off})}{8V_{ripple(p-p)}}$	$\cong \frac{I_{out}t_{on}}{V_{ripple(p-p)}}$
L(min)	$\frac{V_{in(\min)} - V_{sat}}{I_{PK(switch)}} t_{on(\max)}$	$\frac{V_{in(\min)} - V_{sat} - V_{out}}{I_{PK(switch)}} t_{on(\max)}$	$\frac{V_{in(\min)} - V_{sat}}{I_{PK(switch)}} t_{on(\max)}$

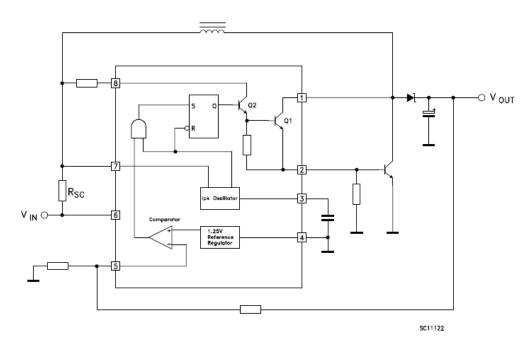
注意:

V_{sat} 为输出开关电压

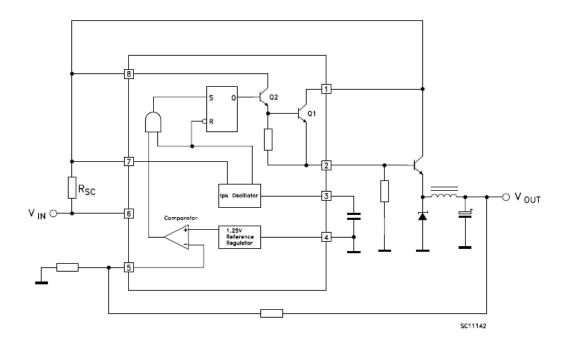
 V_F 为输出整流器前向压降

须采用如下方式供电

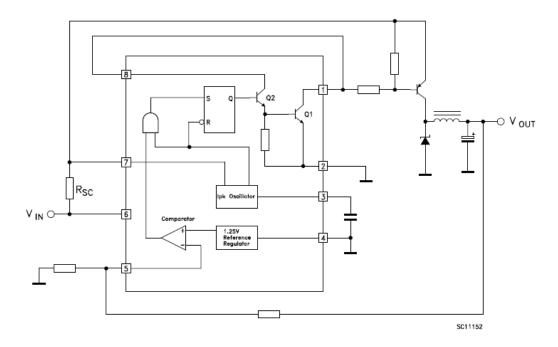
 V_{IN} 为(*)名义上的输入电压

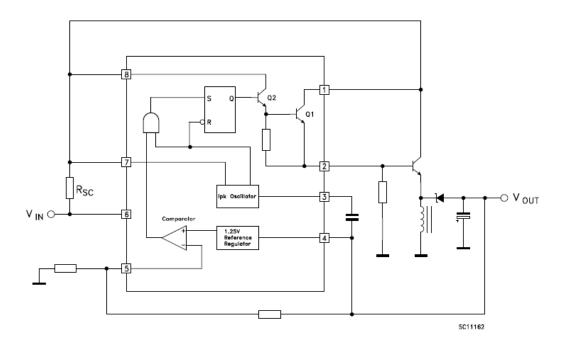

 V_{out} 为期望输出电压, $|V_{out}| = 1.25(1+R_2/R_1)$

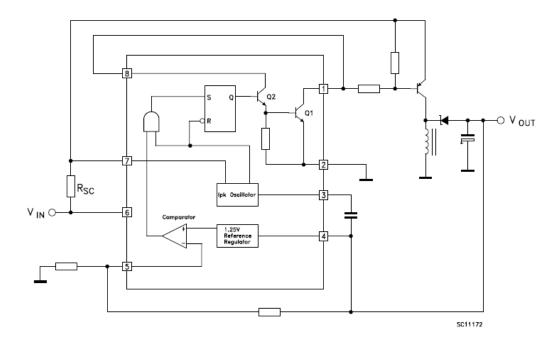
 I_{out} 为期望输出电流

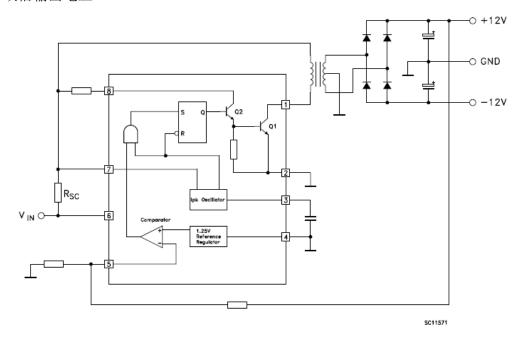

 F_{\min} 为在变换 V_{IN} 和 I_o 值时期望最小输出转换频率

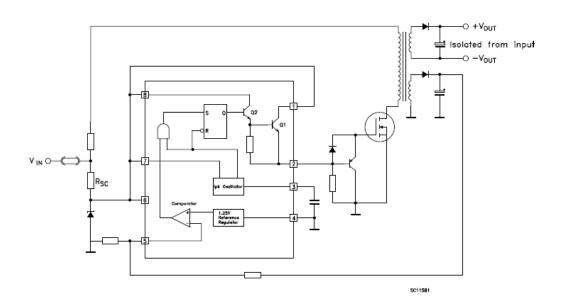
 V_{ripple} 为期望输出电压峰峰值。实际中,计算电容值会因为等效电阻和电路板设计而增大。波纹电压值应该控制在比较小的值否则会直接影响线路调节和负载调节。


带有外部 NPN 开关的递升转换器

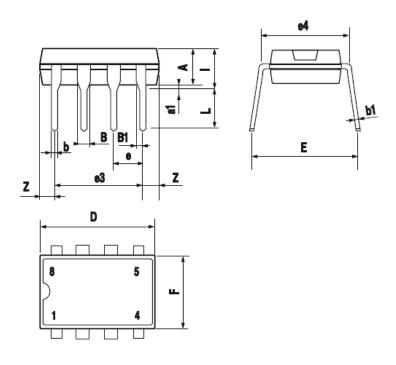

带有外部 NPN 开关的递降转换器


带有外部 PNP 开关的递降转换器


带有外部 NPN 开关的电压反相转换器

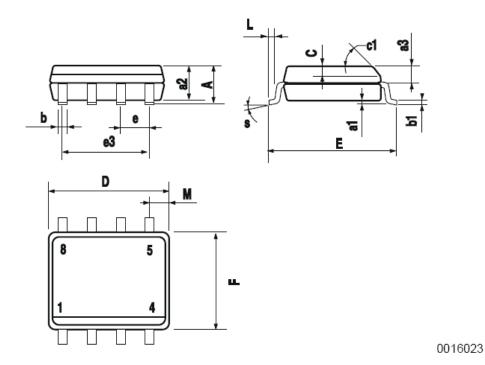

带有外部 PNP 饱和开关的电压反相转换器

双倍输出电压



高输出功率, 高输入电压

双式直插式塑料封装-8的尺寸


简称	毫米			英寸		
	最小值	典型值	最大值	最小值	典型值	最大值
Α		3.3			0.130	
a1	0.7			0.028		
В	1.39		1.65	0.055		0.065
B1	0.91		1.04	0.036		0.041
b		0.5			0.020	
b1	0.38		0.5	0.015		0.020
D			9.8			0.386
Е		8.8			0.346	
е		2.54			0.100	
e3		7.62			0.300	
e4		7.62			0.300	
F			7.1			0.028
1			4.8			0.189
L		3.3			0.130	
Z	0.44		1.6	0.017		0.063

P001F

单式直插式塑料封装-8的尺寸

简称	毫米			英寸				
	最小值	典型值	最大值	最小值	典型值	最大值		
Α			1.75			0.068		
a1	0.1		0.25	0.003		0.009		
a2			1.65			0.064		
a3	0.65		0.85	0.025		00.33		
b	0.35		0.48	0.013		0.018		
b1	0.19		0.25	0.007		0.010		
С	0.25		0.5	0.010		0.019		
c1	45 (典型值)							
D	4.8		5.0	0.188		0.196		
Е	5.8		6.2	0.228	0.50	0.244		
е		1.27			0.150			
e3		3.81						
F	3.8		4.0	0.14		0.157		
L	0.4		1.27	0.015		0.050		
M			0.6			0.023		
S		8	(最大值)					

以上提供的数据精确可靠的,但STMicroelectronics不对由于使用以上信息而形成任何侵权后果负责。STMicroelectronics没有许可或授权任何其他组织。本次发行的说明书内容变更恕不另行通知。本次发行的说明书代替以前所提供数据。STMicroelectronics的产品未经授权应用于日常生活中关键设备或未经

STMicroelectronics公司书面认可的设备。

©2001 STMicroelectronics-Italy印刷-版权所有 STMicroelectronics 公司

澳洲 - 巴西 - 中国 - 芬兰 - 法国 - 德国 - 香港 - 印度 - Italy- 日本 - 马来西亚 - Malta- 摩洛哥-新加坡 - 西班牙 - 瑞典 - 瑞士 - 英国 - 美国