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ABSTRACT

An accurate, analytical method is proposed for
calculating the lead and winding high-frequency
resistance of complex transformer constructions.
High-frequency resistance
resulting matrix system equations, common to the
leads and windings. The effect of eddy currents in
the leads is confirmed by theoretical results. The
high-frequency of three winding
arrangements are compared, and from this results, a
winding geometry that reduces winding
high-frequency resistance is derived.

is derived from the

resistances

INTRODUCTION

With the rise of switching frequency in switching
power supplies, skin and proximity effects have
become important considerations when calculating
copper loss in transformers [1-3] .

The basis of these research in this area is the
study by Dowell [ 1) , which examines a transformer
whose windings carry identical current. However,
this approach not directly applicable to
transformer winding layers that are connected in
parallel, since the current in the windings is not
equal. Also, the Dowell research deals only with

is

winding resistance.

This paper discusses a numerical procedure which
solves the matrix system equation, and derives
exact analytical expressions for calculating the

lead and winding high-frequency resistance in

transformers. This method enables to calculate
accurate resistance of complicated winding
geometries.

TRANSFORMER CONFIGURATION

Figure 1 shows the basic configuration of a
high-frequency transformer, which consists of
magnetic core, leads, and windings. As frequency
increases, additional losses occur in the

618

leads and windings due to eddy currents induced in
the conductors by the alternating magnetic field.
The leads and windings are connected in series,
therefore, the high-frequency resistance of the
transformer Rt is
Rt=R ¢ +Rw (1)

where R ¢ 1is the lead resistance and Rw is the
winding resistance.

The goal of this study is to provide methods to

calculate R: and Rw.

Winding

Lead conductors

Fig. 1. Construction of transformer with lead

conductors.

Since the mutual impedance of any two parallel
leads can be expressed fully in terms of the the
mutual it will
suffice to discuss the fundamental configuration of
two leads, I and 1, in.Fig. 2. The cross-sectional
shape of each lead uniform, but the
cross-sectional shapes and areas of different leads
need not be equal.

impedance between various leads,

is

To create the lead models, each lead is
represented by subconductors, which are
correspondingly enable the resistance, and the

mutual and self inductance to be described and
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Fig. 2. Arrangement of lead conductors.

calculated.

Transformer windings constructed of primary and
secondary windings <can be approximated by
infinitely long solenoids. The losses in any layer
can be calculated if the winding arrangements and

the magnetic field are known.
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Fig. 3. Winding cross sections and m. m. f. diagrams.

(a) Multilayer pile winding. (b) Normal winding.
(c) Sectionized winding.

Figure 3 shows some typical winding arrangements
and the corresponding m. m. f. diagrams. The
high-frequency resistance of leads and windings are
analyzed in the following section.

LEAD RESISTANCE

In this section, the analytical expressions are
determined by which can be calculated
high-frequency lead resistance.

List of symbols

Definitions of symbols used here are as follows.

a, b, ¢, d: Mesh widths of each minute subconductor
1,,1=: Lengths of lead I and lead I

p: Horizontal distance between subconductors

q: Vertical distance between subconductors

w: Angular frequency

u# 0: Permeability of free space

p : Resistivity of the conductor material

2
&: Skin depth ( = f —= )

n: Number of subcondﬁ’cléc?rs in lead I

m: Number of subconductors in lead I

i1~1in+m: Complex currents of each subconductor
e;, ez Complex voltage drops of lead 1 and lead II
I,,Iz: Input or output current of the lead

Analysis

The new analytical method entails dividing leads
into minute subconductors, as shown in Figure 2,
and replacing subconductor with its
corresponding representation, as shown in Figure 4.
Here each subconductor is shown with its associated

each

resistance, and mutual and self inductance. The
mutual inductance for each subconductor is
calculated from the following equation [ 4] .
Lo 4 4 4 i+jek+1
M; j = > = -1 f(X1,¥s5.2
“Trabed f1 Fe1 ke tCY X0, 2]

In this equation, f(x:,y;,zx) is a function of
three independent variables. The variables of x.,y;
and Zw listed in Table 1. The function
f(xi,y4,2x) is given in the Appendix A.

The self inductance for each subconductor is

are

given again by Eq. (2), but in this case, the
distances are p=0 and q=0.
The resistance for each subconductor is

calculated from
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1;
r=po— (3)
= A,
where 1: is the length and A; is the area of each
subconductor. Using these expressions, the
subconductor characteristics can be expressed in
matrix form by

[Z1 {i} = {e} (4)
where
ri+joLi-—— joMin =-==~jOMinim
I | |
[2] =] jJoMny ———- rntjwLlan-=-~joMnn+m
| | |
JoMnami-—— JOMnimn ~=~Fnsm*jw Lnem

T T
{i} = [i) iz --- in+m]l , (e} = [e1----ez-—---- ]
From Eq. 4, we have
-1
=[2] {e} =[Y] (e} (5)

where the matrix [Y] is the inverse of [Z] . Let
us consider the series defined by

L=3 i

1= K

k=1"
(6)

n+m,

Iz-l{=):n+llk

Now consider that the currents determined by the
values I, and Iz are equal to the total current of
lead 1 and lead I.

Then Eq. (5) reduces to

n 143 y n2+m n y I
& ) Bt geher Rl | D

{l n+tm nim

; I
Jj=1 k=n*}'JK j=n+1 k=n+1 i =

- (7
Eq. (7) is the Kirchhoff's voltage equation for

lead 1 and lead 1. Hence, the'high-frequency
resistance of lead I R: is written in the form

n+
Yin+, 2 X Y;u— ]

Ri-Re (=) =Re (2 %
TR AT TR N et Ty k2L T

Similarly, for lead 1,

I, l'1+II1 n+m ]
21 k= n+¥“‘ I= j el ienel’ ™

- (9)
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Fig. 4. Equivalent circuit model for two leads.

Table 1: Substituting parameters

Variable Sgggh%%télrng Variables SuIt))g[t_éané‘%nrg
X1 q+C Y= p-b

Xz q Ya p+d-b

Xz q-a Z3 1z+la

Xa g+c-a 2 1z

Y p+d Z3 1=-1,

Ya P Za 12+13-14

Numerical results

The following investigations are performed to
confirm the accuracy of this method.

As a test problem, the numerical results are
compared with the exact solution of a rectangular
conductor, considering the skin effect only{ 5] .
Figure 5 shows the percentage of calculated errors
versus changes in mesh width. These results show
that, for mesh widths less than skin depth s ,
calculations are accurate. The calculation accuracy
increases as the mesh width decreases. However,
with the floating-point formats of digital
computers, this accuracy is not always achievable.
If inverse matrix [Z] cannot be solved by a
standard FORTRAN program, the manipulating
programs [6] must be used.
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Fig. 5.

In Figure 6, the skin effect is given for single
isolated leads of different conductor shapes. T /W
is the ratio of conductor thickness t to conductor
width w. Also, Rac / Rde 1is the ratio of
high-frequency resistance to direct-current
resistance. If the ratio of t to w is chosen to be
as small as possible, a reduction of high-frequency

resistance can be obtained.

@ Calculated by finite element method
— Calculated by proposal method
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Fig. 6. Skin effect of rectangular lead conductors.
Cross-sectional area: 0.04mm=.

Figure 7 shows the proximity effect for two
parallel leads. The independent variable is a
distance s of two leads. Rac, R« is the ratio of the
high frequency resistance, including skin and
proximity effects, to the single lead resistance,
existing skin effect only. Figure 7 indicates that
proximity effect depends to a large extent upon the

different distance. Referring figure 7 it is seen
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that when w, /s, where w is a width of the lead, is
less than 0.2 the proximity effect is negligible.
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Fig. 7. Proximity effect at w = 200 & m,
WINDING RESISTANCE

List of symbols

Definitions of symbols used here are as follows.

b: Winding width
h: Winding thickness
d: Diameter of a round conductor
bw: Winding width
N : Number of turns in a layer
m: Number of whole layers

. N:b
n : Conductor spacing factor (=
V.: Voltage drop at the pth layer
I: total current

)

V: total voltage drop

Rw: Winding high-frequency resistance
ip: Current at the pth layer

lwi:Turn length of a winding

lg:i:Turn length of a gap

u: Height of an interlayer gap

a: [ Jwupon

el

=1
Assumptions

The following are assumed.

(1) Field distribution is uniform and parallel to
the solenoidal layers.

(2) If the conductors are round, the equivalent
square conductors are derived as b=h=0.886d.



Analysis

The winding resistances of the three different

winding constructions shown in Fig. 3 are
calculated. From electomagnetic theory and m .m .f.
diagrams, the winding resistance equations are

derived as follows.
(Multilayer pile winding)

It is shown in Appendix B that the voltage drop
in any winding layer can be calculated as follows.

pNiZales -1 ah
Vp= ——————— {ipcotha h+% ixtanh—
7b {is =1K h 2 }
1 oN ¢ 2}(]1 . -1 ah
+tjo ba q=p‘llwp(1q+2}=11k)tanh?—
. uoN.;2 HEI § igm
+jw—u lgaql i
J ba {q=p k=1 bt ](E:ll"]
p=1, 2, 3----- , m (10)

The quantities V, and ix may be real or complex
numbers. If the relation in Eq. (10) exists between
the variables V., and ix (k=1~m), then the set of
variables V, is said to be derived from the set ix
by a linear transformation. The set of Eq. (10) may
be represented by the following single matrix
equation.

{(vi = (2] (i} (11)

where {V} and {i} comprise the column matrix,
and the Square matrix [Z] is the impedance matrix.
The elements of [Z] are calculated by Eq. (10).

The current displacement is derived in terms of
the voltage.

W=zt v - W (12)

The set of variables V, are equal, because the
winding layers are connected in parallel. Since

Vi=Ve=Va=------ =Vm=V, we have
m m m
s ip=I=V {X X Ypq} (13)
p-17 (21 g "Pe

where Ypq is an element of matrix [Y] .
Therefore, high-frequency resistance of winding
Rw is
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@ Multilayer pile winding
6 F Measured A Normal winding
M Sectionized winding

Calculated

Rw referred to primary ( Q)

0 0.2 0.4 0.6 0.8 1.0
f (MHz)

Fig. 8. Winding resistance with changes in winding
arrangements.

Core: EQ 9.8,/ 9.0 (Ferrite core)
Effective cross-sectoinal area = 10 (mm®)
Effective magnetic length = 20 (mm)
Windings: Transformer ratio = 1
(For multilayer pile winding)
Coil: ¢ 0.1 mm
N¢: 40
m 3
(For normal and sectionized windings)
Coil: ¢ 0.19 mm
Ne¢: 20
m: 2

A
Rw=Re {—I—' } =Re {=————m (14)

1
7 }
Y
p=1 G=1 Pq

(Normal winding)

In this winding arrangement, winding currents
are equal in magnitude and phase. Hence the set of

now have

m
i) e 0

Therefore,



Rw=Re ('V—') =Re {)El gl %pq} (16)
I p=1 g=

(Sectionized winding)

If the winding contains an even number of layers,
it can be split into two portions, and Eq. (16) can
be applied to each of the portions.

If the winding contains an odd numbers of layers,
each half layer can be considered to be mode of
half turns { 1] and Eq. (16) may be used.

Experimental results

These results were compared with experimental
The

are shown in
The values

calculated and measured winding
Fig. 8 and Fig. 9
agree well. At high
sectionized winding can be used to

results.

resistance
respectively.
frequencies,
reduce winding resistance. However, increasing the
is not effective

number of layers in reducing

winding resistance in multilayer pile windings.

® m=3

Measured [. m=1

Calculated —

Rw referred to primary ( Q)

0 1 i 1 1
[] 0.2 0.4 0.6 0.8 1.0
f (MHz)
Fig. 9. Winding resistance with changes in the

number of layers connected in parallel.

Core: EQ9.8.7 9.0

Windings: Transformer ratio =1
Coil: ¢ 0.1 mm
N¢:40

CONCLUSION

A new method for calculating the lead and
winding high-frequency resistance of transformers
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was presented. The mathematical procedure, which
the resulting matrix system equation,
common to the lead and winding, was discussed. This
procedure exact calculation of
high-frequency resistance of complex geometries.
Calculations were presented with theoretical and
experimental data on corresponding geometries.

Finally, three different winding constructions
were evaluated.

solves

enables
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APPENDIX

A . Representation of the function f(x.,¥:,2Zx)

Hoer presented inductance equations taking into
consideration the geometric mean distance between
rectangular bars [ 4] . These equations can be used
to calculate exact the inductance for the bars
which have relatively large cross-sectional areas.
These equations, which can be seen by writing Eq. 2
in the form and function f(x:,y,,z«), are given by



P

B. Pth layer voltage drop

2 2 4
iTZx NA Zy XitA
f(X,¥1,2x)=(—— - — - — )x(1
(X4, ¥1,2x 2 2 22 )xlog( Ty i52.2 )
Zk7X%  zZx? x,? A
(B - - Ty log (g —)
4 24 24 X (%42
X2yi2 x4 Py Zi+A
NN i )Zrlog(— e )
4 24 24 v xiE+yJ=
+ 50 (X 94y ;%42 *-3%:%Y ;2-3y ;224 2-32, 2% ®)A
_XiEYJZ»Ean_I(YJZK) _ XxYJEZsE _.‘(kat)
6 XA 6 an YiA
_XiYJZkEtan_,z(xy.!) (A1)
6 ZrA

where A is [Jx:2+y;Z+z,=.
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Dowell derived voltage induced by the flux
crossing the pth layer and the resistive voltage
across a layer at the tops of conductors| 1] . The
qth layer flux induces a voltage Viq in each of the
(q-1) lower layers. Thus the induced voltage drop

Vfp due to the flux over the pth layer is

pr=§'vn1; (A2)
q=p+
The pth layer voltage drop is the sum of Eq. (A2)

and the resistive voltage, as shown in{ 1] .



