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ABSTRACT 
leads and windings due t o  eddy cu r ren t s  induced in 
the  conductors by t h e  al ternat ing magnetic field. 
The leads and windings a r e  connected in series,  
therefore,  t he  high-frequency resistance of t he  
transformer R t  is 

An accurate,  analyt ical  method is proposed f o r  
calculating the  lead and winding high-frequency 
resistance of complex transformer constructions. 
High-frequency resistance is derived from the  
result ing matrix system equations, common t o  the  
leads and windings. The effect  of eddy cu r ren t s  in 
tht! leads is confirmed by theoret ical  results.  The 
high-frequency resistances of t h ree  winding 
arrangements a r e  compared, and from th i s  resul ts ,  a 
winding geometry t h a t  reduces winding 
high-frequency resistance is derived. 

R t = R  L +Rw (1) 

where R I is t h e  lead resistance and Rw is t he  
winding resistance. 

The goal of t h i s  s tudy is t o  provide methods t o  
calculate  R i and Rw. 

winding 

INTRODUCTION 

With the  r ise  of switching frequency in switching 
power supplies, skin and proximity effects  have 
become important considerations when calculating 
copper loss in transformers [ 1-31 . 

The basis of these research in th i s  area is the  
study by Dowell [ 11 , which examines a transformer 
whose windings ca r ry  identical  current .  However, 
this  approach is not direct ly  applicable t o  
transformer winding layers  t ha t  a r e  connected in 
paral le l ,  since the  cu r ren t  in  the  windings is not 
equal. Also, t h e  Dowell research deals only with 
winding resistance. 

This paper discusses a numerical procedure which 
solves the  matrix system equation, and derives 
exact analytical  expressions f o r  calculating the 
lead and winding high-frequency resistance in 
transformers. This method enables t o  calculate  
accurate resistance of complicated winding 
geometries. 

TRANSFORMER CONFIGURATION 

Figure 1 shows the  basic configuration of a 
high-frequency transformer, which consists of 
magnetic core,  leads, and windings. As frequency 
increases, additional losses occur in the 

Lead conductors 

Fig. 1. Construction of transformer with lead 

Since the  mutual impedance of any two pa ra l l e l  
leads can be expressed f u l l y  in terms of t he  the  
mutual impedance between various leads, it will 
suffice t o  discuss the  fundamental configuration of 
two leads, I and II , in.Fig. 2. The cross-sectional 
shape of each lead is uniform, but t he  
cross-sectional shapes and areas  of different leads 
need not be equal. 

To c rea t e  the  lead models, each lead is 
represented by subconductors, which a r e  
correspondingly enable the  resistance,  and the 
mutual and self  inductance t o  be described and 

conductors. 
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I- d 
Figure 3 shows some typical winding arrangements 

and the  corresponding m. m. f .  diagrams. The 
high-frequency resistance of leads and windings a re  
analyzed in the  following section. 

b 

t ' a  
Minute subconductor I 

Conductor I 

Fig. 2. Arrangement of lead conductors. 

calculated. 
Transformer windings constructed of primary 

secondary windings can be approximated 
and 

by 
infinitely long solenoids. The losses in any layer 
can be calculated if the  winding arrangements and 
the  magnetic field a r e  known. 

.-.-- 
(a) 

Secondary 
11 

Secondary 

n I 

1 P r i m a  m m. f. 
.-.-- 

(C) 

Fig. 3. Winding cross sections and m. m. f. diagrams. 

LEAD RESISTANCE 

In th i s  section, the  analytical  expressions a re  
determined by which can be calculated 
high-frequency lead resistance. 

L i s t  of symbols 

Definitions of symbols used here a r e  as follows. 

a, b, c. d: Mesh widths of each minute subconductor 
1, .  12: Lengths of lead I and lead U 
p: Horizontal distance between subconductors 
q: Vertical distance between subconductors 
w : Angular frequency 
fi  0: Permeability of fPee space 
p : Resistivity of the  conductor material 

6 : Skin depth ( = Jz ) 

n: Number of subconductors in lead I 
m: Number of subconductors in lead U 
i l  -in+,,,: Complex cur ren ts  of each subconductor 
e l , ez :  Complex voltage drops of lead I and lead U 
I 1 , k  Input o r  output cur ren t  of t he  lead 

w u o  

Analysis 

The new ana ly t ica l  method en ta i l s  dividing leads 
into minute subconductors, as shown in Figure 2, 
and replacing each subconductor with its 
corresponding representation, as shown in Figure 4. 

Here each subconductor is shown with its associated 
resistance, and mutual and se l f  inductance. The 
mutual inductance fo r  each subconductor is 
calculated from the  following equation [ 41 . 

In  th i s  equation, f(Xi,YJ,Zk) is a function of 
th ree  independent variables. The variables of x , , y ,  
and z k  a r e  l i s ted  in Table 1. The function 
f(Xi,yJ,Zk) is given in the  Appendix A. 

The self  inductance f o r  each subconductor is 
given again by Eq. (2 ) .  but in th i s  case, the  
distances a r e  p=O and q=O. 

The resistance f o r  each subconductor is (a) Multilayer pile winding. (b) Normal winding. 
(c) Sectionized winding. calculated from 
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(3) l i  

Ai 
r l = r  

where l I  is t h e  length and Ar is t h e  area of each 
subconductor. Using these  expressions, t he  
subconductor charac te r i s t ics  can be expressed in 
matrix form by 

r l + j w L 1 - - -  j w M l n  - - - - j W M l n + - m  

I I I 

I I I 
r,+jo Ln----jwMnn+-m 

j u M n + m n  - - - r n + m + j w  L n + m  

T T 
{i] = [ i l  ia --- , {el = [el----ea------1 

From Eq. 4, w e  have 

{ i ~  = ~ 2 1 - l  {el = [YI {el (5) 

where t h e  matrix [Yl is the  inverse of [ Z ]  . L e t  
us consider t he  series defined by 

n 
I1= z i k  

k= 1 

n+m 
Ia= C ik 

k=n+ 1 

Now consider t h a t  t he  cu r ren t s  determined by the  
values I 1  and Ia are equal to  the  t o t a l  cur ren t  of 
lead I and lead U .  

Then Eq. (5) reduces t o  

Eq. (7) is the  K 
lead I and lead 
resistance of lead 

--- (7) 

rchhoff's voltage equation f o r  
U . Hence, the'high-frequency 

R l  is writ ten in the  form 

el  n n  n+m n I2 
j=1 k = l  j=n+ l  k=l I ,  I1 

R , = R e  [-) =Re [z x Y j k  + 1 1 yjk- 1 

--- (8) 

Similarly, f o r  lead II, 

--- (9) 

7 - e '  1 

Fig. 4. Equivalent c i rcu i t  model for  two leads. 

Table 1: Substi tuting parameters 

Variable Substi tuting a r iab  les Substi tuting parameter parameter 
p-b 

q-a 

P+d 23 

q+c-a x4 
13-11 

12+13-1, Y2  

Numerical r e su l t s  

The following investigations are performed t o  
confirm the  accuracy of th i s  method. 

A s  a test problem, the  numerical r e su l t s  are 
compared with the  exact solution of a rectangular 
conductor, considering the  skin e f fec t  on ly[  51 . 
Figure 5 shows the  percentage of calculated e r r o r s  
versus changes in mesh width. These resu l t s  show 
tha t ,  f o r  mesh widths less than skin depth 6 , 
calculations are accurate.  The calculation accuracy 
increases as t h e  mesh width decreases. However, 
with the  floating-point formats of digital  
computers, , t h i s  accuracy is not  always achievable. 
If inverse matrix [ 2 1  cannot be solved by a 
standard FORTRAN program, t h e  manipulating 
programs [GI must be used. 
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Mesh width ( U m) 

Fig. 5. High-frequency resistance e r ro r  versus the  
mesh width for  a square lead conductor 
( 200 fi  m x 200 fi  m ) a t  5 MHz. 

In Figure 6, t he  skin e f fec t  is given fo r  single 
isolated leads of different conductor shapes. T/ w 
is the  r a t io  of conductor thickness t t o  conductor 
width w. Also, Rac / Rdc is the  r a t io  of 
high-frequency resistance t o  direct-current 
resistance. If the  ra t io  of t t o  w is chosen t o  be 
as  small as  passible, a reduction of high-frequency 
resistance can be obtained. 

0 Calculated by f in i te  element method 
- Calculated by proposal method 

I / 

1 . o t  

T 
O d 012 014 Oi6 018 i I 0  

t/w 

Fig. G. Skin effect  of rectangular lead conductors. 
Cross-sectional area: 0. 04mmz. 

Figure 7 shows the  proximity e f fec t  fo r  two 
para l le l  leads. The independent variable is a 
distance s of two leads. Rac/Rm is the  r a t io  of the  
high frequency resistance, including skin and 
proximity effects,  t o  the  single lead resistance, 
existing skin e f fec t  only. Figure 7 indicates tha t  
proximity e f fec t  depends t o  a la rge  ex ten t  upon the  
different distance. Referring figure 7 i t  is seen 

tha t  when w / s ,  where w is a width of the  lead, is 
less than 0 .2  the  proximity e f fec t  is negligible. 

1 . 6  

1 . 4  

f=5 Mnz 
8 

0 
0 2 0 0  4 0 0  6 0 0  8 0 0  1 0 0 0  

s ( U m )  

Fig. 7. Proximity effect  a t  w = 200 f i  m. 

WIIWING RESISTANCE 

List of symbols 

Definitions of symbols used here a re  as  follows. 

b: Winding width 
h: Winding thickness 
d: Diameter of a round conductor 
b,: Winding width 
N I : Number of tu rns  in a layer 
m: Number of whole layers  

) q : Conductor spacing fac tor  (=  - 
V,: Voltage drop a t  the  pth layer 
I: t o t a l  cur ren t  
V: t o t a l  voltage drop 
Rw: Winding high-frequency resistance 
i,: Current at the  ;Ith layer 
lwI:Turn length of a winding 
laI:Turn length of a gap 
U: Height of an in te r layer  gap 

N I  b 
bw 

Assumptions 

The following a re  assumed. 

(1) Field distribution is uniform and para l le l  t o  
the  solenoidal layers. 

(2) If the  conductors a re  round, the  equivalent 
square conductors a r e  derived as  b=h=0.88Gd. 
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Analysis 

The winding resistances of t he  th ree  different 
winding constructions shown in Fig. 3 a r e  
calculated. From electomagnetic theory and m . m  . f .  
diagrams, t he  winding resistance equations a r e  
derived as follows. 

(Multilayer pile winding) 

I t  is shown in Appendix B t ha t  t he  voltage drop 
in any winding layer can be calculated a s  follows. 

p N L 2 a  l,, { i,coth a h+ztiktanh-} a h  
rlb 2 

vp= 

a h  
k= 1 

+jo - D O N L  y1 3 l s q i k + X C m  i k )  
b a  {q=p k=l  2 k=l 

The quantit ies Vp and i k  may be real  o r  complex 
numbers. If t he  relat ion in Eq. (10) exis ts  between 
the variables V, and ik (k=l-m). then the  s e t  of 
variables V, is said t o  be derived from the  set i k  
by a l inear transformation. The s e t  of Eq. (10) may 
be represented by the  following single matrix 
equation. 

where ( V }  and ( i }  comprise the  column matrix, 
and the  square matrix [ Z ]  is the  impedance matrix. 
The elements of [ Z] a r e  calculated by Eq. (10). 

The current  displacement is derived in  terms of 
t he  voltage. 

The set of variables V, a r e  equal, because the  
winding layers  a r e  connected in parallel .  Since 
v,=v2=v3= ----- -=v ,,,- -v , we have 

B i,=I= v { B E Ypq) p=l p=l  q=l 

where Ypq is an element of matrix [Y] . 

Rw is 
Therefore, high-frequency resistance of winding 

0 Multilayer pile winding 
Measured A Normal winding 

Calculated - 
[ Sectionized winding 

0 0.2 0.4 0.6 0 . 8  1 . O  

f (MEZ) 

Fig. 8. Winding resistance with changes in winding 
arrangements. 

Core: EQ 9.8/ 9.0 (Ferri te core) 
Effective cross-sectoinal area = 10 (nun2) 
Effective magnetic length = 20 (mm)  

(For multilayer pile winding) 
Coil: q5 0.1 mm 
N r : 4 0  

m: 3 

Windings: Transformer ratio = 1 

(For normal and sectionized windings) 
Coil: q5 0.19 mm 
N r : 2 0  

m: 2 

1 
1 Rw=Re { - 1 =Re 1- 

V 

I E s YPq p=l q=l 

(Normal winding) 

In this  winding arrangement, winding currents  
a r e  equal in magnitude and phase. Hence the  s e t  of 
currents  in Eq. (11) sat isf ies  i, =iZ=i3=-----=im=I. We 
now have 

Ev,=v= I( B E Zpq) 
p=l p=1 q=l  

Therefore, 
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V 
Rw=Re (-) =Re { k k pq) I p=l  q=H 

(Sectionized winding) 

If the  winding contains an even number of layers,  
it can be sp l i t  into two portions, and Eq. (16) can 
be applied t o  each of the  portions. 

If the  winding contains an odd numbers of layers,  
each half l ayer  can be considered t o  be mode of 
half t u rns  [ 1) and Eq. (16) may be used. 

Experimental resu l t s  

These resu l t s  were compared with experimental 
results.  The calculated and measured winding 
resistance a re  shown in Fig. 8 and Fig. 9 
respectively. The values agree w e l l .  A t  high 
frequencies, sectionized winding can be used t o  
reduce winding resistance. However, increasing the  
number of layers  is not effective in reducing 
winding resistance in multilayer pile windings. 

0 m = 3  
m = l  Measured [ 

C a l c u l a t e d  - L 

0 0.2 0.4 0 . 6  0.8 1 .0  
f (MEZ) 

Fig. 9. Winding resistance with changes in the  
number of layers connected in parallel .  

Core: EQ9.8 /’ 9.0 
Windings: Transformer ratio = 1 

Coil: 6 0.1 mm 
N r : 4 0  

CONCLUSION 

A new method fo r  calculating the  lead and 
winding high-frequency resistance of transformers 

was presented. The mathematical procedure, which 
solves the  result ing matrix system equation, 
common t o  the  lead and winding, was discussed. This 
procedure enables exact calculation of 
high-frequency resistance of complex geometries. 
Calculations were presented with theore t ica l  and 
experimental da ta  on corresponding geometries. 

Finally, t h ree  different winding constructions 
were evaluated. 
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APPENDIX 

A . Representation of the  function f(XI,YI.Zk) 

Hoer presented inductance equations taking in to  
consideration the  geometric mean distance between 
rectangular bars [ 4) . These equations can be used 
t o  ca lcu la te  exact the  inductance f o r  the  bars 
which have re la t ive ly  la rge  cross-sectional areas. 
These equations, which can be seen by writing Eq. 2 

in the  form and function f(XirYI,Zk), are given by 
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B. Pth layer voltage drop 

Dowel1 derived voltage induced by t h e  f lux 
crossing the  pth layer  and the  resist ive voltage 
across a layer  at t h e  tops  of conductors[ 11 . The 
qth layer  f lux induces a voltage V i q  in each of the 
(q-1) lower layers.  Thus t h e  induced voltage drop 
Vfp due t o  t h e  f lux over t h e  p th  layer  is 

Vfp= k vi (A21 

The pth layer voltage drop is t h e  sum of Eq. (A2) 
q=p+q. 

and the  resist ive voltage,  as shown in[  I] . 

where A is J-. 
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