
IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 11,  NO. 1, JANUARY 1996 33 

Optimum Design of a High-Power, 
High-Frequency Transformer 

R. Petkov 

Abstract-A procedure for optimum design of a high-power, 
high-frequency transformer is Presented- The Procedure is based 
on both electrical and thermal processes in the transformer and 
identifies a) the VA-rating of ferrite cores in relation to the 
operating frequency, ,,) the optimum flux density in the core, 
and c) the optimum current densities of the windings providing 
maximum transformer efficiency. Since the transformer is the 
major contributor to the volume and weight of the Power Supply, 
the results of transformer analysis can be used for entire power 
supply optimization as well. Two high-power, high-frequency 
transformers are optimally designed, built, and tested. Practical 

There are several curve fitting fit formulae used for the 
approximation of core loss [4], [6], [ 101, [ 121, [ 151, [ 171-[ 191, 
and [251 either from the physical or geometrical 
interpretation of data sheet curves. The main criterion for the fit 
formula choice should be the approximation accuracy. In terms 
of that, the geometrical interpretation is more preferable, since 
the physical model, usually based on several simplifications, 
is not enough. The best combination between the 
accuracy and to have the expression used 

results show good agreement with the theory. in [61, [121, [151, U71, [251 

I. INTRODUCTION 

AGNETIC component technology has received con- M siderable attention in recent years since it is widely 
recognized that the ability to manufacture small and efficient 
magnetic components is the key to achieving high power den- 
sity. It is a well-known fact that the high-frequency transformer 
is the major contributor in the size of any SMPS since it 
determines about 25% of the overall volume and more than 
30% of the overall weight. Fundamental issues in the design of 
any high-power, high-frequency transformer are to minimize 
the loss and the volume. 

This paper explores the optimum design of a high-power 
and high-frequency transformer, which means 1) selection of 
the smallest standard core shape relevant to the throughput 
power, frequency, and transformer operating temperature, 2) 
calculation of the optimum flux density providing minimum 
transformer loss, and 3) calculation of the optimum wire 
diameters of the windings. In order to compile such a complex 
optimization procedure, investigations were carried out in the 
following areas: 

1) core loss determination, 
2) copper loss determination, 
3) thermal modeling, and 
4) optimization. 

11. CORE Loss 

Core Loss Approximation 

The total core loss at flux densities below saturation is a sum 
of three loss mechanisms [6], [24]: hysteresis, residual, and 
eddy current. The idea of core loss determination employed 
in this paper is to approximate the data sheet curves with an 
analytical expression using the curve fitting method [16]. 
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where 
pc [kw/m31 
f [Hzl -frequency 
B [TI -flux density 
K1, K2, and K3 
The values of K1, K2, and K3 for the FERROXCUBE 

ferrite grades at core temperature 100°C, which provide an 
approximation accuracy about 20%, can be found in [17]. For 
the case of 3C80 grade, these values are K1 = 16.7, K2 = 
1.3, K3 = 2.5.  

-core power loss density 

-curve fitting formula constants. 

111. COPPER Loss 
By definition, the power loss Pw in a conductor carrying ac 

current with a value I R M ~  is 

where Kr = & is called an ac-resistance coefficient. 
Quite a few papers have been published on this subject, 

starting with the basic work written by Dowel1 [5 ] .  Many 
of the following papers, [21, [71, [9], [141, [201-[231, are 
to some extent related to Dowell's physical interpretation, 
although they have extended the analysis and made it more 
accurate for some particular applications. Dowell's results 
are in a closed form, hence very convenient to use and 
easily extendible on different current waveforms and winding 
structures. Finally, Dowell's analysis is more accurate for the 
case of high-power (more ,than 1 kVA) transformers, which 
have 1) quite a low magnetizing current, 2) almost complete 
enclosure of the winding window, and 3) ungapped core. The 
error introduced by replacing round conductors with square 
section conductors is relatively small if the normalized (to 
skin depth) wire diameter is smaller than 0.25, as suggested 
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Fig. 1. Ac/dc resistance ratio of an m-layer winding. 

below. This, in turn, means that the analysis is also relatively 
accurate for foil windings, since the latter can be represented 
as a number of square sections connected in parallel [7]. 
Therefore, the Dowell [5] interpretation of the winding ac- 
resistance coefficient is used in this optimization procedure, 
and hence the acfdc resistance ratio K, of the winding is 

Rae IT, = - = 0.5y[M(y) + (2m - 1)’ . D(y)] (3)  
Rdc 

where 

y = hc/S (4) 

IV. THERMAL MODELING 

A. T h e m 1  Resistances of the Transformer 

vection: 
1) Resistance of the Components Transferring Heat by Con- 

a) “windings ambient” thermal resistance 

where 
A, -windings heat transfer coefficient 
A,  -the area of the open surface of the windings 

* vertical surface 
b) “core ambient” thermal resistance 

(9) 
1 

Rcv = . 
A,” .A,, 

where 
A, -core (vertical surface) heat transfer coeffi- 

cient 
A,, -total area of the vertically oriented open 

surface of the core 
horizontal surface 

is the normalized conductor thickness A,- -core (horizontal surface) heat transfer coeffi- 

Ach -total area of the horizontally oriented open 
1) for a foil conductor: hc--conductor thickness, &-skin 

2) for a round conductor: he = 0.886 d, (d-wire diameter) 

S=- ( f-frequency ) 

cient 

surface of the core 
depth at 100°C 

total “core ambient” thermal resistance 
(5) 

0.071 
,fl 
V J  

m-number of layers 

sinh(y) + sin(y) 
M(y) = cosh(?/) - cos(y) (6)  2 )  Resistance of the Components Transferring Heat by Con- 

duction: 
sinh(y) + sin(y) 

O(’) = cosh(y) - cos(y) ’ (7) 

The relationship K,  (m, y) calculated from (3) is presented 
graphically in Fig. 1. 

One can conclude from the graphs that K, depends very 
strongly on both the number of layers m and the normalized 
conductor thickness y. It follows that at high frequencies, 
associated with a small skin depth, the conductor thickness 
should be kept as small as possible. To achieve this practically, 
hence to reduce the winding loss, a “litz” wire or copper 
foil should be always used in the high-frequency power 
transformers. 

An acceptable value of the normalized conductor thickness 
is y < 0.25 (Fig. 1) that results in an approximately 60% 
increase of the windings ac resistance, even for a large 
number of layers (m = 22). Such a small value of the 
normalized thickness also provides very good accuracy of 
Dowell’s analysis [SI and determines the most suitable strand 
diameters of the “litz” wire used. 

a) coil former thermal resistance 

where 
A, - c o i l  former thickness 
PO, --coil former thermal conductivity 
h - c o i l  former height 
T F  

* primary 

---outer radius of the coil former 
b) windings thermal resistances 

secondary 

In ( y) 
2 7 ~ .  PO, . h, R w 2  = 
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Fig. 2. Transformer thermal circuit when the hottest spot is on the windings. 

total thermal resistance of the windings 

R, = 2~ ' PQ,  1 . h, [In (2)  +In  (?)I 
where 

pow 
hw 

r1 

C - c o i l  former width. 

-thermal conductivity of the windings 
-height of the primary winding 
- o u t e r  radius of the primary (inner radius 
of the secondary) 

All listed radii are shown in Fig. 4, which presents the 
central section of half a transformer. Thermal conductivities 
and heat transfer coefficients can either be taken from the 
literature [l], [3] or, better, measured experimentally. 

B. Thermal Model of the Transformer 

The equivalent thermal circuit of the transformer when the 
hottest spot is on the windings (the most common case) is 
shown in Fig. 2. In the circuit, R,, Rwa, RF ,  Rca are the 
thermal resistances, defined in Section IV-A of the windings, 
windings ambient, coil former, and core ambient, respectively; 
Omax, 0, are the temperatures of the hottest transformer spot 
(the windings), and the ambient temperature; P, is winding 
power dissipation vector concentrated on the hottest spot 
Omax; and Pc is core power dissipation vector concentrated 
on the core surface. 

The core thermal resistance, which expresses heat transfer 
through the core by conduction, is short-circuited in this ther- 
mal circuit due to comparatively high thermal conductivity of 
the ferrite material. Hence, a uniform temperature distribution 
inside the core is assumed, which is in line with the practical 
experience. 

To improve the thermal model, the heat transfer inside the 
windings is separately studied. 

Applying both Kirchhoff's and Ohm's laws to the above 
circuit, the following equations can be written: 

Fig. 3. Central section of the transformer half. 

Solving (16) and (17) for P,o 

The last expression links the heat flow PWo through the coil 
former with the power dissipation and the thermal resistances 
of the transformer. The value of PWo should be positive for 
circuit validity, otherwise another thermal model must be used, 
i.e., (18) 

(19) 
Pc Rw +Rwa 
PW Rea * 

L - 

Substitution of (18) into (1 6) yields 

5). (20) 
Rca f RF Pw 

Equation (20) shows the relationship between the temper- 
ature rise a@ of the transformer and power dissipation in 
its components. From this equation, one can determine Pc and 
then after long but straightforward mathematical manipulations 
one can arrive to the transformer thermal resistance 

ao 
Rth = ____ 

Pw + Pc 
(Rw + Rwa) (&a + RF + %&a) 

( R w  + Rwa + RF + &a) (1 + g) . (21) 

As can be seen, transformer thermal resistance is not only 
a function of the component thermal resistances but of the 
power dissipation ratio Pc/Pw as well. The latter, as proved 

- - 

(17) in Section VI1 of the paper, depends on the ferrite material 
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Fig. 4. Central section of the coil former and the primary halves. 

and, hence, varies. Furthermore, the optimum value P,/Pw 
tends to 0.8, for the majority of high power femte core shapes 
(see Section VII), not to unity as usually assumed by most of 
the authors. 

Derived formulae exhibit clearly the nature of transformer 
thermal resistance formation which has not been clear from 
previous articles. 

Finally, and most important, the thermal resistance formula 
is the necessary base for optimum design of the transformer 
since they link its thermal performance with the electrical 
parameters P, and P,. 

C. Thermal Model of the Windings 

A central section of a transformer half is shown in Fig. 3. 
The following assumptions were made when drawing this 

1) The transformer has just two windings-primary and 
secondary. This assumption is very often valid for the 
high-power transformers. To use thermal modeling re- 
sults for transformers with several secondaries, they 
must be relegated to one equivalent secondary winding 
carrying the total power. 

2) The coil former is fully utilized; hence, the outer radius 
of the secondary is TF + c (Fig. 4). This is always valid 
when the core is properly selected. 

3) Power dissipation due to copper loss is concentrated 
mainly on the inner radius of the winding. This assump- 
tion was based on Ferreira’s [7] finite element analysis 
of copper loss distribution in a winding example. In fact, 
this is the worst case of power distribution; hence, any 
inaccuracy should lead practically to a slightly lower 
temperature. 

4) The winding has a cylindrical shape. This is valid for all 
core types with a round leg (EC, ETD, RM, PM, P, EP, 

picture: 

a 
__c - 

Equivalent thermal circuit of the windings Fig. 5. 

toroid shapes, some of U shapes). If the winding shape 
is not cylindrical, it must be replaced by an equivalent 
Cylindrical shape having an equal a) height and b) areas 
of the inner and outer winding surfaces. 

Fig. 4 shows a central section of the coil former and the 
primary halves and identifies the relationship between the 
dimensions of the coil former and the winding. 

In Fig. 4, h, = h - 2 cr is the winding height, and cr is 
the creepage required (usually 3-4 mm). The creepage may 
increase to 6 8  m for high voltage transformers. 

Now, one has all the information to compile the equivalent 
thermal circuit of the windings, as shown in Fig. 5. 

In Fig. 5, Pwl and P,2 are the power loss in the primary 
and the secondary, R,1 and Rw2 are conduction thermal 
resistances of the primary and the secondary, R,, is the 
convection “windings ambient” thermal resistance, and Om,, 
and 0, are the maximum winding temperature and the ambient 
temperature. 

Employing Kirchhoff‘s and Ohm’s laws in the above ther- 
mal circuit yields 

The thermal resistances in (22) can be calculated from (13), 
(14), and (10) accounting for the windings dimensions. Let 
us assign 

Substitution of (23) into (13) and (14) results in 

The value of x obviously depends on the core type; how- 
ever, it practically varies between l .6 and 2. l. An evaluation 
of R,1 (24), Rw2 (25), and R,, (lo), for several ferrite 
core types, shows that conduction resistances Rwl, Rw2, are 
much smaller than R,,. This phenomenon is based on a) high 
thermal conductivity of the winding materials (reducing Rwl 
and R,2) and b) relatively small cooling area of the windings 
(increasing Rwa). This conclusion greatly simplifies thermal 
circuit in Fig. 5,  since R,I and Rw2 can be short-circuited. 
The new thermal equilibrium condition can now be obtained 
from (22) by equating R,1 and Rw2 to zero 

ao = Om, - O,(P,1 + Pw2)Rwa. (26) 
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From Fig. 3, it can be concluded that the electrical resis- 
tances of the windings (and their power loss) are dependent 
on the outer radius T I  of the primary or on 11: (23). For 
example, a lower value of x increases the electrical resistance 
(and associated loss) of the primary because of the lower 
winding cross sectional area, but conversely decreases the 
electrical resistance (and associated loss) of the secondary. 
This correlation implies the existence of an optimum I(: value 
ensuring minimum overall loss in the windings and hence a 
minimum temperature difference (26). Thus, the idea of the 
winding thermal analysis is to find out the optimum value of x 
ensuring minimum temperature difference A 0  = Omax - 0,. 

To perform this task, the power loss values Pwl Pw2 should 
be defined as functions of x. 

Using (6) 

where 
11 ,  I2 -RMS values of the primary and secondary 

currents 
Krl ,  Kr2 -ac-resistance coefficients of the primary and 

secondary windings 
P -copper conductivity 
1lal l2a -average lengths of the primary and sec- 

ondary turns 
Nl N2 -numbers of the primary and secondary turns 
Acul, Acu2 -pure copper cross-sectional areas of the 

primary and secondary wires. 
Assuming for simplicity KT1 = Kr2 = K,, the total winding 
loss becomes 

Taking into account the geometric definition for the average 
length and including (23) leads to 

+ TF + = T T ~ ( Z  + K1).  (30) 
2 

laa = 27rr-2, = 27r 

Now let us consider the primary winding in Fig. 4, as 
formed by NI turns of wire with a diameter dl and let us 
also suppose that they are equally distributed in ml layers. 
Similarly, let us assume that the secondary winding is formed 
by N2 turns of wire with a diameter d2 distributed in m2 

layers. Then, the number of turns N,l and N21 in a single 
layer correspondingly of the primary and of the secondary is 

where Kaxial is a space utilization factor of the wire in an 
axial direction, due to the incomplete compacting of the wire 
in the axial direction of the winding. It depends on the wire 
diameter and varies between 0.88 and 0.96 for wire diameters 
between 0.1 and 3 mm. 

Then, the number of primary and secondary layers from 
Fig. 3 is 

ml = ( T 1  - T F )  . Kradial ’ K i n d  

dl 

where Klnsul is a space utilization factor of the winding in 
a radial direction, due to the insulation between the winding 
layers. It depends on both the insulation thickness and the wire 
diameter and varies between 0.71 and 0.96 for an insulation 
thickness between 0.02 and 0.2 mm and a wire diameter 
between 0.1 and 3 mm, 

Kradial is a space utilization factor of the wire in a radial 
direction, due to the incomplete compacting of the wire in the 
radial direction of the winding. It depends on the wire diameter 
and varies between 0.77 and 0.98 for wire diameters between 
0.1 and 3 mm. 

Taking into account that 

NI  = ml . N11, N2 = m2. N21 (34) 

and substituting (31), (32), and (33) into (34) yields 

hw ’ T F  ’ (x - 1) ‘ Kradial ’ Kaxial * Kinsul NI  = 4 

Wire diameters dl d 2 ,  and their cross-sectional areas 
Awll ,  Aw21 can be easily related and elaborated using (35) 

T ’ d: 
Awl1 = ~ 4 

(36) 
- 7r ‘ hw ’ T F  . (x - 1) . Kradial ’ Kaxial ’ Kinsul 
- 

4N1 

- T ’ hw ’ T F  * (K1 - x) ’ Kradial ‘ Kaxial ’ Kinsul  
- 

4N2 
(37) 

The pure copper cross-sectional areas of the wires are 
related to their total cross-sectional areas by the following: 

Acul = Awl1 Klitz . Kcu 
A ~ u 2  = Aw21 . Klitz .  KC^ (38) 

where K1itz is an area utilization factor of the “litz” wire, 
due to the incomplete compacting of the strands inside the 
“litz” bundle. It defines the ratio: total area of the strands/”litz” 
bundle area and its value is 7r/4 = 0.785. This factor is equal 
to 1 for the standard (not “litz”) wires. 

Kcu is an area utilization factor of a single “litz” wire 
strand. It defines the ratio: pure copper cross-sectional area 
of the strandtotal (including insulation) cross-sectional area 
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of the strand and depends on the strand diameter. The usual 
value of this factor is 0.6-0.7 for commonly used very small 
strand diameters. 

Substitution of (37) into (38) yields 

Kw is an area utilization factor of the windings. This is a 
complex utilization factor involving all the cited utilization 
factors and describing the ratio: pure copper cross-sectional 
area of the windingdtotal cross-sectional area of the windings. 

Now we have all the terms to define the winding power 
loss. Thus, accounting for Krl = Kr2 = K, and substituting 
(39), (29), (30), and (40) into (27) gives 

Equations (42) and (43) exhibit clearly the relationship 

Ampere-turn balance of the transformer states 
between the winding loss and IC. 

Substituting it into (28) and rearranging yields 

8 I t .  N;" . K, ' p  
P w  = P w l  + Pw2 = 

(45) 

After substitution of (45) into (26), the latter takes the form 

[ IC(K1 1. (46) 
SI; . N;" . Kr . p ' R,, 

hw . K w  
ao = 

( x  - 1)(K1 - .) 

Analyzing (46) one can notice that Q@ tends to infinity 
in the boundary cases x = 1 and x = K1. Obviously, the 
temperature rise has a minimum value for some x = xOpt 
within the above range. A standard technique for determining 
the minimum value of the function was used to derive ICopt 

d(A') = 0 which results in xopt = 6. (47) 

Substitution of (47) into (46) and (45) gives the minimum 

dx 

respectively 

It is important to know what the optimum power distribution 
between the primary and the secondary windings is. To define 
this, the optimum IC value (47) has to be substituted into (42) 
and (43) 

= 1 or Pwop, = 2Pwl. (50) 
Pwlopt  

PW2,,t 

Thus, an important result was deduced from the winding 
thermal analysis that the total loss in the windings is minimum 
when it is equally distributed between the primary and the 
secondary. 

Using derived expressions and the correlation between the 
electrical and the magnetic parameters of the transformer, one 
can derive expressions for the optimum winding loss and 
optimum current densities as functions of the output power. 

v. OPTIMUM VALUE OF THE WINDING LOSS 

As derived before (47), the optimum value of the outer 
diameter of the primary winding is 

rlopt = T F  . xopt = T F  (51) 

The following equations are valid for the transformer: 

PO I ,  = - 
Vl (52) 

(53) 

where 
Po 
VI 
Ksh 

-VA rating of the transformer 
- M S  value of the primary voltage 
-shape coefficient of the primary voltage. This co- 
efficient is equal to unity for the case of a rectangular 
shape of the primary voltage, and to 1.1 1 for the case 
of a sinusoidal shape 
-magnitude of the operating flux density in the core 
+ross-sectional area of the core 

B 
A, 
f -operating frequency. 
Multiplying (52) and (53) 

(54) 

Substituting this term and (51) into (49) gives the following 
equation for the winding loss 

where 

(55) 

temperature rise value and the minimum power loss value, 
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VI. OPTIMUM CURRENT DENSITY OF THE WINDINGS 

Current densities of the windings are given by 

I 2  and 5 2  = - I1 
J1 = - 

Acul ACu2 
(57) 

where Acul, Acu2 are pure copper cross-sectional areas of 
the primary and secondary wires. 

,,fl F The following emerges from (57) 

Ji - Acui . Ii 
J2 ACu2. ' 4'  

- __ 

Substituting (39) and (40) in (58) and accounting for (44) 
yields 

(59) 

Finally, substituting the optimum value of II: (47) into (59) 
gives 

c 

The next task is to define the particular values of the current 
densities, which can be done by a substitution of (39) into (58) 

4. I, * NI 
7r . h, . r F  . K, . (ICopt - 1) 

J1 = 

The term I, . NI has been already derived in (54), thus (61) 
becomes 

PO 
Jlopt = 

r . K S h . B .  f . A e . h , * r ~ * K , '  (Jz- 1). 

(62) 

The current density of the secondary winding can be obtained 
from (60) 

Jlopt - Jlopt 
J2opt = ~ JK7 - J T q .  

VII. TRANSFORMER OPTIMIZATION 
The basis for transformer optimization can be derived from 

expressions (1) and (56) linking power loss in the windings 
P, and in the core P, with the values of the flux density B 
and frequency f .  The total Pt transformer loss is 

pt = P, + p, 
= P, . v, + P, 

where V, is a core volume. 
From the mathematical point of view, the above expression 

has obviously a minimum value in the B .  f domain, since the 
first term is directly and the second term inversely proportional 
to the product B . f .  In other words, there is an optimum 

flux density value BOPteff, for a given frequency f ,  provid- 
ing minimum power loss and hence maximum transformer 
efficiency. 

The same conclusion was drawn in [3], [ll],  and [13], but 
all cited authors have not explored thoroughly the derivation 
of the constants in (64). 

The optimization task here is to derive the optimum value 
Bopt of the flux density for a given frequency and to determine 
power capabilities of several ferrite cores most suitable for 
high power applications. 

Substitution of (21) into (64) and rearranging for PO gives 

p$ = " B 2 .  f 2  - K1. V, . f K 2 .  BK3.  (65) 
Rth ' Kt1 

The above expression shows the relationship between the 
transferred power (VA rating) bf the core PO and the product 
B . f ;  hence, it can be used to determine core VA rating for 
given frequency and flux density. It also has a maximum value 
PO max, for a given frequency, which can be calculated from 

d P; 
- ( f  = const) = O 
dB 

which results in 
1 

2 A 0  )". (67) 
Boptpo = (K1. v, . (K3 + 2) . Rth. f K 2  

Substitution of (67) into (65) yields the value of the core VA 
rating (maximum VA product that can be transferred by the 
core) 

As (68) shows, the core VA rating is a quite complicated 
function of the frequency, temperature rise, ferrite material 
parameters, and geometry of both the core and the windings. 

It should be emphasized here, that derived optimum value 
BoPtpo provides maximum core VA rating, however not max- 
imum efficiency (minimum transformer power loss). As men- 
tioned in the beginning of this section, there is another 
optimum value BoPteff, ensuring minimum total loss and 
maximum transformer efficiency. 

This value can be defined from (64) by equating to zero its 
first derivative 

dPt -(f = const) = O 
dB 

which results in 

Boptpo = (K1. 2 .  V , .  Kt1 K3. . P: f K 2 - t 2  >". (70) 
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Minimum transformer loss value can be determined by a 
substitution of (70) into (64) 

The question now is Which one of the derived optimum 
values Bopt,, and BoPteff should be used in the transformer 
design? Probably, the best result can be achieved by using both 
of them. Thus, BoPtpo should be used in the very beginning 
of the design procedure for a selection of the core type. This 
can be done using VA-rating graphs for several, most suitable 
cores made of various ferrite grades. Then, BoPteff should be 
used to improve transformer efficiency if the margin ‘‘core 
VA rating”-“transformer VA rating given” is substantial, for 
example, more than 20-30% of the core VA rating. This 
happens quite often at high power levels (more than 3 kVA) 
because of the very limited number of core types available. 

The optimum distribution of the core and winding loss for 
the case of maximum transformer efficiency can be deduced 
from division of (71) since its first term represents core loss 
and the second-winding loss 

(72) 

Applying the same technique for (68), expressing the core 
VA rating, one can find out that the loss distribution is 
exactly as in (72). Hence, an important conclusion arises: The 
optimum distribution between core and winding loss is only 
a function of ferrite material properties and can be calculated 
from (72). 

Referring to [17], it can be seen that the value of K3 varies 
within the range 2.25-2.9, but for most of the ferrites it is 
around 2.5. It results in a optimum ratio 

2 (2)opt = E’ 

(2)  M 0.8. (73) 
\I w /  opt 

Now we have all the expressions to compile a procedure for 
optimum design of a high-frequency transformer. 

VIII. DESIGN PROCEDURE OF A HIGH 
FREQUENCY TRANSFORMER 

The aim of the design procedure is to convert the trans- 
former input data such as VA rating, frequency, voltage, ferrite 
material data, etc., into data, allowing us to assemble a real 
transformer, such as the type of the core, the numbers of 
turns of the primary and secondary windings, and the cross- 
sectional areas of the primary and secondary wires. In terms of 
that conversion, Sections IV-VI1 provide all the information 
needed. 

To compile a flowchart of the transformer design procedure, 
one has to start from the end of the chart, i.e., from the 
desired final data and gradually build up a structure supporting 
its calculation. Fig. 6 presents a flowchart based on such an 
approach. 

It is interesting to notice that the INPUT DATA section 
(Fig. 6) can be separated into several groups according to 

INPUT DATA 

I 1 t 

I CALCULATION I 

f CALCULATION ~ 1 

OUTPUT DATA 

Fig. 6. Flowchart of the transformer design procedure. 

its physical nature: electrical and thermal data of the trans- 
former, ferrite material data, coil former and core geometry 
data, thermal properties data and windings geometry data. 
Furthermore, all intermediate expressions to calculate the 
OUTPUT DATA (windings parameters) are separated into 
several CALCULATION sections and can be found from the 
foregoing analysis and optimization. 

As can be seen, both core geometry and core material data 
are given (ITWUT DATA in Fig. 6), which means that the 
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Fig. 7. Optimum flux density of high power cores (3C80) 

Fig. 8. VA rating of high power cores (3C80 ferrite). 

type of the core has been already selected. Such a selection 
was based on information about the VA-rating of several cores 
suitable for high power conversion which was obtained by 
executing the flowchart partly (until Pomax calculation) for 
several cores at various frequencies and plotting the results 
(Fig. 8). 

Figs. 8 and 9 show graphs of the optimum flux density and 
VA rating of PM 74, PM 87, UU 100, and UU 93 core types 
made of 3C80 ferrite grade, which were calculated using the 
above procedure. 

As can be seen from Fig. 7, the optimum flux density is 
almost independent of the core. This is because the product 
V, . Rth is almost constant for the core types mentioned. 

The core VA-rating graphs in Fig. 8 are very useful, since 
they allow an optimum selection of the type of the core for 
a given transformer VA rating and frequency, and in terms of 
that, they could be used for power supply optimization as well. 
The number of core types and core materials in Figs. 8 and 9 
can be easily increased, supplying the relevant input data of 
the core geometry and core material needed by the calculating 
procedure. 

IX. DESIGN EXAMPLES 

Table I contains the specifications and the design results of 
two high-frequency transformers used for microwave heating 
SMPS. All the results were taken from the outlined procedure. 

TABLE I 
DESIGN RESULTS OF HIGH-FREQUENCY POWER TRANSFORMERS 

Using these results, the transformer prototypes were assembled 
and tested. 

Thermal performance of the 4900 VA transformer was tested 
under nominal working conditions in a 2500 W magnetron 
power supply prototype. Two thermocouples were used: one 
in the center of the outermost layer of the primary winding 
(between primary and secondary) and the second half way up 
the open horizontal core surface. The ambient temperature was 
2SoC, and since the transformer temperature rise was predicted 
to be 4OoC, the predicted temperature of the windings (the 
hottest spot) was calculated to be 25 + 40 = 65OC. Predicted 
temperature of the core was calculated to be 25 + 39.1 = 
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Predicted value 
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64.1 65 

TABLE I1 
THERMAL PERFORMANCE OF THE 4900 VA TRANSFORMER 

I 

Measured value I 73.7+loC 1 75.1 +l0C 

64.1 O. Table I1 presents temperatures measured once thermal 
equilibrium was reached (two hours after the prototype was 
switched on). It shows about 15% difference between the 
predicted and practical values. 

X. CONCLUSION 

A thermal model of a high-frequency transformer has been 
developed and an analytical expression for transformer thermal 
resistance has been derived. Based on the electrical and 
thermal analysis of the transformer, the following opthum 
values have been derived: 1) power loss distribution in the 
windings and windings-core, 2) primary and secondary wind- 
ing thickness, 3) current density of the windings, 4) flux 
densities in the core providing maximum core VA rating and 
maximum transformer efficiency. 

A procedure for optimum design of the transformer has 
been presented, which allows us to calculate the VA rating 
of various suitable cores, then to select the core and to design 
the whole transformer. As a first step in this design procedure, 
the core type has to be selected from the core VA-rating 
graphs, and then transformer parameters should be calculated 
using the optimum flux density value providing maximum 
transformer efficiency. The design procedure flowchart allows 
us to compile a computer program and to extend the design 
results over various core types and core materials. 

Both the electromagnetic and thermal analysis of the trans- 
former in this paper are one-dimensional; therefore, they 
cannot generally deliver very good accuracy. In terms of that, 
the main advantage of the design procedure developed is that it 
allows us to select the core and calculate winding parameters, 
i.e., it provides (with acceptable accuracy) the most necessary 
design information. This information can be further used for 
more precise (finite element or finite difference) analysis of 
the electromagnetic and thermal fields, associated loss, and 
temperatures and correction, if necessary, of the winding 
parameters. 

Two high-power, high-frequency transformers for mi- 
crowave heating SMPS have been calculated, assembled, and 
tested. The experimental results agreed well with the theory. 
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