PJ9910C

P.1

WIDE INPUT RANGE POWER LED DRIVER

FEATURES

• >90% Efficiency

- 8V to 450V input range
- Constant-current LED driver
- Applications from a few mA to more than 1A output
- LED string from one to hundreds of diodes
- PWM Low-Frequency Dimming via Enable pin
- Input Voltage Surge ratings up to 450V

APPLICATIONS

- DC/DC LED driver
- Automotive
- Lighting

TYPICAL APPLICATION CIRCUIT

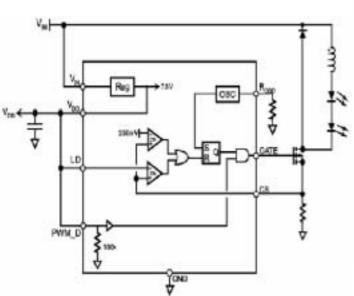
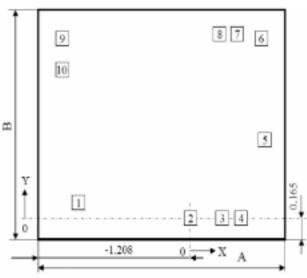
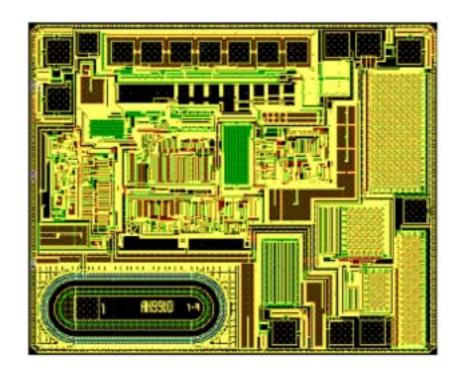



Figure 1. 8~450V Powered Driver for Two White Power LEDs

The PJ9910C is a PWM high-efficiency LED driver control IC. It allows efficient operation of High Brightness (HB) LEDs from voltage sources ranging from 8Vdc up to 450Vdc. The PJ9910C controls an external MOSFET at fixed switching frequency up to 300 kHz. The frequency can be programmed using a single resistor. The LED string is driven at constant current rather than constant voltage, thus providing constant light output and enhanced reliability. The output current can be programmed between a few milliamperes and up to more than 1A.

PAD DIAGRAM

DESCRIPTION


- 1. Chip size: X=1.88mm, Y=1.54mm (without scribe line width).
- 2. Scribe line width: X=80µm, Y=80µm
- 3. Pad size: 100µm x 100µm
- 4. Substrate to GND
- 5. Wafer thickness: 460µm

PJ9910C P.2 WIDE INPUT RANGE POWER LED DRIVER

PAD LOCATION

Pad	Pad Name	X (µ m)	Y (µ m)
1	V _{IN}	-887.5	110
2	CS	0	0
3	GND	255.5	0
4	GND	395.5	0
5	GATE	587.0	544.5
6	PWM_D	556.5	1259.5
7	$V_{ m DD}$	375.5	1290
8	$V_{ m DD}$	235.5	1290
9	LD	-1012.5	1260.5
10	R _{OSC}	-1012.5	1044.5

DIE PHOTO

PJ9910C P.3 WIDE INPUT RANGE

POWER LED DRIVER

$\textbf{ELECTRICAL CHARACTERISTICS} \; (T_A \!\!=\!\! 25 \quad \text{, unless otherwise noted.}$

Symbol	Description	Min	Тур	Max	Unit	Condition
V _{INDC}	Input DC supply voltage range	8.0		450	V	DC input voltage
I _{INsd}	Shut-Down mode supply current		0.5	1	mA	Pin PWM_D to GND, V _{IN} =8V
V _{DD}	Internally regulated voltage		7.5	8.0	V	V_{IN} =8-450V, $I_{DD(ext)}$ =0, pin Gate open
V _{DDmax}	Maximal pin V _{DD} voltage			13.5	V	When an external voltage applied to pin V_{DD}
I _{DD(ext)}	V_{DD} current available for external circuitry			1.0	mA	V _{IN} =8-100V
UVLO	V _{DD} undervoltage lockout threshold	6.45	6.7	6.95	V	V _{IN} rising
UVLO	V _{DD} undervoltage lockout hysteresis		500		mV	V _{IN} falling
V _{EN(lo)}	Pin PWM_D input low voltage			1.0	V	V _{IN} =8-450V
V _{EN(hi)}	Pin PWM_D input high voltage	2.4			V	V _{IN} =8-450V
RLN	Pin PWM_D pull-down resistance	50	100	150	k	V _{EN} =5V
V _{CS(hi)}	Current sense pull-in threshold voltage	225	250	275	mV	@ TA=-40 to +85
V _{GATE(hi)}	GATE high output voltage	V _{DD} - 0.3		V_{DD}	V	I _{OUT} =-10mA
V _{GATE(lo)}	GATE low output voltage	0		0.3	V	I _{OUT} =10mA
fosc	Oscillator frequency	20	25	30	kHz	R _{OSC} =1.00M
		80	100	120	kHz	R _{OSC} =223k
D_{maxHT}	Maximum Oscillator PWM duty cycle			100	%	F _{PWMhf} =25kHz, at GATE, CS to GND
V_{LD}	Linear Dimming pin voltage range	0		250	mV	© TA=<85 , V _{IN} =12V

PJ9910C P.4 WIDE INPUT RANGE POWER LED DRIVER

T _{BLANK}	Current sense blanking interval	150	215	280	ns	V_{CS} =0.55 V_{LD} , V_{LD} = V_{DD}
t _{DELAY}	Delay from CS trip to GATE lo			300	ns	V_{IN} =12V, V_{LD} =0.15V, V_{CS} =0 to 0.22V after T_{BLANK}
t _{RISE}	GATE output rise time		30	50	ns	C _{GATE} =500pF, 10% to 90% V _{GATE}
t _{FALL}	GATE output fall time		30	50	ns	C _{GATE} =500pF, 90% to 10% V _{GATE}

Note: Also limited by package power dissipation limit, whichever is lower.