

一级代理:

高科智电子(香港)有限公司深圳市四海恒通科技有限公司

地址:深圳市福田区华富路南光大厦10楼1008号

电话: 0755-61358291 61358292

传真: 0755-61358293

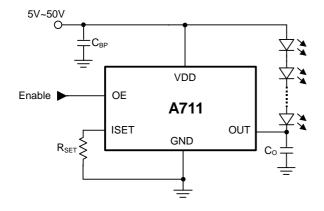
E-mail: sales@shhtic.com

gofotech@163.com

网址: www.shhtic.com

1.1A HIGH VOLTAGE ADJUSTABLE CURRENT REGULATOR WITH ENABLE CONTROL

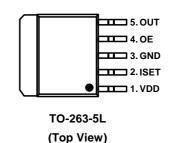
DESCRIPTION


The A711 is a high voltage, low dropout current regulator for high power LED, that the maximum output current can be up to 1.1Amp. The output current was decided by an external resistor. The output sink current could be disabled via OE pin. PWM dimming function could also be controlled by OE pin.

TO-263 package is available for good power dissipation ability. Build-in thermal protection to prevent the chip from over heat damage, and adequate heat sink is required to control the junction temperature below 125°C.

FEATURES

- 0.8V Output Drop-out Voltage at 1.1Amp.
- 1.1Amp. Maximum Output Current.
- Output Current Controlled by External Resistor.
- 3us Fast Response Output Stage Enable Control.
- Output Pin Sustaining Voltage Up To 75V.
- Supply Voltage Range 5V~50V
- TO-263-5L package


TYPICAL APPLICATION CIRCUIT

APPLICATIONS

- High Power LED Driver
- RGB Full Color Power LED driver
- LCD Monitor/TV LED Backlight Driver
- LED Lighting
- LED Street Lamp / Table Lamp

PACKAGE PIN OUT

	ORDER INFORMATION
V	TO-263-5L
V	5 pin
	A711VFT

Note: All surface-mount packages are available in Tape & Reel. Append the letter "T" to part number (i.e. A711VFT). The letter "F" is marked for Lead Free process.

ABSOLUTE MAXIMUM RATING	GS (Note)
Input Voltage, V _{DD}	50V
Output Pin Sustaining Voltage, V _{OUT}	75V
Enable Voltage, V _{OE}	13.2V
Maximum Operating Junction Temperature, T _J	150°C
Storage Temperature Range	-65°C to 150°C
Lead Temperature (soldering, 10 seconds)	260°C
Note: Exceeding these ratings could cause damage to the device. All voltages are with responsitive into negative out of the specified terminal	pect to Ground.

	PIN DESCRIPTION	
Pin Name	Pin Function	L
	Output pin. Sink current is decided by the current on R _{SET} connected to I _{SET} .	
OUT	$I_{OUT} = I_{SET} \times 500 = \frac{1.2V}{R_{SET}} \times 500$	
OE	Output stage enable control pin. High enable the OUT pin. It can be left floating for normally on.	
I_{SET}	Output current set input. Connect a resistor from I _{SET} to GND to set the LED bias current.	
VDD	Power supply.	
GND	Ground	

THERMAL DATA		2
TO-263 Package:		
Thermal Resistance-Junction to Tab, θ_{JT}	3 °C /W	
Thermal Resistance-Junction to Ambient, θ_{JA}	45 °C /W	
Junction Temperature Calculation: $T_J = T_A + (P_D \times \theta_{JA})$. The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system. Connect the ground pin to ground using a large pad or ground plane for better heat dissipation. All of the above assume no ambient airflow.		

RECOMMENDED OPERATING CONDITIONS							
Parameter Symbol Min Typ Max Unit							
Supply Voltage	$V_{ m DD}$	5		50	V		
Output Sink Current	I_{OUT}	0.3		1.1	A		
Operating free-air temperature range	T_A	-40		+85	$^{\circ}\mathbb{C}$		

DC ELECTRICAL CHARACTERISTICS							
V _{DD} =24V, Ta=25°C, No Load, (Unless otherwise noted)							
Parameter	Condition	Min	Тур	Max	Unit		
0.1.10	V_{OUT} =0.5V, R_{SET} =800 Ω		750				
Output Current	V_{OUT} =0.8V, R_{SET} =600 Ω		1000		mA		
Output Comment Designing	V_{OUT} =0.5V, R_{SET} =800 Ω			±5	07		
Output Current Deviation	V_{OUT} =0.8V, R_{SET} =600 Ω			±5	%		
SET Current Range		0.6		2.2	mA		
Maximum Output Current	V_{OUT} =0.8V, R_{SET} =545 Ω		1100		mA		
Output Drop-out Voltage	$R_{SET}=800\Omega$, Note 1		0.5		V		
Load Regulation	I _{OUT} =750mA, V _{OUT} =0.5V to 3V			10	mA		
Line Regulation	I_{OUT} =750mA, V_{OUT} =0.5V, V_{DD} = 5V to 50V,			1	mA/V		
Thermal Shut-down Junction Temperature	Hysteresis 20°C		160		°C		
"Low" Input Voltage		0		0.8	V		
"High" Input Voltage		2		$Min\{V_{DD}, 12\}$	V		
"Low" Input Current		-20		+20	μA		
"High" Input Current		-5.0		+5.0	μA		
Output Enable Delay Time	OE from Low to High, V_{OUT} =0.5V, I_{OUT} =750mA, 50%		5		μS		
Output Disable Delay Time	OE from High to Low, V _{OUT} =0.5V, I _{OUT} =750mA, 50%		5		μS		
Supply Current Consumption				5	mA		

Note1: Output dropout voltage: 90% x I_{OUT} @ V_{OUT} =750mV

THERMAL CONSIDERATION

The Maximum Power Dissipation on Current Regulator:

 $P_{D(MAX)} = V_{OUT(MAX)} \times I_{OUT(NOM)} + V_{IN(MAX)} \times I_{DD}$

 $V_{OUT(MAX)}$ = the maximum voltage on output pin;

 $I_{OUT(NOM)}$ = the nominal output current;

 I_{DD} = the quiescent current the regulator consumes at $I_{OUT(NOM)}$;

 $V_{IN(MAX)}$ = the maximum input voltage.

Thermal Consideration:

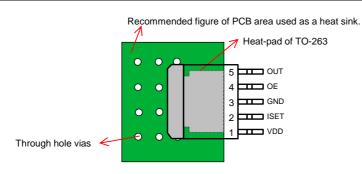
The A711 has internal power and thermal limiting circuitry designed to protect the device under overload conditions. However, maximum junction temperature ratings should not be exceeded under continuous normal load conditions. The thermal protection circuit of A711 prevents the device from damage due to excessive power dissipation. When the device junction temperature rises to approximately 150°C, the regulator will be turned off. When power consumption is over about 1.22W (TO-263 package, at T_A =70°C), additional heat sink is required to control the junction temperature below 125°C.

The junction temperature is:

$$T_J = P_D (\theta_{JT} + \theta_{CS} + \theta_{SA}) + T_A$$

P_D: Dissipated power.

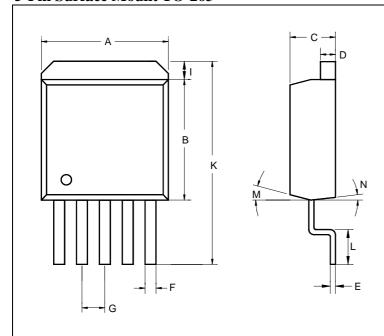
 $\theta_{\rm JT}$: Thermal resistance from the junction to the mounting tab of the package.


For TO-263 package, $\theta_{JT} = 3.0 \text{ oC/W}$.

 $\theta_{\rm CS}$: Thermal resistance through the interface between the IC and the surface on which it is mounted. (typically, $\theta_{\rm CS}$ < 1.0°C/W)

 $\theta_{\rm SA}$; Thermal resistance from the mounting surface to ambient (thermal resistance of the heat sink).

If PC Board copper is going to be used as a heat sink, below table can be used to determine the appropriate size of copper foil required. For multi-layered PCB, these layers can also be used as a heat sink. They can be connected with several through-hole vias.


PCB θ sa (°C/W)	59	45	38	33	27	24	21
PCB heat sink size (mm ²)	500	1000	1500	2000	3000	4000	5000

PACKAGE

5-Pin Surface Mount TO-263

	INCHES			MILLIMETERS		
	MIN	TYP	MAX	MIN	TYP	MAX
Α	0.395	ı	0.420	10.03	ı	10.67
В	0.325	1	0.361	8.25	Ī	9.17
С	0.171	1	0.181	4.34	Ī	4.59
D	0.045	ı	0.055	1.14	i	1.40
Е	0.013	1	0.017	0.330	Ī	0.432
F	0.029	1	0.035	0.737	Ī	0.889
G	0.062	ı	0.072	1.57	ı	1.83
I	-	1	0.065	ı	ı	1.65
K	0.575		0.635	14.60		16.13
L	0.090		0.110	2.29		2.79
М		7°			7°	
N		3°			3°	

IMPORTANT NOTICE

ADDtek reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. ADDtek integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of ADDtek products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

ADDtek assumes to no liability to customer product design or application support. ADDtek warrants the performance of its products to the specifications applicable at the time of sale.

ADDtek Corp.

9F, No. 20, Sec. 3, Bade Rd., Taipei, Taiwan, 105

TEL: 2-25700299 FAX: 2-25700196