

HT46R47 可調速無刷直流馬達驅動器應用

合泰HOLTEK代理:深圳市东诚信电子科技有限公司 http://www.singsun.com.cn

联系人:庞泽华 TEL:13760362256 QQ:764873661

E-MAIL (MSN): pang520123@126.com

特徵

• Output direct PWM drive for speed control

• 31kHz PWM frequency

• Versatile speed control inputs: PWM, VR and a thermistor input

• Operating voltage: 12VDC

• Over current protection

• Open collector hall output for speed feedback

• Locked rotor protection

• Adjustable speed

簡介

本範例主要應用於單向 BLDC 馬達,DC12V 的額定操作電壓,提供三種輸入型態控制轉速,使用 MCU 直接 PWM 輸出驅動馬達運轉。

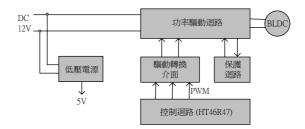
典型的無刷直流馬達 BLDC 被廣泛應用於冷卻風扇,最常見的用於 PC 產品上。在本文中, 我們將以 HOLTEK HT46R47 MCU 主體,說明以此 MCU 應用於單向直流無刷馬達(BLDC) 風扇的簡易控制方式,供使用者參考。

BLDC 風扇原理

BLDC 馬達分為兩個主要部份:轉子和定子、轉子是動態的部份、定子則是靜態的部份、 結構上定子受轉子環繞著。轉子內側放置了固定的永久磁鐵,外部則是風扇的葉片。馬達 的線圈爲定子的部份,置於轉子的內側。

BLDC 馬達一般使用 HALL-EFFECT SENSOR 提供位置及運轉的資訊,告知 MCU 如何驅動 馬達線圈。本範例中爲單一 HALL-EFFECT SENSOR 提供"0"與"1"的信號。MCU 欲驅動 馬達線圈必須藉由 HALL-EFFECT SENSOR 的輸出了解轉子的相位,進而輸出對應的信號。

BLDC 馬達額定電壓通常為 5V、6V、12V、24V、48V 等,較常用的額定電壓為 12V,當操作電壓等於額定電壓時馬達全速運轉,改變馬達的操作電壓可改變馬達轉速,增加操作電壓增加馬達轉速,相對的降低操作電壓降低馬達轉速。BLDC 馬達轉速由 MCU 輸出 PWM 信號,控制 PWM 輸出的工作週期來達到轉速控制的目的。



轉子

參考線路功能說明

本範例線路爲使用 HT46R47 MCU 爲控制核心。整個電路結構主要區分爲: 低壓電源、功率驅動迴路、驅動轉換介面、保護迴路及控制迴路等。

低壓電源迴路

12VDC 電源直接經由 D1 二極體提供 DC12V 電源至 POWER MOSFET 的功率驅動迴路,另外爲 12VDC 電源經由電晶體 Q1 降壓後輸出 DC 電源 5V 提供保護迴路及 MCU 控制迴路。

功率驅動迴路

功率驅動迴路爲功率開關元件的組合,爲驅動負載的主要元件。本範例線路使用四個 Power MOSFET (FDD 5614x2、FDD6090A) 組成爲一橋式驅動迴路,用於驅動單向 BLDC 馬達負載。

驅動轉換介面

驅動轉換介面爲 MCU 控制迴路與功率驅動迴路之間的介面,提供電壓介面的轉換。本範例 線路使用兩個電晶體 Q7、Q8 做爲驅動轉換介面。

保護迴路

範例線路中規劃的保護迴路爲過電流保護迴路,作爲當系統過載時的保護功能。設計者可視需要加入相關的保護機制。此回路當過電流產生時,比較器 IC3 輸出 High、Q11 ON、D5、D6 順向導通,使功率開關元件 Q5 及 Q6 停止動作,BLDC 馬達停止運轉。

控制迴路

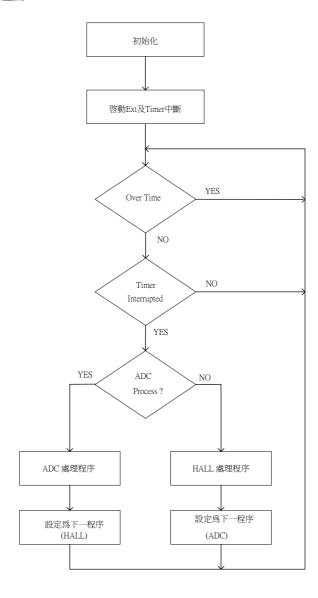
控制迴路使用 HOLTEK HT46R47 MCU。MCU 控制迴路提供下列功能:

- 偵測 HALL-SENSOR 的信號,確定馬達轉子的相位
- 以 VR、NTC、PWM 作爲 Speed 控制輸入要求
- 以 PWM 31kHz 載波的信號輸出,調整 PWM 週期達到控制 BLDC 馬達轉速
- 轉子卡住時停止運轉的保護
- 提供 Open Collector 輸出的轉速信號

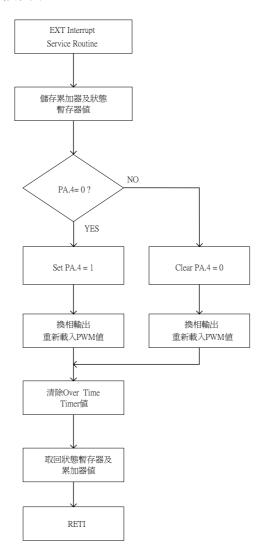
軟體說明

MCU 週邊功能說明

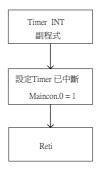
HT46R47 MCU 系統震盪頻率為 2MHz,以一組 PWM 輸出,分別接至 Q9 及 Q10 電晶體。以 VR、NTC 及 PWM 經由 A/D 轉換,做為轉速(SPEED)輸入控制調整。IC3 作為過電流保護的 比較器,當過電流產生時,輸出 High 使 Q11 導通,進而使功率開關元件 Q5 及 Q6 停止動作,使馬達停止運轉。JP1、JP2 做為速度控制的輸入源選擇。Q12、Q13 做為提供 HALL-SENSOR 於每次轉態時,藉由軟體配合 I/O port(PA.4)的控制,提供負緣觸發訊號使產生外部中斷。


軟體功能說明

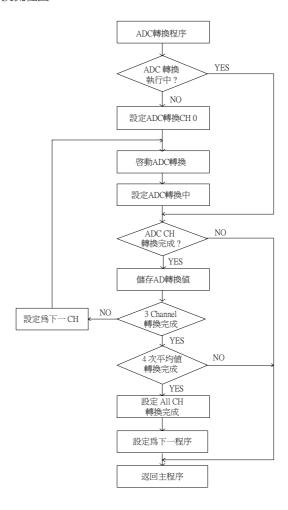
- MCU 系統工作頻率 2MHz
- External Interrupt 外部中斷做爲 Hall-Sensor 換相時的偵測
- Timer 主要做爲程式分時多工的基頻,每 250μs 產生一次中斷
- PWM 載波頻率設定爲 31kHz, 做爲馬達的速度調整
- ANO、AN1、AN2 三組 AD 輸入分別做為 VR、NTC 及 PWM 轉速(SPEED)輸入控制調整
- Open collector output for speed feedback


流程圖

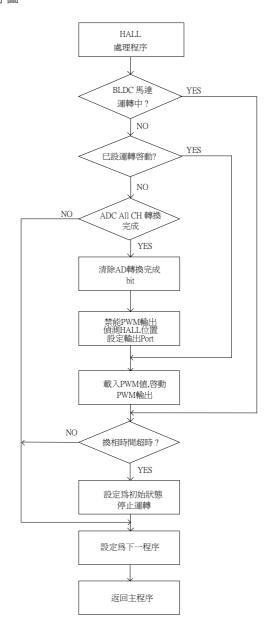
• 主程式流程圖



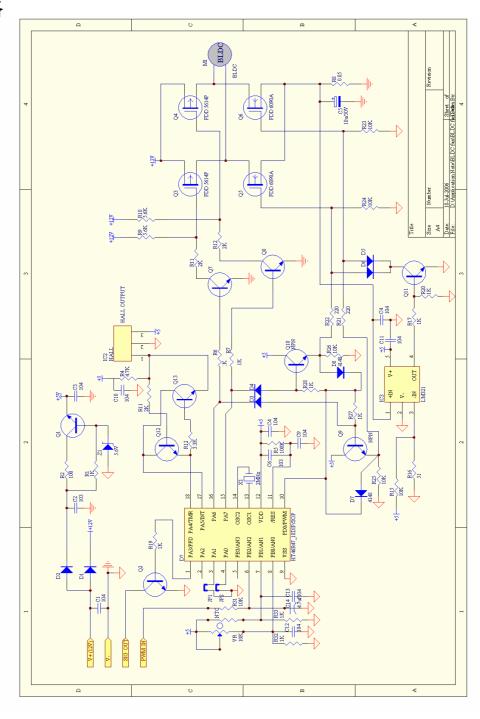
● Ext Interrupt 程式流程圖



● Timer Interrupt 程式流程圖



● ADC 轉換流程圖



● HALL 處理程序圖

範例線路

Option Table

SysVolt	5V
Package	18DIP
Wake-Up PA0-PA3	Non-Wake-Up
Wake-Up PA4-PA7	Non-Wake-Up
Pull-High PAO-PA3	PA3-PA2: Non-Pull High PA1-PA0: Pull High
Pull-High PA4-PA7	PA4/PA6/PA7: Non-Pull High PA5: Pull High
Pull-High PB0-PB3	Non-Pull High
Pull-High PD	Non-Pull High
PWM	ENABLE
PFD	DISABLE
LVR	ENABLE
WDT	ENABLE
CLRWDT	One Clear Instruction
WDT Clock Source	WDTOSC(12kHz)
OSC	Crystal