第 27 卷 第 31 期	中	玉	电	机	Т	程	学	报	Vol.27 No.31 Nov. 2007
2007年11月	Proceedings of the CSEE							©2007 Chin.Soc.for Elec.Eng.	

文章编号: 0258-8013 (2007) 31-0121-06 中图分类号: TM 56 文献标识码: A 学科分类号: 470-40

开关电源高频变压器电容效应建模与分析

董纪清1,陈 为1,卢增艺2

(1. 福州大学电气工程与自动化学院, 福建省 福州市 350002;

2. 台达能源技术(上海)有限公司零组件研发中心电磁实验室,上海市 浦东新区 201209)

Modeling and Analysis of Capacitive Effects in High-frequency Transformer of SMPS

DONG Ji-qing¹, CHEN Wei¹, LU Zeng-yi²

(1. College of Electrical Engineering and Automation, Fuzhou University, Fuzhou 350002, Fujian Province, China;

2. Delta Electronics (Shanghai) Co., LTD, Electromagnetic Lab, Pudong New District, Shanghai, 201209, China)

ABSTRACT: The effects of both electric energy storage and common-mode(CM) Electro Magnetic Interference(EMI) noise emission of high-frequency transformer are analyzed considering the voltage distribution in transformer windings. One-port terminal capacitance is used to present the electric energy storage behaviors, while two-port network transfer capacitance is used to present the CM EMI noise behaviors. The calculation methods are also proposed for the two capacitances. Based on this understanding, a new transformer model is built which can describe both the electric energy storage and CM EMI noise behaviors of a transformer in one model. The model can also explain the CM EMI noise mechanism clearly and rationally. Finally, the experiment and simulation verify the theoretical analysis and the model.

KEY WORDS: high-frequency transformer; stray capacitance; modeling; CM noise

摘要:该文分析了开关电源中高频变压器在考虑了变压器绕 组导体的电位分布情况下的电场储能特性和共模电磁干扰 发射特性。指出采用一端口入端电容描述电场储能效应,而 采用二端口转移阻抗电容描述共模电磁干扰发射效应,并提 出了相应的参数计算方法。在此基础上,建立了新的高频变 压器电容效应模型,该模型可以同时兼顾变压器的电场能量 储存特性和共模噪音抑制特性,能合理地揭示变压器内共模 噪音电流的流动机理。实验和仿真结果均验证了理论分析和 模型。

关键词: 高频变压器; 分布电容; 建模; 共模噪音

0 引言

高频化使开关电源体积大幅度减小、功率密度

明显提高,随着开关管开关速度的加快,电源中的 电压和电流波形边沿也将更加陡峭,噪音谐波显著 增大,电磁干扰更加严重;同时在高频下开关电源 中元件的寄生参数、分布参数很容易发生谐振,在 谐振点噪音明显增大,恶化了电源的电磁干扰特 性;此外,高频下元器件间的磁场和电场相互耦合 影响加强往往使开关电源的电磁干扰特性变差。电 磁干扰问题使开关电源的频率难以进一步提高,制 约了开关电源的进一步高频化和高密度化。要解决 这些问题,从磁性元件入手是一个重要的研究突破 点^[1]。一方面在于磁性元件在开关电源系统的体积 与重量中占有相当大的比重,其参数特性对开关电 源性能包括电磁干扰特性起着非常重要的影响;另 一方面由于磁性元件多为自主设计,其高频参数受 设计、工艺和安装位置等因素影响,合理的磁性元 件设计可以保证良好的参数配合,从而显著改善电 磁干扰发射水平。

目前对高频变压器的研究,较多的集中在变压器的高频损耗特性、漏感特性以及优化设计和应用研究上^[2],对分布电容的影响及其模型研究则进展较少,主要还局限于传统的模型。变压器在开关电源中主要是实现能量储存和传递,起隔离、变压的作用,但由于变压器内不可避免地存在分布电容参数,在高频开关电压作用下变压器的电容效应不仅影响开关损耗、高频阻抗特性,严重影响电磁干扰发射,也是EMI噪音的重要耦合通道,随着对电磁干扰要求的逐渐严格,对变压器高频下分布电容的研究日益受到重视^[3-9]。

本文首先分析了目前普遍使用的、反映变压器 内电场能量特性的传统模型及其参数测量方法。根

基金项目: 福建省自然科学基金资助项目(2006J0159)。

据电磁干扰中共模噪音的特点,指出目前模型的不 足之处,它并不能完整描述变压器对共模噪音的影 响特性。第2节中提出采用二端口网络转移电容的 概念来表达共模噪音的流动。类同于能量端口有效 电容的计算,将二端口网络转移电容也等效为端口 有效电容,称之为共模端口有效电容。根据两个端 口有效电容的差异,在第3节中建立了新的变压器 分布电容模型,该模型同时描述了变压器储存电场 能量特性和变压器内电荷流动形成共模噪音电流 的特性。在文章的最后部分给出了新模型的仿真和 测试结果及结论。

1 现有变压器模型介绍

图 1 是目前普遍使用的变压器模型^[5-7],该模型 含有 3 个集总电容,包括原边绕组电容C_p,副边绕 组杂散电容C_s,原边和副边绕组间的杂散电容C_{ps1}、 C_{ps2}。其中C_p和C_s分别反映了变压器内原边和副边 各自内部存储的电场能量,而C_{ps1}、C_{ps2}则代表了变 压器原边和副边的电场耦合能力,是影响共模电流 大小的重要因素之一,是电磁干扰分析中的关键参 数,也是本文关注的重点。

传统模型中的电容参数一般可以通过测量得 到,对 $C_p n C_s$,一般可以通过谐振法得到,测量时 为避免铁心影响可以将铁心取下,通过阻抗曲线 的谐振点 f_r ,用公式 $f_r = \frac{1}{2\pi\sqrt{LC}}$ 计算得到;变压 器原边和副边间的电容 C_{ps1} 、 C_{ps2} ,可以用LCR表或 阻抗分析仪直接测量两个绕组间的电容。至于电容 C_{ps1} 、 C_{ps2} 的计算,由于一般情况下高频变压器线圈 宽度比层间距大得多,线圈在紧密绕制时匝间距很 小,变压器的绕组间电容有时也利用平行极板电容 计算公式或其他经验公式估算得到^[10-13]。

在开关电源的电磁干扰分析中,变压器原边和 副边间的电容*C*_{ps1}、*C*_{ps2}是共模干扰噪音的重要通 道,对该电容的测量和估算是准确预测共模噪音并 采取有效抑制措施的前提条件。按照以往直接测量 变压器原边和副边得到的电容在实际电路分析中 存在很大的问题,例如直接用LCR表测得的C_{ps1}、 C_{ps2},就无法考虑到变压器绕组线圈上的电位分布 的影响,其电容值仅由绕组相对面积和绕组间的间 距等结构参数决定,很多文献称之为结构电容。而 在实际应用中,变压器线圈各匝间电位分布不是固 定值而是有一定的电位梯度分布,因此在电路分析 中采用上述方法测量得到的电容参数不能准确描 述变压器的实际电容效应,需要采用能够反映变压 器绕组电位分布的变压器容性参数测试手段和计 算方法。

在考虑变压器绕组各匝匝间存在不同电位分 布的情况下,变压器的绕组间电容一般通过变压器 的电场存储能量来计算^[10],得到变压器的能量端口 有效电容,其推导过程如下。

高频变压器的激磁主磁通一般远远大于漏磁 通,所以激磁线圈每匝所链过的磁通基本相同,每 匝的感应电动势,或激磁感抗也基本相同,而且每 匝线圈的交流电阻相比激磁感抗完全可以忽略,因 此可以认为变压器线圈的电位沿绕组匝数线性分 布,即每一匝线圈的电压降均相同^[3]。为便于分析, 变压器的原边和副边均取单层绕组进行分析,如图 2 所示绕组的宽度为w,原边上施加的电压为U_p, 副边施加的电压为U_s。在变压器绕组电压沿线圈均 匀分布的前提下,绕组间任意位置x处原、副边间 的电位差可以表示为

Fig. 2 One port parameter-energy effective capacitance $C_{\rm E}$ 储存在变压器绕组间的电场能量 W_e 可以用积分式 (2)计算得到:

$$W_{\rm e} = \frac{1}{2} \int_0^w \frac{C_0}{w} (\Delta u)^2 \, \mathrm{d}x$$
 (2)

其中C0是变压器原边和副边间的结构电容。

将积分计算得到的电场能量归算到变压器的 原边电位点U_p处,得到相对于变压器原边电位的能 量端口等效电容C_E。

$$\frac{1}{2}C_{\rm E}U_{\rm p}^2 = W_{\rm e} \tag{3}$$

化简为

$$C_{\rm E} = \frac{1}{3} C_0 \left(\frac{U_{\rm p} - U_{\rm s}}{U_{\rm p}}\right)^2 \tag{4}$$

当变压器原边的匝数远大于副边匝数时,将副 边绕组看作为0电位以简化分析不会带来太大的误 差,这样用能量等效计算得到的端口有效电容可以 进一步简化为*C*_E=*C*₀/3。

2 共模端口有效电容

变压器的分布电容是共模电流传输通路的重 要参数,用变压器存储电场能量归算得到的能量端 口有效电容,并不能反映变压器对共模电流传导的 特性,因为变压器的能量端口有效电容是一端口网 络参数,是从电压施加侧看进去的同一端的等效电 容, 它反映了变压器存储电场能量的能力。而描述 变压器内共模噪音电流流动的有效电容应该是一 个二端口网路参数,即噪音源施加于变压器的一端 口,而共模噪音电流是经两个绕组间的分布电容由 另一端口流出。图3以反激式开关电源为例解释了 其中的差异, 原边噪音源产生的共模噪音经变压器 绕组间电容耦合到变压器的副边, 流入副边由对地 分布电容经LISN阻抗回到地。图 3(a)是由储存能量 得到的能量端口有效电容, 该等效电容是将原边和 副边间的存储能量归算至原边电位U_n,归算得到的 能量端口有效电容反映了原边和副边之间所存储 的电场能量,是原边施加电位 $U_{\rm p}$ 的参数 $C_{\rm E}$ = f(U_p), 是一端口的阻抗参数。图 3(b)中则体现了原 边所施加电压U_n的情况下, 共模电流由变压器副边 流出,其对应的有效电容体现了变压器一端口施加 电压,另一端口出现的共模电流大小的二端口转移 阻抗的概念 $C_Q=f(U_p, i_{CM})$ 。明显的基于能量计算得 到的描述一端口的有效电容并不等同于描述共模 噪音的二端口有效转移阻抗电容,不适合用来分析 共模噪音电流。

用于衡量变压器共模抑制能力的电容是个二 端口参数,在已知一个端口施加的电位分布的情况

Fig. 3 Two kinds of capacitance characteristics of transformer in Flyback converter

下,通过计算另一个端口的形成共模噪音的电荷可 以计算得到归算至端口电压的有效电容,为区分两 种端口有效电容,本文将此二端口转移参数称之为 共模端口有效电容(图 4)。

图 4 采用电荷计算共模端口有效电容 Fig. 4 CM terminal effective cap. Calculation based on charge

在考虑变压器绕组线圈电位分布已知的前提 下,变压器副边绕组所感应出的电荷量可以由式(5) 计算得到:

$$Q = \int_0^w \frac{C_0}{w} (\Delta u) dx$$
 (5)

将式(5)计算得到的电荷量, 归算于原边的端口 电压*U*_p, 得到用集总参数表示的共模端口有效电容 *C*₀为式(6):

$$C_{\rm Q} = \frac{Q}{U_{\rm p}} = \frac{1}{2} C_0 \left(\frac{U_{\rm p} - U_{\rm s}}{U_{\rm p}} \right) \tag{6}$$

同理当副边线圈匝数比较少时,其副边电位可以看作是 0 电位,共模端口有效电容简化为*C*_Q= *C*₀/2。

3 变压器电容特性建模

能量端口有效电容和共模有效电容均为折算 到原边电压 U_p 的有效电容,其中能量端口有效电 容为 $C_E=C_0/3$,表征了变压器存储电场能量的物理 特性,而用形成位移电流的感应电荷计算的共模 端口有效电容为 $C_Q=C_0/2$,表征了变压器对共模噪 音的抑制特性。两个端口有效电容间存在差异, 而且 $C_Q>C_E$,原有的模型无法同时表达这两种特 性,为此需要对变压器进行重新建模。本文提出 了图 5 所示的考虑了变压器线圈电位分布的新模 型,该模型在原有两个集总电容的基础上增加了

图 5 新的变压器电容模型 Fig. 5 New transformer capacitance model

一个新的集总电容C_{ps3},这3个电容参数并不是简单的把总的C_{ps}分为三等分,即C_{ps1}=C_{ps2}=C_{ps3}= C_{ps}/3,下面对这3个电容的参数进行分析计算,以 期可以同时表达变压器存储能量和共模噪音抑制 的两种特性。

共模噪声测试包括 2 端和 3 端两种接入情况: 3 端输入时变压器的共模电磁干扰信号经副边侧母 线直接流回地线,变压器的原边静点(电压非跳变点) 和副边静点(电压非跳变点)间的电位差就是噪音电 流流经LISN标准 50Ω电阻的电位差,考虑到噪音电 流为μA数量级,此电位差可以忽略不计,认为原边 静点与副边静点电位相同;而 2 端输入时共模噪声 经副边对地分布电容 C_g 构成回路,此电容一般很 小,因此副边噪声电位可以看作与原边的中点电位 相同为 $U_0/2$ 。

由能量端口有效电容*C*_E和共模有效电容*C*_Q的 定义,当副边电位等于原边中点的电位值*U*_p/2,变 压器原边和副边间存储的电场能量为

$$\frac{1}{2}C_{\rm E}U_{\rm p}^2 = \frac{1}{2}C_{\rm ps1}(U_{\rm p} - \frac{U_{\rm p}}{2})^2 + \frac{1}{2}C_{\rm ps2}(0 - \frac{U_{\rm p}}{2})^2$$

由第二节所述的能量端口有效电容的定义,容易计算得到*C*_E=*C*₀/12,将其带入上式简化后得:

$$3C_{\rm ps1} + 3C_{\rm ps2} = C_0 \tag{7}$$

当副边与原边低电位端点相连时,副边电位与 原边的低电位点电位相同,原边和副边间的电荷量 可以计算得到:

$$C_{\rm Q}U_{\rm p} = C_{\rm ps1}U_{\rm p} + C_{\rm ps3}\frac{U_{\rm p}}{2}$$

将共模有效电容的值Co=Co/2带入上式得到:

$$2C_{\rm ps1} + C_{\rm ps3} = C_0 \tag{8}$$

此时,变压器内存储的电场能量为

$$\frac{1}{2}C_{\rm E}U_{\rm p}^2 = \frac{1}{2}C_{\rm ps1}(U_{\rm p})^2 + \frac{1}{2}C_{\rm ps3}(\frac{U_{\rm p}}{2})^2$$

将端口有效电容CE=C0/3带入得到

$$12C_{\rm ps1} + 3C_{\rm ps3} = 4C_0 \tag{9}$$

联立式(7), (8)和(9)得到C_{ps1}, C_{ps2}和C_{ps3}的值为:

$$\begin{cases} C_{ps1} = C_0 / 6 \\ C_{ps2} = C_0 / 6 \\ C_{ps3} = 2C_0 / 3 \end{cases}$$

4 变压器新模型的物理意义

由新建立的变压器电容模型,图6标示出变压 器内部形成共模噪音电流的电荷流动情况,流经 C_{ps1}和C_{ps3}的电荷分别是C₀U_p/6 和 2C₀U_p/3,这两部 分电荷之和C₀U_p/2 均流入变压器的副边绕组,而流 入原边电压施加侧的电荷为C₀U_p/3,由新模型的电 荷分布可以推断:由变压器原边到副边的电荷i₁返 回到原边时没有全部返回到施加电压的高电位端 i₂,部分电荷C₀U_p/6 是由原边绕组施加电压的低电 位端返回绕组i₃。从变压器内流经原边和副边的电 荷的分布可以看到,流经原边和副边间的共模电流 石是全部由外电路流入,有一部分共模电流是由电 荷在变压器的内部循环流动造成的,因此造成外电 路的共模电流小于原副边间的共模嗓音电流。

图 6 新模型内的电荷分布 Fig. 6 Charge distribution in new model

5 试验及仿真验证

为验证新的变压器电容模型,绕制样品变压器 进行测量,样品变压器采用 PQ32/30 的骨架,其中 原边线圈采用 0.45mm 的铜线 48 匝 1 层, 副边线圈 用 0.05mm 厚的铜箔 1 匝, 原、副边线圈间为 2 层 0.06mm 厚的绝缘胶带。为剔除铁心对变压器的电 容影响,电容测试时不安装铁心,测量得到变压器 的原边电感为 17.42uH, 原边和副边间的电容是 75pF。由变压器的阻抗曲线用其谐振点可以计算得 到变压器的原边绕组电容为 1.69pF, 副边绕组电容 很小可以忽略。将变压器副边与原边绕组的低电位 相连,用 4294A 阻抗分析仪测量变压器的阻抗曲 线,由谐振点可以得到在小信号电压分布下变压器 的端口等效电容为 26.53pF, 减去原边绕组电容, 原副边绕组间的电容为 24.84pF, 此电容值是结构 电容的 1/3。用网络分析仪或 EMI 接收机测量变压 器两个绕组间的插入损耗曲线,即变压器的二端口 网络的转移阻抗,可以计算得到其共模有效电容为 37pF, 大约是结构电容的 1/2。上述的测试和前面 分析的结果完全一致。

图 7 是新的变压器分布电容模型的仿真电路, 变压器绕组间模型由三个电容构成,其中C_{ps1}和C_{ps2} 分别是 1/6 的结构电容,中间的电容C_{ps3}是 2/3 的结 构电容,采用交流仿真来模拟变压器分布电容模型的小信号频域特性。图 8(a)是新模型的仿真结果, 谐振点发生在 7.59MHz,图 8(b)是变压器的实际测 量结果谐振点在 7.46MHz,对比仿真结果和实测结 果曲线一致性,验证了此模型的有效性。

6 结语

(1)对开关电源中的高频变压器,其高频电 场效应包括变压器的电场储能特性和对共模噪音 电流的抑制特性。对描述电场储能特性,为了计及 电位分布的影响,需要采用基于电场能量积分的计 算方法获得,因为其本质上是一个一端口网络的入 端阻抗。而对于描述共模噪音抑制特性,更方便采 用形成位移电流的感应电荷计算方法获得,因为其 本质是一个二端口网络的转移阻抗。

(2)提出了一个新的简单的变压器分布电容 模型,新模型的电路形式与电容参数均不同于目前 使用的变压器分布电容模型,新模型同时兼容表达 了电场能量存储特性和共模噪音抑制特性,而且合 理地解释了变压器的共模噪音电流的流动机理,指 出原副边绕组间流过的共模噪音电流不是完全由 外电路流入,有部分共模电流是感应电荷在变压器 内部循环造成的。

参考文献

 陈为,何建农.电力电子高频磁技术及其发展趋势[J].电工电能 新技术,2000,19(02):30-34.

Chen wei, He Jiannong. Power electronics high-frequency magnetics technology and their development[J]. Advanced Technology of Electrical Engineering and Energy, 2000, 19(02): 30-34. (in Chinese)

- [2] 毛行奎,陈为.开关电源高频平面变压器并联 PCB 线圈交流损耗 建模及分析[J].中国电机工程学报,2006,26(22):167-172.
 Mao Xingkui, Chen Wei. AC loss modeling and analysis for parallel PCB winding in high-frequency power planar transformer
 [J]. Proceedings of the CSEE, 2006, 26(22):167-172(in Chinese).
- [3] Casey L F, Goldberg A F, Schlecht M F. Issues regarding the capacitance of 1-10MHz transformers[C]. The 3rd Annual Applied Power Electronics Conference, Louisiana, U.S.A, 1988: 352-359.
- [4] Duerbaum T, Sauerlaender G. Energy based capacitance model for magnetic device[C]. 16th Annual Applied Power Electronics Conference, California, U.S.A, 2001, 1: 109-115.
- [5] Lu Hanyan, Zhu Jianguo, Hui S Y R. Experimental determination of stray capacitances in high frequency transformers[J] IEEE Transaction on Power Electronics, 2003, 18(5): 1105-1112.
- [6] Lu H Y, Zhu J G, Hui S Y R, et al. Measurement and modeling of stray capacitances in high frequency transformers[C]. The 30th Annual IEEE Power Electronics Specialists Conference, South Carolina, U.S.A, 1999: 763-769.
- [7] 曾光,金舜,史明. 高频高压变压器分布电容的分析和处理[J]. 电力电子技术,2002,36(6):54-57
 Zeng Guang, Jin Shun, Shi Ming. Analysis and disposal of distributed capacitance in high-frequency and high-voltage transformer[J]. Power Electronics, 2002, 36(6): 54-57(in Chinese)
- [8] Prieto R, Asesi R, Cobos J A, et al. model of the capacitive effects in magnetic components[C]. The 26th Annual IEEE Power Electronics Specialists Conference, Dallas, U.S.A, 1995, 2: 678-683.
- [9] Blache F, Keradec J, Cogitore B. Stray capacitance of two winding transformers: Equivalent circuit, measurements, calculation and lowing[C]. IEEE Industry Application Society Annual Meeting, Denver, U.S.A, 1994: 1211-1217.
- [10] Snelling E C. Soft ferrites-properties and applications[M]. London. U.K.Butterworths, 1998.
- [11] 李维波,毛承雄,陆继明,等.分布电容对 Rogowski 线圈动态特

性影响研究[J]. 电工技术学报, 2004, 19(6): 12-17. Li Weibo, Mao Chengxiong, Lu Jiming, et al. Study of the influence of the distributed capacitance on dynamic property of rogowski coil [J]. Transactions of China Electrotechnical Society, 2004, 19(6):

12-17(in Chinese).[12] Grandi G, Kazimierczuk M K, Massarini A, et al. Stray capacitance of single-layer solenoid air-core inductors[J]. IEEE Transactions on Industry Applications, 1999, 35(5): 1162-1168.

[13] Massarini A, Kazimierczuk M K, Grandi G. Lumped parameter models for single- and multiple-layer inductors[C]. The 27th Annual IEEE Power Electronics Specialists Conference, Baveno, Italy, 1996.

收稿日期: 2007-05-28。

作者简介:

董纪清(1974—), 女, 讲师, 博士研究生, 主要从事电力电子高频 功率磁技术及电磁干扰抑制技术的研究, dongjiqing@163.com;

陈 为(1958—),男,教授,博士生导师,主要从事高频功率磁技 术、电磁干扰抑制技术以及工程电磁场分析与应用等方面的研究开发。

(实习编辑 郭联哲)