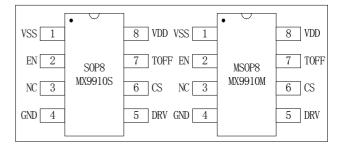
Switching Type LED Driver MX9910

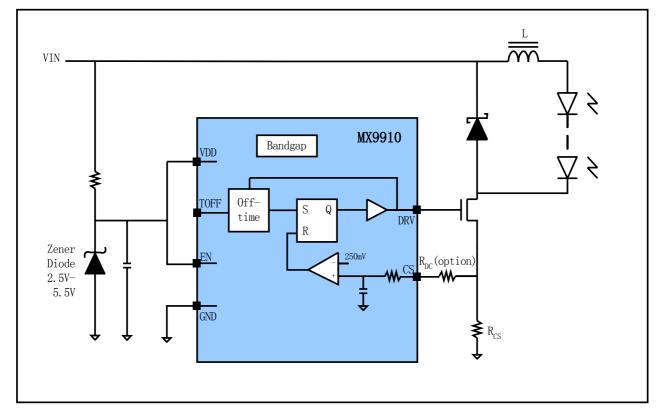
General Description

The MX9910 is a high efficient LED driver control IC. It is a universal control LED driver and can be configured to operate as a step-up, step-down and step-up/step-down LED driver. The input and output voltage can be extended beyond 450V.

The MX9910 uses a fixed off time and 2MHz switching frequency can be achieved. The minimum off time can be set by an external capacitor and resistor.

The LED current is programmable and is set from 20mA to 2.0A by an external resistor.


Applications


• LED driver application

Features

- Constant current LED driver: 20mA to 2A programmable
- Step-up, step-down, step-up/step-down operation
- >90 efficiency
- Input and output voltage: 2.5V to 450V
- Up to 2MHz switching frequency

Package

Block Diagram

Pin Assignment

Pin No.	Pin Name	Description
1	VSS	Ground
2	EN	Chip Enable
3	NC	No connection
4	GND	Voltage feedback
5	DRV	Driver
6	CS	Current sensing
7	TOFF	Off time selection
8	VDD	Power supply (2V-6.5V)

Absolute Maximum Ratings

Туре	Symbol	Description	Value	Unit
Voltage	Vmax	Maximum voltage on VDD pins	8	V
	Vmin-max	Voltage range on EN, CS and FB pins	-0.3-VDD+0.3	V
Thermal	Tmin-max	Operation temperature range	-20-85	°C
	Tstorage	Storage temperature range	-40-165	°C
ESD	VESD	ESD voltage for human body model	2000	V

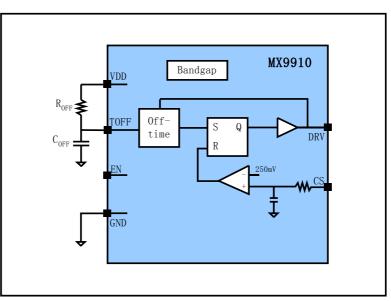
•

Electronic Characteristics

Parameter	Symbol	Test Condition	Min	Тур	Max	Unit
Power supply	VDD		2.5		6.5	V
CS pin feedback voltage	V _{CS}		240	250	260	mV
Operation current	IDD			0.5	1	mA
Off time (without R_{OFF} and C_{OFF})	T _{OFF0}			620		ns
Standby current	IDDQ				1	uA
EN pin high level voltage	V _{ENH}		2.0			V
EN pin low level voltage	V _{ENL}				0.8	V
DRV Rising Time	T _{RISE}	500pF cap on DRV pin			50	ns
DRV Falling Time	T_{fall}	500pF cap on DRV pin			50	ns

Detail Description

Peak Current Detect and Fixed Off-Time Control


The MX9910 uses peak current detect and fixed off-time control scheme. The circuit works in two states:

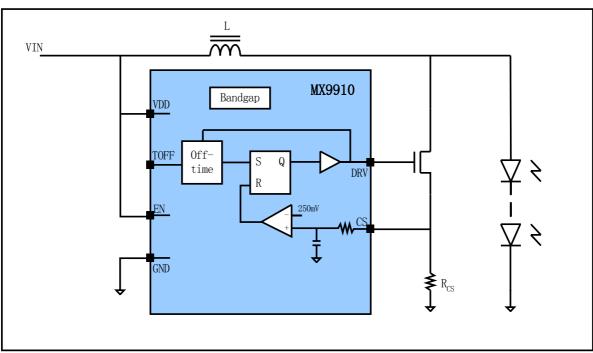
- ON State: The switch is on and the inductor L is charged until the inductor current reaches the peak current: $250mV/R_{CS}$, the circuit goes to OFF state.
- OFF State: The switch remains off until a fixed off time determined by R_{OFF} and C_{OFF} as discussed below.

The fixed off time T_{OFF} is determined by R_{OFF} and C_{OFF} as:

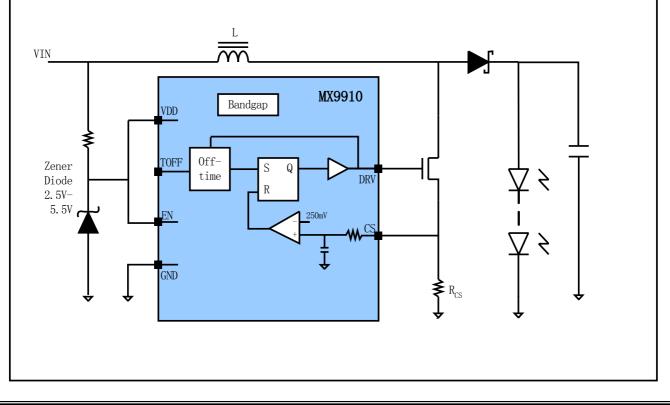
$$T_{OFF} = 0.51 \bullet \frac{100 K\Omega \bullet R_{OFF}}{R_{OFF} + 100 K\Omega} \bullet (C_{OFF} + 12 \, pF)$$

If TOFF pin is left open, the typical value of T_{OFF} is:

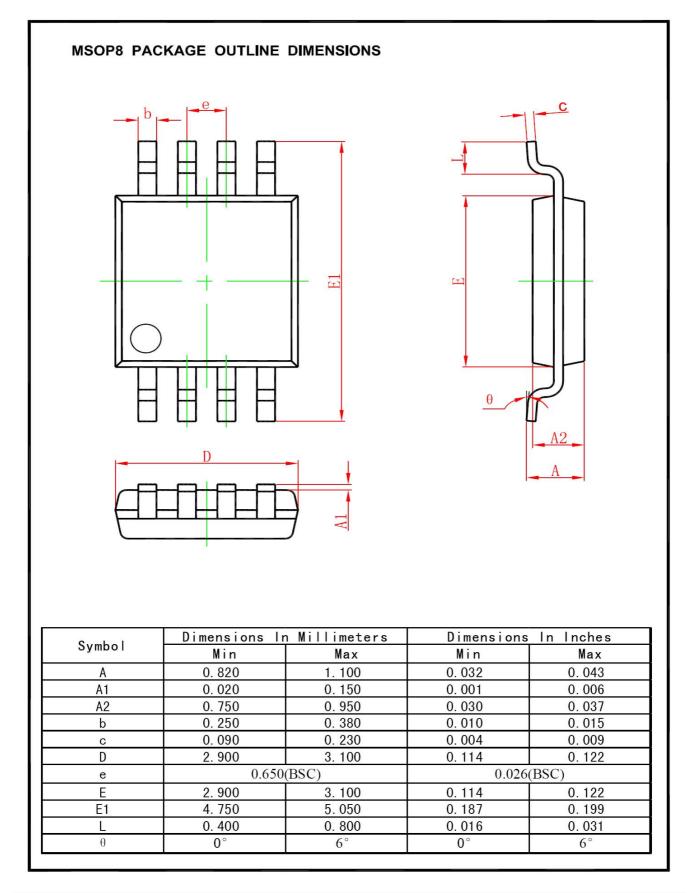
$$T_{OFF} = 612ns$$

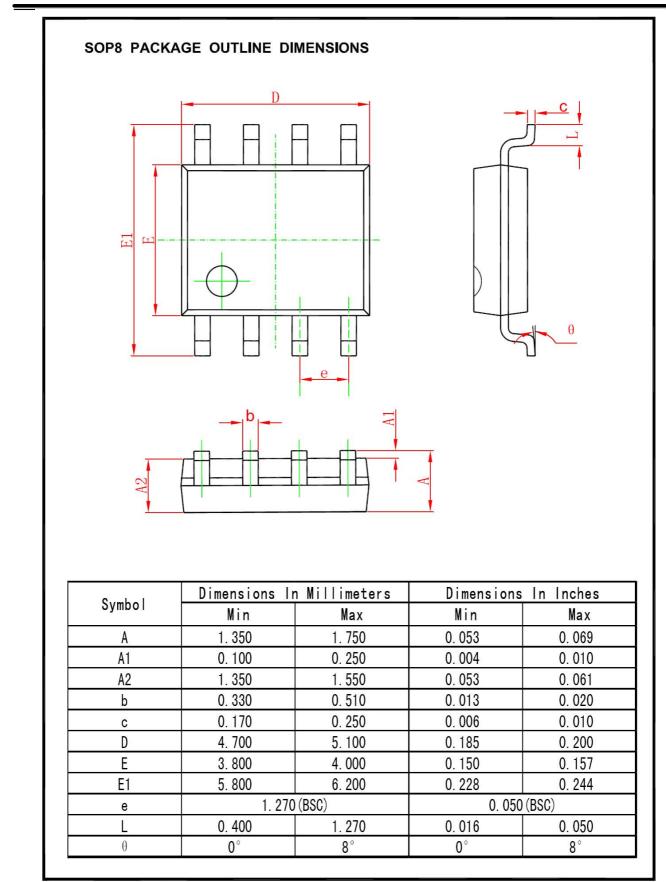

The T_{OFF} can be reduced by adding R_{OFF} and be increased by adding C_{OFF} .

Typical Applications


Step-Down LED Driver

The step-down LED driver applation is shown in the block diagram.


Step-Up LED Driver Without Schottky Diode



Step-Up LED Driver With Schottky Diode

Package Information

