Appendix

This worksheet calculates the relevant currents and voltages as well as losses in PFC boost topologies. Constant output voltage and continuos conduction mode (CCM) and critical conduction mode (CRM) operation is assumed.

Constants:

$$
\begin{array}{lll}
\mathrm{p}:=10^{-12} & \text { nano }:=10^{-9} \quad \mathrm{u}:=10^{-6} \quad \mathrm{~m}:=10^{-3} \quad \mathrm{k}:=10^{3} \quad \mathrm{MEG}:=10^{6} \quad \mathrm{j}:=\sqrt{-1} \\
\mathrm{i}:=0 . .200 \quad \mathrm{y}:=1 . .5 & \mathrm{x}:=0 . .4 \quad \mathrm{Fs}:=100 \mathrm{k} \\
\text { Vout }:=385 & \text { VAC_min }:=85 \quad \text { VAC }:=120 \\
\text { Pout }:=200 \quad \eta:=0.95 \quad \text { Pin }:=\frac{\text { Pout }}{\eta} \quad \text { Iload }:=\frac{\text { Pout }}{\text { Vout }}
\end{array}
$$

Pin_var allows input power to be varied over a range to compare losses.

$$
\text { Pin_var }_{\mathrm{x}}:=\operatorname{Pin} \cdot(\mathrm{x}+1)
$$

$$
\mathrm{j}:=0 . .5
$$

$$
\text { VAC2: }=\left(\begin{array}{c}
85 \\
120 \\
132 \\
215 \\
240 \\
265
\end{array}\right)
$$

$$
\operatorname{Vin}_{1}:=\sqrt{2} \cdot \operatorname{VAC}\left|\sin \left(\mathrm{i} \cdot \frac{\pi}{200}\right)\right|
$$

Boost converter duty cycle

$$
D_{i}:=\frac{\text { Vout }- \text { Vin }_{i}}{\text { Vout }}
$$

Average boost inductor current in CCM.

$$
\mathrm{IAC}_{\mathrm{i}}:=\frac{\mathrm{Vin}_{1} \cdot \operatorname{Pin}}{\mathrm{VAC}^{2}}
$$

A. Calculate currents in the CCM boost

RMS switch current

$$
\begin{gathered}
\text { Iq_rms_ccm }:=\frac{\text { Pin }}{\text { VAC }} \cdot \sqrt{1-\frac{8}{3 \cdot \pi} \cdot \frac{\sqrt{2} \cdot V A C}{\text { Vout }}} \\
\text { Iq_rms_ccm }=1.388
\end{gathered}
$$

RMS switch current varying as a function of input power.

$$
\text { Iq_rms_ccm_var }_{x}:=\frac{\text { Pin_var }_{x}}{\text { VAC }} \cdot \sqrt{1-\frac{8}{3 \cdot \pi} \cdot \frac{\sqrt{2} \cdot V A C}{\text { Vout }}}
$$

Peak inductor current

$$
\text { IL_pk_ccm }:=\frac{\sqrt{2} \cdot \text { Pin }}{\text { VAC }}+0.1 \cdot \frac{\sqrt{2} \cdot \text { Pin }}{\text { VAC }}
$$

Let delta i in CCM inductor be 20% of peak current at low line.

$$
\text { IL_ripple }:=0.2 \cdot \frac{\sqrt{2} \cdot \text { Pin }}{\text { VAC }}
$$

Pk current is lin avg $+1 / 2$ delta i
Peak inductor current as a function of input power

$$
\text { IL_pk_ccm_var }_{x}:=\frac{\sqrt{2} \cdot \text { Pin_var }_{x}}{\text { VAC }}+0.1 \cdot \frac{\sqrt{2} \cdot \text { Pin_var }_{x}}{\text { VAC }}
$$

Inductor current valley

$$
\begin{gathered}
\text { IL_valley_ccm }:=\frac{\sqrt{2} \cdot \operatorname{Pin}}{\text { VAC }}-\left(0.1 \cdot \frac{\sqrt{2} \cdot \operatorname{Pin}}{\text { VAC }}\right) \\
\text { IL_valley_ccm }=2.233^{\text {IL_valley_ccm_var }_{\mathrm{x}}:=\frac{\sqrt{2} \cdot \text { Pin_var }_{\mathrm{x}}}{\text { VAC }}-\left(0.1 \cdot \frac{\sqrt{2} \cdot \text { Pin_var }_{x}}{\text { VAC }}\right)}
\end{gathered}
$$

Peak diode current is equal to the peak inductor current.
Idiode_pk_ccm := IL_pk_ccm

B. Calculate currents in the CRM boost converter:

$$
\begin{gathered}
\text { IL_pk_crm:= } 2 \sqrt{2} \cdot \frac{\text { Pin }}{\text { VAC }} \\
\text { IL_pk_crm }=4.962
\end{gathered}
$$

Peak current in CRM is twice the CCM current, neglecting the ripple current for CCM.

$$
\begin{gathered}
\text { IL_pk_crm_var }_{\mathrm{x}}:=2 \sqrt{2} \cdot \frac{\text { Pin_var }_{\mathrm{x}}}{\text { VAC }} \\
\text { IL_pk_crm_var }_{\mathrm{x}}:=2 \sqrt{2} \cdot \frac{\text { Pin_var }_{\mathrm{x}}}{\text { VAC }} \\
\text { Iq_rms_crm }:=\sqrt{\frac{1}{6}-4 \cdot \sqrt{2} \frac{\text { VAC }}{9 \cdot \pi \cdot \text { Vout }} \cdot \text { IL_pk_crm }^{\text {Iq_rms_crm_var }}:=\sqrt{\frac{1}{6}-4 \cdot \sqrt{2} \frac{\text { VAC }}{9 \cdot \pi \cdot \text { Vout }}} \cdot \text { IL_pk_crm_var }} \begin{array}{c}
\text { Idiode_pk_crm }:=\text { IL_pk_crm }
\end{array} .
\end{gathered}
$$

C. Calculate loss components.

Calculate diode related losses:
Assume di/dt at turn off is $100 \mathrm{~A} / \mathrm{us}$.
For the purpose of calculation use the 8 ETH 06 IR diode as reference. Also assume IRF840 for MOSFET

$$
\begin{gathered}
\text { VFF }:=0.6 \\
\operatorname{trr}:=50 \cdot \text { nano } \quad \text { Qrr }:=120 \text { nano } \quad \text { Irrm }:=4.8 \quad \text { didf }:=100 \cdot \frac{1}{\mathrm{u}} \quad \text { Rdson }:=0.85 \\
\text { } \begin{array}{c}
\text { transistor_rise }:=75 \cdot \text { nano } \\
\\
\text { transistor_fall }:=75 \cdot \text { nano } \\
\operatorname{Irrm}_{-} \text {pfc }_{\mathrm{i}}:=\operatorname{Irrm}\left|\sin \left(\mathrm{i} \cdot \frac{\pi}{200}\right)\right|
\end{array} .
\end{gathered}
$$

Loss in MOSFET due to reverse recovery current from boost diode. Only valid for CCM operation.

Losses in MOSFET due to turn-off overlap of voltage and current:

Losses in MOSFET due to turn-on overlap of voltage and current:

Conduction losses in the MOSFET:

$$
\text { Pq_ccm_rms_var : }:\left[\begin{array}{c}
\left(\text { Iq_rms_ccm_var }_{0}\right)^{2} \cdot \text { Rdson } \\
\left(\text { Iq_rms_ccm_var }_{1}\right)^{2} \cdot \text { Rdson } \\
\left(\text { Iq_rms_ccm_var }_{2}\right)^{2} \cdot \text { Rdson } \\
\left(\text { Iq_rms_ccm_var }_{3}\right)^{2} \cdot \text { Rdson } \\
\left(\text { Iq_rms_ccm_var }_{4}\right)^{2} \cdot \text { Rdson }
\end{array}\right]
$$

Diode conduction losses:

Diode bridge conduction losses:

P1 := Prr_ccm_var + Pq_ccm_turnoff_var + Pq_ccm_turnon_var
P2 := Pq_ccm_rms_var + Pdiode_ccm_var + Pdiodebridge_ccm_var
P_loss_semi_ccm_var := P1 + P2
P_loss_semi_ccm_var $=\left(\left.\begin{array}{c}11.176 \\ 24.342 \\ 40.784 \\ 60.5\end{array} \right\rvert\,\right.$

Calculate losses in the CRM boost.

Let the average Fs for CRM operation be 80 kHz .
Fs_crm := 80.k

Losses in MOSFET due to turn-off overlap of voltage and current:

MOSFET conduction losses:

$$
\text { Pq_crm_rms_var :=[}\left[\begin{array}{c}
\left(\text { Iq_rms_crm_var }_{0}\right)^{2} \cdot \text { Rdson } \\
\left(\text { Iq_rms_crm_var }_{1}\right)^{2} \cdot \text { Rdson } \\
\left(\text { Iq_rms_crm_var }_{2}\right)^{2} \cdot \text { Rdson } \\
\left(\text { Iq_rms_crm_var }_{3}\right)^{2} \cdot \text { Rdson } \\
\left(\text { Iq_rms_crm_var }_{4}\right)^{2} \cdot \text { Rdson }
\end{array}\right]
$$

Diode conduction losses:

Bridge diode conduction losses:

Total semiconductor losses in CRM:

$$
\left.\begin{array}{c}
\text { P3 }:=\text { Pq_crm_turnoff_var + Pq_crm_rms_var } \\
\text { P4 }:=\text { Pdiode_crm_var }+ \text { Pdiodebridge_crm_var } \\
\text { P_loss_semi_crm_var }:=\text { P3 + P4 } \\
\text { P_loss_semi_crm_var }=\left(\begin{array}{c}
10.238 \\
24.843 \\
43.814 \\
67.15
\end{array}\right) \\
94.853
\end{array}\right) \quad \text { P_loss_semi_ccm_var }=\left(\left.\begin{array}{c}
11.176 \\
24.342 \\
40.784 \\
60.5
\end{array} \right\rvert\,\right.
$$

for Fs_crm $=80 \mathrm{kHz}$

This plot compares the semiconductor losses for CCM vs. CRM as a function of input power.

Efficiency comparison of CCM vs. CRM as a function of input power.

