

Resonant Half Bridge LLC Controller enhance slim Digital TV design

Owen Jiang Oct 31 2008

- Introduction to LLC resonant converter
- Step by step design method
- Other design issues for LLC resonant converter
- TI 8 pin LLC controller introduction
- Application example –300W slim digital TV power solution

Design Challenges for DC/DC

- Higher power density
 - Higher efficiency, smaller heat sink
 - Higher switching frequency, smaller magnetics
 - Less energy storage capacitors, smaller size
- Holdup time requirement
 - Large energy storage capacitor
 - Higher cost
 - Large size

Holdup Time Requirement

The

Behind Your Designs Vbus DC/DC PFC Vin Vout 1400 Holdup capacitor requirement (uF) **↓**∨ Holdup time 4X220uF 1200 50% 400V 1000 2X330uF Vmin 800 2X220uF 600 48V 400 ◀ 20mS → 200 L 350 300 250 200 150 Minimum DC/DC operation voltage (V)

Large capacitor required to provide energy during holdup time
Wide operation range DC/DC can reduce holdup cap requirement

PWM Converter with Wide Operation Range

Behind Your Designs

ÆR

The

MENTS

Low Efficiency at normal condition due to wide operation range
LLC resonant converter care achieve higher efficiency
R E A L W O R L D S I G N A P R O C E S S I N G^M

LLC Resonant Converter with Wide Operation Range

Operation Principles At Resonant Frequency

≻At resonant frequency, maximum efficiency is expected

Operation Principle Below Resonant Frequency

>When switching frequency is below resonant frequency, magnetizing inductor begins to participate in resonant and increase voltage gain

Secondary diode becomes discontinuous

Operation Principle *Above Resonant Frequency*

 When switching frequency is above resonant frequency, circuit behaves as SRC
Secondary current becomes CCM, reverse recovery loss increases

WR Benefits of LLC Resonant Converter

Behind Your Designs

The

- ZVS can be achieved by utilizing transformer magnetizing inductor
- Capacitor filter, less voltage stress on rectifiers
- Smaller switching loss due to small turn off current
- Variable switching frequency control, not sensitive to load change
- Wide operation range without reducing normal operation efficiency

Impacts of Circuit Parameters

Behind Your Designs

Design Goals for LLC Resonant Converter

Inductor Ratio Quality factor O = -

- Minimize RMS current under normal operation condition
- Ensure ZVS operation
- Ensure desired operation range

Choice of Lm

Behind Your Designs Criteria 1: Primary RMS Current at Normal Operation

The

$$I_{RMS_{P}} = \frac{1}{4\sqrt{2}} \frac{V_{O}}{nR_{L}} \sqrt{\frac{n^{4}R_{L}^{2}T^{2}}{L_{m}^{2}}} + 4\pi^{2}$$

n:1:1

➢ Primary side RMS current is

determined by magnetizing

^m inductor

Larger Lm the better

FEXAS INSTRUMENTS Proprietary Information

Choice of Lm <u>Criteria 3: Zero Voltage Switching</u>

> Turn off current should be able to discharge junction caps during dead-time

$$L_m \leq \frac{T \cdot t_{dead}}{16C_{eq}}$$

Trade-off Design of Dead Time

t_{dead}

 L_m

Smaller turn off current
Smaller magnetizing current

Increase RMS current due to duty cycle loss

t_{dead}

 L_m

Smaller duty cycle loss

Larger magnetizing currentLarger turn off loss

Proprietary Information

The

PourChievable Peak Gain for Different Ln and Q

Behind Your Designs

For each Ln and Q combination, the maximum gain can be achieved is determined

Colored surface represent the maximum gain for different Ln and Q combinations
Only certain Ln and Q region can meet

Only certain Ln and Q region can meet gain requirement

 \succ To keep Lm constant and achieve low conduction loss and switching loss at normal operation, product of Ln and Q is expected to be constant

> Reduce Lm can help achieve higher peak gain

Start Up Current Consideration

Behind Your Designs

The

Larger Q value gives smaller start up current with less frequency range

"A Novel Precise Design Method for LLC Series Resonant Converter", Teng liu, etc., INTELEC '06

WORLD SIGNAL PROCESSING

Design Flow Chart for LLC Resonant Converter

The

ÆR

R

Other Design Issues Over Current Protection

TEXAS INSTRU

Proprietary Information

MENTS

At over load condition, switching frequency needs to be increased to maintain output current 2

P R O C E S S I N G

WORLD SGNAL

LLC Summary

- LLC resonant converter is able to achieve wide operation together with high efficiency
- Due to low switching loss, LLC resonant converter is able to operate high switching frequency, while maintain high efficiency
- LLC resonant converter design needs to find a suitable magnetizing inductor to ensure smaller conduction loss and switching loss
- By choosing a suitable Ln value, desired voltage gain can be achieved to reduce holdup time capacitor requirement

UCC25600 Key Features

Behind Your Designs

- ✓ 8 pin SOIC package simplifies circuit design
- ✓ Adjustable dead time allows optimal design for different applications
- ✓ Simple frequency control with minimum and maximum frequency limiting
- \checkmark 3% min. frequency limiting reduces design margin
- ✓ Programmable soft start time with simple ON/OFF control
- ✓ Zero power shut down for light load regulation
- ✓ Two level over current protection with latch off
- ✓ Over temperature protection
- ✓ Gate driver capable directly drive half bridge with transformer

Slim 300W DTV design

Interleave transition mode PFC UCC28061

Features

- Interleaved and Variable Frequency Operation for EMI Reduction
- Flexible Phase Management to Facilitate Energy Star Design
- Failsafe OVP with Dual Paths which Prevent any Voltage Loop Failure from Causing an Output Over Voltage Condition
- Senseless Current Shaping to Simplify Board Layout and Improve Efficiency
- In-rush Safe Current Limiting to Prevent MOSFET Conduction
- Slew Rate Comparator for Improved Transient Response

REAL WORLD SIGNAL PROCESSING

UCC25600 LLC controller Application Circuit

Behind Your Designs

- **Programmable soft start with on/off control**
- Two level over current protection, auto-recovery and latch up Matching output with 50ns tolerance
- W ORLD SIGNAL PROCESSING

Performance and BOM cost

Efficiency & Thermal Evaluation

• 24V Rectifier is the Highest Temp. 82°C at Room Ambit at 90VAC Input with Full-Load

> System BOM Cost Evaluation

- Conventional 300W LCD-TV Power Supply Unit (PSU) is about \$14~15
- Slim-Type PSU Reference Design is estimated about \$15~16 (5~10% Cost Incremental)

- TI 8 Pin Resonant Half Bridge Controller provides simple and reliable solution for resonant half bridge converter, including
 - 3% accurate switching frequency
 - Programmable max. & min. switching frequency
 - Programmable dead time
 - Soft start with easy ON/OFF control
 - Over current protection
 - VCC UVLO and over voltage protection
 - Integrated gate driver
- Provides system cost reduction through less external component and easy layout

Thank You

www.ti.com.cn

