## FOD3150

High Noise Immunity, 1.0A Output Current, Gate Drive Optocoupler

## Features

■ High noise immunity characterized by $20 \mathrm{kV} / \mu \mathrm{s}$ minimum common mode rejection
■ Use of P-channel MOSFETs at output stage enables output voltage swing close to the supply rail
■ Wide supply voltage range from 15 V to 30 V
■ Fast switching speed

- 500ns max. propagation delay
- 300ns max. pulse width distortion

■ Under Voltage LockOut (UVLO) with hysteresis
■ Extended industrial temperate range, $-40^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$ temperature range
■ Safety and regulatory pending approvals

- UL1577, 5000 V $_{\text {RMS }}$ for 1 min .
- IEC60747-5-2 (approval pending)

■ $>8.0 \mathrm{~mm}$ clearance and creepage distance (option ' $T$ ')

## Applications

■ Industrial inverter
■ Uninterruptible power supply

- Induction heating

■ Isolated IGBT/Power MOSFET gate drive

## Description

The FOD3150 is a 1.0A Output Current Gate Drive Optocoupler, capable of driving most 800V/20A IGBT/MOSFET. It is ideally suited for fast switching driving of power IGBT and MOSFETs used in motor control inverter applications, and high performance power system.
It utilizes Fairchild's patented coplanar packaging technology, Optoplanar ${ }^{\circledR}$, and optimized IC design to achieve high noise immunity, characterized by high common mode rejection.

It consists of a gallium aluminum arsenide (AIGaAs) light emitting diode optically coupled to an integrated circuit with a high-speed driver for push-pull MOSFET output stage.

## Related Resources

■ FOD3120, 2.5A Output Current, Gate Drive Optocoupler Datasheet
■ www.fairchildsemi.com/products/opto/

Functional Block Diagram


Note:
A $0.1 \mu \mathrm{~F}$ bypass capacitor must be connected between pins 5 and 8 .

## Package Outlines




## Truth Table

| LED | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \text { "Positive Going" } \\ \text { (Turn-on) } \end{gathered}$ | $\begin{gathered} \mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}} \text { "Negative Going" } \\ \text { (Turn-off) } \end{gathered}$ | $\mathrm{V}_{0}$ |
| :---: | :---: | :---: | :---: |
| Off | 0 V to 30 V | 0 V to 30 V | Low |
| On | OV to 11V | 0 V to 9.5 V | Low |
| On | 11 V to 13.5 V | 9.5 V to 12 V | Transition |
| On | 13.5 V to 30 V | 12 V to 30 V | High |

## Pin Definitions

| Pin \# | Name | Description |
| :---: | :---: | :--- |
| 1 | NC | Not Connected |
| 2 | Anode | LED Anode |
| 3 | Cathode | LED Cathode |
| 4 | NC | Not Connected |
| 5 | $\mathrm{~V}_{\mathrm{EE}}$ | Negative Supply Voltage |
| 6 | $\mathrm{~V}_{\mathrm{O} 2}$ | Output Voltage 2 (internally connected to $\mathrm{V}_{\mathrm{O} 1}$ ) |
| 7 | $\mathrm{~V}_{\mathrm{O} 1}$ | Output Voltage 1 |
| 8 | $\mathrm{~V}_{\mathrm{CC}}$ | Positive Supply Voltage |

## Safety and Insulation Ratings

As per IEC 60747-5-2. This optocoupler is suitable for "safe electrical insulation" only within the safety limit data. Compliance with the safety ratings shall be ensured by means of protective circuits.

Absolute Maximum Ratings ( $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified)
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

| Symbol | Parameter | Value | Units |
| :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {STG }}$ | Storage Temperature | -55 to +125 | ${ }^{\circ} \mathrm{C}$ |
| TopR | Operating Temperature | -40 to +100 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{J}$ | Junction Temperature | -40 to +125 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\text {SOL }}$ | Lead Wave Solder Temperature (refer to page 19 for reflow solder profile) | 260 for 10sec | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{I}_{\mathrm{F}(\mathrm{AVG})}$ | Average Input Current | 25 | mA |
| $\mathrm{V}_{\mathrm{R}}$ | Reverse Input Voltage | 5 | V |
| $\mathrm{l}_{\text {(PEAK) }}$ | Peak Output Current ${ }^{(1)}$ | 1.5 | A |
| $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ | Supply Voltage | 0 to 35 | V |
| $\mathrm{V}_{\text {O(PEAK) }}$ | Peak Output Voltage | 0 to $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{t}_{\mathrm{R}(\mathrm{IN})}, \mathrm{t}_{\mathrm{F}(\mathrm{IN})}$ | Input Signal Rise and Fall Time | 500 | ns |
| $\mathrm{PD}_{1}$ | Input Power Dissipation ${ }^{(2)(4)}$ | 45 | mW |
| $\mathrm{PD}_{0}$ | Output Power Dissipation ${ }^{(3)(4)}$ | 250 | mW |

## Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

| Symbol | Parameter | Value | Units |
| :---: | :--- | :---: | :---: |
| $\mathrm{T}_{\mathrm{A}}$ | Ambient Operating Temperature | -40 to +100 | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{V}_{\mathrm{CC}}-\mathrm{V}_{\mathrm{EE}}$ | Power Supply | 15 to 30 | V |
| $\mathrm{I}_{\mathrm{F}(\mathrm{ON})}$ | Input Current (ON) | 7 to 16 | mA |
| $\mathrm{~V}_{\mathrm{F}(\mathrm{OFF})}$ | Input Voltage (OFF) | 0 to 0.8 | V |

## Isolation Characteristics

Apply over all recommended conditions, typical value is measured at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

| Symbol | Parameter | Conditions | Min. | Typ. | Max. | Units |
| :---: | :--- | :--- | :--- | :---: | :---: | :---: |
| $\mathrm{V}_{\text {ISO }}$ | Input-Output Isolation <br> Voltage | $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{R} . \mathrm{H} .<50 \%, \mathrm{t}=1.0 \mathrm{~min}$, <br> $\mathrm{I}_{-\mathrm{O}} \leq 10 \mu \mathrm{~A}, 50 \mathrm{~Hz}(5)(6)$ | 5000 |  |  | $\mathrm{~V}_{\mathrm{RMS}}$ |
| $\mathrm{R}_{\mathrm{ISO}}$ | Isolation Resistance | $\mathrm{V}_{\mathrm{I}-\mathrm{O}}=500 \mathrm{~V}(5)$ |  | $10^{11}$ |  | $\Omega$ |
| $\mathrm{C}_{\text {ISO }}$ | Isolation Capacitance | $\mathrm{V}_{\mathrm{I}-\mathrm{O}}=0 \mathrm{~V}$, Freq $=1.0 \mathrm{MHz}^{(5)}$ |  | 1 | pF |  |

Electrical Characteristics
Apply over all recommended conditions, typical value is measured at $\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Ground}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

| Symbol | Parameter | Conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $V_{F}$ | Input Forward Voltage | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ | 1.2 | 1.5 | 1.8 | V |
| $\Delta\left(\mathrm{V}_{\mathrm{F}} / \mathrm{T}_{\mathrm{A}}\right)$ | Temperature Coefficient of Forward Voltage |  |  | -1.8 |  | $\mathrm{mV} /{ }^{\circ} \mathrm{C}$ |
| $B V_{R}$ | Input Reverse Breakdown Voltage | $\mathrm{I}_{\mathrm{R}}=10 \mu \mathrm{~A}$ | 5 |  |  | V |
| $\mathrm{C}_{\text {IN }}$ | Input Capacitance | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{VF}=0 \mathrm{~V}$ |  | 60 |  | pF |
| $\mathrm{IOH}^{\text {I }}$ | High Level Output Current ${ }^{(1)}$ | $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-0.75 \mathrm{~V}$ | 0.2 |  |  | A |
|  |  | $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}-4 \mathrm{~V}$ | 1.0 |  |  |  |
| IOL | Low Level Output Current ${ }^{(1)}$ | $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{EE}}+0.75 \mathrm{~V}$ | 0.2 |  |  | A |
|  |  | $\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{EE}}+4 \mathrm{~V}$ | 1.0 |  |  |  |
| $\mathrm{V}_{\mathrm{OH}}$ | High Level Output Voltage | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=-1 \mathrm{~A}$ | $\mathrm{V}_{C C}-4 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{Cc}}-6 \mathrm{~V}$ |  | V |
|  |  | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=-100 \mathrm{~mA}$ | $\mathrm{V}_{\mathrm{CC}}-0.5 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V}$ |  |  |
| $\mathrm{V}_{\text {OL }}$ | Low Level Output Voltage | $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~A}$ |  | $\mathrm{V}_{\mathrm{EE}}+6 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{EE}}+4 \mathrm{~V}$ | V |
|  |  | $\mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=100 \mathrm{~mA}$ |  | $\mathrm{V}_{\mathrm{EE}}+0.1 \mathrm{~V}$ | $\mathrm{V}_{\mathrm{EE}}+0.5 \mathrm{~V}$ |  |
| $\mathrm{I}_{\mathrm{CCH}}$ | High Level Supply Current | $\mathrm{V}_{\mathrm{O}}=$ Open, $\mathrm{I}_{\mathrm{F}}=7$ to 16 mA |  | 2.8 | 5 | mA |
| $\mathrm{I}_{\mathrm{CLL}}$ | Low Level Supply Current | $\mathrm{V}_{\mathrm{O}}=$ Open, $\mathrm{V}_{\mathrm{F}}=0$ to 0.8 V |  | 2.8 | 5 | mA |
| $\mathrm{I}_{\text {FLH }}$ | Threshold Input Current Low to High | $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$ |  | 2.3 | 5.0 | mA |
| $\mathrm{V}_{\text {FHL }}$ | Threshold Input Voltage High to Low | $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$ | 0.8 |  |  | V |
| V UVLO+ | Under Voltage Lockout Threshold | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$ | 11 | 12.7 | 13.5 | V |
| V UVLO- |  | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$ | 9.5 | 11.2 | 12.0 | V |
| UVLOHYS | Under Voltage Lockout Threshold Hysteresis |  |  | 1.5 |  | V |

## Switching Characteristics

Apply over all recommended conditions, typical value is measured at $\mathrm{V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{EE}}=\mathrm{Ground}, \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ unless otherwise specified.

| Symbol | Parameter | Conditions | Min. | Typ. | Max. | Units |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {PHL }}$ | Propagation Delay Time to Logic Low Output | $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=7 \mathrm{~mA} \text { to } 16 \mathrm{~mA}, \\ & \mathrm{Rg}=20 \Omega, \mathrm{Cg}=10 \mathrm{nF}, \\ & \mathrm{f}=10 \mathrm{kHz}, \text { Duty Cycle }=50 \% \end{aligned}$ | 100 | 275 | 500 | ns |
| $t_{\text {PLH }}$ | Propagation Delay Time to Logic High Output |  | 100 | 255 | 500 | ns |
| PWD | Pulse Width Distortion, $\left\|t_{\text {PHL }}-t_{\text {PLH }}\right\|$ |  |  | 20 | 300 | ns |
| PDD (Skew) | Propagation Delay Difference Between Any Two Parts or Channels, $\left(\mathrm{t}_{\mathrm{PHL}}-\mathrm{t}_{\mathrm{PLH}}\right)^{(7)}$ |  | -350 |  | 350 | ns |
| $\mathrm{t}_{\mathrm{r}}$ | Output Rise Time (10\% - 90\%) |  |  | 60 |  | ns |
| $\mathrm{t}_{\mathrm{f}}$ | Output Fall Time (90\% - 10\%) |  |  | 60 |  | ns |
| tuVLO ON | UVLO Turn On Delay | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}>5 \mathrm{~V}$ |  | 1.6 |  | $\mu \mathrm{s}$ |
| tuvLo OFF | UVLO Turn Off Delay | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}, \mathrm{~V}_{\mathrm{O}}<5 \mathrm{~V}$ |  | 0.4 |  | $\mu \mathrm{s}$ |
| $\mathrm{CM}_{\mathrm{H}}$ \| | Common Mode Transient Immunity at Output High | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{F}}=7 \text { to } 16 \mathrm{~mA}, \mathrm{~V}_{\mathrm{CM}}=2000 \mathrm{~V}^{(8)} \end{aligned}$ | 20 | 50 |  | kV/ $\mu \mathrm{s}$ |
| ${ }^{\text {CM }}$ L ${ }^{\text {l }}$ | Common Mode Transient Immunity at Output Low | $\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{~V}_{\mathrm{CC}}=30 \mathrm{~V}, \mathrm{~V}_{\mathrm{F}}=0 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=2000 \mathrm{~V}^{(9)} \end{aligned}$ | 20 | 50 |  | kV/ $/ \mathrm{s}$ |

Notes:

1. Maximum pulse width $=10 \mu \mathrm{~s}$, maximum duty cycle $=0.2 \%$
2. Derate linearly above $87^{\circ} \mathrm{C}$, free air temperature at a rate of $0.77 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
3. No derating required across temperature range.
4. Functional operation under these conditions is not implied. Permanent damage may occur if the device is subjected to conditions outside these ratings.
5. Device is considered a two terminal device: Pins 2 and 3 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
6. $5,000 \mathrm{~V}_{\mathrm{RMS}}$ for 1 minute duration is equivalent to $6,000 \mathrm{VAC}_{\mathrm{RMS}}$ for 1 second duration.
7. The difference between $t_{\text {PHL }}$ and $t_{\text {PLH }}$ between any two FOD3150 parts under same test conditions.
8. Common mode transient immunity at output high is the maximum tolerable negative $\mathrm{dVcm} / \mathrm{dt}$ on the trailing edge of the common mode impulse signal, Vcm , to assure that the output will remain high (i.e. $\mathrm{V}_{\mathrm{O}}>15.0 \mathrm{~V}$ ).
9. Common mode transient immunity at output low is the maximum tolerable positive $\mathrm{dVcm} / \mathrm{dt}$ on the leading edge of the common pulse signal, Vcm , to assure that the output will remain low (i.e. $\mathrm{V}_{\mathrm{O}}<1.0 \mathrm{~V}$ ).

## Typical Performance Curves

Fig. 1 Output High Voltage Drop vs. Output High Current


Fig. 3 Output Low Voltage vs. Output Low Current


Fig. 5 Supply Current vs. Ambient Temperature


Fig. 2 Output High Voltage Drop vs. Ambient Temperature


Fig. 4 Output Low Voltage vs. Ambient Temperature


Fig. 6 Supply Current vs. Supply Voltage


## Typical Performance Curves (Continued)

Fig. 7 Low to High Input Current Threshold vs.


Fig. 9 Propagation Delay vs. LED Forward Current


Fig. 11 Propagation Delay vs. Series Load Resistance


Fig. 8 Propagation Delay vs. Supply Voltage


Fig. 10 Propagation Delay vs. Ambient Temperature


Fig. 12 Propagation Delay vs. Load Capacitance


## Typical Performance Curves (Continued)

Test Circuit


Figure 20. $\mathrm{I}_{\mathrm{OL}}$ Test Circuit


Figure 21. $\mathrm{I}_{\mathrm{OH}}$ Test Circuit

## Test Circuit (Continued)



Figure 22. $\mathrm{V}_{\mathrm{OH}}$ Test Circuit


Figure 23. $\mathrm{V}_{\mathrm{OL}}$ Test Circuit

## Test Circuit (Continued)



Figure 24. $\mathrm{I}_{\mathrm{CCH}}$ Test Circuit


Figure 25. $\mathrm{I}_{\mathrm{CCL}}$ Test Circuit

## Test Circuit (Continued)



Figure 26. $\mathrm{I}_{\mathrm{FLH}}$ Test Circuit


Figure 27. $\mathrm{V}_{\mathrm{FHL}}$ Test Circuit


Figure 28. UVLO Test Circuit

## Test Circuit (Continued)



Figure 29. $\mathrm{t}_{\mathrm{PHL}}, \mathrm{t}_{\mathrm{PLH}}, \mathrm{t}_{\mathrm{R}}$ and $\mathrm{t}_{\mathrm{F}}$ Test Circuit and Waveforms


## Package Dimensions



## Surface Mount


0.4" Lead Spacing


8-Pin DIP - Land Pattern


Note:
All dimensions are in inches (millimeters)

Package drawings are provided as a service to customers considering Fairchild components. Drawings may change in any manner without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or obtain the most recent revision. Package specifications do not expand the terms of Fairchild's worldwide terms and conditions, specifically the warranty therein, which covers Fairchild products.

Always visit Fairchild Semiconductor's online packaging area for the most recent package drawings: http://www.fairchildsemi.com/packaging/

Ordering Information

| Part Number | Package | Packing Method |
| :--- | :--- | :--- |
| FOD3150 | DIP 8-Pin | Tube (50 units per tube) |
| FOD3150S | SMT 8-Pin (Lead Bend) | Tube (50 units per tube) |
| FOD3150SD | SMT 8-Pin (Lead Bend) | Tape and Reel (1,000 units per reel) |
| FOD3150V | DIP 8-Pin, IEC60747-5-2 option (Pending approval) | Tube (50 units per tube) |
| FOD3150SV | SMT 8-Pin (Lead Bend), IEC60747-5-2 option <br> (Pending approval) | Tube (50 units per tube) |
| FOD3150SDV | SMT 8-Pin (Lead Bend), IEC60747-5-2 option <br> (Pending approval) | Tape and Reel (1,000 units per reel) |
| FOD3150T | DIP 8-Pin, 0.4" Lead Spacing | Tube (50 units per tube) |
| FOD3150TV | DIP 8-Pin, 0.4" Lead Spacing, IEC60747-5-2 option <br> (Pending approval) | Tube (50 units per tube) |

## Marking Information



| Definitions |  |
| :---: | :--- |
| 1 | Fairchild logo |
| 2 | Device number |
| 3 | IEC60747-5-2 Option (only appears on component ordered <br> with this option) (Pending approval) |
| 4 | One digit year code, e.g., ‘8' |
| 5 | Two digit work week ranging from '01' to '53' |
| 6 | Assembly package code |

## Carrier Tape Specifications



| Symbol | Description | Dimension in mm |
| :---: | :--- | :---: |
| W | Tape Width | $16.0 \pm 0.3$ |
| t | Tape Thickness | $0.30 \pm 0.05$ |
| $\mathrm{P}_{0}$ | Sprocket Hole Pitch | $4.0 \pm 0.1$ |
| $\mathrm{D}_{0}$ | Sprocket Hole Diameter | $1.55 \pm 0.05$ |
| E | Sprocket Hole Location | $1.75 \pm 0.10$ |
| F | Pocket Location | $7.5 \pm 0.1$ |
| $\mathrm{P}_{2}$ |  | $2.0 \pm 0.1$ |
| P | Pocket Pitch | $12.0 \pm 0.1$ |
| $\mathrm{~A}_{0}$ | Pocket Dimensions | $10.30 \pm 0.20$ |
| $\mathrm{~B}_{0}$ |  | $10.30 \pm 0.20$ |
| $\mathrm{~K}_{0}$ |  | $4.90 \pm 0.20$ |
| $\mathrm{~W}_{1}$ | Cover Tape Width | $13.2 \pm 0.2$ |
| d | Cover Tape Thickness | 0.1 max |
|  | Max. Component Rotation or Tilt | $10^{\circ}$ |
| R | Min. Bending Radius | 30 |

## Reflow Profile



- Peak reflow temperature: 260C (package surface temperature)
- Time of temperature higher than 183C for 160 seconds or less
- One time soldering reflow is recommended


## TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks

| Build it $\mathrm{Now}^{\text {TM }}$ | FRFET ${ }^{\circledR}$ | Programmable Active Droop ${ }^{\text {TM }}$ |  |
| :---: | :---: | :---: | :---: |
| CorePLUS ${ }^{\text {TM }}$ | Global Power Resource ${ }^{\text {SM }}$ | QFET ${ }^{\text {® }}$ | P wer franchise |
| CorePOWER ${ }^{\text {M }}$ | Green FPS ${ }^{\text {™ }}$ | QS ${ }^{\text {™ }}$ |  |
| CROSSVOLT ${ }^{\text {TM }}$ | Green FPS ${ }^{\text {™ }}$ e-Series ${ }^{\text {TM }}$ | Quiet Series ${ }^{\text {TM }}$ | TinyBuck ${ }^{\text {™ }}$ |
| CTL ${ }^{\text {TM }}$ | GTO $^{\text {™ }}$ | RapidConfigure ${ }^{\text {TM }}$ | TinyLogic ${ }^{\circledR}$ |
| Current Transfer Logic ${ }^{\text {TM }}$ | IntelliMAX ${ }^{\text {TM }}$ | $\bigcirc$ | TinyLogic <br> TINYOPTO ${ }^{\text {тм }}$ |
| EcoSPARK ${ }^{\circledR}$ | ISOPLANAR ${ }^{\text {TM }}$ | $\underbrace{}_{\text {тм }}$ | TinyPowerTM |
| EfficentMax ${ }^{\text {TM }}$ | MegaBuck ${ }^{\text {TM }}$ | Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$ | TinyPWM ${ }^{\text {™ }}$ |
| EZSWITCH ${ }^{\text {T }}$ * | MICROCOUPLER ${ }^{\text {TM }}$ | SmartMax ${ }^{\text {TM }}$ | TinyWire ${ }^{\text {™ }}$ |
| $\mathrm{EF}^{\text {¢ }}$ | MicroFET ${ }^{\text {тM }}$ | SMART START ${ }^{\text {m }}$ | $\mu$ SerDes $^{\text {TM }}$ |
|  | MicroPak ${ }^{\text {™ }}$ | SPM ${ }^{\text {® }}$ | T |
| + | MillerDrive ${ }^{\text {TM }}$ | STEALTH ${ }^{\text {TM }}$ | MerDes- |
|  | MotionMax ${ }^{\text {TM }}$ | SuperFET ${ }^{\text {тм }}$ | $\mathrm{UHC}^{\circledR} \mathrm{SerDes}$ |
| Fairchild ${ }^{\text {Fairchild Semiconductor }}{ }^{\circledR}$ | Motion-SPM ${ }^{\text {TM }}$ | SuperSOT ${ }^{\text {TM }} 3$ | Ultra FRFET ${ }^{\text {тм }}$ |
| Fairchild Semiconductor | OPTOLOGIC ${ }^{\circledR}$ | SuperSOT ${ }^{\text {TM }}$-6 | Ultra FRFET ${ }^{\text {(miFET }}$ |
| FACT Quiet Series ${ }^{\text {FM }}$ FACT ${ }^{\text {® }}$ | OPTOPLANAR ${ }_{\circledR}^{\circledR}$ | SuperSOT ${ }^{\text {tM }}$-8 | UniFET ${ }^{\text {VCX }}$ |
| FAST $^{\text {® }}$ |  | SupreMOS ${ }^{\text {TM }}$ | VisualMax ${ }^{\text {TM }}$ |
| FastvCore ${ }^{\text {TM }}$ | PDP SPM ${ }^{\text {TM }}$ | SyncFET ${ }^{\text {TM }}$ SYSTEM ${ }^{\text {® }}$ | XS ${ }^{\text {™ }}$ |
| FlashWriter ${ }^{\text {® }}$ | Power-SPM ${ }^{\text {™ }}$ | GENERAL |  |
| FPS ${ }^{\text {TM }}$ | PowerTrench ${ }^{\text {® }}$ | The Power Franchise ${ }^{(®}$ |  |
| F-PFS ${ }^{\text {TM }}$ | PowerXS ${ }^{\text {TM }}$ |  |  |

## DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILDiS WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS

## LIFE SUPPORT POLICY

FAIRCHILDÍS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

## As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

## ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS
Definition of Terms

| Datasheet Identification | Product Status | Definition |
| :--- | :--- | :--- |
| Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in <br> any manner without notice. |
| Preliminary | First Production | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild <br> Semiconductor reserves the right to make changes at any time without notice to improve design. |
| No Identification Needed | Full Production | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes <br> at any time without notice to improve the design. |
| Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. <br> The datasheet is for reference information only. |

