SWITCHING POWER SUPPLY DESIGN: LM5030 PUSH-PULL CONVERTER

Written by Michele Sclocchi michele.sclocchi@nsc.com National Semiconductor

Push-pull topology is a derivative of two forward converters operating 180 degrees out of phase. This configuration allows operation in the first and third quadrant of the hysteresis loop, with a better utilization of the magnetic core of the transformer. The maximum voltage stress of the switching MOSFETs is twice the input voltage which is the same as the the forward topology. A current mode PWM converter avoids run away of the flux core by monitoring the current of each of the push-pull transistors and forcing alternate current pulses to have equal amplitude.

This document is an explanation of the equations used in an accompanying Mathcad file. The Mathcad file helps with the calculation of the external components of a typical Push-Pull topology.

Notes for the Mathcad file:
Write down the power supply requirements in the following boxes: $X_{x x}:=$
Get the results from the following boxes: Rsults ${ }_{x x}:=1$
Listed below are the equations used to calculate the circuit:
Input voltage:

- Minimum input voltage: $\mathrm{Vi}_{\text {min }}:=35 \cdot \mathrm{volh}$
- Maximum input voltage: Vimax $:=75 \cdot$ voli
- Nominal input voltage: $\mathrm{Vinom}_{\mathrm{nom}}:=48 \cdot \mathrm{vol}$

Output:

- Nominal output voltage, maximum output ripple, minimum output current, maximum output current

Vo1 : $=12 \cdot \mathrm{vol}$
Vrp1 := $100 \cdot \mathrm{mV}$
$101_{\text {min }}:=0.5 \cdot \mathrm{amp}$
$101_{\text {max }}:=5 \cdot \mathrm{amp}$

$$
\begin{array}{ll}
\mathrm{Po}_{\min }:=\left(\mathrm{Vo} 1+\mathrm{Vd}_{\mathrm{fw}}\right) \cdot \mathrm{lo}_{\min }+\left(\mathrm{Vo} 2+\mathrm{Vd}_{\mathrm{fw}}\right) \cdot \mathrm{lo}_{\min } & \mathrm{Po}_{\min }=6.91 \mathrm{watt} \\
\mathrm{Po}_{\max }:=\left(\mathrm{Vo1}+\mathrm{Vd}_{\mathrm{fw}}\right) \cdot \mathrm{lo} 1_{\max }+\left(\mathrm{Vo} 2+\mathrm{Vd}_{\mathrm{fw}}\right) \cdot \mathrm{lo} 2_{\max } & \mathrm{Po}_{\max }=66.8 \mathrm{watt}
\end{array}
$$

- Switching Frequency: \quad fsw $:=250 \cdot \mathrm{kHz}$

$$
\mathrm{T}:=\frac{1}{\mathrm{fsw}} \quad \mathrm{~T}=4 \mu \mathrm{sec}
$$

Each phase switches at half the switching frequency:

$$
\mathrm{T}_{\mathrm{ch}}:=\frac{2}{\mathrm{fsw}} \quad \mathrm{~T}_{\mathrm{ch}}=8 \mu \mathrm{sec}
$$

- Transformer's Efficiency: $\quad \eta:=0.9 £ \quad$ (Guessed value)
- Maximum voltage drop across the switching MOSFET during the on time:
- On resistance of the MOSFET: \quad Rds ${ }_{o n}:=0.10 \cdot \mathrm{ohm}$
$\mathrm{Vds}_{\text {on }}:=\frac{\mathrm{Po}_{\text {max }}}{\eta \cdot \mathrm{Vi}_{\min }} \cdot \mathrm{Rds}_{\text {on }} \quad \mathrm{Vds}_{\text {on }}=0.2$ volt

1) Maximum duty cycle, minimum duty cycle, secondary/primary turn ratio:

Choose the maximum duty cycle of each phase: $\quad D_{\max }:=0.36$:
At minimum operating voltage the duty cycle of each phase has to be $\ll 40 \%$

$$
\operatorname{Ton}_{\max }:=\mathrm{T}_{\text {ch }} \cdot \mathrm{D}_{\max } \quad \text { Ton }_{\max }=2.92 \mu \mathrm{sec}
$$

-The turns ratio between secondary and primary winding:

$$
\mathrm{Nsp1}:=\frac{\frac{\mathrm{Vo1}}{\mathrm{D}_{\mathrm{max}} \cdot 2}+\mathrm{Vd}_{\mathrm{fw}}}{\mathrm{Vi}_{\min }-\mathrm{Vds}_{\mathrm{on}}} \quad \quad \mathrm{Nsp1}=0.5
$$

- Minimum duty cycle at maximum input voltage:

$$
\operatorname{Dmin}:=\frac{\mathrm{Vo1}}{2 \cdot \mathrm{Nsp} 1 \cdot\left(\mathrm{Vi}_{\max }-\mathrm{Vds}_{\mathrm{on}}\right)-\mathrm{Vd}_{\mathrm{fw}}} \quad \quad \operatorname{Dmin}=0.16
$$

- Duty cycle at nominal input voltage:

$$
\text { Dnom }:=\frac{\mathrm{Vo1}}{2 \cdot \mathrm{Nsp1} 1 \cdot\left(\mathrm{Vi}_{\mathrm{nom}}-\mathrm{Vds}_{\mathrm{on}}\right)-\mathrm{Vd}_{\mathrm{fw}}} \quad \quad \text { Dnom }=0.26
$$

2) Maximum stress voltage across the drain source of the external switching MOSFETs:

The maximum DC input voltage plus the spikes due to the leakage inductance. (assume spikes of 30% of Vdc)

$$
\mathrm{Vsw}_{\max }:=2 \cdot\left(1.15 \cdot \mathrm{Vi}_{\max }\right) \quad \quad \mathrm{Vsw}_{\max }=172.5 \mathrm{vol}
$$

3) Primary and secondary currents:

Input power: $\mathrm{Pin}=\mathrm{Vi}_{\text {min }}{ }^{*}$ Ipft*max.duty cycle*2

$$
\mathrm{Idc}:=\frac{\mathrm{Po}_{\max }}{\left(\mathrm{Vi}_{\min }-\mathrm{Vds}_{o n}\right)}
$$

Ipft is the equivalent flat topped primary current

$$
\begin{aligned}
& I p_{\mathrm{dc}}:=\frac{\mathrm{Po}_{\max }}{\left(\mathrm{Vi}_{\min }-\mathrm{Vds}_{\mathrm{on}}\right) \cdot \eta} \quad \mathrm{I}_{\mathrm{dc}}=2.02 \mathrm{amp} \\
& \mathrm{I}_{\mathrm{ft}}:=\frac{P o_{\max }}{\left(\mathrm{Vi}_{\min }-\mathrm{Vds}_{\mathrm{on}}\right) \cdot \eta \cdot 2 \cdot \mathrm{I}_{\max }} \quad \quad \mathrm{I}_{\mathrm{ft}}=2.77 \mathrm{amp}
\end{aligned}
$$

Primary rms current: $\quad\left|\mathrm{I}_{\mathrm{rms}}:=\left|\mathrm{pff} \sqrt{D_{\max }} \quad\right| \mathrm{I}_{\mathrm{rms}}=1.67 \mathrm{amp}\right.$

$$
\begin{equation*}
\left|p_{\mathrm{ac}}:=\left|\mathrm{pfft} \cdot \sqrt{D_{\max } \cdot\left(1-D_{\max }\right)} \quad\right| p_{\mathrm{ac}}=1.33 \mathrm{amp}\right. \tag{*1}
\end{equation*}
$$

Secondary rms current: it's assumed that the peak of the center top ramp is equal to the DC output current.

(Current waveform on the secondary windings)

$$
\begin{aligned}
& I \mathrm{~s} 1_{\mathrm{rms}}:=\mathrm{lo} 1_{\max } \cdot \sqrt{D_{\max }} \quad \text { Is } 1_{\mathrm{rms}}=3.02 \mathrm{amp} \\
& \mathrm{Is} 2_{\mathrm{rms}}:=\mathrm{lo} 2_{\max } \cdot \sqrt{D_{\max }} \quad \mid \mathrm{Is} 2_{\mathrm{rms}}=0.3 \mathrm{amp} \\
& \mathrm{Is} 1_{\mathrm{ac}}:=\mathrm{lo} 1_{\max } \cdot \sqrt{D_{\max } \cdot\left(1-D_{\max }\right)} \\
& I \mathrm{~s} 2_{\mathrm{ac}}:=\mathrm{lo} 2_{\max } \cdot \sqrt{D_{\max } \cdot\left(1-D_{\max }\right)} \quad \text { Is } 2 \mathrm{ac}=0.24 \mathrm{amp}
\end{aligned}
$$

4) Maximum stress across the output diodes: Vdiode

-Maximum stress voltage on the cathode of the diodes

$$
\text { Vdiode1 } \max :=2 \cdot \mathrm{Vi}_{\max } \cdot \text { Nsp1 } \quad \text { Vdiode } 1_{\max }=74.74 \mathrm{volh}
$$

Select a diode with Va-c>> Vdiode.max, and ultra-fast switching diode

- The total output diodes' power losses:

$$
\begin{array}{lll}
\text { Pdiode } 1_{\max }:=\mathrm{lo}_{\max } \cdot \mathrm{Vd}_{\mathrm{fw}} & \text { Pdiode } 1_{\max }=4.5 \text { watt } & \text { (first output) } \\
\text { Pdiode } 2_{\max }:=\mathrm{lo} 2_{\max } \cdot \mathrm{Vd}_{\mathrm{fw}} & \text { Pdiode } 2_{\max }=0.45 \text { watt } & \text { (second output) }
\end{array}
$$

For high current and low output voltage applications, a synchronous rectification solution, with external MOSFET is usually preferred

$$
\text { Pdiode }_{\text {tot }}:=\text { Pdiode } 1_{\text {max }}+\text { Pdiode2 }_{\max } \quad \text { Pdiode }_{\text {tot }}=4.95 \text { watt }
$$

5) Output ripple specifications and output capacitors

- the output inductors should not be permitted to go discontinuous, this occurs when the DC current has dropped to half the ramp, dl:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{L}}=\mathrm{L}^{*} d i / d t \quad \mathrm{dl}=2^{*} \mathrm{I}_{\min }=\mathrm{V}_{\mathrm{L}}{ }^{*} \text { Ton/Lo }=(\mathrm{Vf}-\mathrm{Vo}) \text { Ton/Lo } \quad \text { But } \mathrm{Vo}=\mathrm{Vf}\left(2^{*} \mathrm{Ton} / \mathrm{T}\right) \\
& \text { Vf2 }:=\frac{\mathrm{Vo2}}{2 \cdot \mathrm{Ton}_{\text {max }}} \cdot \mathrm{T}_{\text {ch }} \quad \mathrm{Vf} 2=5.07 \mathrm{voll} \\
& \mathrm{Vf} 1:=\frac{\mathrm{Vo}_{1}}{2 \cdot \mathrm{Ton}_{\text {max }}} \cdot \mathrm{T}_{\mathrm{ch}} \quad \mathrm{Vf} 1=16.44 \mathrm{voli} \\
& \mathrm{Lo1}:=\frac{(\mathrm{Vf} 1-\mathrm{Vo1}) \cdot \mathrm{Ton}_{\text {max }}}{2 \cdot \mathrm{lo} 1_{\min }} \quad \mathrm{Lo1}=12.96 \mu \mathrm{H} \\
& \text { Lo2 : }=\frac{(\mathrm{Vf} 2-\mathrm{Vo2}) \cdot \mathrm{Ton}_{\text {max }}}{2 \cdot \mathrm{lo} 2_{\text {min }}} \quad \mathrm{Lo} 2=19.98 \mu \mathrm{H}
\end{aligned}
$$

The Output inductor has to be greater than >> Lo1 and 2 Inductance used:

$$
\operatorname{Lo1}_{\mathrm{u}}:=25 \cdot \mu \mathrm{H} \quad \text { Lo }_{\mathrm{u}}:=25 \cdot \mu \mathrm{H}
$$

$$
\begin{array}{ll}
\mathrm{dl} 1:=\frac{(\mathrm{Vf} 1-\mathrm{Vo1}) \cdot \text { Ton }_{\text {max }}}{\mathrm{Lo} 1 \mathrm{u}} & \mathrm{dl} 1=0.52 \mathrm{amp} \\
\mathrm{dl2}:=\frac{(\mathrm{Vf} 2-\mathrm{Vo} 2) \cdot \text { Ton }_{\text {max }}}{\text { Lo2 }_{\mathrm{u}}} & \mathrm{dl2}=0.16 \mathrm{amp}
\end{array}
$$

To meet the output ripple specifications, the output capacitors have to meet two criteria:

- Satisfy the standard capacitance definition: $\mathbf{I}=\mathbf{C}^{\star} \mathbf{d V} / \mathbf{d t}$ where t is the Toff time, and V is 25% of the allowable output ripple.
- The Equivalent Series Resistance (ESR) of the capacitor has to provide less than 75% of the maximum output ripple. (Vripple=dl*ESR)
-Maximum output ripple: \quad Vrp1 $=100 \mathrm{mV} \quad$ Vrp2 $=120 \mathrm{mV}$

-Minimum output capacitance:

$$
\mathrm{Co1}:=\mathrm{dl1} \cdot \frac{\left(\mathrm{Ton}_{\max }\right)}{\operatorname{Vrp1} \cdot 0.25} \quad \mathrm{Co} 1=60.55 \mu \mathrm{~F}
$$

-Maximum ESR value:

$$
\text { ESR1 }:=\frac{\operatorname{Vrp1} \cdot 0.75}{\mathrm{dl1}} \quad \quad \mathrm{ESR} 1=0.140 \mathrm{hm}
$$

-Minimum output capacitance:

$$
\mathrm{Co} 2:=\mathrm{dl} 2 \cdot \frac{\left(\mathrm{Ton}_{\max }\right)}{\operatorname{Vrp2} \cdot 0.25} \quad \mathrm{Co} 2=15.56 \mathrm{\mu F}
$$

-Maximum ESR value:

$$
\mathrm{ESR} 2:=\frac{0.75 \cdot \mathrm{Vrp} 2}{\mathrm{dl} 2} \quad \quad \mathrm{ESR} 2=0.560 \mathrm{hm}
$$

6) Input capacitor

The input capacitor has to meet the maximum ripple current rating $\mathrm{Ip}(\mathrm{rms})$ and the maximum input voltage ripple ESR value.

7) Switching MOSFET power dissipation

The MOSFET is chosen based on maximum stress voltage (section1), maximum peak input current (section 3), total power losses, maximum allowed operating temperature, and driver capability of the LM5030
-The drain to source breakdown of the MOSFET (Vdss) has to be greater than:
$\mathrm{Vsw}_{\text {max }}=172.5 \mathrm{vol}$

- Maximum drive voltage: \quad Vdr := 9•voli

$$
\begin{array}{ll}
\text { Idrive:= 3amp } & \text { (Drivercurrent) } \\
\text { Rdr }_{\text {on }}:=\frac{\mathrm{Vdr}}{\text { Idrive }} & \text { Rdr }_{\text {on }}=3 \mathrm{ohm}
\end{array}
$$

-Total the MOSFET's losses and calculate the maximum junction temperature:
The goal in selecting a MOSFET is to minimize junction temperature rise by minimizing the power loss while being cost effective. Besides maximum voltage rating, and maximum current rating, the other three important parameters of a MOSFET are Rds(on), gate threshold voltage, and gate capacitance.
The switching MOSFET has three types of losses, which are conduction loss, switching loss, and gate charge losses.
-Conduction losses are $I^{\wedge} 2^{*} R$ losses, therefore the total resistance between the source and drain during the on state, Rds(on) has to be as low as possible.
-The switching loss equation is Switching-time*Vds***frequency. The switching time, rise time and fall time are a function of: a) the gate to drain Miller-charge of the MOSFET, Qgd, b) the internal resistance of the driver and c) the Threshold Voltage, Vgs(th), which is the minimum gate voltage which enables the current through the drain source of the MOSFET.
-Gate charge losses are caused by charging up the gate capacitance and then dumping the charge to ground every cycle. The gate charge losses are equal to: frequency * $\mathrm{Qg}(\mathrm{tot})$ * Vdr Unfortunately, the lowest on resistance devices tend to have higher gate capacitance.
Because this loss is frequency dependent, in very high current supplies with very large FETs with large gate capacitance, a more optimal design may result from reducing the operating frequency.
Switching losses are also effected by gate capacitance. If the gate driver has to charge a larger capacitance, then the time the MOSFET spends in the linear region increases and the losses increase. The faster the rise time, the lower the switching loss. Unfortunately this causes high frequency noise.

MOSFET: SUD19N20-90
Rds on := 0.090 ohm (Total resistance between the source and drain during the on state)
Coss : = 180.pF (Output capacitance)
Qgtot $:=34 \cdot n \cdot$ coul \quad (Total gate charge)
Qgd := $12 \cdot n \cdot$ coul \quad (Gate drain Miller charge)
Qgs $:=8 \cdot n \cdot$ coul (Gate to source charge)
$\mathrm{Vgs}_{\mathrm{th}}:=2 \cdot \mathrm{voli} \quad$ (Threshold voltage)

- Conduction losses: Pcond

$$
\begin{equation*}
\text { Pcond }:=\text { Rds }_{\text {on }} \cdot I_{\mathrm{Pft}}^{2} \cdot \mathrm{D}_{\text {max }} \quad \text { Pcond }=0.25 \text { watt } \tag{*2}
\end{equation*}
$$

- Switching losses: Psw(max): ${ }^{\star} \star / 2^{\star} f r e q^{\star}(T s w o n+T s w o f f)$

IdriveLH := $\frac{\mathrm{Vdr}^{2}-\mathrm{Vgs}_{\text {th }}}{\text { Rdr }_{\text {on }}} \quad$ Idrivert $=1.4 \mathrm{amp}$
(Peak current of the driver from low to high)
IdriverHL $:=\frac{\mathrm{Vdr}-\mathrm{Vgs}_{\text {th }}}{\text { Rdr }_{\text {off }}} \quad$ IdriverHL $=14 \mathrm{amp}$
(Peak current of the driver from high to low)
$\mathrm{Qg}_{s w}:=\mathrm{Qgd}+\frac{\mathrm{Qgs}}{2} \quad \mathrm{Qg}_{\mathrm{sw}}=16$ coul n

- Estimated turn on time:
tsw $_{\text {LH }}:=\frac{\text { Qg }_{\text {sw }}}{\text { Idriver_H }} \quad$ tsw $_{\text {LH }}=11.43 \sec n$
- Estimated turn off time:

$\mathrm{Psw}_{\text {max }}:=\mathrm{Vi}_{\text {min }} \cdot 1 \mathrm{lfft} \cdot f s w \cdot\left(\mathrm{tsw}_{\mathrm{LH}}+\mathrm{tsw}_{\mathrm{HL}}\right)+\frac{\mathrm{Coss} \cdot \mathrm{Vi}_{\text {min }}{ }^{2} \cdot \mathrm{fsw}}{2}$
$\mathrm{Psw}_{\text {max }}=0.33 \mathrm{watt}$
Gate charge losses: Pgate Average current required to drive the gate capacitor of the MOSFET:

Igate $_{\text {awg }}:=$ fsw \cdot Qgtot \quad Igate $_{\text {awg }}=8.5 \times 10^{-3} \mathrm{amp}$
Pgate $:=$ lgate $_{\text {awg }} \cdot V d r \quad$ Pgate $=0.08 w a t t$
-Total losses: Ptot(max) (for each phase)
Pmosfet ${ }_{\text {tot }}:=$ Pcond + Psw $_{\text {max }}+$ Pgate Pmosfet $_{\text {tot }}=0.66$ watt

-Maximum junction temperature and heat sink requirement:

Maximum junction temperature desired: $T j_{\max }:=120 \quad$ Celsius
Maximum ambient temperature: \quad Tamax $:=7 \mathrm{C} \quad$ Celsius
-Required junction to ambient thermal resistance:

$$
\theta \mathrm{ja}:=\frac{\mathrm{T} \mathrm{j}_{\max }-\mathrm{T} \mathrm{a}_{\max }}{\text { Pmosfet }_{\text {tot }}} \quad \quad \theta \mathrm{ja}=75.73 \frac{1}{\text { watt }} \text { Celsius }
$$

If the thermal resistance calculated is lower than that one specified on the MOSFET's data sheet a heat sink or higher copper area is needed.
For Example for a T0-263 (D2pak) package the Theta ja of the MOSFET versus copper plane area is:

11) Transformer design

The power handling capacity of the transformer core can be determined by its WaAc product area, where Wa is the available core window area, and Ac is the effective core cross-selectional area.
The WaAc power output relationship is obtained with the Faraday's law:

$$
E=4 B \text { Ac Nf } 10^{\wedge}-8
$$

Where:
$E=$ applied voltage $\quad J=$ current density amp/cm^2
$B=$ flux density in gauss
$\mathrm{K}=$ winding factor
Ac = core area in cm^2
(magnetic cross-section area)
$\mathrm{Wa}=$ window area in $\mathrm{cm}^{\wedge} 2$
(window area available for the winding)
I = current (rms)
$\mathrm{f}=$ frequency
$\mathrm{N}=$ number of turns
Po = output power
-Select maximum current density of the windings: \mathbf{J} (280-390 amp/cm^2, or 400-500
circular-mils/amp)

$$
\text { cir_mil }:=5.07 \cdot 10^{-6} \cdot \mathrm{~cm}^{2}
$$

$$
\frac{1}{\mathrm{~J}}=505.74 \frac{\text { cir_mil }}{\mathrm{amp}}
$$

- winding factor: $\quad \mathrm{Kxxx}:=0.5$

-Select core material and maximum flux density:

It is assumed that at high switching frequency (fsw $\gg 25 \mathrm{KHz}$) the limitation factor is the core losses, and temperature rise of the transformer
The type of ferrite material chosen will influence the core losses at the given operating conditions:

- F material has its lowest losses at room temperature to $40^{\circ} \mathrm{C}$.
- P material has lowest losses at $70^{\circ} \mathrm{C}-80^{\circ} \mathrm{C}$.
- R material has lowest losses at $100^{\circ} \mathrm{C}-110^{\circ} \mathrm{C}$.
- K material has lowest losses at $40^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$ at elevated frequencies.

At high switching frequency it is necessary to adjust the flux density in order to limit core temperature rise.

Limiting core loss density to $100 \mathrm{~mW} / \mathrm{cm}^{\wedge} 3$ would keep the temperature rise at approximately $40^{\circ} \mathrm{C}$. Use the following formula to select the most appropriate maximum flux density:
-Maximum core loss density:

for P material:

$a=0.158$	$b=1.36$	$c=2.86$	for frequency $f<100 \mathrm{kHz}$
$a=0.0434$	$b=1.63$	$c=2.62$	for frequency $100 \mathrm{kHz}<f<500 \mathrm{kHz}$
$a=7.36^{*} 10^{\wedge}-7$	$b=3.47$	$c=2.54$	for frequency $f>500 \mathrm{kHz}$

for K material:

$a=0.0530 \quad b=1.60$
$C=3.15$
for frequency $\mathrm{f}<500 \mathrm{kHz}$
$a=0.00113 \quad b=2.19$
$\mathrm{c}=3.10 \quad$ for frequency $500 \mathrm{kHz}<\mathrm{f}<1 \mathrm{MHz}$
$c=2.98 \quad$ for frequency $f>1 \mathrm{MHz}$
$a=1.77^{*} 10^{\wedge}-9 \quad b=4.13$
c1 :=2.8f
a1 $:=0.15 \varepsilon \quad$ b1 $:=1.3 \epsilon$

$$
B=624.49 \text { gauss }
$$

$B:=\left[\frac{\text { Pcored }}{\mathrm{a} 1 \cdot\left(\frac{\mathrm{fsw}}{\mathrm{kHz}}\right)^{\mathrm{b} 1}}\right]^{\frac{1}{\mathrm{c} 1}} \cdot 10^{3} \cdot$ gauss $\quad B=624.49$ gauss
$===\Delta \mathrm{B}:=\mathrm{B} \cdot 2 \quad \Delta \mathrm{~B}=1.25 \times 10^{3}$ gauss
-Topology constant:

$$
\begin{aligned}
& \mathrm{Kt}:=\frac{0.0005}{1.97} \cdot 10^{3} \\
& \mathrm{WaAc}:=\frac{\mathrm{Po}_{\max }}{\mathrm{Kt} \cdot \Delta \mathrm{~B} \cdot \mathrm{fsw} \cdot \mathrm{~J}} \quad \mathrm{WaAc}=0.22 \mathrm{~cm}^{4}
\end{aligned}
$$

- Select a core with area product larger than : ---> $\mathrm{WaAc}=0.22 \mathrm{~cm}^{4}$

Core selected:

- Manufacture: Magnetics
- Material:

P

- Shape: E core
- Part number: EFD30-3C90
- Core Area: Ac
- Bobbin area: Wa
- Core volume: Ve
- Window length: Iw (length of the bobbin)
- Area product Used
- Inductance per 1000 turns without airgap :
- first turn-length:

Ac $:=0.69 \cdot \mathrm{~cm}^{2} \quad$ Wa $:=0.520 \cdot \mathrm{~cm}^{2}$
lw:=2.01.cm

$$
\mathrm{Ve}:=4.7 \cdot \mathrm{~cm}^{3}
$$

$\begin{array}{lll}\text { Ac } \cdot \mathrm{Wa}=0.36 \mathrm{~cm}^{4} & L t:=4.8 \cdot \mathrm{~cm} & 1.6 \cdot \mathrm{in}=4.06 \mathrm{~cm} \\ - & \text { Lpath }:=6.8 \cdot \mathrm{~cm}\end{array}$
Core permeability: $\quad \mu_{r}:=1720$

- Primary turns

$N p_{\mathrm{C}}:=\frac{\left(\mathrm{Vi}_{\text {min }}-\mathrm{Vds}_{\text {on }}\right) \cdot \mathrm{T}_{\text {ch }} \cdot \mathrm{D}_{\text {max }}}{\Delta \mathrm{B} \cdot \mathrm{Ac}} \quad \quad \mathrm{N} p_{\mathrm{C}}=11.79 \quad$ turns
The number of turns has to be rounded to the higher or lower integer value: $\mathrm{Np}:=12$

- Secondary turns
$\mathrm{Ns} 1_{\mathrm{C}}:=\left(\frac{\mathrm{Vo1} \cdot \mathrm{~T}_{\mathrm{ch}}}{2 \cdot \mathrm{Ton}_{\text {max }}}+\mathrm{Vd}_{\mathrm{fw}}\right) \cdot \frac{\mathrm{Np}}{\left(\mathrm{Vi}_{\text {min }}-\mathrm{Vds}_{\mathrm{on}}\right)} \quad \mathrm{Ns} 1_{\mathrm{C}}=5.98 \quad$ turns
The number of turns has to be rounded to the higher or lower integer value: Ns1 :=6

$$
\mathrm{Ns} 2_{\mathrm{c}}:=\left(\frac{\mathrm{Vo} 2 \cdot \mathrm{~T}_{\mathrm{ch}}}{2 \cdot \mathrm{Ton}_{\max }}+\mathrm{Vd}_{\mathrm{fw}}\right) \cdot \frac{\mathrm{Np}}{\left(\mathrm{Vi}_{\min }-\mathrm{Vds}_{\mathrm{on}}\right)} \quad \mathrm{Ns} 2_{\mathrm{c}}=2.06 \text { turns }
$$

The number of turns has to be rounded to the higher or lower integer value: Ns2 := 2

- Primary inductance: $\quad \mu_{0}:=4 \cdot \pi \cdot 10^{-7} \frac{\text { henry }}{\mathrm{m}}$

$$
\mathrm{Lp} 2:=\frac{\mathrm{Ac} \cdot \mathrm{~Np}^{2} \mu_{\mathrm{o}} \cdot \mu_{\mathrm{r}}}{\text { Lpath }} \quad \mathrm{Lp} 2=315.82 \mu \mathrm{H}
$$

- Magnetizing current:

$$
I_{\operatorname{mag}}:=\frac{\mathrm{Vi}_{\min } \cdot \mathrm{Ton}_{\max }}{\mathrm{Lp} 2} \quad \mathrm{I}_{\mathrm{mag}}=0.32 \mathrm{amp}
$$

Usually the magnetizing current is small enough to ignore when sizing the switching transistors and primary winding. It is typically less than 10% of the reflected load current.

- Primary and secondary wire size:

Maximum current density: $\quad \mathrm{J}=390 \frac{\mathrm{amp}}{\mathrm{cm}^{2}}$
Primary rms current:

$$
\mathrm{Ip}_{\mathrm{rms}}=1.67 \mathrm{amp}
$$

Primary:

by wire area:

$$
\mathrm{Wp}_{\mathrm{cu}}:=\frac{\mathrm{I} \mathrm{p}_{\mathrm{rms}}}{\mathrm{~J}} \quad \mathrm{~W} \mathrm{p}_{\mathrm{cu}}=4.2910^{-3} \cdot \mathrm{~cm}^{2}
$$

or by wire size:

$$
\text { AWGp }:=-4.2 \cdot \ln \left(\frac{W p_{\mathrm{cu}}}{\mathrm{~cm}^{2}}\right) \quad \text { AWGp }=22.9
$$

(Approximated AWG wire size, for more precision refer to wire size table)

Primary Wire selected:

Wire size: \quad AWG ${ }_{\text {Lp }}:=21$

Bare area (copper plus insulation):
$W_{\text {Lp }}:=4.84 \cdot 10^{-3} \cdot \mathrm{~cm}^{2}$
Copper area:
Wcu Lp : $=4.12 \cdot 10^{-3} \cdot \mathrm{~cm}^{2}$
Diameter:
DcuLp $:=0.078 \cdot \mathrm{~cm}$
Number of strands:
NstLp := 1

- Number of primary turns per layer:

- Number of primary layers:

Secondary: Master

by wire area:

$$
\mathrm{Ws} 1_{\mathrm{cu}}:=\frac{\mathrm{Is} 1_{\mathrm{rms}}}{\mathrm{~J}} \quad \mathrm{Ws} 1_{\mathrm{cu}}=7.7510^{-3} \cdot \mathrm{~cm}^{2}
$$

or by wire size:

$$
\text { AWGs1 :=-4.2•ln }\left(\frac{\mathrm{Ws} 1 \mathrm{cu}}{\mathrm{~cm}^{2}}\right) \quad \text { AWGs1 }=20.41
$$

Secondary Wire selected:

Wire size: \quad AWG ${ }_{\text {Ls } 1}:=21$
Bare area (copper plus insulation)

$$
\mathrm{Wa}_{\mathrm{Ls} 1}:=4.84 \times 10^{-3} \cdot \mathrm{~cm}^{2}
$$

Copper area:

$$
\text { Wcu Ls1 }:=4.12 \cdot 10^{-3} \cdot \mathrm{~cm}^{2}
$$

Diameter:
DcuLs1 := $0.078 \cdot \mathrm{~cm}$
Number of strands:

$$
\text { Nst Ls1 := } 2
$$

- Number of secondary turns per layer:
$N t \mid L s 1:=$ floor $\left.\left.\left(\frac{\mid w}{D_{c u_{L s 1}}}\right) \quad N t \right\rvert\, L s 1\right)=25$
- Number of secondary layers:

Nly ${ }_{\text {Ls } 1}:=$ ceil $\left(\frac{\left.{\text { Ns } 1 \cdot N_{s t}}^{\frac{\text { NtL }_{\text {Ls } 1}}{2}}\right) \quad \text { Nly }}{\text { Ls1 }=1 \quad \text { (total layers for two secondary windings) }}\right.$

Secondary: Slave

by wire area:

$$
\mathrm{Ws} 2_{\mathrm{cu}}:=\frac{\mathrm{Is} 2_{\mathrm{rms}}}{\mathrm{~J}} \quad \mathrm{Ws} 2_{\mathrm{cu}}=0.7710^{-3} \cdot \mathrm{~cm}^{2}
$$

or by wire size:

$$
\text { AWGs2 }:=-4.2 \cdot \ln \left(\frac{\mathrm{Ws} 2_{\mathrm{cu}}}{\mathrm{~cm}^{2}}\right) \quad \text { AWGs2 }=30.09
$$

Secondary Wire selected:

Wire size:

$$
\text { AWG Ls2 := } 30
$$

Bare area (copper plus insulation):

$$
\mathrm{Wa}_{\mathrm{Ls} 2}:=0.67 \cdot 10^{-3} \cdot \mathrm{~cm}^{2}
$$

Copper area:

$$
\text { WcuLs2 }:=0.50 \cdot 10^{-3} \cdot \mathrm{~cm}^{2}
$$

Diameter:
DcuLs2 : $=0.0294 \mathrm{~cm}$
Number of strands:
NstLs2 := 1

- Number of secondary turns per layer:

Nt|Ls2 : $:$ floor $\left(\frac{\mathrm{lw}}{\text { DcuLs2 }}\right) \quad \mathrm{Nt\mid}$ Ls2 $=68$

- Number of secondary layers:

Nly Ls2 $:=$ ceil $\left(\frac{\text { Ns2 } 2 \text { NstLs2 }}{\frac{N_{\text {Lts2 }}}{2}}\right) \quad$ NlyLs2 $=1$

- Copper area:
$W_{c u}^{\text {tot }}:=\left(\right.$ DcuLp \cdot Nly $_{\text {Lp }}+$ DcuLs1 \cdot Nly $_{\text {Ls } 1}+$ DcuLs2 \cdot Nly $\left._{\text {Ls2 }}\right) \cdot 1.15 \cdot \mathrm{lw} \quad \mathrm{Wcu}_{\text {tot }}=0.43 \mathrm{~cm}^{2}$
- Window utilization:
$\mathrm{Wu}:=\frac{\mathrm{Wcu}_{\text {tot }}}{\mathrm{Wa}} \quad \mathrm{Wu}=82.41 \%$
Important: if the window utilization is greater than 95%, (copper area>> than bobbin area) a core with larger window area, or smaller wire sizes must be selected. (In push-pull the transformer has two primary and two secondary windings)
- Core losses:

Pcore $:=\mathrm{Ve} \cdot\left[\left(\frac{\mathrm{B}}{10^{3} \cdot \text { gauss }}\right)^{\mathrm{c} 1} \cdot \mathrm{a} 1 \cdot\left(\frac{\mathrm{fsw}}{\mathrm{kHz}}\right)^{\mathrm{b} 1}\right] \cdot \frac{10^{-3} \cdot \text { watt }}{\mathrm{cm}^{3}} \quad$ Pcore $=0.35$ watt

- Winding copper losses:

There are two effects that can cause the winding losses to be significantly greater than ($\left.I^{\wedge} 2^{*} \mathrm{Rcu}\right)$. These are
skin and proximity effects.
The skin effect causes current in a wire to flow only in the thin outer skin of the wire.
The skin depth is the distance below the surface where the current density has fallen to $1 / \mathrm{e}$ of its value at the surface: (Sd)

$$
\begin{array}{ll}
\mathrm{Sd}:=\frac{6.61}{\sqrt{\frac{\mathrm{fsw}}{\mathrm{~Hz}}}} \cdot \mathrm{~cm} & \mathrm{Sd}=0.01 \mathrm{~cm} \\
\text { Lt }=4.8 \mathrm{~cm} & \text { NlyLp }=1
\end{array}
$$

To minimize the AC copper losses in a transformer, if the wire diameter is greater than two times the skin depth a multiple strand winding or litz wires should be considered.
If \quad DcuLp $=0.08 \mathrm{~cm} \quad$ is greater than $\mathrm{Sd} \cdot 2=0.03 \mathrm{~cm}$
Primary winding length:
Ldf $\mathrm{Lp}:=\left\lvert\, \begin{aligned} & \mathrm{L} 1 \leftarrow \mathrm{Lt} \\ & \text { for } \quad \mathrm{i} \in 1 . .\left(\text { Nly }_{\mathrm{Lp}}-1\right) \\ & \mathrm{L} 1 \leftarrow \mathrm{~L} 1+4 \cdot \text { Dcu }^{\mathrm{Lp}} \\ & \mathrm{L} 1\end{aligned}\right.$
$\operatorname{LcuLp}:=\left\lvert\, \begin{aligned} & \mathrm{L} 1 \leftarrow \mathrm{Lt} \\ & \mathrm{L} \leftarrow 0 \cdot \mathrm{~cm}\end{aligned}\right.$
for $i \in 1 . .($ Nly \quad Lp -1$)$
$\mathrm{L} \leftarrow \mathrm{L}+\mathrm{L} 1 \cdot \mathrm{Nt\mid} \mathrm{Lp}$
$\mathrm{L} 1 \leftarrow \mathrm{~L} 1+4 \cdot$ DcuLp
$\left[L+L 1 \cdot\left[\mathrm{~Np}-\left(\mathrm{Nly}_{\mathrm{Lp}}-1\right) \cdot \mathrm{Nt}_{\mathrm{Lp}}\right]\right]$
$\mathrm{Np}=12$
$\mathrm{Lcu}_{\mathrm{Lp}}=312.89 \mathrm{~cm}$
Ldf $_{\text {Lp }}=5.42 \mathrm{~cm}$
$7.15 \cdot \mathrm{~Np}=85.8$

Copper resistivity: (20C) $\quad \rho_{20}:=1.724 \cdot 10^{-6} . \mathrm{ohm} \cdot \mathrm{cm}$
-Maximum temperature of the winding: $\operatorname{Tmax}_{c u}:=80$

$$
\begin{aligned}
& \rho:=\rho_{20} \cdot\left[1+0.0042 \cdot\left(\operatorname{Tmax}_{\text {Cu }}-20\right)\right] \\
& \operatorname{Rdc}_{L p}:=\rho \cdot \frac{\operatorname{Lcu}_{L p}}{\text { Wcu }_{L p} \cdot N s t_{L p}} \quad \quad \operatorname{Rdc}_{L p}=0.160 h m \\
& \operatorname{Rac}_{\mathrm{Lp}}:=\frac{\operatorname{Rdc}_{\mathrm{Lp}} \cdot\left(\frac{\mathrm{Dcu}_{\mathrm{Lp}}}{2 \cdot \mathrm{Sd}}\right)^{2}}{\left(\frac{\mathrm{Dcu}_{\mathrm{Lp}}}{2 \cdot \mathrm{Sd}}\right)^{2}-\left(\frac{\mathrm{Dcu}_{\mathrm{Lp}}}{2 \cdot \mathrm{Sd}}-1\right)^{2}} \quad \operatorname{Rac}_{\mathrm{Lp}}=0.290 \mathrm{hm} \\
& \frac{\operatorname{RaCLp}}{\operatorname{Rdc}_{\mathrm{Lp}}}=1.78
\end{aligned}
$$

$\operatorname{Pcu}_{\mathrm{Lp}}:=\operatorname{Rdc}_{\mathrm{Lp}} \cdot\left(\frac{\mathrm{IP}_{\mathrm{dc}}}{2}\right)^{2}+\operatorname{Rac}_{\mathrm{Lp}} \cdot\left(\frac{\mathrm{I} \mathrm{P}_{\mathrm{ac}}}{2}\right)^{2} \quad \operatorname{Pcu}_{\mathrm{Lp}}=0.3$ watt
Secondary winding length:
LdfLs1: $=\left\lvert\, \begin{aligned} & \text { L1 } \leftarrow \text { LdfLp } \\ & \text { for } \quad i \in 1 . .\left(\text { Nly }_{\text {Ls2 }}-1\right) \\ & \mathrm{L} 1 \leftarrow \mathrm{~L} 1+4 \cdot \text { DcuLs1 } \\ & \mathrm{L} 1\end{aligned}\right.$
LcuLs1:= $\left\lvert\, \begin{aligned} & \mathrm{L} 1 \leftarrow \mathrm{Ldf} \mathrm{Lp} \\ & \mathrm{L} \leftarrow 0 \cdot \mathrm{~cm}\end{aligned}\right.$
for $\quad i \in 1 . .\left(\right.$ Nly $\left._{\text {Ls1 }}-1\right)$
$\left\lvert\, \begin{aligned} & \mathrm{L} \leftarrow \mathrm{L}+\mathrm{L} 1 \cdot \mathrm{Nt\mid}_{\mathrm{Ls} 1} \\ & \mathrm{~L} 1 \leftarrow \mathrm{~L} 1+4 \cdot \text { Dcu }_{\mathrm{Ls} 1}\end{aligned}\right.$
$\mathrm{L} \leftarrow 0$ if NlyLs1 $\leftarrow 1$
$\left[\mathrm{L}+\mathrm{L} 1 \cdot\left[\mathrm{Ns} 1-\left(\mathrm{Nly}_{\mathrm{Ls} 1}-1\right) \cdot \mathrm{Nt\mid} \mathrm{Ls} 1\right]\right]$
$\mathrm{Lcu}_{\mathrm{Ls} 1}=36.29 \mathrm{~cm}$
$\operatorname{Rdc}_{\mathrm{Ls} 1}:=\rho \cdot \frac{\mathrm{Lcu}_{\mathrm{Ls} 1}}{\text { Wcu }_{\mathrm{Ls} 1} \cdot \mathrm{Nst}_{\mathrm{Ls} 1}} \quad \quad \operatorname{Rdc}_{\mathrm{Ls} 1}=9.51 \times 10^{-3} \mathrm{ohm}$
$\operatorname{Rdc}_{\mathrm{Ls} 1} \cdot\left(\frac{\mathrm{DcuLs}}{2 \cdot \mathrm{Sd}}\right)^{2}$
$\operatorname{Rac}_{\mathrm{Ls} 1}:=\frac{(2 \cdot \mathrm{Sd})}{\left(\frac{\text { DcuLs1 }^{2}}{2 \cdot \mathrm{Sd}}\right)^{2}-\left(\frac{\text { DcuLs1 }^{2}}{2 \cdot \mathrm{Sd}}-1\right)^{2}}$
$R_{\text {acs1 }}=0.02 \mathrm{ohm}$
$\frac{R_{a c}{ }_{L s 1}}{R_{d c}{ }_{L s 1}}=1.78$
$\operatorname{PcuLs} 1:=\operatorname{RdCLs} 1 \cdot\left(\frac{\mathrm{Io} 1_{\mathrm{max}}}{2}\right)^{2}+\operatorname{RaCLs} 1^{2} \cdot\left(\frac{\mathrm{Is} 1_{\mathrm{ac}}}{2}\right)^{2} \quad$ PcuLs $1^{2}=0.08$ watt
LcuLs2 $:=\left\lvert\, \begin{aligned} & \mathrm{L} 1 \leftarrow \mathrm{Ldf}_{\mathrm{Ls} 1} \\ & \mathrm{~L} \leftarrow 0 \cdot \mathrm{~cm}\end{aligned}\right.$
for $\quad i \in 1 . .\left(\right.$ Nly $\left._{\text {Ls2 }}-1\right)$
$\mid \mathrm{L} \leftarrow \mathrm{L}+\mathrm{L} 1 \cdot \mathrm{Nt\mid}_{\mathrm{Ls} 2}$
$\mathrm{~L} 1 \leftarrow \mathrm{~L} 1+4 \cdot$ DcuLs2
$\mathrm{L} \leftarrow 0 \quad$ if $\quad \mathrm{Nly}_{\mathrm{Ls} 2} \leftarrow$
$\left[\mathrm{~L}+\mathrm{L} 1 \cdot\left[\mathrm{Ns} 2-\left(\mathrm{Nly}_{\mathrm{Ls} 2}-1\right) \cdot \mathrm{NtI}_{\mathrm{Ls} 2}\right]\right]$

Lcu $_{\text {Ls2 }}=12.57 \mathrm{~cm}$
Wcu Ls2 $=5 \times 10^{-8} \mathrm{~m}^{2} \quad$ NstLs2 $=1$

$\operatorname{Rac}_{\mathrm{Ls} 2}:=\frac{\operatorname{Rdc}_{\mathrm{Ls} 2} \cdot\left(\frac{\mathrm{Dcu}_{\mathrm{Ls} 2}}{2 \cdot \mathrm{Sd}}\right)^{2}}{\left(\frac{\mathrm{Dcu} \mathrm{Ls} 2^{2}}{2 \cdot \mathrm{Sd}}\right)^{2}-\left(\frac{\mathrm{Dcu} \mathrm{Ls}^{2}}{2 \cdot \mathrm{Sd}}-1\right)^{2}} \quad \quad \operatorname{Rac}_{\mathrm{Ls} 2}=0.05 \mathrm{ohm}$
PcuLs2 : $=$ Rdc $_{\text {Ls2 }} \cdot \operatorname{lo}_{\max }{ }^{2}+$ Rac $_{\text {Ls2 }} \cdot \mathrm{Is} 2 \mathrm{ac}{ }^{2} \quad$ PcuLs2 $=0.02$ watt
$P_{c u}$ tot $:=$ Pcu $_{\text {Lp }}+$ Pcu $_{\text {Ls1 }}+$ PcuLs2 \quad Pcu $_{\text {tot }}=0.4$ watt

-Total transformer losses:

Ptrans $_{\text {tot }}:=$ Pcu $_{\text {tot }}+$ Pcore \quad Ptrans $_{\text {tot }}=0.75$ watt

-Transformer efficiency:

η Tra $:=\frac{\text { Po }_{\max }}{\mathrm{Po}_{\max }+\text { Ptrans }_{\text {tot }}} \quad \quad \eta_{\text {Tra }}=98.89 \%$

12) Total power supply efficiency

Ptrans $_{\text {tot }}=0.75$ watt \quad Pdiode $_{\text {tot }}=4.95 \mathrm{watt} \quad$ Pmosfet $_{\text {tot }}=0.66 \mathrm{watt}$
(each phase)
Pout := Vo1•lo1 $\max ^{+}$Vo2•lo2 $\max \quad R_{\mathrm{L} 1}:=0.085 \Omega$
-Input Inductor losses:
Pinput ${ }_{\text {inductor }}:=\mathrm{R}_{\mathrm{L} 1} \cdot \mathrm{Idc}^{2} \quad$ Pinputinductor $=0.31$ watt
-Board losses, current sense losses: (Estimated value) $\mathrm{P}_{\mathrm{pcb}}:=1 \cdot$ watt
$\eta_{\text {tot }}:=\frac{\text { Pout }}{\text { Pout }+ \text { Ptrans }_{\text {tot }}+\text { Pdiode }_{\text {tot }}+\text { Pmosfet }_{\text {tot }} \cdot 2+\text { Pinputinductor }+\mathrm{P}_{\mathrm{pcb}}} \quad \eta_{\text {tot }}=88.13 \%$
-Total Power Losses:
Ploss $:=$ Ptrans $_{\text {tot }}+$ Pdiode $_{\text {tot }}+$ Pmosfet $_{\text {tot }} \cdot 2+$ Pmosfet $_{\text {tot }}+$ P $_{\text {pcb }} \quad$ Ploss $=8.68$ watt

13) Selecting the proper switching frequency

The operating frequency of the power supply should be selected to obtain the best balance between switching losses, total transformer losses, size and cost of magnetic components and output capacitors.
High switching frequency reduces the output capacitor value and the inductance of the primary and secondary windings, and therefore the total size of the transformer.
In the same manner, higher switching frequency increases the transformer losses and the switching losses of the switching transistor. These high losses reduce the overall efficiency of the power supply, and increase the size of the heat-sink required to dissipate the heat.

14) Current limit

The LM5030 contains two levels of over current protection: cycle by cycle current limit (0.5 vol) and hiccup mode (0.6volt)

Current transformer: Pulse P8208Turns ratio:

$$
C T_{t r}:=10 C
$$

- Primary peak current:

$$
I \rho_{\text {peak }}:=I \mathrm{I}_{\mathrm{ft}}+\frac{\mathrm{V} \mathrm{inom} \cdot \mathrm{~T}_{\mathrm{ch}} \cdot \mathrm{Dnom}}{2 \cdot \mathrm{Lp} 2} \quad \quad \mathrm{Ip}_{\text {peak }}=2.92 \mathrm{amp}
$$

- Primary current limit set: llimit $:=3.2 \mathrm{amp}$
-Terminating resistor:

$$
\mathrm{Rt}:=\frac{0.5 \mathrm{volt} \cdot \mathrm{CT}_{\mathrm{tr}}}{\text { limit }} \quad \mathrm{Rt}=15.630 \mathrm{hm}
$$

- Rst $=10 \mathrm{~K}$ resistor to reset the core
- Rf\&Cf: Current sense filter

Notes:
Wire table:

AWG Wire Size			
Bare Area $\mathrm{cm}^{\wedge} 210^{\wedge}-3$	Area $\mathrm{cm}^{\wedge} 2^{\wedge}-3$	Diameter cm	
18	8.23	9.32	0.109
19	6.53	7.54	0.098
20	5.188	6.065	0.0879
21	4.116	4.837	0.0785
22	3.243	3.857	0.0701
23	2.588	3.135	0.0632
24	2.047	2.514	0.0566
25	1.623	2.002	0.0505
26	1.28	1.603	0.0452
27	1.021	1.313	0.0409
28	0.8046	1.0515	0.0366
29	0.647	0.8548	0.033
30	0.5067	0.6785	0.0294
31	0.4013	0.5596	0.0267

32	0.3242	0.4559	0.0241
33	0.2554	0.3662	0.0216
34	0.2011	0.2863	0.0191
35	0.1589	0.2268	0.017
36	0.1266	0.1813	0.0152
37	0.1026	0.1538	0.014
38	0.08107	0.1207	0.0124
39	0.06207	0.0932	0.0109
40	0.04869	0.0723	0.0096

References:

1. Magnetics application notes.
2. Colonel Wm. T. McLyman "Transformer and Inductor Design Handbook"
3. J Riche, High temperature power supply design (*2)
4. Pressman "Switching Power Supply Design" (*1)
