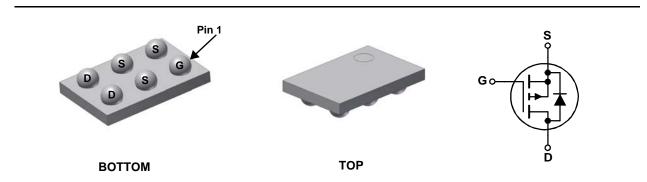


September 2008

FDZ391P P-Channel 1.5 V PowerTrench[®] Thin WL-CSP MOSFET -20 V, -3 A, 85 mΩ

Features

- Max $R_{DS(on)}$ = 85 m Ω at V_{GS} = -4.5 V, I_D = -1 A
- Max $R_{DS(on)}$ = 123 m Ω at V_{GS} = -2.5 V, I_D = -1 A
- Max $R_{DS(on)} = 200 \text{ m}\Omega$ at $V_{GS} = -1.5 \text{ V}$, $I_D = -1 \text{ A}$
- Occupies only 1.5 mm² of PCB area
- Ultra-thin package: less than 0.4 mm height when mounted to PCB
- RoHS Compliant



General Description

Designed on Fairchild's advanced 1.5 V PowerTrench process with state of the art "low pitch" **Thin** WLCSP packaging process, the FDZ391P minimizes both PCB space and $R_{DS(on)}$. This advanced WLCSP MOSFET embodies a breakthrough in packaging technology which enables the device to combine excellent thermal transfer characteristics, ultra-low profile packaging, low gate charge, and low $R_{DS(on)}$.

Applications

- Battery management
- Load switch
- Battery protection

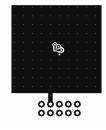
MOSFET Maximum Ratings $T_A = 25 \ ^{\circ}C$ unless otherwise noted

Symbol	Par		Ratings	Units		
V _{DS}	Drain to Source Voltage			-20	V	
V _{GS}	Gate to Source Voltage		±8	V		
	Drain Current -Continuous	T _A = 25 °C	(Note 1a)	-3	٨	
D	-Pulsed			-15	— A	
P _D	Power Dissipation	T _A = 25 °C	(Note 1a)	1.9	w	
	Power Dissipation $T_A = 25 \text{ °C}$ (Note 1b)			0.9	V	
T _J , T _{STG}	Operating and Storage Junction Temperature Range			-55 to +150	°C	

Thermal Characteristics

R_{\thetaJA}	Thermal Resistance, Junction to Ambient	(Note 1a)	65	°C/W
$R_{ ext{ heta}JA}$	Thermal Resistance, Junction to Ambient	(Note 1b)	133	C/VV

Package Marking and Ordering Information

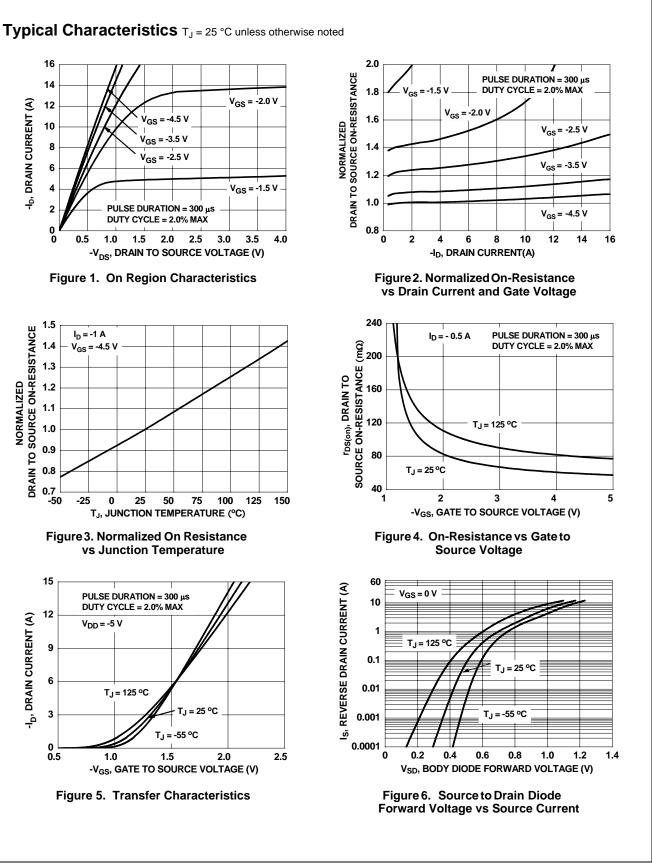

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
6	FDZ391P	WL-CSP Thin	7 "	8 mm	5000 units

Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Chara	acteristics					
BV _{DSS}	Drain to Source Breakdown Voltage	I _D = -250 μA, V _{GS} = 0 V	-20			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, referenced to 25 °C		-12		mV/°C
IDSS	Zero Gate Voltage Drain Current	$V_{DS} = -16 V, V_{GS} = 0 V$			-1	μA
I _{GSS}	Gate to Source Leakage Current	$V_{GS} = \pm 8 V, V_{DS} = 0 V$			±100	nA
On Chara	acteristics					
V _{GS(th)}	Gate to Source Threshold Voltage	$V_{GS} = V_{DS}, I_{D} = -250 \ \mu A$	-0.4	-0.6	-1.5	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A, referenced to 25 °C		2		mV/°C
	Drain to Source On Resistance	$V_{GS} = -4.5 \text{ V}, I_D = -1 \text{ A}$		74	85	- mΩ
-		$V_{GS} = -2.5 \text{ V}, I_D = -1 \text{ A}$		90	123	
r _{DS(on)}		$V_{GS} = -1.5 \text{ V}, \text{ I}_{D} = -1 \text{ A}$		140	200	
		V_{GS} = -4.5 V, I_D = -1 A T _J = 125 °C		100	123	
I _{D(on)}	On to State Drain Current	$V_{GS} = -4.5 \text{ V}, V_{DS} = -5 \text{ V}$	-10			Α
9 _{FS}	Forward Transconductance	$V_{DS} = -5 V, I_{D} = -1 A$		7		S
Dynamic	Characteristics					
C _{iss}	Input Capacitance			800	1065	pF
C _{oss}	Output Capacitance	── V _{DS} = -10 V, V _{GS} = 0 V, ── f = 1 MHz		155	205	pF
C _{rss}	Reverse Transfer Capacitance			90	135	pF
R _g	Gate Resistance	f = 1 MHz		9		Ω
Switching	g Characteristics					
t _{d(on)}	Turn-On Delay Time			11	20	ns
t _r	Rise Time	$V_{DD} = -10 \text{ V}, \text{ I}_{D} = -1 \text{ A}$		10	20	ns
t _{d(off)}	Turn-Off Delay Time	$V_{\rm GS}$ = -4.5 V, R _{GEN} = 6 Ω		50	80	ns
t _f	Fall Time			30	48	ns
Q _g	Total Gate Charge	V _{GS} = -4.5 V		9	13	nC
Q _{gs}	Gate to Source Gate Charge	$V_{DD} = -10 V$		1		nC
Q _{gd}	Gate to Drain "Miller" Charge	I _D = -1 A		2		nC
Drain-So	urce Diode Characteristics					
I _S	Maximum continuous Drain-Source Dio	de Forward Current			-1.1	Α
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = -1.1 A$ (Note 2)	-	-0.7	-1.2	V

I _S	Maximum continuous Drain-Source Diode Forward Current			-1.1	A
V _{SD}	Source to Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = -1.1 A$ (Note 2)	-0.7	-1.2	V
t _{rr}	Reverse Recovery Time	- I _F = -1 A, di/dt = 100 A/μs	21		ns
Q _{rr}	Reverse Recovery Charge	F = -1 A, di/dt = 100 A/µs	5		nC

Notes:

R_{0JC} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.



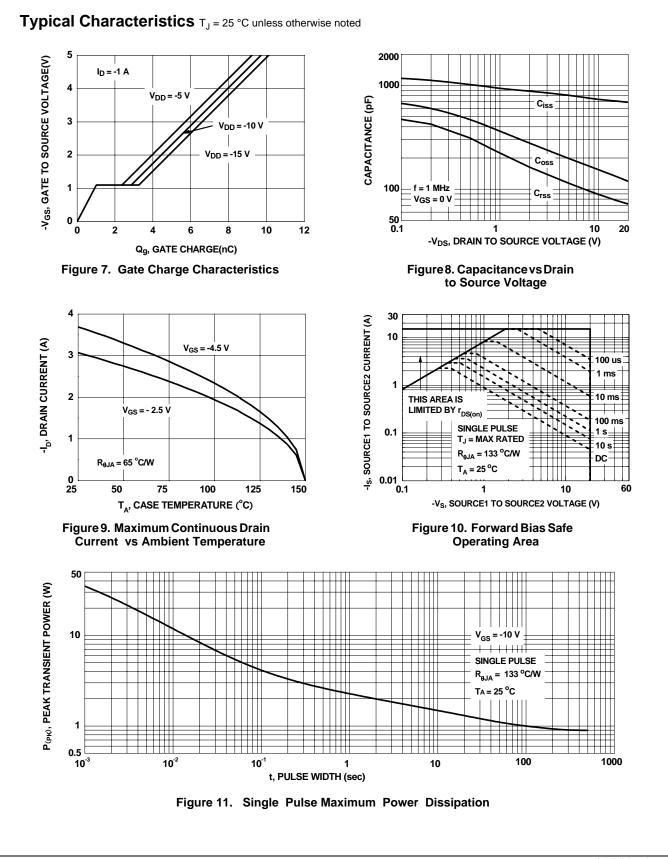
a. 65 °C/W when mounted on a 1 in² pad of 2 oz copper.

b. 133 °C/W when mounted on a minimum pad of 2 oz copper.

2. Pulse Test: Pulse Width < 300μ s, Duty cycle < 2.0%.

FDZ391P P-Channel 1.5V PowerTrench[®] WL-CSP MOSFET

FDZ391P Rev.B

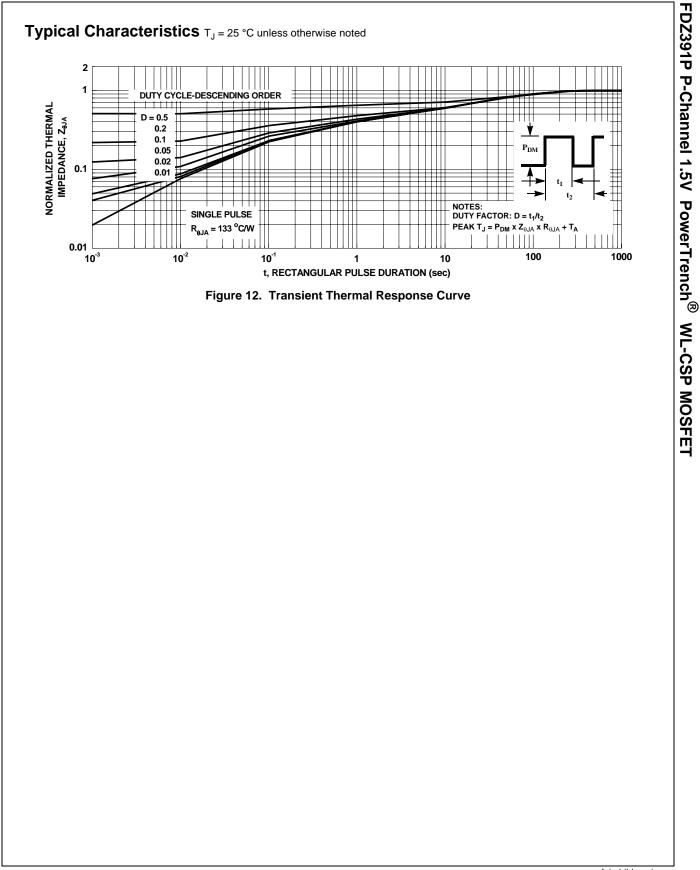

-I_D, DRAIN CURRENT (A)

DRAIN TO SOURCE ON-RESISTANCE

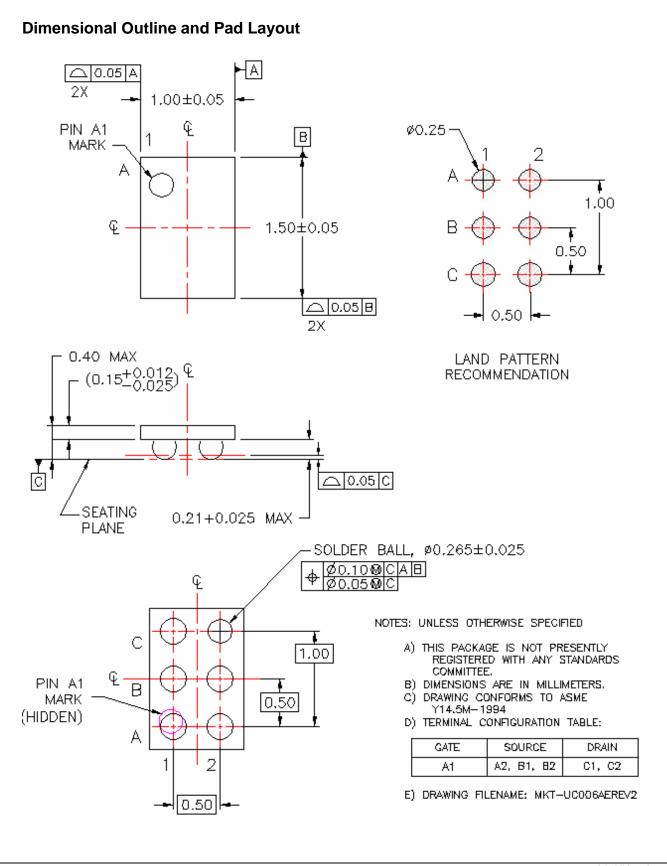
-I_D, DRAIN CURRENT (A)

NORMALIZED

www.fairchildsemi.com



FDZ391P Rev.B


4

www.fairchildsemi.com

FDZ391P P-Channel 1.5V PowerTrench[®] WL-CSP MOSFET

www.fairchildsemi.com

FDZ391P P-Channel 1.5V PowerTrench[®] WL-CSP MOSFET

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

Build it Now™ F-PFS™ PowerTrench® The Power Franch CorePLUS™ FRFET® Programmable Active Droop™ Programmable Active Droop™ CorePOWER™ Global Power ResourceSM QFET® Programmable Active Droop™ Programmable Active Droop™ CrUT™ Green FPS™ QS™ QS™ TinyBoost™ Current Transfer Logic™ GTO™ RapidConfigure™ TinyBoost™ EcoSPARK® IntelliMAX™ GTO™ RapidConfigure™ TinyDogic® EfficentMax™ ISOPLANAR™ Saving our world, 1mW /W /kW at a time™ TinyPower™ FilteentMax™ ISOPLANAR™ Saving our world, 1mW /W /kW at a time™ TinyPower™ FilteentMax™ ISOPLANAR™ Saving our world, 1mW /W /kW at a time™ TinyPower™ FilteentMax™ MicroPak™ Saving our world, 1mW /W /kW at a time™ TinyPower™ FilteentMax™ MicroPak™ SpM® TinyPower™ TinyPower™ Fairchild® MicroPak™ SuperFET™ SuperSoT™-3 UHC® FACT® OPTOLOGIC® SuperSOT™-8 UniFET™ VoxT™ FACT® OPTOLOGIC® SuperSOT™-8 UniFET™ <

* EZSWITCH™ and FlashWriter[®] are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized por other assistance for parts bought from Unauthorized Sources. Farichild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.
		Rev. 13