行政院國家科學委員會專題研究計畫成果報告 應用於脈銜式負載之高壓電源供應器

High voltage power supply for pulse load applications

計畫編號: NSC 95-2221-E-007-261

執行期限:95年8月1日至96年7月31日

主持人:潘晴財 清華大學電機系 教授

Email: ctpan@ee.nthu.edu.tw

一、摘要

本計畫主要目的是配合國科會電力 工程領域發展方向並妥善利用既有能 量,選定以行波管微波放大器為應用之高 壓電源供應器系統作為研究對象,期能達 到開發可技術移轉產業界之先進技術及 培訓人才雙重目標。

本年度計畫主要工作為針對 PFC 三 相電源交直流轉換器與高壓直流轉換器 之電路分析模擬、整合及實作。其中高壓 直流轉換器選擇串聯諧振式串並聯負載 全橋轉換器,採多模組並串聯組合,以提 升輸出電壓及降低個別元件電壓電流應 力,其設計為定頻控制,使得一次側功率 晶體及二次側高壓二極體同時達到柔切 效果。因此,此電源供應器之整體效率可 以提升至 91%。最重要的是,本架構可以延 伸使用到更高壓及更大功率之應用。

關鍵詞:行波管、高壓電源供應器、柔性 切換,輸入並聯輸出串聯轉換器

Abstract

The main purpose of this project is to choose the microwave amplifier of traveling wave tubes as an application object to develop the related high voltage power supply techniques. The related technique naturally can also be applied to other applications such as X-ray generators and laser generators of which the corresponding high voltage technique is much simpler.

The major tasks of the year are analysis,

simulation and implementation of a three phase ac/dc converter as the first stage and a dc/dc converter as the second stage. The topology of the second stage converter is a series resonant and series-parallel load type full-bridge converter. By parallel and series connections of multi-modules and isolated transformers, we can get higher output voltage and with electric isolation. Both the transistors at the primary side and the diodes at the secondary side can achieve soft switching. As a result, the efficiency of the total system can be improved greatly. Furthermore, the proposed configuration can be easily extended to much higher voltage and much higher output power applications.

Keywords: TWT 、 high voltage power supply、soft switching、input parallel output series converter

二、計畫目的

高壓電源供應器的應用相當廣泛,諸 如醫學檢驗的X光機、雷達及通訊用的行 波管放大器、工業用CO2 雷射雕刻機和廢 棄物處理或其它用途的電漿火炬等。雖然 用途相當廣泛,但是由於技術層次較高且 單一產品經濟規模比不上 3C 產品之電源 供應器,故高壓、高頻且高功率之電源供 應器國內技術累積明顯不足,有鑑於此, 本畫主要目的是配合國科會電力工程領 域發展方向並妥善利用既有能量,選定以 行波管微波放大器為應用之高壓電源供 應器系統作為研究對象,期能達到開發可 技術移轉產業界之先進技術及培訓人才 雙重目標。

近年來電力電子技術發展快速,對電 源系統的要求除了功能正常外,其它如效 率、功因、體積、價格及可靠度等需求也 愈趨嚴格,所以在設計高壓電源供應器 時,不同的負載特性及規格需求通常會由 不同的電路架構或控制方式,在高壓電源 供應器中,高壓變壓器是一關鍵性組件, 由於高升壓比及高絕緣要求,較多的繞線 圈數及較大的絕緣後大造成漏電感及繞 線電容增大,加劇高壓變壓器的非理想 性,為了吸收變壓器的非理想性,通常諧 振電路會比脈波寬調變(PWM)電路有較 低的電磁干擾(EMI)及較高的效率,串聯 諧振串聯負載(SRSL)、串聯諧振並聯負載 (SRPL)及串聯諧振串並聯負載(SRSPL)等 三種轉換器於是產生。

串聯諧振串聯負載有避免高壓變壓 器飽和、負載短路限流及在輕載仍可保持 高效率等優點,然而此架構並未將繞線電 容效應考慮在內是其缺點。

並聯諧振並聯負載直接將漏電感及 繞線電容涵蓋到諧振電路中是其優點,此 電路在輕載時電壓增益非常高,在需高啟 動電壓如安定器等應用是其優點,然而若 應用於行波管放大器,輕載的高增益使輸 出電壓調節變得複雜則為缺點,其它如在 全橋架構無法確保變壓器不飽和也是一 種缺點。

串聯諧振串並聯負載比前述兩種諧 振電路多了一個電容,電路多了一階分析 比較複雜,不過其優點是把高壓變壓器的 漏電感及繞線電容考慮進去,而且經過設 計,可以將前述兩種諧振電路之優點加以 利用。 本計劃針對行波管高壓電源供應器 進行研究,考慮高壓變壓器及負載特性, 選擇全橋架構之串聯諧振串並聯負載電 路進行分析與模擬,設計出以一定頻控 制,可使一次側功率晶體及二次側高壓二 極體同時達到柔切效果。並整合三相交直 流轉換器,使輸入功率因數及輸出電壓變 動同時獲得調節。

三、 行波管工作原理及負載特性說明

3.1 工作原理

圖一為一空腔耦合行波管結構圖,重 要部份包括電子鎗、陰極、柵極、陽極、 慢波結構、收集極及聚焦磁場組等,電子 搶負責提供電子束,陰極與陽極電壓差提 供電子束加速電場,柵極控制電子束是否 射出能夠傳給微波輸入信號,達到微 放大的目的,收集極收集能量轉換後的電 子束間因電子互相排斥,在未將能量傳 給微波前就散射到管壁。

由圖一所示,行波管正常工作所需電 源包含陰極電壓、集極電壓、燈絲電壓及 柵極電壓等。典型行波管電性接線圖如圖 二所示。

3.2 負載特性說明

行波管可由閘極電壓控制電子束導 通與截止,形成脈衝電流,其電流波形如 圖 1.3 所示,而脈衝重複波頻率(PRF)的變 化可高到十數千赫茲,脈衝負載對電源供 應器輸出電壓的影響如圖 1.3 所示,電子 束導通時電壓會有一驟降現象,為了使輸 出電壓穩定,必須調節輸出電壓,使電壓 能在一個工作週期內穩定回到原設定 值。本計劃針對表一之規格,對電源供應 器進行分析、設計。

衣 川町九间座电际历滤韶坐平风俗	
輸入電源	$3 \varphi 220$ Vrms AC
輸出峰值功率	20kW
輸出平均工率	2kW
輸出電壓	12kV
脈波重複頻率(PRF)	10kHz
電壓調節率	0.5%

去一 所研究立厭雲酒仳瘫哭其大相枚

圖三 脈衝負載電壓電流波形

四、電源系統工作原理

一般高壓電源可藉由變頻諧振式電 路實現,但是為避免轉換器切換頻率對微 波調變信號造成干擾故多採定頻設計。而 高壓側電感絕緣不易,通常需將電感映射 到一次側採電流源饋入設計,如圖四所示 為傳統應用於行波管之高壓電源供應 器。傳統之高壓電源供應器缺點有體積 大及高壓變壓器設計難度高 其大及高壓變壓器設計難度高 等。本計畫考量改善上述缺點及高輸入功 因需求,遂將一三相升壓型交直流轉換器 堅合成如圖五所示之電源供應器。

圖五 本論文所提新型高壓電源供應器

由圖五可看出整體電路是由前級一 三相主動式交直流轉換器與後級三組串 聯諧振式串並聯負載全橋直流轉換器所 組成。其中,後級電路採定頻控制,在適 當的電路參數下可達到一次側四只主動 開關含柔切特性,且降低二次側二極體逆 向恢復損失,進而有效提高整體電路工作 效率。此外,利用前級三相主動式交直流 轉換器調變直流鏈電壓便可以調控高壓 端之電壓值。總結之,此電路架構含有以 下幾項優點:

1. 採較高之開闢切換頻率,大幅減小

電感與電容之體積。

- 第二級電路採用含柔性切換之諧振 式全橋電路以降低主動開闢與二次 側二極體於切換時之功率損耗。
- 利用串聯電容諧振電路與分散式變 壓器架構來減小每一變壓器所需之 升壓匝比,有效的降低變壓器設計 上的難度。

接下來便逐一對上述前級與後級電 路作分析說明。

4.1 三相升壓型交直流轉換器

如圖六所示為一六只開關之主動式 三相升壓型交直流轉換器,由於其本身架 構簡單、控制容易且具有輸入電流為純弦 波及雙向電力潮流的能力,非常適合應用 在功因校正電路上,因此三相升壓型交直 流轉換器在文獻上及工業上皆被廣泛地 研究及應用。

圖六 三相升壓型交直流轉換器

圖六中可看出三相升壓型交直流轉 換器是由三相輸入電壓源經三個串聯升 壓電感 L 後連接至由六只主動開關 $Q_1 \sim Q_6$ 所構成之全橋電路,而在直流端則 是由一直流電容 C_{dc} 與輸出負載 R 並聯。 而主動開闢之切換方式於本計畫是採用 正弦脈寬調變(SPWM)來控制開闢的導通 時間。接著推導三相升壓型交直流轉換器 之動態數學模式,在推導數學模式之前先 作以下之假設:

(1) 輸入電壓源為三相平衡正序之弦波電 壓,亦即

$$e_a = E_m \cos \omega t \tag{1}$$

$$e_b = E_m \cos(\omega t - \frac{2\pi}{3}) \tag{2}$$

$$e_c = E_m \cos(\omega t - \frac{2\pi}{3}) \tag{3}$$

其中, E_m為相電壓之振幅值, ω為電 源角頻率。

(2) 當電路工作於穩態時,三相輸入電流 為以下型式

$$i_a = I_m \cos(\omega t - \phi) \tag{4}$$

$$i_b = I_m \cos(\omega t - \phi - \frac{2\pi}{3}) \tag{5}$$

$$i_c = I_m \cos(\omega t - \phi + \frac{2\pi}{3}) \tag{6}$$

其中, I_m為電流之振幅大小, 而 Ø 為 穩態時輸入相電壓與輸入電流之相位 差。

- (3)分析轉換器時除考慮電感L之等效串 聯電阻R_s外,假設其餘各功率元件均 為理相元件。
- (4) 轉換器之切換頻率遠高於輸入端之電
 源頻率,即f_s >> f,其中f_s為開關切

換頻率, $f = \frac{\omega}{2\pi}$ 為電源頻率。

(5) 定義主動式開關Q₁~Q₆之導通責任週期比為d₁~d₆,且為避免轉換器中同一臂上下二只開關同時導通,其關係應如下

$$d_k + d_{k+3} = 1 \qquad ,$$

 $0 \le d_k \le 1$, k = 1,2,3 (7)

基於以上的假設,再利用狀態空間平 均技術則可推導出此轉換器之動態數學 模式。首先就a相依主動開關Q₁與Q₄之導 通狀態分為二個工作模式,分別說明如下 <1>當開關Q₁導通而Q₄截止之期間,依

KVL 可得下述方程式

$$e_a = L\frac{di_a}{dt} + R_s i_a + v_{dc} + v_{on}$$
(8)

<2>當開關Q₁截止而Q₄導通之期間,依 KVL 可得下述方程式

$$e_a = L \frac{di_a}{dt} + R_s i_a + v_{on} \tag{9}$$

將上述兩個工作模式下之等效方程式經 狀態平均後,便可以得到a相之狀態平均 方程式如下

$$e_{a} = L \frac{di_{a}}{dt} + R_{s}i_{a} + d_{1}v_{dc} + v_{on}$$
(10)

同理,分別可求得b相與c相之平均方程 式

$$e_{b} = L\frac{di_{b}}{dt} + R_{s}i_{b} + d_{2}v_{dc} + v_{on}$$
(11)

$$e_{c} = L \frac{di_{c}}{dt} + R_{s}i_{c} + d_{3}v_{dc} + v_{on}$$
(12)

另外,輸出端可依 KCL 求得其狀態平均 方程式為

$$C_{dc} \frac{dv_{dc}}{dt} = d_1 i_a + d_2 i_b + d_3 i_c - \frac{v_{dc}}{R} \quad (13)$$

因為前述所假設輸入為三相平衡電源,故 由輸入側之三個狀態方程式可得

$$v_{on} = -\frac{1}{3}(d_1 + d_2 + d_3) \cdot v_{dc}$$
(14)

再將上式帶回前述輸入端之狀態方程式 整理後

$$L\frac{di_{a}}{dt} = e_{a} - R_{s}i_{a} - \frac{v_{dc}}{3} \cdot (2d_{1} - d_{2} - d_{3}) \quad (15)$$

$$L\frac{di_b}{dt} = e_b - R_s i_b - \frac{v_{dc}}{3} \cdot (-d_1 + 2d_2 - d_3) \quad (16)$$

$$L\frac{di_{c}}{dt} = e_{c} - R_{s}i_{c} - \frac{v_{dc}}{3} \cdot (-d_{1} - d_{2} + 2d_{3}) \quad (17)$$

 $\bar{c} \, \tilde{\xi}$

$$d_1 = \frac{1}{2} + \frac{1}{2}m_1(t) \tag{18}$$

$$d_2 = \frac{1}{2} + \frac{1}{2}m_2(t) \tag{19}$$

$$d_3 = \frac{1}{2} + \frac{1}{2}m_3(t) \tag{20}$$

其中; $m_k(t)$, k = 1,2,3為一時變部份之 調變指數(Modulation Indices);且

$$\left|m_{k}(t)\right| \leq 1 \tag{21}$$

將上列責任週期比之定義代入前述狀態 方程式,可得

$$L\frac{di_a}{dt} = e_a - R_s i_a - \frac{m_1(t)}{2} \cdot v_{dc}$$
(22)

$$L\frac{di_b}{dt} = e_b - R_s i_b - \frac{m_2(t)}{2} \cdot v_{dc}$$
(23)

$$L\frac{di_c}{dt} = e_c - R_s i_c - \frac{m_3(t)}{2} \cdot v_{dc}$$
(24)

由式(22)~(24)相加可得
$$m_1(t) + m_2(t) + m_3(t) = 0$$
 (25)

再分別將式(1)~(6)代入式(22)~(24)則可得 到前述調變指數之解析式法則如下

$$\frac{1}{2}m_1(t) = (e_a - R_s i_a - L\frac{di_a}{dt})/v_{dc} \quad (26)$$
$$= d_m \cdot \cos(\omega t - \theta)$$

$$\frac{1}{2}m_{2}(t) = (e_{b} - R_{s}i_{b} - L\frac{di_{b}}{dt})/v_{dc} \quad (27)$$
$$= d_{m} \cdot \cos(\omega t - \theta - 120^{\circ})$$
$$\frac{1}{2}m_{3}(t) = (e_{c} - R_{s}i_{c} - L\frac{di_{c}}{dt})/v_{dc} \quad (28)$$

其中

$$d_m = \frac{1}{v_{dc}} \cdot \sqrt{(E_m - \omega L I_m \sin \phi - R_s I_m \cos \phi)^2} + (\omega L I_m \cos \phi - R_s I_m \sin \phi)^2}$$
$$H = \tan^{-1} \frac{\omega L I_m \cos \phi - R_s I_m \sin \phi}{\omega L I_m \cos \phi - R_s I_m \sin \phi}$$

 $= d_m \cdot \cos(\omega t - \theta + 120^\circ)$

$$\theta = \tan \frac{1}{E_m - \omega L I_m \sin \phi - R_s I_m \cos \phi}$$

完整之狀態方程式可整理成矩陣型式如 下

$$\begin{bmatrix} \frac{di_{a}}{dt} \\ \frac{di_{b}}{dt} \\ \frac{di_{c}}{dt} \\ \frac{di_{c}}{dt} \end{bmatrix} = \begin{bmatrix} \frac{-R_{s}}{L} & 0 & 0 & \frac{-m_{1}(t)}{2L} \\ 0 & \frac{-R_{s}}{L} & 0 & \frac{-m_{2}(t)}{2L} \\ 0 & 0 & \frac{-R_{s}}{L} & \frac{-m_{3}(t)}{2L} \\ \frac{dv_{dc}}{dt} \end{bmatrix} \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \\ \frac{1+m_{1}(t)}{2C_{dc}} & \frac{1+m_{2}(t)}{2C_{dc}} & \frac{1+m_{3}(t)}{2C_{dc}} & \frac{-1}{RC_{dc}} \end{bmatrix} \begin{bmatrix} i_{a} \\ i_{b} \\ i_{c} \\ v_{dc} \end{bmatrix} + \frac{1}{L} \begin{bmatrix} e_{a} \\ e_{b} \\ e_{c} \\ v_{dc} \end{bmatrix}$$

(29)

接下來可再將所得之狀態平均方程 式轉換到利用空間向量表示法之電源同 步旋轉座標系下,首先功率不變(Power Invariance)條件定義下列空間向量

$$a = e^{j\frac{2\pi}{3}}, \xi 為 \bar{x}_s^s 與 d 軸初始之夾角, 即$$

$$\bar{e}^s = \left[\frac{2}{2}(e + ae + a^2e)\right] = \left[\frac{3}{2}E e^{j\omega t}\right]$$
(31)

$$\vec{e}_{s} = \sqrt{\frac{3}{3}} (\vec{e}_{a} + d\vec{e}_{b} + d\vec{e}_{c}) - \sqrt{\frac{3}{2}} L_{m} \vec{e}$$
(31)
$$\vec{z}_{s} = \sqrt{\frac{3}{2}} (\vec{e}_{a} + d\vec{e}_{b} + d\vec{e}_{c}) - \sqrt{\frac{3}{2}} L_{m} \vec{e}$$
(32)

$$\vec{i}_s^{s} = \sqrt{\frac{2}{3}}(i_a + a\,i_b + a^2\,i_c) = \sqrt{\frac{3}{2}}I_m\,e^{j(\omega t - \phi)} \tag{32}$$

$$\vec{d}_s^s = \sqrt{\frac{2}{3}}(d_1 + a \, d_2 + a^2 d_3) = \sqrt{\frac{3}{2}} d_m \, e^{j(\omega t - \theta)} \quad (33)$$

由以空間向量之定義,代入式(30)並整理 如下

$$L \frac{d\bar{i}_s^s}{dt} = \bar{e}_s^s - R_s \bar{i}_s^s - \bar{d}_s^s v_{dc} \qquad (34)$$

$$C\frac{dv_{dc}}{dt} = R_e[\bar{i}_s^{s} \cdot \bar{d}_s^{s^*}] - \frac{v_{dc}}{R}$$
(35)

其中*代表取共軛複數。

接著將 \bar{e}_s^s 、 \bar{i}_s^s 、 \bar{d}_s^s 轉換到電源同步 旋轉座標系,其空間向量定義為

$$\bar{x}_{s}^{e} = \bar{x}_{s}^{s} \cdot e^{-j\omega t} = \sqrt{\frac{3}{2}} x_{m} e^{j(\omega t - \xi)} \cdot e^{-j\omega t}$$

$$= \sqrt{\frac{3}{2}} x_{m} e^{j(-\xi)} = (x_{d} + jx_{q})$$
(36)

當
$$\vec{e}_s^s \sim \vec{i}_s^s \sim d_s^s$$
 代入後可得
 $\vec{e}_s^e = \left(\sqrt{\frac{3}{2}} E_m e^{j(\omega t - \theta)}\right) \cdot e^{-j\omega t} = \sqrt{\frac{3}{2}} E_m e^{-j\theta} = \left(e_d + je_q\right) (37)$
 $\vec{i}_s^e = \left(\sqrt{\frac{3}{2}} I_m e^{j(\omega t - \theta)}\right) \cdot e^{-j\omega t} = \sqrt{\frac{3}{2}} I_m e^{-j\theta} = \left(i_d + ji_q\right) \quad (38)$
 $\vec{d}_s^e = \left(\sqrt{\frac{3}{2}} d_m e^{j(\omega t - \theta)}\right) \cdot e^{-j\omega t} = \sqrt{\frac{3}{2}} d_m e^{-j\theta} = \left(d_d + jd_q\right)$
(39)

$$e_{d} = \sqrt{\frac{3}{2}} E_{m} \qquad e_{q} = 0$$

$$i_{d} = \sqrt{\frac{3}{2}} I_{m} \cos \phi \qquad i_{q} = -\sqrt{\frac{3}{2}} I_{m} \sin \phi$$

$$d_{d} = \sqrt{\frac{3}{2}} d_{m} \cos \theta \qquad d_{q} = -\sqrt{\frac{3}{2}} d_{m} \sin \theta$$

由(36)式之定義,將(34)與(35)式轉至電源 同步旋轉座標系,即

$$L(\frac{d\bar{i}_{s}^{e}}{dt} \cdot e^{j\omega t} - j\omega\bar{i}_{s}^{e} \cdot e^{j\omega t})$$

$$= \bar{e}_{s}^{e} \cdot e^{j\omega t} - R_{s}\bar{i}_{s}^{e} \cdot e^{j\omega t} - \bar{d}_{s}^{e} \cdot e^{j\omega t}v_{dc}$$

$$C_{dc}\frac{dv_{dc}}{dt} = R_{e}[(\bar{i}_{s}^{e} \cdot e^{j\omega t}) \cdot (\bar{d}_{s}^{e} \cdot e^{j\omega t})^{*}] - \frac{v_{dc}}{R}$$

$$(40)$$

整理後可得下列三個式子
$$e_d = L_s \frac{di_d}{dt} + R_s i_d - \omega L_s i_q + v_d$$
 (42)

$$e_q = L_s \frac{di_q}{dt} + R_s i_q + \omega L_s i_d + v_q \qquad (43)$$

$$C_{dc} \frac{dv_{dc}}{dt} = d_{d}i_{d} + d_{q}i_{q} - \frac{v_{dc}}{R_{dc}}$$
(44)

由 假 設 可 知 $e_q = 0$, 因 此 為 控 制 至 $PF \approx 1$, i_q 必需調控至零。如圖七所示即 為三相主動式交直流轉換器之閉迴路控 制器。

4.2 全橋輸入並聯輸出串聯諧振型高壓轉 換器

模組化設計即利用串聯或並聯的方 式將較小電壓或電流等級的轉換器模組 整合成較高功率或高電壓輸出的轉換 器,此種設計方式近年來已成為一重要研 究方向,本計畫為高壓電源輸出,以輸入 並聯電流分流、輸出串聯電壓分壓連接較 適合,輸入並聯輸出串聯架構應如圖八所 示,用於高壓電源供應器有下列優點:

- 升壓變壓器圈數比降低,變壓器繞線層 間電容可降低,操作頻率可以提高。
- 2. 單一模組存在較低的電壓或電流應力。
- 可以有額外備載模組設計,單一模組故 障系統仍可運作,提高系統可靠度。
- 利用較小電壓電流規格之零件設計模 組。
- 標準化設計,可以降低零件採購成本並 節省製造時間。
- 標準模組利用不同的連接方式,可設計 不同規格之模組。

圖八 輸入並聯輸出串聯多模組電路架構

4.2.1 全橋 LCC 諧振高壓直流轉換器

圖九為單一全橋諧振轉換器,包含全 橋切換電路、諧振槽、高壓變壓器,二極 體整流器及輸出電容濾波電路,圖十為諧 振電路之電壓電流波形圖,其一週期可分 為八個工作模式敘述如下。

圖十 LCC 諧振波形圖

模式一 $(t_0 < t < t_1)$

當 t=0 時, Q_2, Q_3 關閉, 流經電感 L_r 的 電流 i_r 為負值, 負值的 i_r 對 Q_1, Q_4 輸出電 容放電後會流經 Q_1, Q_4 的體二極體, 當 體二極體導通後, Q_1, Q_4 可以零電壓切 換導通,此時變壓器兩側電壓維持負值, 能量持續經由二極體 D_2, D_3 送至輸出。

模式二 $(t_1 < t < t_2)$

當 $t = t_1$ 時, Q_1, Q_4 導通, 流經電感 L_r 的 電流 i_r 從負值向零接近,此時變壓器電 壓仍為負值,能量維持由二極體 D_2, D_3 送 至輸出。

模式三 (t₂ < t < t₃) 當 t=t₂時, Q₁,Q₄導通、Q₂,Q₃截止,, 流經電感 L_r 的電流 i_r從負值變成正值, 此時C_p電容開始充電,變壓器電壓由負 值向正值充電,此段時間i_r的能量對電容 C_p 充電,能量無法傳送到輸出,二極體 $D_1 \sim D_4$ 為斷路。

模式四 $(t_3 < t < t_4)$ 當 $t = t_3$ 時, Q_1, Q_4 導通、 Q_2, Q_3 截止,,此 時 C_p 電容充電完成,變壓器電壓由 $-\frac{V_o}{n}$ 變為 $\frac{V_o}{r}$, i_r 的能量開始經由 D_1, D_4 送至

" 輸出。模式五~模式八工作原理與模式一~ 模式四相同,差異處在電壓與電流方向相 反。

4.2.2 全橋 LCC 諧振及輔助電路

圖十五虛線部份為輔助電路,使得四 只主動開關於輕載中仍有零電壓切換的 特性。如圖十六(b)所示,在開關 S_A導通 之前,此 LCC 諧振電路提供一反向電流 ILCC使開關 S_A之跨壓 V_{DSA}提前降為零。

圖十六 (a)LCC 諧振電路圖 (b)開闢閘極 電壓 V_{GA}、跨壓 V_{DS} 及諧振電流 I_{LCC}

4.3 整體電路之控制器架構

圖十七為圖五高壓直流電源供應器 之閉迴路控制器示意圖。由於行波管閘極 訊號為使用者設定之訊號,因此系統負載 變化而使得輸出電壓變動的時間與趨勢 便可清楚得知。依據此行波管閘極訊號供 給一「前饋」訊號提前調控直流鏈電壓, 進而降低輸出電壓的變動程度。

控制器

由上述可知直流鏈電壓不是一固定 值,而是需要適合輸出負載變動而變化。 因此直流鏈電容值也需要相對應減小,以 加快直流鏈電壓暫態響應。

五、系統模擬與實作

最後利用 Orcad/Pspice 配合下列相關 電路參數,進行整體高壓直流電源供應器 運轉模擬。

$$L_s = 0.8mH$$

 $C_{dc} = 100\mu F$
 $R_s = 0.1\Omega$
電源頻率為 $60Hz$
輸入相電壓為 $\frac{220\sqrt{2}}{\sqrt{3}}$ V
單一變壓器匝比 $n = 11$
 $V_o = 16kV$
Peak Load $P_{o,max} = 20kW$
Average Load $P_{o,avg} = 2kW$
開關切換頻率為 $50kHz$
行波管閘極頻率為 $10kHz$

圖十八為三相電源側 a 相電壓與電流 的波形圖,由圖中可知電壓與電流幾近同 相位,亦即功率因數 PF≈1.0。圖十九所 示為整體電路由啟動到穩態時輸出電壓 與直流鏈電壓之波形,其中在 t=0~30ms 是前級六只主動開闢全部禁能,單純以其 背接二極體組成一三相全橋整流器作系 統啟動時之前級電路。接著當 t=30ms 時 前級主動式開闢便開始動作,執行功因控 制與電壓調控等功能。在 t=100ms 時,行 波管啟動開始吃載。圖十九為負載電流與 輸出電壓之細部波形圖。最後,圖二十~ 圖二十五分別為高壓電源轉換器之實作 波形及電路硬體雛型照片。

圖十八 a相電壓與電流波形

圖十九 系統啟動後輸出電壓與直流鏈 電壓之模擬波形圖

圖十九 輸出電流與輸出電壓之模擬波 形圖

圖二十一 LCC 諧振高壓直流轉換器實 作波形

圖二十四 LCC 諧振高壓直流轉換器實 作雛型電路

圖二十二 雙模組 LCC 諧振高壓直流轉 換器並串聯之實作波形

圖二十三 三相 PFC 交直流轉換器實作 雜型電路

圖二十五 高壓電源轉換器實作雛型電 路

六、結論

本計畫年度完成了以下工作項目:

- 完成高功率因數三相交直流轉換器電 路分析、模擬及雛型電路製作。
- 完成高效率高壓直流轉換器模擬、分析 及雛型電路製作。
- 3. 完成電路整合與協調控制。
- 4. 發表 IEEE 國際期刊論文一篇、國際研 討會論文兩篇及國內研討會論文三篇
- 5. 國內專利兩件審查中
- 人才培訓方面,參與學生有碩士班七員
 已畢業,就學中博士班六員。
- 7. 有兩篇期刊論文持續準備中。

總結之,本年度計畫相關工作進度均 能符合計畫原訂之目標。

誌 謝

非常感謝行政院國家科學委員會於 計畫資費上的支持,使得本計畫可以完滿 順利執行,計畫編號:NSC 95-2221-E-007 -261。

七、參考文獻

- [1] 謝振中, "高性能三項切換式交直流轉 換器", 國立清華大學博士論文, 1998.
- [2] S. D. Johnson, A. F. Witulski, R.W. Erickon, "Comparison of Resonant Topologies in High Voltage DC Applications," IEEE Transactions on Aerospace and Electronic Systems, vol. 24, no. 3, pp. 263-274, 1988.
- [3] N. Vishwanathan, V. Ramanarayanan, "Average Current Mode Control of High Voltage DC Power Supply for Pulsed Load Application", IEEE Industry Applications Conference, vo2, pp. 1205-1211, 2002.
- [4] C. Iannello, S. Luo, I. Batarseh, "Full bridge ZCS PWM converter for high voltage high power applications", IEEE Transactions on Aerospace and Electronic Systems, 2002.
- [5] I. Barbi, R. Gules, "Isolated DC-DC converters with high output voltage for TWTA telecommunication satellite applications", IEEE Transactions on Power Electronics, 2003.
- [6] S. C. Kim, S. H. Nam and D. H. Kim, "Development of High-Power Density, 4-kV Pulse Transformers for TWTA", IEEE Transactions on Plasma Science, vol. 32, No. 5, Oct. 2004.
- [7] N. Vishwanathan and V. Ramanarayanan, "Input Voltage Modulated High Voltage DC Power Supply Topology for Pulsed Load Applications", IEEE – IECON, 2002, pp. 389-394.
- [8] V. Garcia, M. Rico, M. M. Hernando and J. Uceda, "An optimized DC to DC converter topology for high voltage pulse load applications", IEEE – PESC, 1994, pp. 1413-1421.
- [9] S. Luo, Z. Ye, R. L. Lin, and F. C. Lee,

"A classification and evaluation of paralleling methods for power supply modules," in Proc. IEEE PESC, 1999, pp. 901–908.

- [10] J. W. Kim, J. S. You, and B. H. Cho, "Modeling, control and design of input-series-output-parallel-connected converter for high-speed-train power system," IEEE Trans. Ind. Electron., vol. 48, no. 3, pp. 536–544,Jun. 2001.
- [11] R. Ayyanar, R. Giri, and N. Mohan, "Active input-voltage and load-current sharing in input-series and outputparallel connected modular DC-DC converters using dynamic input-voltage reference scheme," IEEE Trans. Power Electron., vol. 19, no. 6, pp. 1462–1473, Nov. 2004.
- [12] R. Ayyanar, V. Choudhary, R. Giri, and N. Mohan. "Common-Duty-Ratio of Input-Series Connected Control Modular DC-DC Converters With Active Input Voltage and Load-Current Sharing," IEEE Trans. Industry Applications, vol. 42, no.4, pp. 1101-1111, July 2006.