ADDtek

www.addmtek.com

DESCRIPTION

The A704 is a PWM high efficiency LED driver controller. The LED string is driven at constant current rather than constant voltage, thus providing constant light output and enhanced reliability.

ORDER INFORMATION

\mathbf{W}	SOT-23-5
	A704WFT
Note: The letter " F " is marked for Lead Free parts, and letter " T " is marked for Tape \& Reel.	

ABSOLUTE MAXIMUM RATINGS (Note)	
Input Voltage, V_{DD} 32 V Operating temperature $-20^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$ Maximum Operating Junction Temperature, T_{J} $150^{\circ} \mathrm{C}$ Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $150{ }^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 seconds) $260^{\circ} \mathrm{C}$ Note: Exceeding these ratings could cause damage to the device. All voltages are with respect to Ground. Currents are positive into, negative out of the specified terminal.	

BLOCK DIAGRAM

PIN DESCRIPTION

Pin Name	
Gate	Drives the gate of the external MOSFET.
GND	Power Ground Pin.
EN	Enable Pin.
CS	Current Sense Pin
V_{DD}	Input Power Supply Pin and Over Voltage Protected Pin.

THERMAL DATA

Thermal Resistance from Junction to Ambient, $\theta_{J A}$	TBD ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Junction Temperature Calculation: $\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\left(\mathrm{P}_{\mathrm{D}} \times \theta_{\mathrm{JA}}\right)$.	
The θ_{JA} numbers are guidelines for the thermal performance of the device/pc-board system.	
Connect the ground pin to ground using a large pad or ground plane for better heat dissipation.	
All of the above assume no ambient airflow.	

Maximum Power Calculation:

$\mathrm{P}_{\mathrm{D}(\mathrm{MAX})}=\frac{\mathrm{T}_{\mathrm{J}(\mathrm{MAX})}-\mathrm{T}_{\mathrm{A}(\mathrm{MAX})}}{\theta_{\mathrm{JA}}}$
$\mathrm{T}_{\mathrm{J}}\left({ }^{\circ} \mathrm{C}\right): \quad$ Maximum recommended junction temperature
$\mathrm{T}_{\mathrm{A}}\left({ }^{\circ} \mathrm{C}\right): \quad$ Ambient temperature of the application
$\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right): \quad$ Junction-to-Ambient thermal resistance of the package, and other heat dissipating materials.

The maximum power dissipation for a single-output regulator is:

$\mathrm{P}_{\mathrm{D}(\mathrm{MAX})}=\left[\left(\mathrm{V}_{\mathrm{IN}(\mathrm{MAX})}-\mathrm{V}_{\mathrm{OUT}(\mathrm{NOM})}\right)\right] \times \mathrm{I}_{\mathrm{OUT}(\mathrm{NOM})}+\mathrm{V}_{\mathrm{IN}(\mathrm{MAX})} \times \mathrm{I}_{\mathrm{Q}}$
Where: $\quad V_{\text {out(NOM) }}=$ the nominal output voltage
$\mathrm{I}_{\text {out(NOM) }}=$ the nominal output current, and
$\mathrm{I}_{\mathrm{Q}}=$ the quiescent current the regulator consumes at $\mathrm{I}_{\text {OUT(MAX) }}$
$\mathrm{V}_{\text {IV(MAX) }}=$ the maximum input voltage
Then $\quad \theta_{\mathrm{JA}}=\left(+150^{\circ} \mathrm{C}-\mathrm{T}_{\mathrm{A}}\right) / \mathrm{P}_{\mathrm{D}}$

A704

ELECTRICAL CHARACTERISTICS

$\mathrm{V}_{\mathrm{DD}}=10 \mathrm{~V}_{\mathrm{DC}}, \mathrm{C}_{\mathrm{Load}}=1 \mathrm{nF}, \mathrm{R}_{\text {loasd }}=2.2 \Omega$ in series, Unless otherwise noted; Test condition: Typical value measured by $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$					
Parameter	Description \& Conditions	Min	Typ	Max	Unit
V_{DD}	V_{DD}, Input supply voltage range	8		32	V
I_{DD}	Input supply Operating Current (After start-up $\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V}$)		3	5	mA
I_{QC}	Input Quiescent current (before start up threshold voltage)		5	30	uA
$\mathrm{I}_{\text {SD }}$	I_{CC}, Shutdown current (Vcc=15V, EN pin is low, after turn on)		1	2	mA
$\mathrm{V}_{\text {UVLO }}$	Under-voltage lockout, Turn On		17		V
$\Delta \mathrm{V}_{\text {UVLO }}$	$\mathrm{V}_{\text {DD }}$ UVLO Hysteresis voltage		9		V
$\mathrm{V}_{\text {OVP }}$	Vcc, Over-voltage Protection, Clamped		22		V
$\mathrm{V}_{\text {EN }}$	Enable pin logic "High" voltage	2.2		6	V
$\mathrm{V}_{\text {EN }}$	Enable pin logic "low" voltage			0.8	V
$\mathrm{D}_{\text {MAX }}$					
	Maximum Oscillator PWM Duty Cycle, A704			50	\%
$\mathrm{T}_{\text {LEB }}$	Leading Edge Blanking	150	200	250	nS
T_{PD}	Cs to PWM Pin Delay time (Cs pin "1", Gate "0")			50	nS
$\mathrm{T}_{\text {ON,MIN }}$	Minimum turn on time	300			nS
$\mathrm{T}_{\text {SD }}$	Thermal Shutdown		150		${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {REC }}$	Thermal shutdown recovery temperature	120			${ }^{\circ} \mathrm{C}$
Fsw	A704 Switching frequency	60	65	70	kHz
$\mathrm{I}_{\text {SOURCE }}$	Gate Pin, source current, $\mathrm{C}_{\text {Load }}=1 \mathrm{nF}$		300		mA
$\mathrm{I}_{\text {SINK }}$	Gate pin, sink current, $\mathrm{C}_{\text {Load }}=1 \mathrm{nF}$		500		mA

IMPORTANT NOTICE

ADDtek reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. ADDtek integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of ADDtek products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

ADDtek assumes to no liability to customer product design or application support. ADDtek warrants the performance of its products to the specifications applicable at the time of sale.

ADDtek Corp.

9F, No. 20, Sec. 3, Bade Rd., Taipei, Taiwan, 105
TEL: 2-25700299
FAX: 2-25700196

