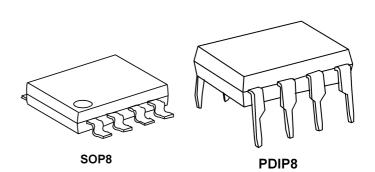


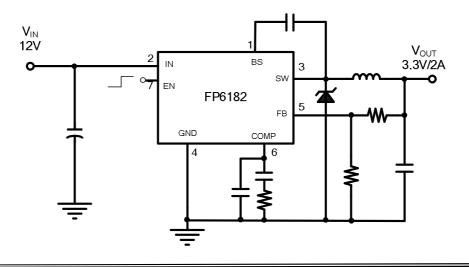
FP6182

2A, 23V, 380KHz Step-Down Converter

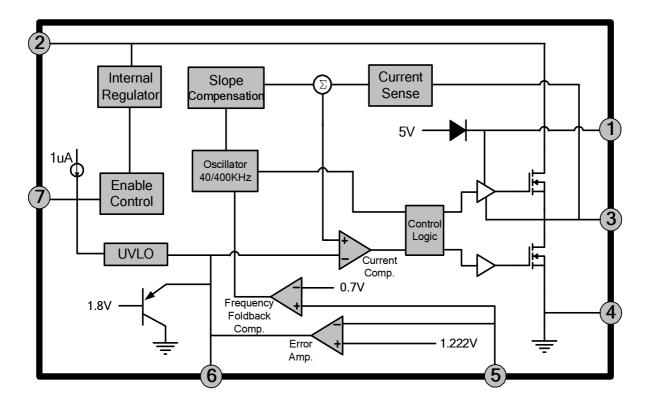
GENERAL DESCRIPTION


The **FP6182** is a buck regulator with a built in internal power MOSFET. It achieves 2A continuous output current over a wide input supply range with excellent load and line regulation. Current mode operation provides fast transient response and eases loop stabilization. The device includes cycle-by-cycle current limiting and thermal shutdown protection. Adjustable soft-start reduced the stress on the input source at power-on. The regulator only consumes 23µA supply current in shutdown mode. The FP6182 requires a minimum number of readily available external components to complete a 2A buck regulator solution.

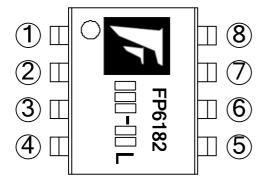
FEATURES


- 2A Output Current
- Adjustable Soft-Start
- 0.22Ω Internal Power MOSFET Switch
- Stable with Low ESR Output Ceramic Capacitors
- Up to 95% Efficiency
- 23µA Shutdown Mode Current
- Fixed 380KHz frequency
- Thermal Shutdown
- Cycle-by-Cycle Over Current Protection
- Wide 4.75 to 23V operating Input Range
- Output Adjustable From 1.222 to 16V
- Available SOP8 & PDIP8 Package
- Under Voltage Lockout

- Distributed Power Systems
- Battery Charger
- Pre-Regulator for Linear Regulators
- DSL Modems



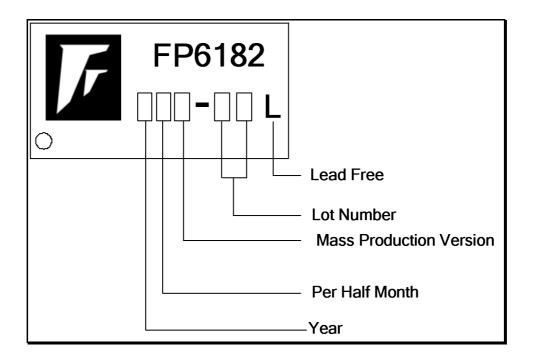
TYPICAL APPLICATION CIRCUIT



FUNCTIONAL BLOCK DIAGRAM

MARK VIEW

PIN DESCRIPTION


Name	No.	I/O	Description
BS	1	0	Bootstrap Pin
IN	2	Р	Supply Voltage
SW	3	0	Switch Pin
GND	4	Р	Ground
FB	5	I	Feedback Pin
COMP	6	0	Compensation Pin
EN	7	I	Enable/UVLO
NC	8	-	NC

ORDER INFORMATION

Part Number	Operating Temperature	Package	Description
FP6182DR-LF	-40℃ ~ +85℃	SOP8	Tape & Reel
FP6182D-LF	-40℃ ~ +85℃	SOP8	Tube
FP6182P-LF	-40℃ ~ +85℃	PDIP8	Tube

IC DATE CODE DISTINGUISH

For example:

- 1 Year 2001
- 2 Year 2002
- 3 Year 2003 ----- And so on

Lot Number is the last two numbers

For example:

A3311C62 ► Lot Number

ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{IN})				
Switch Voltage (V _{SW})				
Bootstrap Voltage (V _{BS})	V _{SW} -0.3V to V _{SW} +6V			
All Other Pins	0.3V to 6V			
Junction Temperature	150 ℃			
Storage Temperature	65℃ to 150℃			
Allowable Power Dissipation (Ta \leq +25 $^{\circ}$ C)				
SOP8	570mW			
PDIP				
Thermal Resistance(Junction to Ambient, θ_{JA})				
SOP8	••••••175℃/W			
PDIP8	••••••125℃/W			
Lead Temperature (soldering, 10 sec)				
SOP8	+260 ℃			
PDIP8	+270 ℃			

Recommended Operating Conditions

Supply Voltage (V _{IN})	'
Operating temperature	

DC ELECTRICAL CHARACTERISTICS(Ta= 25° C, V_{IN}=12V, unless otherwise noted)

PARAMETER	SYMBO L	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Standby Current	I _{ST}	$V_{EN} \ge 3V, V_{FB} \ge 1.5V$		1.0	1.5	mA
Shutdown Supply Current	I _{ST}	V _{EN} =0		25	50	μA
Feedback Voltage	V_{FB}	V _{IN} =12V,V _{COMP} <2V	1.184	1.222	1.258	V
High Side Switch ON Resistance	R _{ON-HS}			0.22		Ω
Low Side Switch ON Resistance	R _{ON-LS}			10		Ω
High Side Switch Leakage Current	I _{IL}	V _{EN} =0,V _{SW} =0V		0.1	10	μA
Current Limit	I _{CL}		2.8	3.4		А
Oscillation Frequency	f _{osc}			380		KHz
Short Circuit Oscillation Frequency	f_{SC}	V _{FB} =0V		42		KHz
Maximum Duty Cycle	D _{MAX}	V _{FB} =1.0V		90		%
Minimum Duty Cycle	D _{MIN}	V _{FB} =1.5V			0	%
Under Voltage Lockout Threshold	V _{UVLO}	V _{EN} Rising	2.0	2.5	3.0	V
Under Voltage Lockout Threshold Hysteresis	V _{HYS}			200		mV
EN Threshold Voltage	V_{EN}	ICC>100µA	0.7	1.0	1.3	V
Enable Pull Up Current	I _{EN}	V _{EN} =0V		1.0		μΑ
Thermal Shutdown	T_{TS}			140		°C

Function Description

The FP6182 is a current-mode buck regulator. It regulates input voltages from 4.75V to 23V down to an output voltage as low as 1.222V, and is able to supply up to 2A of load current.

The FP6182 uses current-mode control to regulate the output voltage. The output voltage is measured at FB through a resistive voltage divider and amplified through the internal error amplifier. The output current of the transconductance error amplifier is presented at COMP where a network compensates the regulation control system. The voltage at COMP is compared to the switch current measured internally to control the output voltage.

The converter uses an internal n-channel MOSFET switch to step-down the input voltage to the regulated output voltage. Since the MOSFET requires a gate voltage greater than the input voltage, a boost capacitor connected between SW and BS drives the gate.

The capacitor is internally charged while the switch is off. An internal 10Ω switch from SW to GND is used to insure that SW is pulled to GND when the switch is off to fully charge the BS capacitor.

Output Voltage(V_{OUT})

The output voltage is set using a resistive voltage divider from the output voltage to FB. The voltage divider divides the output voltage down by the ratio:

VFB=VOUT x R2/(R1+R2)

Thus the output voltage is:

VOUT=1.222 x (R1+R2)/R2

A typical value for R2 can be as high as 100k, but a typical value is 10K.

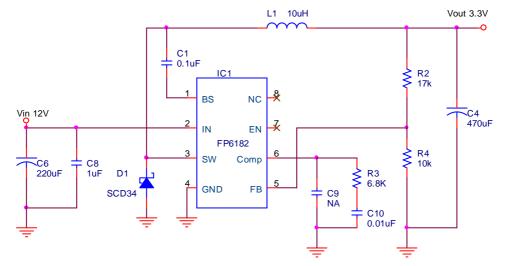
Shutdown Mode

Drive enable Pin to ground to shut down the FP6182. Shutdown forces the internal power MOSFET off, turns off all internal circuitry, and reduces the V_{IN} supply current to 25μ A (typ). The enable Pin rising threshold is 1.0V(typ). Before any operation begins, the voltage at Enable Pin must exceed 1.0V (typ).

Boost High-Side Gate Drive(BST)

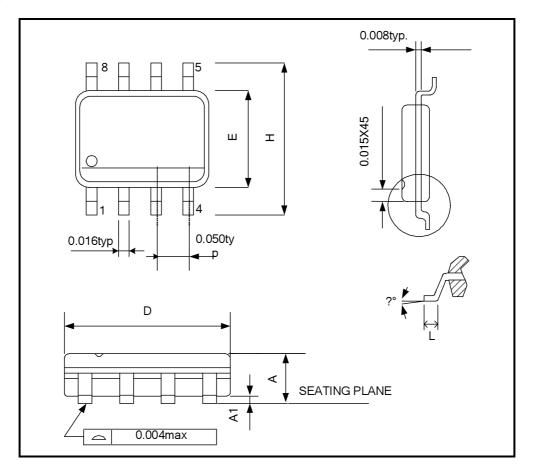
Since the MOSFET requires a gate voltage greater than the input voltage ,connect a flying bootstrap capacitor between SW and BS to provide the gate-drive voltage to the high-side n-channel MOSFET switch. The capacitor is alternately charged from the internally regulator.

On startup, an internal low-side switch connects SW to ground and charges the BST capacitor to internally regulator voltage. Once the BST capacitor is charged, the internal low-side switch is turned off and the BST capacitor voltage provides the necessary enhancement voltage to turn on the high-side switch.


Function Description(cont.)

Thermal Shutdown Protection

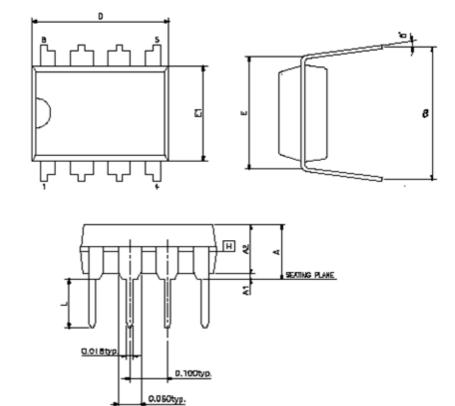
The FP6182 features integrated thermal shutdown protection. Thermal shutdown protection limits allowable power dissipation(P_D) in the device, and protects the device in the event of a fault condition. When the IC junction temperature exceeds +140°C, an internal thermal sensor signals the shutdown logic, turning off the internal power MOSFET and allowing the IC to cool down. The thermal sensor turns the internal power MOSFET back on after the IC junction temperature cools down to + 110°C, resulting in a pulsed output under continuous thermal overload conditions.



APPLICATIONS INFORMATION

PACKAGE OUTLINE

SYMBOLS	MIN	MAX
А	0.053	0.069
A1	0.004	0.010
A2	-	0.059
D	0.189	0.196
E	0.150	0.157
Н	0.228	0.244
Ĺ	0.016	0.050
heta °	0	8


UNIT:INCH

NOTE:

- 1. JEDEC OUTLINE:MS-012 AA \circ
- DIMENSIONS "D" DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS.MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED .15mm (.006in) PER SIDE •
- 3. DIMENSIONS "E" DOES NOT INCLUDE INTER-LEAD FLASH, OR PROTRUSIONS INTER-LEAD FLASH AND PROTRUSIONS SHALL NOT EXCEED .25mm (.010in) PER SIDE •

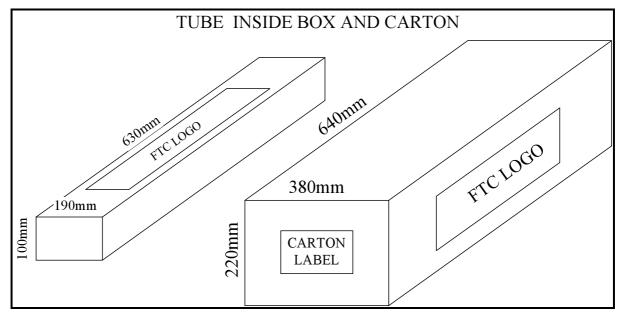
PDIP 8

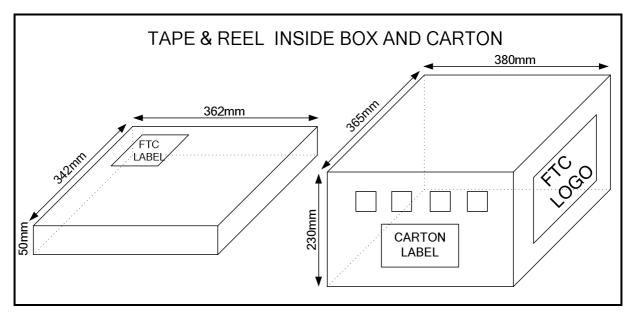
UNIT:INCH

SYMBOLS	MIN	NOR	MAX
A	-	-	0.210
A1	0.015	-	-
A2	0.125	0.130	0.135
D	0.355	0.365	0.400
E	0.300BSC.		
E1	0.245	0.250	0.255
L	0.115	0.130	0.150
e _θ	0.335	0.355	0.375
θ°	0	7	15

Note:

1. JEDEC OUTLINE:MS-001 BA.


- 2. "D"
 ~ "E1"DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PROTRUSIONS SHALL NOT EXCEED .010 INCH.
- 3. eB IS MEASURED AT THE LEAD TIPS WITH THE LEADS UNCONSTRAINED.
- 4. POINTED OR ROUNDED LEAD TIPS ARE PREFERRED TO EASE INSERTIDN.
- 5. DISTANCE BETWEEN LEADSINCLUDING DAM BAR PROTRUSIONS TO BE .005 INCH MININUM.
- 6. DATUM PLANE H CONINCIDENT WITH THE BOTTOM OF LEAD, WHERE LEAD EXITS BODY.


PACKING SPECIFICATIONS

BOX & CARTON DIMENSION

PDIP8

SOP8

PACKING QUANTITY SPECIFICATIONS

SOP8	PDIP8
2500 EA / REEL	60 EA/TUBE
1 REELS / INSIDE BOX	60 TUBES / INSIDE BOX
4 INSIDE BOXES / CARTON	4 INSIDE BOXES / CARTON

LABEL SPECIFICATIONS

TAPPING & REEL

Feeling Technology Corp

Product:FP6182DR-LF

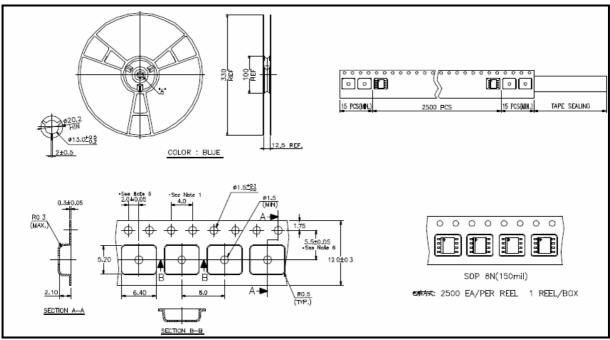
Lot NO: XXXXXXX

D/C: 8Xx-XXL

Q`ty: 2500

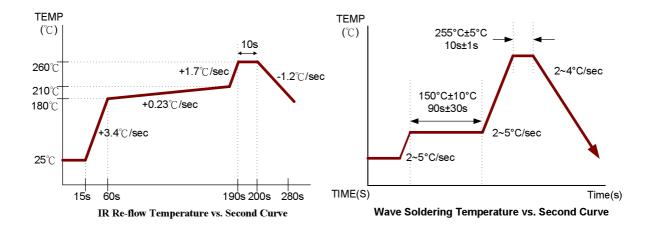
無鉛 Lead Free

CARTON


Feeling Technology Corp				
Product Type: FP6182DR-LF				
Lot No: XXXXXXX				
Date Code: 8Xx-XXL				
Package Type:SOP8				
Marking Type:Laser	無鉛			
Total Q`ty: 10,000	Lead Free			

FP6182

CARRIER TAPE AND REEL DIMENSIONS



Note:

- 1. 10 SPROCKET HOLE PITCH CUMULATIVE TOLERANCE ± 0.2 mm.
- 2. COMBER NOT TO EXCEED 1mm IN 100mm.
- 3. MATERIAL : ANTI-STATIC BLOCK ADVANTEK POLYSTYRENE.
- 4. A_0 AND B_0 MEASURED ON A PLANE 0.3mm ABOVE THE BOTTOM OF THE POCKET.
- 5. K₀ MEASURED FROM A PLANE AN THE INSIDE BOTTOM OF THE POCKET TO THE TOP SURFACE OF THE CARRIER.
- 6. POCKET POSITION RELATIVE TO SPROCKET HOLE MEASURED AS TRUE POSITION OF POCKET, NOT POCKET HOLE.

SOLDER PROFILE

Note:

1. Suggest IR Reflow Soldering Profile Condition.