Ultra-Low Quiescent Current Voltage Detector

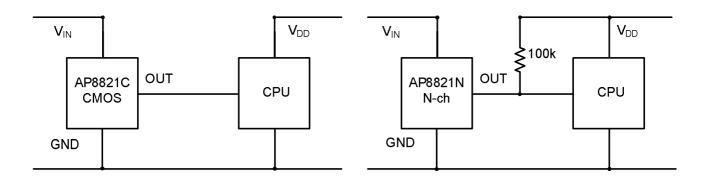
Features

- I Ultra-Low Quiescent Current 1.0 μA (Typ.)
- I High Accuracy of Detection Voltage ±2%
- I Hysteresis Width 5% V_{DET} (Typ.)
- I Detection Voltage 1.6V to 6.0V (0.1V Step)
- I Operating Voltage Range 1.5V to 6.0V
- I N-ch Open Drain and CMOS Output
- I SOT-23, SC-82 and SC-70 Packages
- I RoHS Compliant and 100% Lead (Pb)-Free and Green (Halogen Free with Commercial Standard)

General Description

The AP8821 series are highly accurate, ultra-low current consumption voltage detectors, developed by CMOS process. Two output forms N-channel open-drain and CMOS output are available. The device is ideal for battery powered portable devices which require low current consumption.

The AP8821 consists of a comparator, a voltage reference unit, a resistor divider, an output driver, and a hysteresis circuit. The detection voltage is fixed internally with $\pm 2.0\%$ accuracy by advanced trimming technology.


The devices are available in SOT-23,SC-82 and SC-70 packages.

Applications

- I Microprocessor Reset Circuitry
- I Memory Battery Back-up Circuits
- I Power-on Reset Circuits

- I Power Failure Detection
- I System Battery Life and Charge Voltage Monitors

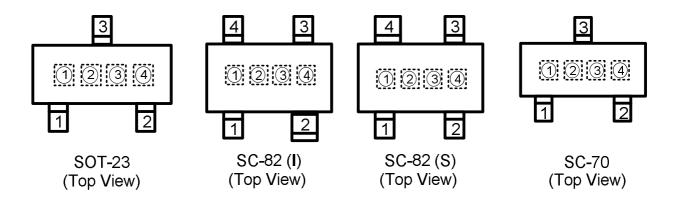
Typical Application Circuit

AP8821 Series

Ordering Information

AP8821 — — — — — — — — — — — — — — — — — — —	<u>Vout Type</u> :
AP8821	N : N-ch open drainC : CMOSDetection Voltage Code :Ex : 16=1.6V \cdot 17=1.7V \cdot 18=1.8VLead Free Code :P : Commercial Standard, Lead (Pb) FreeAnd Phosphorous (P) Free PackageG : Green (Halogen Free with CommercialStandard)Package Code :C : SOT-23I : SC-82*S : SC-82*

Note :


* The difference between "I" & "S" type, please refer "Pin Description".

Pin Description

Part NO.	Part NO.	Pin	Symbol	Pin Description
3		1	V _{OUT}	Regulator Output Pin.
(Top View)	AP8821C/N-XXXC	2	GND	Ground Pin.
1 2 SOT-23		3	V _{IN}	Regulator Input Pin.
4 3		1	V _{OUT}	Regulator Output Pin.
(Top View)		2	V _{IN}	Regulator Input Pin.
	AP8821C/N-XXXI -	3	NC	No Connect
SC-82		4	GND	Ground Pin.
4 3		1	V _{OUT}	Regulator Output Pin.
(Top View)	AP8821C/N-XXXS -	2	V _{IN}	Regulator Input Pin.
		3	NC	No Connect
SC-82		4	GND	Ground Pin.

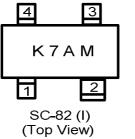
<u> </u>		1	GND	Ground Pin.
(Top View)	AP8821C/N-XXXT	2	V _{OUT}	Regulator Output Pin.
SC-70		3	V _{IN}	Regulator Input Pin.

Package Marking Information

① Represents Products Series

Mark	Product	Configuration	Voltage(V)
А	AP8821	CMOS	0.X
В	AP8821	CMOS	1.X
С	AP8821	CMOS	2.X
D	AP8821	CMOS	3.X
Е	AP8821	CMOS	4.X
F	AP8821	CMOS	5.X
G	AP8821	CMOS	6.X
Н	AP8821	N-ch	0.X
J	AP8821	N-ch	1.X
K	AP8821	N-ch	2.X
L	AP8821	N-ch	3.X
М	AP8821	N-ch	4.X
Ν	AP8821	N-ch	5.X
Р	AP8821	N-ch	6.X

② Represents decimal number of detect voltage					
Mark	Voltage(V)	Voltage(V)			
0	X.0	5	X.5		
1	X.1	6	X.6		
2	X.2	7	X.7		
3	X.3	8	X.8		
4	X.4	9	X.9		


 $(3) \cdot (4)$ Represents Production Date Code

Note :

* There are two under-lines on 4th & 5th digit for Green package.

* There are no under-lines on 4th & 5th digit for Pb-Free package.

Example :

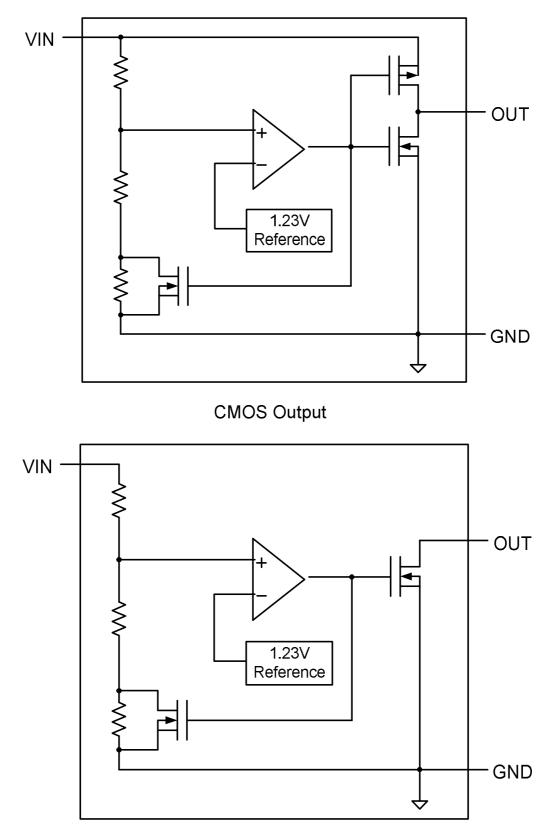
Part No.: AP8821N-27PI Date Code: 2007 24th week

Absolute Maximum Ratings

Parameter		Symbol	Ratings	Units
Input Voltage V _I	_N to GND	V _{IN}	6.0	V
Output Voltage	, CMOS	Vout	GND~V _{IN} +0.3V	V
Output Voltag	e, N-ch	V OUT	GND~6V	v
Output Cu	rrent	I _{OUT}	50	mA
Junction Temp	Junction Temperature		+155	°C
	SOT-23		310	
Power Dissipation	SC-82	PD	250	mW
	SC-70		250	
Operating Ambient Temperature		T _{OPR}	-40 ~ +85	°C
Storage Temperature		T _{STG}	-55 ~ +150	°C
Lead Temperature (so	oldering, 10sec)		+260	°C

Note :

* The power dissipation values are based on the condition that junction temperature T_J and ambient temperature T_A difference is 100°C.

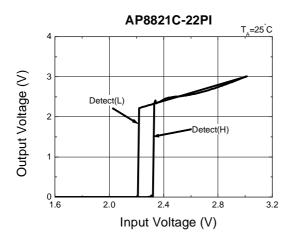

* Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and function operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum -rated conditions for extended periods may affect device reliability.

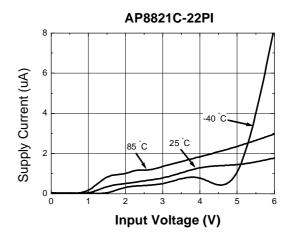
Electrical Characteristics

(T_A=25 $^{\circ}$ C, unless otherwise noted.)

Symbol	Parameter	Те	st Conditions	Min	Тур	Max	Unit				
V _{IN}	Operating Voltage			1.5		6.0	V				
V _{DET}	Detection Voltage			V _{DET} * 0.98	V _{DET}	V _{DET} * 1.02	V				
V _{HYS}	Hysteresis Width			V _{DET} * 0.03	V _{DET} * 0.05	V _{DET} * 0.08	V				
Ι _Q	Quiescent Current	V _{IN} =5V			1.0	3.0	μA				
			V _{IN} =2V	3	7						
I _{OUT}	Output Current	-	N-ch Output	-	-	N-cn Output	V _{IN} =3V	5	10		mA
		Cuput	V _{IN} =5V	7	13						
I _{LEAK}	Leakage Current	N-ch, $V_{IN}=V_{OUT}=5V$				0.1	μA				
T _C	Temperature Coefficient	-40°C <t<sub>A< +85°C</t<sub>			100	350	°C				
	Response Time					200	μS				

Function Block Diagram

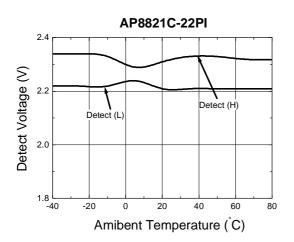


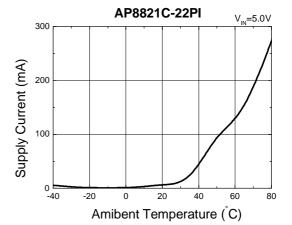


Typical Operating Characteristics

(AP8821C-22PI tested, T_A =+25°C, unless otherwise noted.)

(1) Output Voltage v.s Input Voltage

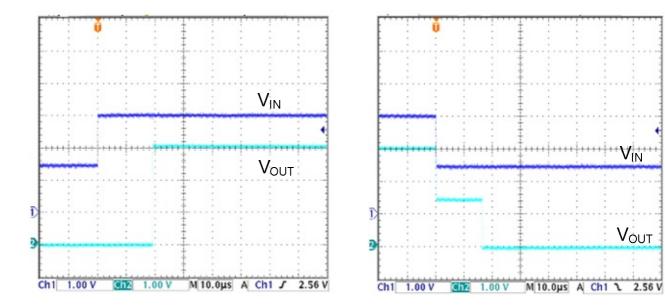




(2) Supply Current v.s Input Voltage

(3) Detect Voltage v.s Amibent Temperature

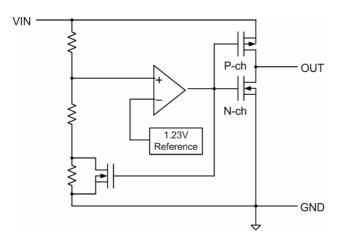
(4) Supply Current v.s Amibent Temperature



 V_{IN}

Vout

(5) Start-up Voltage Waveform

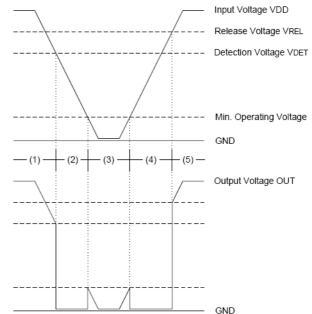

(6) Shutdown Voltage Waveform

Detail Description

Basic Operation

For AP8821C CMOS Active low output:

(1) When the input voltage V_{IN} is higher than the release voltage V_{REL} ($V_{REL} = V_{DET} + V_{HYS}$), the N-ch MOS is OFF and P-ch MOS is ON to provide V_{IN} at the output. Since NMOS is OFF, the comparator input voltage is

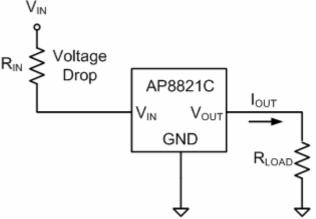

When the V_{IN} goes below the V_{REL}, V_{IN} keeps at the output since V_{IN} remains above the detection voltage V_{DET}. The difference between V_{REL} and V_{DET} is the hysteresis range.

(2) When the V_{IN} goes below the V_{DET} , the N-ch MOS is ON and P-ch MOS is OFF to provide GND level at the output. At this time NMOS is ON, the comparator input voltage is

V_{IN} x R2 / (R1+R2)

(3) When the V_{IN} falls below the minimum operating voltage, the output becomes undefined changed to V_{IN} if the output is pulled up to V_{IN}.

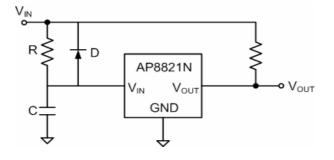
(4) When the V_{IN} rises above the minimum operating voltage, the GND level appears at the output. The GND level keeps at the output even when V_{IN} goes above the detection voltage V_{DET}, as long as it doesn't exceed the release voltage V_{REL}.

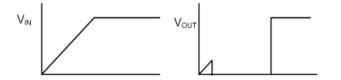


(5) When the V_{IN} rises above the release voltage V_{REL} , the N-ch MOS is OFF and P-ch MOS is ON to provide V_{IN} at the output.

Oscillation Notice

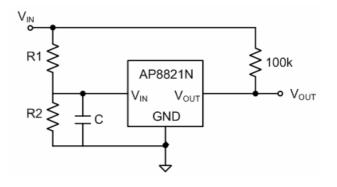
When a resistor is connected between the input voltage and the input pin V_{IN} with CMOS output configuration, oscillation may occur due to voltage drop at R_{IN} . The voltage drop is




When the V_{IN} input voltage rises above the release voltage, the detector output voltage increases and the load current I_{OUT} will flow at R_{LOAD} . A voltage drop is produced at R_{IN} . The voltage drop will also lead to a fall in the input voltage at V_{IN} pin. When the V_{IN} input voltage falls below the detection voltage, output voltage falls to GND and the output current will cease.

Then the voltage drop at R_{IN} will disappear, and the V_{IN} input voltage will rise to commence release operation. Oscillation may occur with this release detection-release repetition. It's recommended not to use the CMOS configuration when a resistor R_{IN} is connected between V_{IN} input pin and the power source. Please use N-channel open drain configuration when R_{IN} is required.

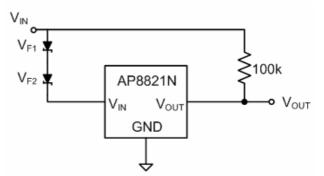
Power-on Reset Circuit



A power-on reset circuit example using AP8821N is shown in the figure. Resistor R should be 75 k Ω or less to avoid oscillation. Diode D instantaneously discharges the charge stored in the capacitor C at the power falling. Diode D can be removed when the delay of the falling time is not important.

Change of Detection Voltage

For AP8821N N-channel open drain output configuration, the detection voltage can be changed with resistance dividers as shown in the figure.

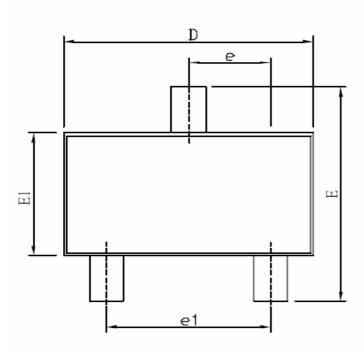

Detection voltage is changed to

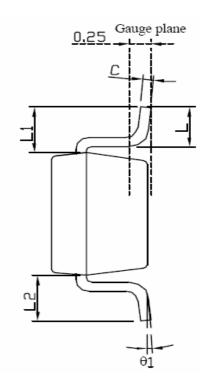
V_{DET} x (R1+R2) / R2

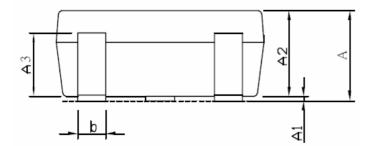
Hysteresis width is also changed to

V_{HYS} x (R1+R2) / R2

Resistor R1 should be 75 k Ω or less to avoid oscillation. The detection voltage can also be changed with diodes as shown in the figure.

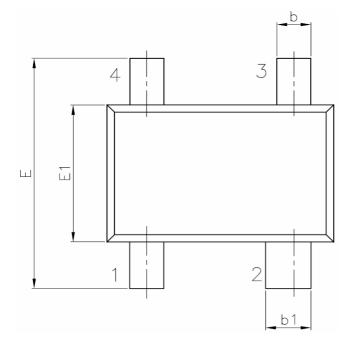


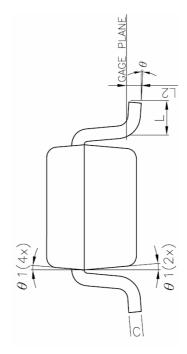

Detection voltage becomes

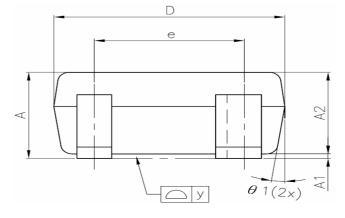

 V_{F1} + V_{F2} + V_{DET}

Package Outline

A) SOT-23

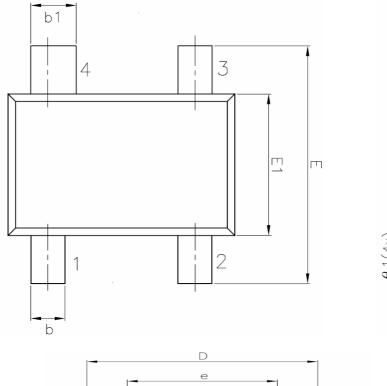


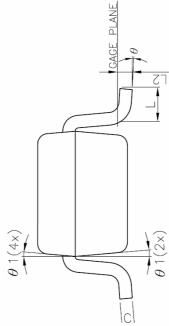


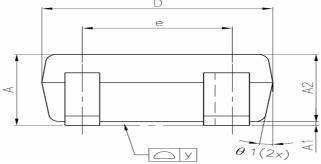


Symbols	Dimens	ensions in Millmeters		
Symbols	Min	Nom	Max	
Α	1.00	1.10	1.40	
A1	0.00	0.05	0.10	
A2	1.00	1.10	1.30	
A3	0.70	0.80	0.90	
b	0.35	0.40	0.50	
С	0.12	0.125	0.225	
D	2.70	2.90	3.10	
E	2.60	2.80	3.00	
E1	1.40	1.60	1.80	
e		0.95(Typ)		
e1		1.90(Typ)		
θ1	1°	5°	9°	
L	0.37			
L1		0.6REF		
L1-L2			0.12	

B) SC-82 (I Type)

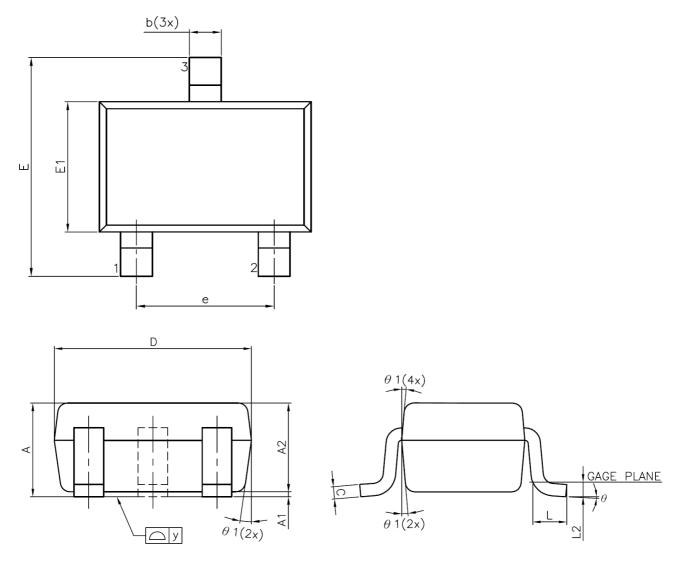


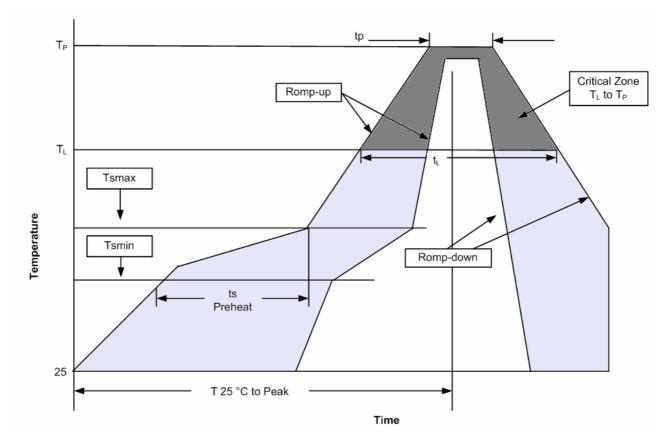




Symbols	Dimension in millimeters			Dime	ension in ir	nches
Symbols	Min	Nom	Мах	Min	Nom	Max
Α	0.80		1.10	0.031		0.043
A1	0.00		0.10	0.000		0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.25	0.30	0.40	0.010	0.012	0.016
b1	0.35	0.40	0.50	0.014	0.016	0.020
С	0.10		0.26	0.004		0.010
D	1.80	2.00	2.20	0.071	0.079	0.087
E1	1.15	1.25	1.35	0.045	0.049	0.053
E	1.80	2.10	2.40	0.071	0.083	0.094
е		1.30			0.051	
L	0.26	0.36	0.46	0.010	0.014	0.018
L2		0.15			0.006	
У			0.10			0.004
θ	0 °		8°	0°		8°
θ1	4 °		12°	4 °		12°

C) SC-82 (S Type)




Symbols	Dimension in millimeters			Dime	ension in in	ches
Symbols	Min	Nom	Max	Min	Nom	Мах
А	0.80		1.10	0.031		0.043
A1	0.00		0.10	0.000		0.004
A2	0.70	0.90	1.00	0.027	0.035	0.039
b	0.25	0.30	0.40	0.010	0.012	0.016
b1	0.35	0.40	0.50	0.014	0.016	0.020
С	0.10		0.26	0.004		0.010
D	1.80	2.00	2.20	0.071	0.079	0.087
E1	1.15	1.25	1.35	0.045	0.049	0.053
E	1.80	2.10	2.40	0.071	0.083	0.094
е		1.30			0.051	
L	0.26	0.36	0.46	0.010	0.014	0.018
L2		0.15			0.006	
У			0.10			0.004
θ	0 °		8°	0 °		8 °
θ1	4 °		12°	4 °		12°

D) SC-70

Cumhala	Dimensions in millmeters			Dimens	ions in mil	Imeters
Symbols	Min	Nom	Max	Min	Nom	Max
Α	0.80		1.10	0.031		0.043
A1	0.00		0.10	0.000		0.004
A2	0.70	0.90	1.00	0.028	0.035	0.039
b	0.25		0.40	0.010		0.016
С	0.08		0.22	0.003		0.009
D	1.80	2.00	2.20	0.071	0.079	0.087
E	1.80	2.10	2.40	0.071	0.083	0.094
E1	1.15	1.25	1.35	0.045	0.049	0.053
e		1.30			0.051	
L	0.26	0.36	0.46	0.010	0.014	0.018
L2		0.15			0.006	
У			0.10			0.004
θ	0 °	4 °	8°	0°	4°	8°
θ1	4 °		1 2 °	4 °		12°

Reflow Condition (IR/Convection or VPR Reflow)

Classification Reflow Profiles

Profile Feature	Pb-Free / Green Assembly		
Average ramp-up rate $(T_L \text{ to } T_P)$	3°C/second max		
Preheat	150°C		
- Temperature Min (Tsmin) - Temperature Max (Tsmax)	200°C		
- Time (min to max) (ts)	60-180 seconds		
Time maintained above:	217°C		
- Temperature (T _L) - Time (t _L)	60-150 seconds		
Peak/Classification Temperature (Tp)	See table 1		
Time within 5°C of actual			
Peak Temperature (tp)	20-40 seconds		
Ramp-down Rate	6°C/second max		
Time 25°C to Peak Temperature	8 minutes max		

Notes :

2) Measured on the body surface.

¹⁾ All temperatures refer to topside of the package.

Table 2 Pb	-free / Green	Process – Pacl	kage Classificat	ion Reflow T	emperatures
		1000000 1000	ago olabonibat		omporataroo

Package Thickness	Volume mm³ <350	Volume mm³ 350~2000	Volume mm³ ≧2000
<2.5 mm	260 +0°C*	260 +0°C*	260 +0°C*
1.6-2.5 mm	260 +0°C*	250 +0°C*	245 +0°C*
≧2.5 mm	250 +0°C*	245 +0°C*	245 +0°C*

Notes :

* Tolerance: The device manufacturer/supplier shall assure process compatibility up to and including the stated classification temperature (this means Peak reflow temperature +0°C. For example 260°C+0°C) at the rated MSL level.

MSL level.