High Frequency Power Inductor

SC6983HE

FEATURES

- High Current Handling Capability in the Smallest Footprint and Profile.
- Up to 2 MHz Operating Frequency.
- Extended Operating Temperature Range: -40°C to 125°C. •
 - Through Hole Package Capable of Handling
- the Most Aggressive SMT Assembly Process.

Part Number	Inductance @ 0Adc ⁴	Inductance @ Irated ⁴	Irated ¹	DCR	MAX Saturation Current ²			Temp. Rise Current ³	Temp. Rise
RoHS	nH	nH	ADC	mOhms	ADC	ADC	ADC	ADC	Factor
	±10%	MIN	MAX	±10%	25 ⁰ C	100 ⁰ C	125 ⁰ C	MAX	
SC6983HE	680	619	40	0.98	40	33	31	43	0.04538

Notes:

- 1 The rated current is the saturation current @ 25°C.
- 2 The I(Saturation) is the current at which the inductance drops by 20% maximum of its value at 0ADC. This current is measured at the stated ambient environment and by applying a short duration pulse current to the component, minimizing the self-heating effects. 3 - The I(Temp. Rise) is the current at which the temperature of the part increases by a maximum of 50°C. This test is performed with the
- part mounted on a PCB with 0.250" wide, 0.004" thick copper traces and applying the DC current for a minimum of 30 minutes. 4 - Inductance is measured at 100 KHz and 1.0 Vrms.
- 5 The additional Temperature Rise due to High ET (Voltage x Time) can be estimated using the following formula:

$$Trise (^{O}C) = \left(\begin{array}{c} Core Loss + DCR Loss \\ \hline 16.54 \end{array} \right)^{0.833} Core Loss = 0.005435 x (F) x (Temp. Rise Factor x \land I)^{2.28} \\ \triangle I = Delta I across the inductor \\ F = Switching Frequency (kHz) \end{array}$$

This drawing is the property of ChangSha Shineci Electronics & Technologies Co., Ltd. It is not a controlled document. Therefore it is subject to change without prior notice. It's intended use is to supply preliminary information only. Duplication of all or any part of this drawing is prohibited. REV.01 SC6983HE 092309

High Frequency Power Inductor

SC6983HE

This drawing is the property of ChangSha Shineci Electronics & Technologies Co., Ltd. It is not a controlled document. Therefore it is subject to change without prior notice. It's intended use is to supply preliminary information only. Duplication of all or any part of this drawing is prohibited.

REV.01 SC6983HE_091109

长沙赛磁电子科技有限公司

SHINECI TECHNOLOGIES www.shineci.com.cn