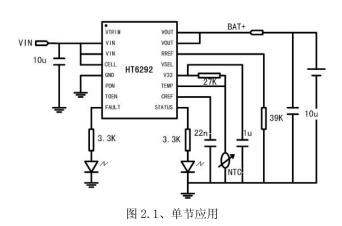
HT6292 单节/双节线性锂电池充电器控制电路

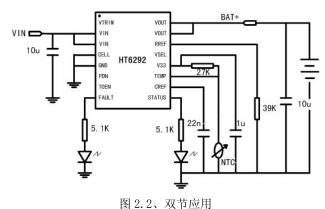
1、HT6292 功能简述

1.1、特性

- 完全的单节/两节锂离子/锂聚合物电池充 电芯片
 - 电池智能检测
 - 0.8%的充电电压精度
 - 恒压充电电压值可通过外接电阻微调
 - 极低的热消耗
 - 集成 MOSFET、内置电流检测
 - 不需要外接反相保护二极管
 - 可编程充电电流控制,最大达800mA
 - 芯片温度热折返保护
 - NTC 热敏接口监测电池温度
 - LED 充电状态指示
 - 可以配置为单节或双节锂电池充电
 - 短路检测、保护
 - USB 与 AC 适配器电压输入可选择
 - 工作环境温度范围: -30℃~70℃
 - 小型 TSSOP-16 封装

1.2、应用


- 手持设备,包括医疗手持设备
- PDA,移动蜂窝电话及智能手机
- 移动仪器, MP3
- 自充电电池组


- 独立充电器
- USB 总线供电充电器

1.3、概述

HT6292 为线性锂离子/锂聚合物电池充电芯片,其最低输入电压可低至 3.6 伏,最大充电电流可达 800mA。HT6292 能够编程设计适应各种 AC 适配器及 USB 接口。电池充电分为恒流 (CC/Constant Current)、恒压 (CV/Constant Voltage) 过程,恒流充电电流通过外部电阻决定,最大为 800mA。考虑到发热问题时,可使用限流输出的 AC 适配器,使用 HT6292 则可以兼顾线性充电器、开关型充电的优点:充电快,自耗功率小。HT6292 集成电流热折返保护电路、短路保护,确保充电芯片安全工作。HT6292 可以检测电池是否过放电,并对过放电的电池进行预充电。HT6292 集成 NTC 热敏电阻接口,可以采集、处理电池的温度信息,保证充电电池的安全工作温度。HT6292 采用 TSSOP-16 封装。

2、典型应用电路

HT6292 规格书 V1.0

3、HT6292 功能框图

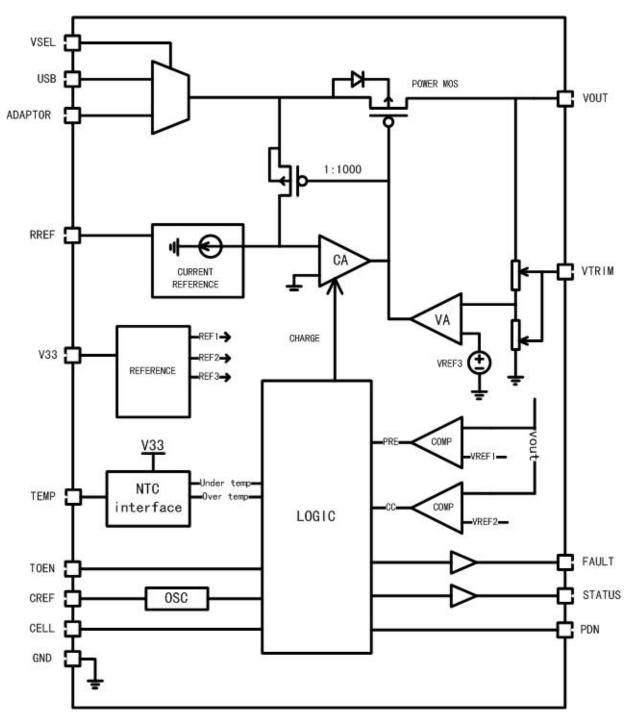


图 3.1、HT6292 功能框图

4、管脚定义

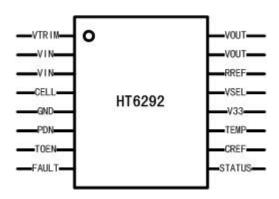


图 4.1、HT6292 管脚分布

表 4.1、HT6292 管脚定义

序号	符号	I/0	描述					
1	VTRIM	_	外接电阻微调满充电压					
2&3	VIN	I	输入电源					
4	CELL	I	0: 两节锂电池	充电				
			1 或悬空: 单节	理电池充电				
5	GND	_	地					
6	PDN	Ι	0: 芯片不工作					
			1 或悬空: 芯片	工作				
7	TOEN	Ι	0: 取消充电时间限制					
			1 或悬空: 使能	的部充电时间隔	制			
8	FAULT	0	FAULT(绿)	STATUS(红)	描述			
9	STATUS	0	0	0	没有充电或者无电池			
			0	1	正在充电			
			1 0 充电完成					
			0 PULSE1 故障状态					
			0	0 PULSE2 电池温度异常				
10	CREF	_	振荡器外接电容,决定内部振荡频率,同时提供参考时钟					
11	TEMP	I	温度传感信号输入					
12	V33	0	输出 3.3V 参考电压,提供 10mA 驱动能力					
13	VSEL	I	0: USB 输入, 充电电流为适配器输入时的 50%					
			1 或悬空: 适配器输入					
14	RREF	_	外接电阻控制恒电流充电电流					
15&16	VOUT	0	输出,接锂电池					

5、HT6292 极限工作参数

输入电压 (VIN)	最大结温·····+150℃
逻辑输入电平	存储温度·····60℃to +150℃
充电电流	

6、HT6292 推荐工作条件

表 6.1、HT6292 推荐工作条件

参数	最小值	典型值	最大值	单位	备注
电源电压	4.5	5. 0	6. 5	V	单节电池充电
电源电压	8.8	10.0	12	V	双节电池充电
环境温度	-20		70	$^{\circ}$	

7、HT6292 性能参数

表 7.1、HT6292 性能参数(一节电池, Ta=25℃)

参数	符号	测试条件	最小	典型	最大	单位
上电复位电压		<u> </u>				
上电复位	VPOR			3.6		V
Standby 模式						
VOUT 漏电流		VBAT=3. 7V			20	uA
VIN 电源电流		VOUT 悬空、PDN=0		100		uА
		VOUT 悬空、PDN=1 或悬空		1		mA
电压调整						
输出电压			4. 158	4. 20	4. 242	V
Dropout 电压				200		mV
充电电流						
恒流充电电流 A	Icc	VRREF>1.3V, VBAT=3.7V	540	600	660	mA
预充电电流 A	Ipre	VRREF>1.3V, VBAT=2.0V		75		mA
恒流充电电流 B	Icc	VRREF<0.4V, VBAT=3.7V			100	mA
预充电电流 B	Ipre	VRREF<0.4V, VBAT=2.0V		12		mA
恒流充电电流 C	Icc	RREF=35K、VBAT=3.7V		600		mA
预充电电流 C	Ipre	RREF=35K、VBAT=2.0V		75		mA
再充电、预充电电压						
预充电阈值电压	Vpre		2.8	3. 0	3. 2	V
再充电阈值电压	Vrhg			4. 10		V
温度监测						
低温阈值电压						
高温阈值电压						
折返阈值			85	100	115	$^{\circ}$
折返电流增益				100		mA/℃
振荡器						
振荡频率		CREF=20nF		333		Hz
振荡周期		CREF=20nF	2. 4	3. 0	3. 6	mS
逻辑电平		<u> </u>				
逻辑高电平	VH		2			V
逻辑低电平	VL				0.8	V
STATUS/FAULT 驱动电流			5			mA

表 7.2、HT6292 性能参数(双节电池, Ta=25℃)

参数	符号	测试条件	最小	典型	最大	单位
上电复位电压						
上电复位	VPOR			6. 4		V
Standby 模式						
VOUT 漏电流		VBAT=7.4V			40	uА
VIN 电源电流		VOUT 悬空、PDN=0		100		uА
		VOUT 悬空、PDN=1 或悬空		1		mA
电压调整						
输出电压			8. 316	8. 40	8. 484	V
Dropout 电压				200		mV
充电电流						
恒流充电电流 A	Icc	VRREF>1.3V, VBAT=7.4V	540	600	660	mA
预充电电流 A	Ipre	VRREF>1.3V, VBAT=4.0V		75		mA
恒流充电电流 B	Icc	VRREF<0.4V, VBAT=7.4V			100	mA
预充电电流 B	Ipre	VRREF<0.4V, VBAT=4.0V		12		mA
恒流充电电流 C	Icc	RREF=35K、VBAT=7.4V		600		mA
预充电电流 C	Ipre	RREF=35K、VBAT=4.0V		75		mA
再充电、预充电电压						
预充电阈值电压	Vpre		5. 6	6.0	6. 4	V
再充电阈值电压	Vrhg			8. 2		V
温度监测						
低温阈值电压						
高温阈值电压						
折返阈值			85	100	115	$^{\circ}\!\mathbb{C}$
折返电流增益				100		mA/℃
振荡器						
振荡频率		CREF=20nF		333		Hz
振荡周期		CREF=20nF	2.4	3.0	3.6	mS
逻辑电平						
逻辑高电平	VH		4			V
逻辑低电平	VL				0.4	V
STATUS/FAULT 驱动电流			5			mA

8、HT6292 功能描述及管脚应用说明

8.1、锂电池充电介绍

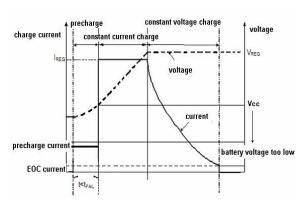


图 8.1、锂电池充电曲线示意图

锂电池充电过程主要分为恒流充电和恒压充电,恒流充电阶段充电电流保持恒定,同时电池电压不断上升。当电池电压达到一定设定的恒压值时进入恒压充电阶段,此时充电电流不断下降,直到电流小到充电截至电流时停止充电,在这个过程中电压会略有上升。当电池电压过低,需要小电流对电池进行预充,即电池预充电阶段,预充电电流一般为恒流充电电流的 1/5。

8.2、充电电流设定

管脚 RREF 用于设定充电电流, 预充电电流为恒流充电电流的 1/8, 电流设定公式如下:

$$I_{CC} = \begin{cases} 600\text{mA} - - - - - - - - (V_{RREF} > 1.3V) \\ \hline 1.0V \\ (R_{RREF} + 5K) \\ 100\text{mA} - - - - - - - (V_{DPFE} < 0.4V) \end{cases}$$

USB 设备供电,管脚 VSEL 设定为低电平,充电电流设定公式:

$$I_{CC} = \begin{cases} 450 mA - - - - - - - - (V_{RREF} > 1. \ 3V) \\ \hline \frac{1. \ 0V}{(R_{RREF} + 5K)} \times 12000 - - - - - (R_{RREF}) \\ 100 mA - - - - - - - - - - (V_{RREF} < 0. \ 4V) \end{cases}$$

管脚 RREF 可以有三种接法对电流进行设定, 分别是接高电平(V33)、地和外接电阻,可以分别 对充电电流进行设定. HT6292 最大恒流充电电流设 定为 800mA.

8.3、充电电压设定

电池电压低于 3.0V (双节电池低于 6.0V) 时进入预充电模式,充电电流为恒电流充电的 1/5; 充电截至电压单节为 4.2V、双节为 8.4V;

当充电完成后,如果电池由于电流泄漏电压降到 4.1V 以下(双节为 8.2V)时,进入再充电周期.

8.4、内部振荡器

HT6292 集成内部振荡器,用于时钟参考源,时钟周期通过在管脚 CREF 外接电容调整,在一个时钟周期内,内部电流将电容充电至 1.8V,然后再放电至 1.3V,周期计算公式:

$$T_{osc} = 1.5 \times 10^5 \times C_{CREF}(s)$$

当外接 10nF 电容时,时钟频率为 666HZ.时钟周期的精度决定于电容与内部电流的精度.

8.5、充电时间限制

管脚 TOEN 为高或者悬空,HT6292 内部对预充 电和总充电时间进行限制,总的充电时间限制:

$$\textit{T}_{\textrm{timeout}} = 2^{23} \times \textit{T}_{\textrm{osc}}$$

当外接 20nF 电容时, 充电时间为 3.5 小时, 如果要延长限制时间,则可以加大 CREF 脚的外接电容. 预充电的时间为总充电时间的 1/8, 如果在这个时间里面相应的充电周期没有完成,芯片进入 FAULT 状态. 管脚 STATUS 输出脉冲指示. 如果要取消充电时间限制,可以将 TOEN 接低电平.

8.6、充电截至电流

当恒压充电电流减小到恒流充电电流的 1/10 时,内部产生 EOC (END OF CHARGE 充电截至)信号,充电截至.

8.7、智能电池检测

HT6292 在正常工作状态,如果拔掉电池或者输出短路,则芯片会对输出进行检测,管脚 FAULT和 STATUS 输出指示为低电平,芯片无电流输出.重新接上电池,则芯片重新对电池充电.

8.8、热折返温度保护

过热是线性充电器存在的普遍现象,一般情况下最大功耗发生在充电开始的时候,此时电池电压最低而充电电流最大. HT6292 通过热折返来对芯片的进行过热保护. 通过检测芯片内部的温度,当温度达到一定高度时,通过反馈逐渐减少充电电流,温度越高则充电电流越小,充电电流在温度超过100℃按照 100mA/℃的速率减少.

8.9、参考电压

HT6292 内置 3.3V 参考电压源(管脚 V33),

该电压源除了为内部电路提供电源外,还可以为外部电路使用,例如 NTC 热敏传感器电路等.该管脚的最大驱动能力为 10mA.

8.10、电池过温保护

通过 NTC 热敏电阻检测电池温度,NTC 阻值随着电池温度变化而变化,因此当 NTC 与正常电阻串联对 V33 参考电压进行分压,分压值会随着 NTC 阻值的变化而变化,这个电压通过管脚 TEMP 反馈到芯片内部进行控制. 如图 2 所示, R1 的阻值等于-10℃时热敏电阻的阻值,当电池温度高于 48℃或者低于-10℃时芯片报警,STATUS 管脚输出一个周期指示信号。如果不需要对电池进行过温检测,则可以把 NTC 替换为阻值为 R1 的 1/2 的电阻。

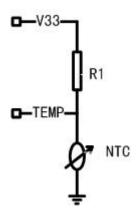


图 8.2、NTC 连接示意图

8.11、输入、输出、参考电压输出端电容选择

输入电源和地之间推荐接 10uF 电容。

输出 VOUT 端可接 1uF 到 10uF 电容。

参考电压输出端口 V33 推荐使用大于 1uF 电容。

9、PCB 布板

输入输出 10uF 的滤波稳压电容尽量靠近芯片端口,走线尽量短的同时保证一定的金属宽度。建议尽量缩小 PCB 板的面积,利于小型化和节约成本。

10、封装尺寸

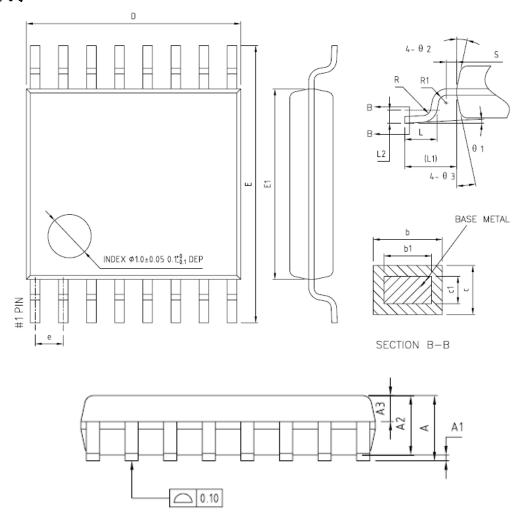


图 10.1、TSSOP-16 封装外观图示

COMMON DIMENSIONS (UNITS OF MEASURE=MILLIMETER)

SYMBOL	MIN	NOM	MAX		
Α	-	-	1.20		
A1	0.05	_	0.15		
A2	0.90	1.00	1.05		
A3	0.34	0.44	0.54		
b	0.20	_	0.28		
b1	0.20	0.22	0.24		
С	0.10	-	0.19		
c1	0.10	0.13	0.15		
D	4.86	4.96	5.06		
E	6.20	6.40	6.60		
E1	4.30	4.40	4.50		
е	0.65BSC				
L	0.45	0.60	0.75		
L1	1.00REF				
L2	0.25BSC				
R	0.09	_	-		
R1	0.09	_	_		
S	0.20	_	-		
θ 1	0,	_	8*		
θ 2	10°	12°	14*		
θ 3	10°	12*	14°		

图 10.2、TSSOP-16 封装尺寸表

HT6292 规格书 V1.0