2009 Power Technology Roadmap Trends 2008 – 2013

Presenter Carl Blake

Co-Chairs PSMA PTRM Committee

Carl Blake Transphorm Inc.

Aung Thet Tu Fairchild Semiconductor

PSMA Power Technology Roadmap 2009

To quote Charles Dickens **"These are the best of times and the worst of times"**

Never before have we seen such demand for energy savings & Most of us have never seen such a challenging economy

Outline

PSMA PTRM Background

- History
- Methodology

Key Trends

- Energy efficiency
- Compound semiconductors
- Digital control

Specific Projections

- Ac-dc front end trends
- Dc-dc Isolated trends

Need Volunteers

Power Sources Manufacturers Association

- One of the sponsors of APEC
 - Along with PELS and IAS
- Nonprofit multinational association

- PSMA Publishes the Roadmap primarily for its members
 - Each Regular and Associate member gets a copy
 - Each participant gets a copy
 - ► Can be purchased by anyone else
- The PSMA PTRM is unique
 - All inputs and analysis are done by respected knowledgeable leaders in the industry rather than 3rd party analysts.

- 1st Workshop Generated Roadmap in 1994
 - Workshop was led by Bob Freund, AT&T Bell Laboratories
- Subsequent Workshops:
 - ▶ 1997, 2000, 2003, 2006, 2008

Purpose of Technology Roadmap is Communication

- Technology roadmaps are essential for feedback to/from suppliers, customers, universities and manufacturers to cross industry fragmentation and focus solutions.
- New Methodology Begun with this Report for 2009

Methodology

- Gather Data
 - Presentations from users
 - ► Suppliers
 - Market research
 - Technology

- Analyze Data
 - Breakout groups
 - ► Compile trends
 - Summarize trends into tables
 - Present results

Keep what worked well – try to over come the limitations

Old vs. New Data Gathering

Old Method

- Invite industry experts to one day workshop
- Morning presentations limited to 20 minutes each
- Afternoon to analyze and compile data
- Report results

Old vs. New (contd.)

- New Method
 - Invite industry experts to participate in a series of conference calls
 - Calls were planned for 1 hour, recorded and continued depending upon Q & A
 - Presentations and call audio available during analysis
 - Five months to gather data in weekly calls
 - Three months to analyze data
 - Review results of breakout groups in September

Why a New Method?

- A Single Day Workshop
 - Limited participation to 30 people at most
 - There were more than 50 people involved this year
 - Results were dependent upon the breath of knowledge of workshop attendees
 - New method allowed several experts in each area to participate
 - There was little opportunity to react to new data or gather additional information
 - Extra topics were added to clarify trends
 - Required travel to a single location
 - Benefit was undivided attention once there

• Two users of power supplies and dc-dc converters

► Discussed the future power demands for computing.

Six component suppliers

The component presentations examined semiconductor IC trends, power component technology trends, magnetic materials and inductive winding trends as well as the trends in capacitor technology.

Three market perspectives

 Discussed impact of new regulations, new markets and network infrastructure

Three technology presentations.

 Examined the influence of digital technologies, advanced packaging and university research in progress at around the world

Three presentations from the previous roadmap

 University view of digital technology, power supplies for telecom and capacitor technology

Breakout Groups – a Key Ingredient

AC-DC Front End PS – led by E. Herbert
AC-DC External PS – led by A. Tu
DC-DC Isolated Converter – led by H. Lee
DC-DC POL Converter – led by A. Alderman

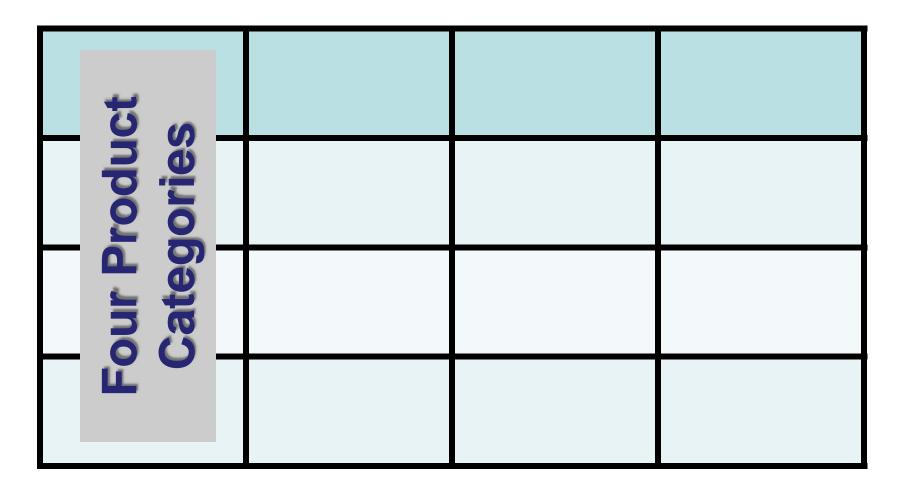
Each group containing industry experts in

- Circuits and architecture
- Packaging
- Components
- Oversight & economics

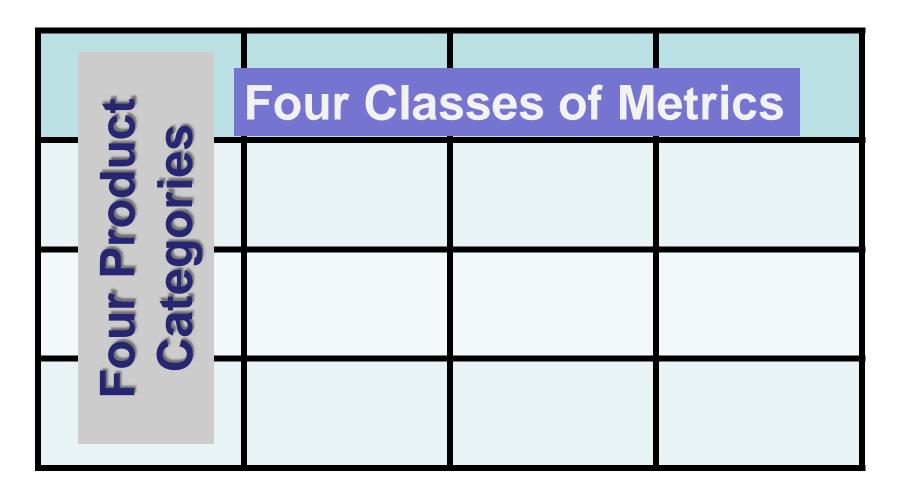
>50 Industry Participants

Consultants – 8 PS manufacturers – 8 Suppliers – 11

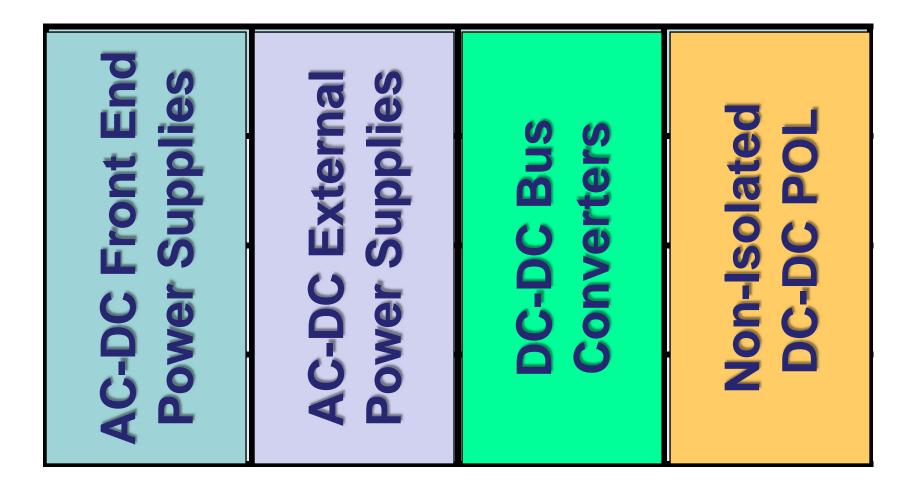
- Anagenesis Inc.
- Bel Power Inc.
- Bruce Carsten Associates
- Center for Power Electronics (CPES)
- Coilcraft
- Dell
- Delta Energy Systems (Arizona) Inc.
- Delta Products Corporation
- Emerson Network Power
- Fairchild Semiconductor
- Horizon Consultants Ltd.
- IBC Corp.
- IBM
- IMS Research
- Independent Inventor
- Intel
- Magnetics
- Maxwell Technologies

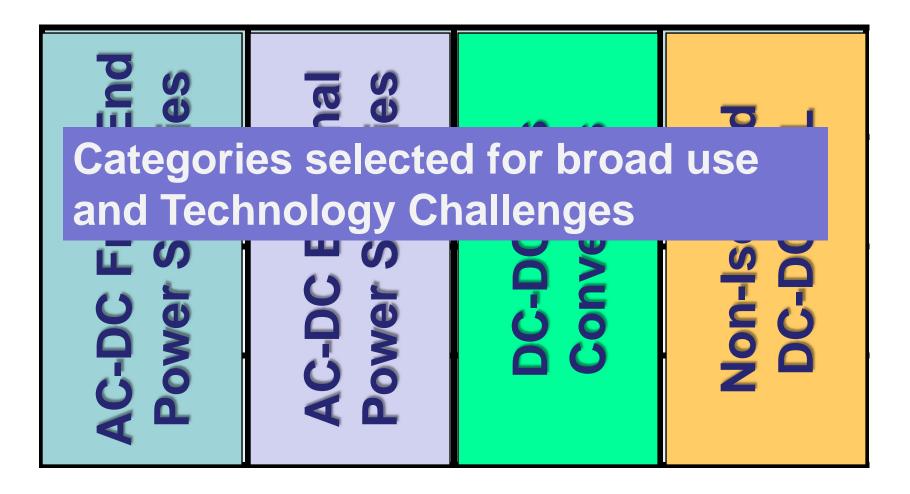

Users – 6 Universities – 3

- Murata Power Solutions
- ON Semiconductor
- Paumanouk
- Power Electronic Strategies
- Power Integrations
- Qspeed Semiconductor
- RAF Tabtronics LLC
- Raytheon
- ROAL Electronics USA, Inc.
- Skyline Marketing
- SL Power
- Texas Instruments
- Transphorm Inc.
- Tyndall National Institute
- University at Buffalo
- Vu1
- Zilker Labs (Intersil)



Four Clas	sses of M	etrics





General Requirements

Circuit Design and Implementation

Component Technology

Packaging, Physical Design, Thermal Management, Assembly Technology

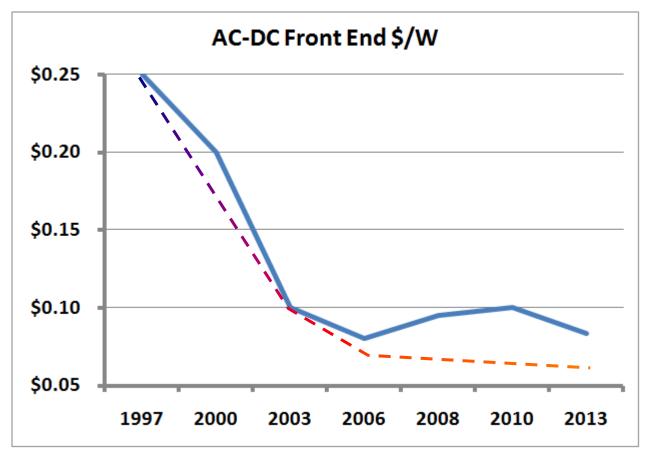
Specific Trends Projections

Technology		200	30			20	10			201	13		
		Early Mature		Early Mature		Early	/	Ma	ature				
Integrated SR + controller		1	2					3	4				4
PFC controllers	Boost converter				4				4				4
	Single-stage		2					3				3	
	Interleaved		2					3				3	
	Bridgeless	1					2					3	
Resonant	LLC half-bridge			3					4				4
controllers	QR flyback		2	3				3	4				4
Sync. rectifier drivers	Buck-derived / flyback		2	3				3	4				4
	Resonant converters	1	2				2	3				3	
	Adoption	1	2	3	4	1	2	3	4	1	2	3	4

Adoption key:

- 1. Experimental/Laboratory Exploration, Research & Development
- 2. Early Adopter
- 3. Mature: Niche Use
- 4. Mature mainstream Use

AC-DC "Front End"



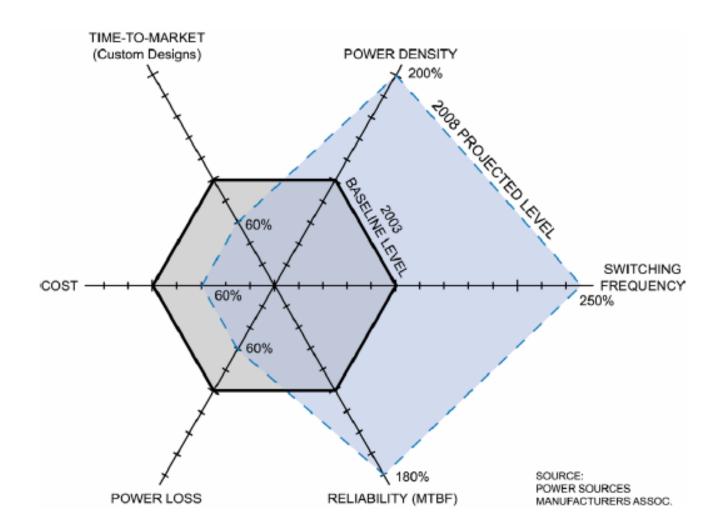
	2003	2008 Forecast from 2003	2008 Actual	2013 Forecast
Cost (\$/W)*	0.10 – 0.20	0.08 – 0.14	0.095 – 0.14	0.08 – 0.12.5
Density (W/in ³)	3 – 10	10 – 25	8 - 18	13 - 38
MTBF (kH)	500	750 +	550	750 +
Efficiency	80 – 85%	85 – 92%	88 – 94%	92 – 96%
Switching frequency (kHz)	100 – 200	100 – 500	95% < 500	92% < 500
Time to market	6 – 9 months	3 – 6	9	7
Control	Analog	Digital	15% Digital	30% Digital

* At high unit volume

Efficiency Impact on PS Market

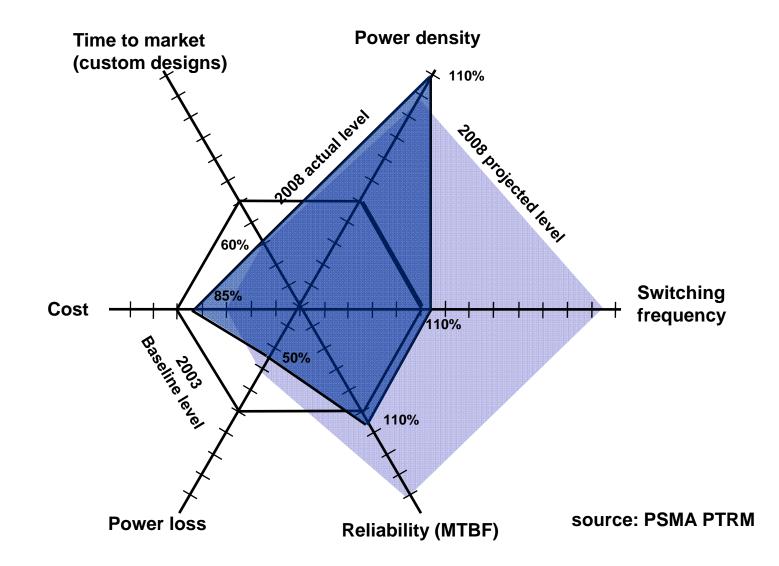
The increased environmental awareness of energy utilization has focused attention on the value of energy savings For the 1st time the \$/W has increased

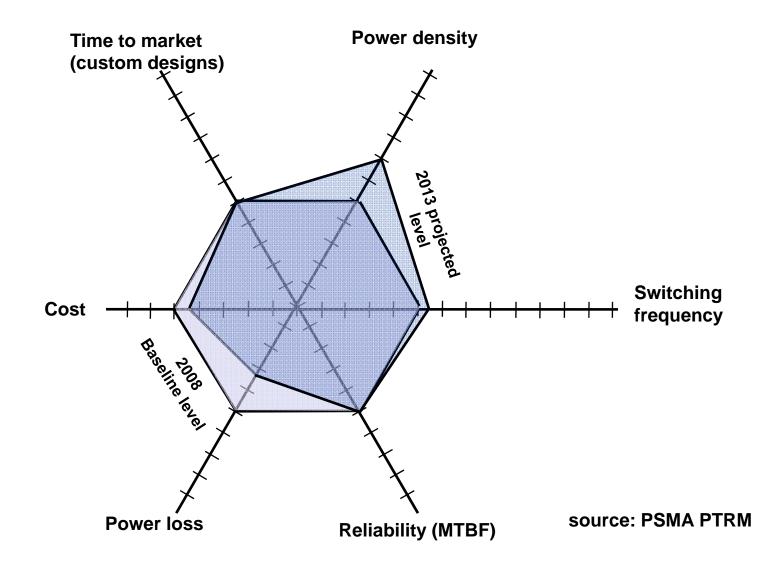
AC-DC "Front End" Density


	2003	2008 Forecast from 2003	2008 Actual	2013 Forecast
Density (W/in ³)	3 – 10	10 – 25	8 - 23	13 - 38

But let's look at the detail in this latest roadmap

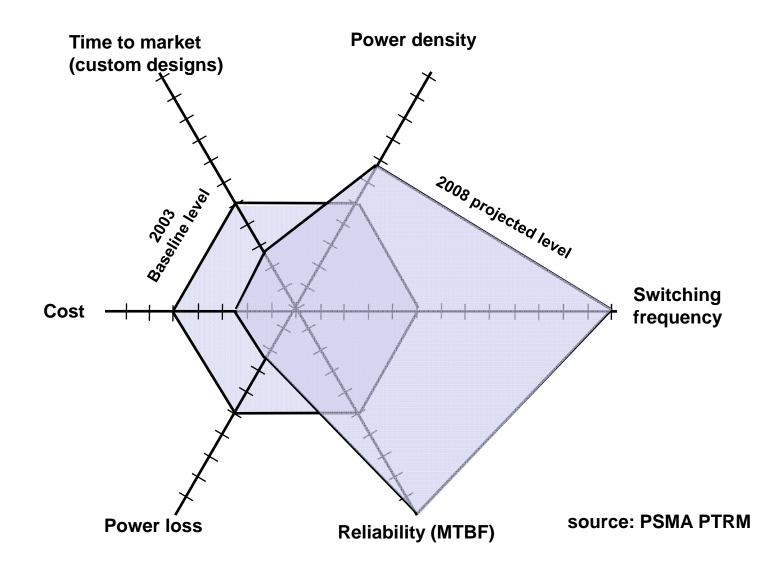
	2008 Forecast from 2003	2010 Forecast from 2006	2008 Actual	2013 Forecast
Density (W/in ³)	10 – 25	8 – 30	8 - 23	13 - 38
Power Conversion Density Most economical Highest practical Leading edge		8 W/in³ 15 W/in³ 30 W/in³	8 W/in³ 18 W/in³ 23 W/in³	13 W/in³ 25 W/in³ 38 W/in³

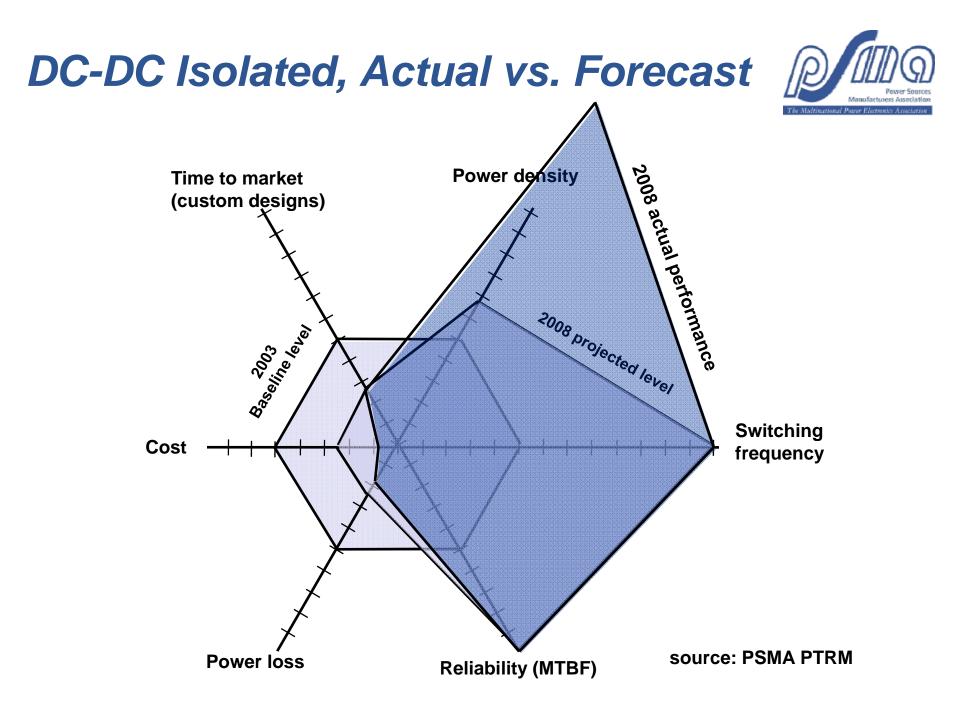

2008 AC-DC as Projected in 2003



AC-AC Front End, 2013 Forecast

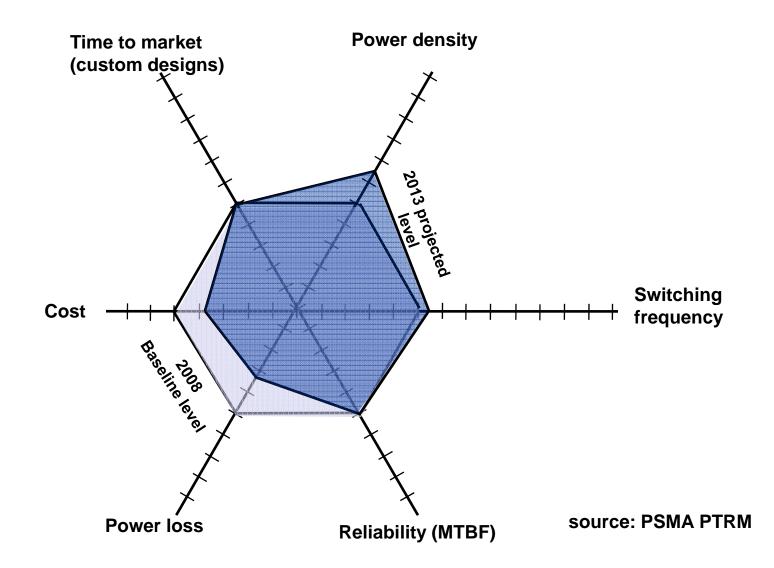
DC-DC Isolated Brick or Intermediate bus converter




	2003	2008 Forecast from 2003	2008 Actual	2013 Forecast
Cost (\$/W)*	0.40 – 0.60	0.20 – 0.45	0.075	0.058
Density (W/in ³)	75	100	300	400
MTBF (MH)	1 - 2	4	3 - 5	3 - 5
Efficiency	85 – 93%	90 – 95%	89 – 94%	92 – 95%
Switching frequency (kHz)	200 – 300	300 – 1000	90% < 500	85% < 500
Time to market	Off the shelf	Off the shelf	Off the shelf	Off the shelf
Control	Analog	Digital	Mixed	Mixed

* At high unit volume

DC-DC Isolated, Actual vs. Forecast



DC-DC Isolated, 2013 Forecast

Drivers, Enablers, Barriers

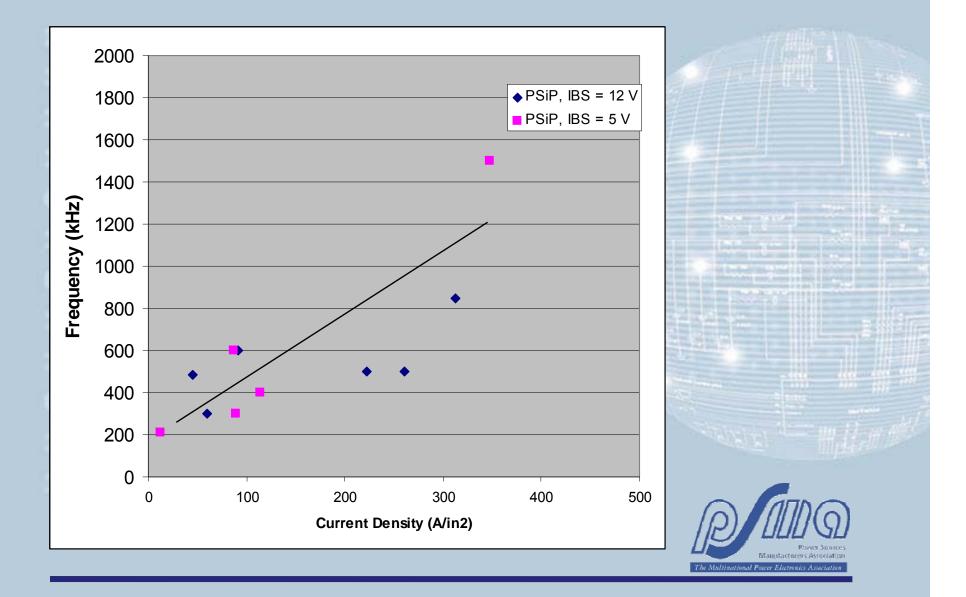
Drivers

- Energy conservation is driving higher efficiency
 - New standards are being adopted rapidly around the world.

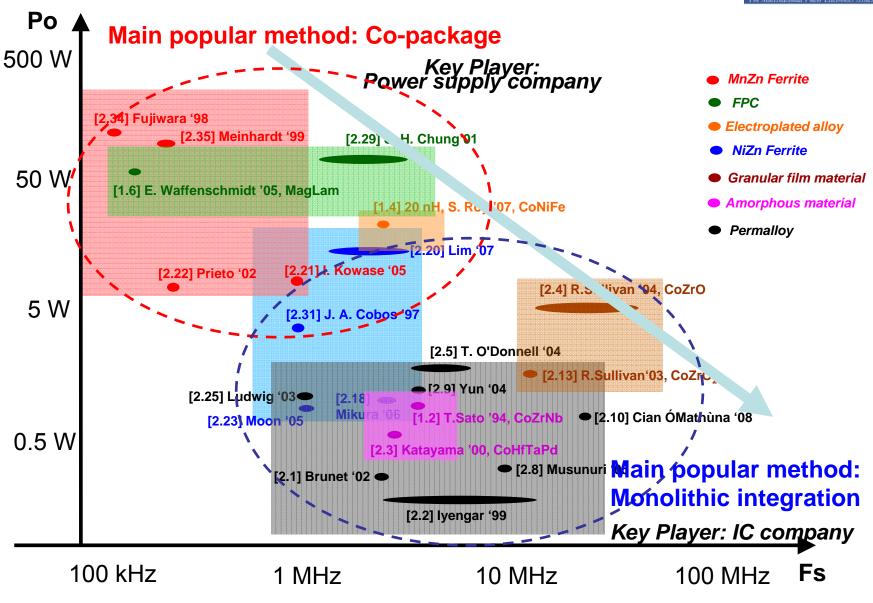
Enablers

- New semiconductor materials such as SiC and GaN will have the most significant impact upon the industry during the next five years.
- New digital control will enable more efficient no load and light load operation. It will also reduce component count to enable lower cost.

Barriers


 Thermal management remains a barrier to smaller size, higher efficiency minimizes this barrier.

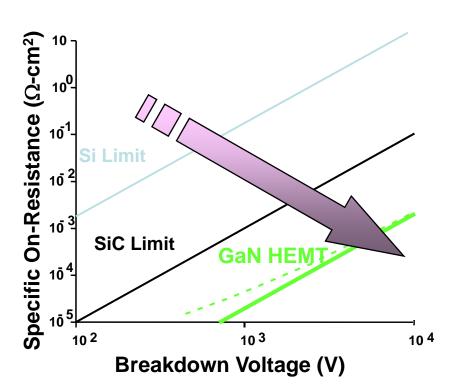
Similar to those in the Roadmap



- There are several papers being presented at APEC that are based upon the same subjects
- The papers are:
 - Power Supply on Chip Has the Ship Come In? Cian O'Mathuna, Tyndall National Institute (in the Plenary session today)
 - SP5.7: "Technology Survey and Trends for Integrated High Frequency DC-DC Converter" F. Lee, Center for Power Electronics Systems (Thursday at 5 pm in Thurgood Marshall N.)
 - SP1.7: "SiC and GaN Power Devices: Market Status and Perspectives" P. Roussel, Yole Development (Tuesday 11:30 in Thurgood Marshall N.)
 - S.10 "Energy Efficiency Specifications and Standards Activity for Power Supplies" Arnold Alderman, Anagenesis, Sunday

PSiP Frequency vs. Current Density

The Trend and Impact of Magnetic Material Development

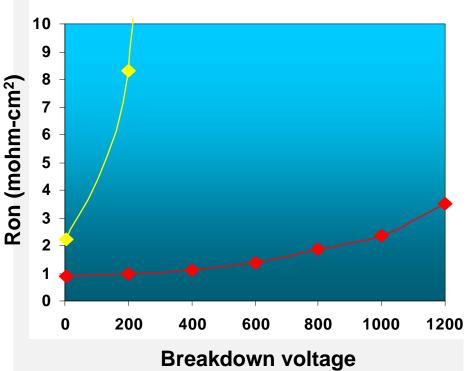

PSMA Power Technology Roadmap 2009

Compound Semiconductors

- Substrate quality and price are improving
- Auto industry is providing renewed impetus with electric vehicle programs
- PFC boost diode using SiC reduces switching losses substantially.
- SiC JFET ----> 2009
- SiC BJT, GaN diode -----> 2010
- SIC MOSFET, GaN HEMT -----> 2011

SiC will be very competitive in high voltage, high temperature applications
GaN will be very competitive is all high voltage applications

Better semiconductor for power switching


Compound Semiconductors

- Substrate quality and price are improving
- Auto industry is providing renewed impetus with electric vehicle programs
- PFC boost diode using SiC reduces switching losses substantially.
- SiC JFET ----> 2009
- SiC BJT, GaN diode -----> 2010
- SiC MOSFET, GaN HEMT -----> 2011

 SiC will be very competitive in high voltage, high temperature applications •GaN will be very competitive is all high voltage applications

Specific on-resistance of SiC vs. silicon

Major EPS Specs/Standards Summary

	ENERGY STAR EPS v2 (Eff 11/08)	EC CoC v3 (1/09)	EISA '07 & EC EcoDesign Directive (P)
Nameplate Output Power (Pno)	Min Ave Efficiency in Active Mode ⁶	Min Ave Efficiency in Active Mode ²	Min Ave Efficiency in Active Mode
≤ 1 W	≥ 0.480 * Pno + 0.140	≥ 0.44 * Pno + 0.145	0.5* Pno
> 1 to ≤ 36 W		≥ [0.08 * Ln (Pno)] + 0.585	
> 1 to ≤ 49 W	≥ [0.0626 * Ln (Pno)] + 0.622		
> 1 to ≤ 51 W			≥ [0.09 * Ln (Pno)] + 0.5
> 36 W		≥ 0.870	
> 49 W	≥ 0.870		
> 51 W			≥ 0.850
	No-load power ¹	No-load power ³	No-load power⁵
< 50 W	0.3 W	0.3 W	0.5 W
> 50 to ≤ 250 W	0.5 W	0.5 W	0.5 W

NOTES: 1 AC-AC is ≤ 0.5 W for all power levels 2 Until 1/1/11, spec for mobile handheld battery powered apps - <1 W = ≥ 0.5 * Pno + 0.029, > 1 W, ≤ 8 W = ≥ 0.095 * Pno + 0.529. 3 Spec for mobile handheld battery powered apps ≤ 8 W - ≤ 0.25 W until 12/31/10, ≤ 0.15 W after 1/1/11 4 Two years after effective date, spec changes to ESTAR v2 levels for >1 W 5 Two years after EcoDesign Directive effective date, its spec for <50 W drops to 0.3 W 6 Standard PSU specs shown. Low V/ High I PSU are: ≤ 1 watt - ≥ 0.497 * Pno + 0.067, > 1 to ≤ 49 watts - $\geq [0.0750$ * Ln (Pno)] + 0.561, > 49 watts - ≥ 0.860

Participate and benefit

- The industry experts, segment leaders, etc. who participated in developing the roadmap are all people who volunteered their time
- All participants agree If you give and share, you gain more than you gave
 - There will be a postmortem of the 2009 roadmap and initial plans for the next roadmap on Wednesday at 12 noon in the McKinley Room (Mezzanine level) in the Marriott Wardman Park Hotel
- Come and see if you are prepared to give and take and participate in the next roadmap!

Thank You