Prototype Report

High Power Factor LED Ballast using
 FSFR2100 Fairchild Power Switch (FPS ${ }^{\text {TM }}$) for Resonant Half-Bridge Converter and FAN7529 PFC Controller

- Universal AC Input Voltage ($90-265 \mathrm{~V}_{\mathrm{RMS}}$)
- Total Output Power 200 W
- Six DC Outputs with Constant Current:
0.7A / 48V max. each
(can be changed to $0.35 \mathrm{~A} / 96 \mathrm{~V}$ max.)
1 DISCLAIMER 4
2 WARNING 4
3 INTRODUCTION 5
4 PSU SPECIFICATION 5
4.1 Electrical Specification 5
4.2 Mechanical Specification 5
5 SCHEMATIC DIAGRAM AND CIRCUIT DESCRIPTION 6
5.1 Schematic Diagram 6
5.2 Circuit Description 8
5.3 FAN7529 Critical Conduction Mode PFC Controller 8
5.4 FSFR2100 Fairchild Power Switch (FPS ${ }^{\text {TM }}$) for Resonant Half-Bridge Converter 9
5.5 FOD2741 Optically Isolated Error Amplifier 9
5.6 SG6859 PWM Controller 9
6 PCB LAYOUT 10
6.1 Top 10
6.2 Bottom 11
7 BILL OF MATERIALS 12
8 MAIN TRANSFORMER 15
8.1 Winding Details 15
8.2 Electrical Characteristics 15
8.3 Core and Bobbin 15
8.4 Safety 15
9 LLC CHOKE 16
9.1 Winding Details 16
9.2 Electrical Characteristics 16
FAIRCHILD
SEMICONDUCTOR im www.fairchildsemi.com
9.3 Core and Bobbin 16
10 PFC CHOKE 16
10.1 Winding Details 16
10.2 Electrical Characteristics 16
10.3 Core and Bobbin 16

1 Disclaimer

Fairchild Semiconductor Limited ("Fairchild") provides these design services as a benefit to our customers. Fairchild has made a good faith attempt to build for the specifications provided or needed by the customer. Fairchild provides this product "as is" and without "recourse" and MAKES NO WARRANTY, EXPRESSED, IMPLIED OR OTHERWISE, INCLUDING ANY WARRANTY OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Customer agrees to do its own testing of any Fairchild design in order to ensure design meets the customer needs. Neither Fairchild nor Customer shall be liable for incidental or consequential damages, including but not limited to, the cost of labor, re-qualifications, rework charges, delay, lost profits, or loss of goodwill arising out of the sale, installation or use of any Fairchild product.

Fairchild will defend any suit or proceeding brought against Customer if it is based on a claim that any of its products infringes any U.S., Canadian, Japanese, EU or EFTA member country intellectual property right. Fairchild must be notified promptly in writing and given full and complete authority, information and assistance (at Fairchild's expense) for defense of the suit. Fairchild will pay damages and costs therein awarded against Customer but shall not be responsible for any compromise made without its consent. In no event shall Fairchild's liability for such damages and costs (including legal costs) exceed the contractual value of the goods or services that are the subject of the lawsuit. In providing such defense, or in the event that such product is held to constitute infringement and the use of the product is enjoined, Fairchild, in its discretion, shall procure the right to continue using such product, or modify it so that it becomes non-infringing, or remove it and grant Customer a credit for the depreciated value thereof. Fairchild's indemnity does not extend to claims of infringement arising from Fairchild's compliance with Buyer's design, specifications and/or instructions, or use of any product in combination with other products or in connection with a manufacturing or other process. The foregoing remedy is exclusive and constitutes Fairchild's sole obligation for any claim of intellectual property infringement.

All solutions, designs, schematics, drawings, boards or other information provided by Fairchild to Customer are confidential and provided for Customer's own use. Customer may not share any Fairchild materials with other semiconductor suppliers.

For Fairchild Semiconductor Limited

Name:
Date:

2 Warning

This Evaluation Board may employ high voltages so appropriate safety precautions should be used when operating this board. Replace components on the Evaluation Board only with those parts shown on the BOM. Contact an authorized Fairchild representative with any questions.

3 Introduction

This document describes the proposed solution for a 200 W Power Supply using the FSFR2100 Fairchild Power Switch (FPS). The input voltage range is $90-265 \mathrm{~V}_{\text {RMs }}$ and there are six outputs with $0.7 \mathrm{~A} / 48 \mathrm{~V}$ max. each. The board consists of a high power factor pre-regulator based on the FAN6961 voltage mode PFC controller and an isolated DC/DC converter based on a resonant LLC topology. This document contains the power supply specification, schematic, bill of materials and transformer documentation.

4 PSU Specification

4.1 Electrical Specification

Minimum Line Voltage	$90 \mathrm{~V}_{\text {RMS }}$
Maximum Line Voltage	$265 \mathrm{~V}_{\text {RMS }}$
Line Frequency	50 to 60 Hz
Six Outputs	$0.7 \mathrm{~A} / 48 \mathrm{~V}$ max.

4.2 Mechanical Specification

The board size is $201 \mathrm{~mm} \times 79 \mathrm{~mm} \times 20 \mathrm{~mm}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$

FAIRCHILD
ww.fairchildsemi.com
5 Schematic Diagram and Circuit Description

5.1 Schematic Diagram

5.2 Circuit Description

The power supply consists of a high power factor pre-regulator, a DC/DC converter and three current sources.
D94-97 act as a rectifier that supplies positive half-waves to the following boost-converter. C914, LF1, C95 and C915 form an EMI filter.
The PFC is based on IC91, the voltage mode PFC controller FAN6961. At start-up of the application, C96 is charged by R93a and R3b to the start voltage of IC91. As soon as the IC begins to operate, current is drawn and C96 starts to discharge. Since the circuit is switching now, the voltage across the secondary winding of TR91a supplies current via R94, C913 and D91. Since the latter voltage varies with the input voltage it is clamped with D93 to a suitable level. IC91 generates the gate voltage for the boost switch Q91. The on-time of Q91 is (almost) constant during one half-wave of the power line voltage while the off-time is variable and determined by the de-magnetization of TR91a \& TR91b. The latter is determined by detection of the zero crossing of the voltage at the pin 'ZCD' of IC91. The output voltage of 405 V is fed back via the divider R910a/b and R911. C97 determines the crossover frequency that has to be less than half the line frequency in order to get a high power factor.
The DC/DC converter is based on the Fairchild Power Switch (FPSTM) FSFR2100. At start-up C105 is charged via D105 and R9155 to the start voltage of the IC. When this voltage is reached, the device starts to operate with the frequency determined by R107 and drops - since C107 is charged by and by - to the nominal operating frequency with a slope that is determined by C107 (Soft-Start).

The half-bridge of IC1 drives a LLC network consisting of L101, TR1 and C102a \& b. On the secondary side the transformed voltage is rectified by D201-D204 and filtered with C201.A second output voltage that supplies the optocoupler and error amplifier OC1 is generated with D201, R201, C201 and D206. R204, C202, R207 etc. together with OC1 form the feedback loop to regulate the output voltage. The BJT of the optocoupler together with R104 form a variable resistor that is parallel to R105, that sets the minimum operating frequency, and adjust the operating frequency accordingly.
D105, R108, C105 and D102 deliver the supply current for IC1 during normal operation The supply voltage for the high-side driver of the half bridge is generated with the bootstrap circuit consisting of R106, D101 and C106.
The current through the lower MOSFET is measured with R101, the signal is filtered by the network R102/C102 and fed to the 'CS' pin. This pin accepts a signal that is negative respect to the ground-pin of the chip. If a level of -0.6 V is met at this pin, the half-bridge is switched of until the next cycle.
If -0.9 V are met, the device is shut down (AOCP). The latter mode is latched and only reset after the Vcc of the chip fell below 5 V typical.
The three current sources use the SG6859 current mode PWM controller in a buck topology. The peak current through the inductors L102 .. 104 is measured with the hunt resistors R13, 14, 15 16, 19 and 22 and fed to the current sense of the corresponding controller. The controller keeps the peak inductor current and in turn the output current constant. R10 .. 12 set the current sense level and R7 .. 9 determine the operating frequency of the current source. In order to set an output current of 350 mA the resistors R13, 14, 15 16, 19 and 22 have to be doubled.
The current sources can be dimmed with a PWM signal of approx. 200 Hz applied to J 7 .

5.3 FAN7529 Critical Conduction Mode PFC Controller

The FAN6961 is an 8-pin, boundary-mode, PFC controller IC intended for controlling PFC preregulators. The FAN6961 provides a controlled on-time to regulate the output DC voltage and achieve natural power factor correction. The maximum on-time of the external switch is programmable to ensure safe operation during AC brownouts. An innovative multi-vector error amplifier is built in to provide rapid transient response and precise output voltage clamping. A built-in circuit disables the controller if the output feedback loop is opened. The start-up current is lower than $20 \mu \mathrm{~A}$ and the operating current has been reduced to under 6 mA . The supply voltage can be up to 25 V , maximizing application flexibility.

5.4 FSFR2100 Fairchild Power Switch (FPS ${ }^{\text {TM }}$) for Resonant Half-Bridge Converter

FSFR-series is a highly integrated power switch specially designed for high efficiency half-bridge resonant converter. Offering every thing necessary to build a reliable and robust resonant converter, the FSFR-series simplifies designs and improves productivity while improving performance. The FSFR-series combines power MOSFETs with fast recovery type body diodes, a high-side gate drive circuit, an accurate current controlled oscillator, frequency limit circuit, soft-start and built-in protection functions. The high side drive circuit has a common mode noise cancellation capability, which guarantees stable operation with excellent noise immunity. The fast recovery body diode of the MOSFETs improves reliability against abnormal operation condition while minimizing the effect of the reverse recovery. Using the zero-voltage-switching (ZVS) technique, the switching losses are dramatically reduced and therefore the efficiency also has been significantly improved. The zero-voltage-switching also reduces the switching noise noticeably, which allows using small size EMI filter. The FSFR-series can be applied to various resonant converter topologies such as series resonant, parallel resonant and LLC resonant converter.

5.5 FOD2741 Optically Isolated Error Amplifier

The FOD2741 Optically Isolated Amplifier consists of the popular KA431 precision programmable shunt reference and an optocoupler. The optocoupler is a gallium arsenide (GaAs) light emitting diode optically coupled to a silicon phototransistor. It comes in 3 grades of reference voltage tolerance $=2 \%$, 1%, and 0.5%.
The Current Transfer Ratio (CTR) ranges from 100\% to 200\%. It also has an outstanding temperature coefficient of $50 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. It is primarily intended for use as the error amplifier/reference voltage/optocoupler function in isolated ac to dc power supplies and dc/dc converters.
When using the FOD2741, power supply designers can reduce the component count and save space in tightly packaged designs. The tight tolerance reference eliminates the need for adjustments in many applications. The device comes in a 8-pin dip white package.

5.6 SG6858 / SG6859 PWM Controller

This highly integrated PWM controller provides several special enhancements designed to meet the low standby-power needs of low-power SMPS. To minimize standby power consumption, the proprietary green-mode function provides off-time modulation to linearly decrease the switching frequency under light-load conditions. This green-mode function enables the power supply to easily meet even the strictest power conservation requirements.
The BiCMOS fabrication process enables reducing the start-up current to 9 uA , and the operating current to 3 mA . To further improve power conservation, a large start-up resistance can be used. Built-in synchronized slope compensation ensures the stability of peak current mode control. Proprietary internal compensation provides a constant output power limit over a universal AC input range (90VAC to 264VAC). Pulse-by-pulse current limiting ensures safe operation even during short-circuits.
To protect the external power MOSFET from being damaged by supply over voltage, the SG6859's output driver is clamped at 17 V . SG6859 controllers can be used to improve the performance and reduce the production cost of power supplies. The SG6859 is the best choice for replacing linear and RCC-mode power adapters. It is available in 8-pin DIP and 6-pin SOT-26 packages.

6 PCB Layout

6.1 Top

6.2 Bottom

7 Bill of Materials

Item	Qtty.	RefDes	Part / Specification	Manufacturer / Series
1	1	C95	680nF / 450V	Epcos / B32522N
2	1	C96	10uF / 25V	TDK / C5750
3	1	C97	470nF / 25V	any X7R / 15\% / 1206
4	2	C99b	47uF / 450V	Epcos / B43699
		c99a	47uF / 450V	Epcos / B43699
5	1	C102	1nF / 25V	any X7R / 15\% / 0805
6	1	C102a	10nF / 630V	Arcotronics / R76
7	1	C102b	15nF / 630V	Arcotronics / R76
8	1	C105	22uF / 50V	any electrolytic
9	1	C106	150nF / 25V	any X7R / 15\% / 1206
10	1	C107	6.8uF / 25V	AVX / TAP
11	1	C108	12nF / 25V	any X7R / 15\% / 0805
12	1	C109	10nF / 25V	any X7R / 15\% / 0805
13	1	C201	100uF / 250V	Panasonic / ED
14	2	C202a	$33 \mathrm{nF} / 500 \mathrm{~V}$	Yageo / CC1206
		C202	$33 \mathrm{nF} / 500 \mathrm{~V}$	Yageo / CC1206
15	1	C203	27nF / 25V	any X7R / 15\% / 0805
16	1	C204	150uF / 35V	any electrolytic
17	8	C205	100nF / 25V	any X7R / 15\% / 0805
		C206	100nF / 25V	any X7R / 15\% / 0805
		C207	100nF / 25V	any X7R / 15\% / 0805
		C208	100nF / 25V	any X7R / 15\% / 0805
		C209	100nF / 25V	any X7R / 15\% / 0805
		C210	100nF / 25V	any X7R / 15\% / 0805
		C211	100nF / 25V	any X7R / 15\% / 0805
		C212	100nF / 25V	any X7R / 15\% / 0805
18	1	C911	n.a. / 200V	any MLC / X7R / 15\%
19	1	C913	100nF / 50V	any X7R / 15\% / 0805
20	1	C914	470nF / 305V	Epcos / B32922C
21	1	C915	4.7nF / 250V	Murata / DE
22	5	D91	FDLL4148	Fairchild Semiconductor
		D98	FDLL4148	Fairchild Semiconductor
		D105	FDLL4148	Fairchild Semiconductor
		D106	FDLL4148	Fairchild Semiconductor
		D205	FDLL4148	Fairchild Semiconductor
23	1	D92	EGP30K	Fairchild Semiconductor
24	1	D93	BZX85C22	Fairchild Semiconductor
25	4	D94	1N5407	Fairchild Semiconductor
		D95	1N5407	Fairchild Semiconductor
		D96	1N5407	Fairchild Semiconductor
		D97	1N5407	Fairchild Semiconductor
26	1	D101	RS1J	Fairchild Semiconductor
27	4	D201	ES3J	Fairchild Semiconductor
		D202	ES3J	Fairchild Semiconductor
		D203	ES3J	Fairchild Semiconductor
		D204	ES3J	Fairchild Semiconductor
28	1	D206	BZX79C30	Fairchild Semiconductor
29	6	D207	ES1F	Fairchild Semiconductor
		D208	ES1F	Fairchild Semiconductor
		D209	ES1F	Fairchild Semiconductor
		D211	ES1F	Fairchild Semiconductor
		D214	ES1F	Fairchild Semiconductor
		D215	ES1F	Fairchild Semiconductor

30	6	D216	1N4148	Fairchild Semiconductor
		D217	1N4148	Fairchild Semiconductor
		D218	1N4148	Fairchild Semiconductor
		D219	1N4148	Fairchild Semiconductor
		D220	1N4148	Fairchild Semiconductor
		D221	1N4148	Fairchild Semiconductor
31	1	FS91	230V / T4A	Wickmann / TR5
32	1	IC1	FSFR2100	Fairchild Semiconductor
33	1	IC2	KA78L18	Fairchild Semiconductor
34	1	IC91	FAN6961SZ	Fairchild Semiconductor
35	6	IC92	SG6858TZ	Fairchild Semiconductor
		IC93	SG6858TZ	Fairchild Semiconductor
		IC94	SG6858TZ	Fairchild Semiconductor
		IC95	SG6858TZ	Fairchild Semiconductor
		IC96	SG6858TZ	Fairchild Semiconductor
		IC97	SG6858TZ	Fairchild Semiconductor
36	6	J1	MKDSN1,5/2	Phoenix Contact / MKDSN1,5
		J2	MKDSN1,5/2	Phoenix Contact / MKDSN1,5
		J3	MKDSN1,5/2	Phoenix Contact / MKDSN1,5
		J4	MKDSN1,5/2	Phoenix Contact / MKDSN1,5
		J5	MKDSN1,5/2	Phoenix Contact / MKDSN1,5
		J6	MKDSN1,5/2	Phoenix Contact / MKDSN1,5
37	1	J7	B2B-XH-A	JST / XH
38	1	J91	GMKDS1,5/2	Phoenix Contact / GMKDS 1,5
39	1	LF1	$2 \times 10 \mathrm{mH} / 2.3 \mathrm{~A}$	Epcos / B82733-F series
40	1	L101	100uH / 1.5A	EFD20 / Custom
41	6	L102	$1 \mathrm{mH} / 0.85 \mathrm{~A}$	FASTRON / PISN
		L103	$1 \mathrm{mH} / 0.85 \mathrm{~A}$	FASTRON / PISN
		L104	$1 \mathrm{mH} / 0.85 \mathrm{~A}$	FASTRON / PISN
		L105	$1 \mathrm{mH} / 0.85 \mathrm{~A}$	FASTRON / PISN
		L106	$1 \mathrm{mH} / 0.85 \mathrm{~A}$	FASTRON / PISN
		L107	$1 \mathrm{mH} / 0.85 \mathrm{~A}$	FASTRON / PISN
42	1	OC1	FOD2741BTV	Fairchild Semiconductor
43	6	Q1	FQD4N25TM	Fairchild Semiconductor
		Q2	FQD4N25TM	Fairchild Semiconductor
		Q3	FQD4N25TM	Fairchild Semiconductor
		Q4	FQD4N25TM	Fairchild Semiconductor
		Q5	FQD4N25TM	Fairchild Semiconductor
		Q6	FQD4N25TM	Fairchild Semiconductor
44	1	Q91	FCP11N60	Fairchild Semiconductor
45	7	R2	1K / 0.125W	any 1\% / 0805
		R3	1K / 0.125W	any 1\%/0805
		R4	1K / 0.125W	any 1\%/0805
		R5	1K / 0.125W	any 1\%/0805
		R6	1K / 0.125W	any 1\%/0805
		R24	1K / 0.125W	any 1\%/0805
		R102	1K / 0.125W	any 1\%/0805
46	6	R7	82K / 0.25W	any 1\%/1206
		R8	82K / 0.25W	any 1\% / 1206
		R9	82K / 0.25W	any 1\%/1206
		R17	82K / 0.25W	any 1\% / 1206
		R20	82K / 0.25W	any 1\% / 1206
		R23	82K / 0.25W	any 1\% / 1206
47	6	R10	16K / 0.25W	any 1\% / 1206
		R11	16K / 0.25W	any 1\%/1206
		R12	16K / 0.25W	any 1\% / 1206

8 Main Transformer

8.1 Winding Details

Name	Pins (Start \rightarrow End)	\# of Layers	Strands x Wire ø	Turns	Construction	Material
W1a	$3 \rightarrow 2$	1	$1 \times 0.5 \mathrm{~mm}$	28	perfect solenoid	CuLL
W3	$12 \rightarrow 10$	2	$1 \times 0.5 \mathrm{~mm}$	55	perfect solenoid	CuLL
W4	$8 \rightarrow 9$	1	$1 \times 0.15 \mathrm{~mm}$	6	spaced winding	CuLL
W1b	$2 \rightarrow 1$	1	$1 \times 0.5 \mathrm{~mm}$	28	perfect solenoid	CuLL
W2	$5 \rightarrow 6$	1	$1 \times 0.15 \mathrm{~mm}$	5	spaced winding	CuLL

8.2 Electrical Characteristics

Parameter	Pins	Specification	Conditions
Primary Inductance	$1 \rightarrow 3$	$600 \mathrm{uH}+/-5 \%$	$100 \mathrm{kHz}, 100 \mathrm{mV}$, all secondaries open
Leakage inductance	$1 \rightarrow 3$	15 uH maximum	$10 \mathrm{kHz}, 100 \mathrm{mV}$, all other pins shorted

8.3 Core and Bobbin

Core:
Material:
Bobbin:
Gap in center leg:

EFD 30
N87 (EPCOS) or equivalent
EFD 30 horizontal / 12 pins e.g. EPCOS B66424W....
approx. 0.5 mm for A_{L} of $191 \mathrm{nH} /$ Turns 2

8.4 Safety

High voltage test: $\quad 3000 \mathrm{~V}_{\mathrm{rms}}$ for 1 minute between primary (pins 1 to 5) and secondary (pins 6 to 9)

9 LLC Choke

9.1 Winding Details

Name	Pins (Start \rightarrow End)	Layers	Strands \mathbf{x} Wire ø	Turns	Construction	Material
W1	$1 \rightarrow 5$	n.a.	$30 \times 0.1 \mathrm{~mm}$	56	perfect solenoid	CuL

9.2 Electrical Characteristics

Parameter	Pins	Specification	Conditions
Inductance	$1 \rightarrow 5$	$100 \mathrm{uH}+/-5 \%$	$100 \mathrm{kHz}, 100 \mathrm{mV}$

9.3 Core and Bobbin

Core:
Material:
Bobbin:
Gap in center leg:

EFD20
N87 (EPCOS) or equivalent
EFD20 / 8 Pin / Horizontal e.g. EPCOS B66418W...
aprox. 2.5 mm for an $A_{\llcorner }$of $32 \mathrm{nH} /$ Turns 2

10 PFC Choke

10.1 Winding Details

Name	Pins (Start \rightarrow End)	Layers	Strands \mathbf{x} Wire $\boldsymbol{\sigma}$	Turns	Construction	Material
W1	$1,2 \rightarrow 5,6$	n.a.	$2 \times 30 \times 0.1 \mathrm{~mm}$	49	perfect solenoid	CuL
W2	$7 \rightarrow 12$	1	$1 \times 0.15 \mathrm{~mm}$	12	perfect solenoid	CuLL

Layers not to scale !

10.2 Electrical Characteristics

Parameter	Pins	Specification	Conditions
Inductance	$1 \rightarrow 6$	$160 \mathrm{uH}+/-5 \%$	$100 \mathrm{kHz}, 100 \mathrm{mV}$

10.3 Core and Bobbin

Core:
Material:
Bobbin:
Gap in Centre leg:

EFD 30
N87 (EPCOS) or equivalent
EFD 30 horizontal / 12 pins e.g. EPCOS B66424W....
aprox. 2.5 mm for an $A_{\llcorner }$of $64 \mathrm{nH} /$ Turns 2

