
Saber® MAST Language
Reference Manual
Version Z-2007.03, March 2007

Saber is a registered trademark of Sabremark Limited
partnership and is used under license.

ii Saber® MAST Language Reference Manual

Copyright Notice and Proprietary Information
Copyright © 2007 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without
prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Cadabra, CATS, CRITIC, CSim, Design Compiler, DesignPower, DesignWare, EPIC, Formality, HSIM,
HSPICE, iN-Phase, in-Sync, Leda, MAST, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler,
PrimeTime, SiVL, SNUG, SolvNet, System Compiler, TetraMAX, VCS, Vera, and YIELDirector are registered trademarks
of Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, Astro, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, Columbia, Columbia-CE, Cosmos,
CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE, DC Expert, DC Professional, DC Ultra, Design Analyzer,
Design Vision, DesignerHDL, Direct Silicon Access, Discovery, Encore, Galaxy, HANEX, HDL Compiler, Hercules,
Hierarchical Optimization Technology, HSIMplus, HSPICE-Link, iN-Tandem, i-Virtual Stepper, Jupiter, Jupiter-DP,
JupiterXT, JupiterXT-ASIC, Liberty, Libra-Passport, Library Compiler, Magellan, Mars, Mars-Xtalk, Milkyway,
ModelSource, Module Compiler, Planet, Planet-PL, Polaris, Power Compiler, Raphael, Raphael-NES, Saturn, Scirocco,
Scirocco-i, Star-RCXT, Star-SimXT, Taurus, TSUPREM-4, VCS Express, VCSi, VHDL Compiler, VirSim, and VMC are
trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
Saber is a registered trademark of SabreMark Limited Partnership and is used under license.
All other product or company names may be trademarks of their respective owners.

Printed in the U.S.A.

Saber® MAST Language Reference Manual, Z-2007.03
Z-2007.03

Contents

Related Documents . xiii

Conventions . xiii

1. Design Entities . 1

Template Definitions. 1

Template Header . 2
Template Connections . 2
Template Header Declarations . 4

Template Bodies. 5

2. Functions . 7

Function Definitions . 7

Function Header. 7

Function Body . 10

Function Declarations . 12

Special Purpose Functions . 15

Resolution Functions . 15

Limiting Functions . 15

3. Types and Units . 17

Common Types . 18

Scalar Common Types . 18
Integer . 19
Number. 19
String . 19
Enumeration Types. 19

Composite Common Types . 20
Structure Types . 20
Union Types . 22
Array Types. 23

Units. 25

Physical Units. 25
iii

Contents
Predefined Physical Units . 26

Enumeration Units . 26

Derived Units . 26

Pin Types . 27

Scalar Pin Types . 27
Predefined Scalar Pin Types . 28

Composite Pin Types . 28
Structure Pin Types . 28
Array Pin Types . 29

Type and Unit Compatibility . 30

Compatibility of Common Types. 30

Unit Compatibility . 30

Pin Type Compatibility . 31

Supertypes. 31

4. Declarations . 33

Type Declarations . 34

Unit Declarations . 34

Physical Unit Declarations . 34

Enumeration Unit Declarations . 35

Derived Unit Declaration . 36

Pin Type Declarations . 36

Scalar Pin Type Declarations . 36

Structure Pin Type Declarations. 37

Objects. 37

Object Declarations . 37
Parameter Declarations . 40
Variable Declarations . 41
State Declarations . 42
Analog Variable Declarations . 44
Pin Declarations . 47
Simulator Variable Declarations . 48

Arguments . 48
Argument Lists . 48
Argument Association Lists . 49

Implicit Declarations . 50
Implicit Declaration of Branch Variables . 51
Implicit Declaration of Imported Objects . 51
Other Implicit Declarations . 52
iv

Contents
Group Declarations . 52

Inline Groups . 53

5. Specifications. 55

Alter Specification . 55

Control Section Specifications . 56

DC_Help Specification . 56

Noise Source Specification . 57

Collapse Specification . 58

Start Value Specification . 59

Initial Condition Specification . 59

Restart Specification . 60

Device Type Specification . 60

Nonlinearity Specification. 61

Sample Point Specification. 61

Newton Step Specification . 63

Partial Derivative Specification. 65

Small-Signal Specification . 66

Stress Measure Specification. 67

Variable Range Specification . 68

Unit Range Specification . 69

Range Set Specification. 69

6. Names . 71

Names . 71

Simple Names . 72

Decimal Names . 72

Instance Names. 73

Imported Names . 73

Selected Names. 74

Branch Names . 74

Indexed Names . 78

Slice Names. 79

Qualified Names . 80
v

Contents
7. Expressions . 81

Expressions . 81

Operators . 83

Logical Operators. 83

Equality Operators . 84

Relational Operators . 85

Additive Operators . 87

Multiplicative Operators . 88

Unary Operators . 89

Exponentiation Operator . 89

Primaries . 90

Literals . 91

Function Calls . 91

Aggregates. 92
Array Aggregates . 93
Structure Aggregates . 94
Union Aggregates. 96

Structure Overlays . 97

Conditional Expressions. 98

Type Conversions. 98

Constant Expressions . 99

Locally Constant Expressions . 99

Argument Constant Expressions . 100

Globally Constant Expressions . 102

8. Statements . 105

Executable Statements . 106

Assignment Statement . 106

Loop Statement . 110

Exit Statement . 112

Next Statement . 113

Return Statement. 113

When Statement . 113

Equation Statements . 114
Contribution Statement. 114
Labeled Equation Statement . 115

Make Statement . 116
vi

Contents
Nonexecutable Statements . 117

Instantiation Statement . 117

Generic Statements . 122

Conditional Statement . 122

Compound Statement . 124

9. Scope and Visibility . 127

Declarative Regions. 127

Scope of Declarations . 128

Visibility . 129

Overload Resolution . 132

Overloading Classes . 132

Overload Resolution. 134

10. Design Units and Their Compilation . 135

Design Units. 135

Contexts. 135

Compilation Units. 136

Design Libraries. 137

Order of Compilation . 137

11. Elaboration . 139

Elaboration of a Design Hierarchy . 139

Elaboration of Declarative Items . 139

Contexts . 139

Template Headers . 140

Template Bodies. 140
Determination of Tolerance Range. 142

Type Declarations, Type Definitions, and Index Constraints. 142

Unit Declarations . 143

Pin Type Declarations and Pin Type Definitions. 143

Unit Marks, Unit Names, Type Marks and Pin Type Marks 144

Function Calls . 144

Object Declarations . 145
vii

Contents
Branch Variables . 145
Pins . 146
Unassociated Analog System Variables of Kind Var or Ref 146
Unassociated States . 146
Update Elaboration of an Object . 147

Group Declarations . 147

Alter Specifications. 147

Control Section Specifications . 148
DC_Help Specification . 148
Noise Source Specification . 148
Collapse Specification . 148
Start Value Specification and Initial Condition Specification 149
Restart Specification . 149
Nonlinearity Specification . 149
Partial Derivative Specification. 150
Small-Signal Specification . 150
Stress Measure Specification. 150
Variable Range Specification . 150
Unit Range Specification . 150
Range Set Specification . 151
Other Control Section Specifications . 151

Elaboration of Statements . 151

Statements Decorated with the Values Attribute 151
Assignment Statements . 152
Conditional Statements . 152
Compound Statements. 154

Statements Decorated with the Control_section Attribute 155
Conditional Statements . 155
Compound Statements. 155

Instantiation Statements. 155
Instance Argument Association Lists, Argument Association Elements 156
Connection Association Lists, Connection Association Elements . . 157
Association of Parameters Decorated with the External Attribute . . 157
Association of Other Objects Decorated with the External Attribute 158

Dynamic Elaboration . 159

Function Calls . 159

Compound Statements . 159

Inline Groups . 159

12. Simulation. 161

The Event-Driven Engine. 161
viii

Contents
Drivers . 161

Propagation of State Values. 162
The State Propagation Algorithm . 163

The Analog Solver . 164

Analog Solution Points . 164

Threshold Detection . 164

DC Operating Point Simulation . 165

The DC Initialization Phase . 165

The DC Simulation Cycle . 166

The DC Termination Phase . 167

The DC Event Cycle. 167

Time Domain Simulation . 168

The Time Domain Initialization Phase . 168

The Time Domain Simulation Cycle. 169

Time Domain Termination Phase. 169

13. Lexical Elements . 171

Character Set. 171

Lexical Elements and Separators . 173

Delimiters . 173

Identifiers . 174

Basic Identifiers . 174

Extended Identifiers . 175

Numeric Literals . 175

Integer Literals . 176

Real Literals . 177

String Literals . 178

Special Reference Designators . 179

Comments . 180

Examples . 180

Keywords . 180

Sentence Termination . 181

File Inclusion . 182
ix

Contents
14. Predefined Language Environment . 185

Predefined Common Types . 185

Predefined Units . 185

Predefined Pin Types . 186

Predefined Pins . 186

Simulator Variables . 186

Simulator Variables with Function Semantics . 186

Simulator Variables with State Semantics . 188

Simulator Variables with Analog Local Variable Semantics 190

Transforms . 191

Functions . 192

Nonmathematical Functions. 193

Functions Supporting Event-Driven Simulation . 195

Messages. 200
Format Strings . 202

Mathematical Functions . 203
Trigonometric Functions . 204
Hyperbolic and Inverse Hyperbolic Functions 206
Logarithmic, Exponential and Related Functions 208
Semi-Numerical Functions . 209

15. Syntax Summary . 211

MAST Syntax. 212

16. Glossary . 233

MAST Glossary . 233

17. External Interfaces. 249

Foreign Function Interface . 249

Foreign Function API . 249

Foreign Functions Called from a Template or a MAST Function 250
Basic Concepts of Calling Foreign Functions. 251
Marshalling a Value of Type INTEGER . 252
Marshalling a Value of Type REAL . 252
Marshalling a Value of Type STRING. 252
x

Contents
Marshalling a Value of an Enumeration Type 253
Marshalling a Value of a Structure Type. 253
Marshalling a Value of a Union Type . 253
Marshalling a Value of an Array Type . 253

Limiting Functions . 254

Kernel Interface . 254

Obtaining a Value of Type STRING . 255

Defining a Value of Type STRING . 255

Obtaining the Name of the Current Design . 256

Calculation of a Limited Exponential . 257

Obtaining the Value of Simulator Variables . 258

Obtaining Random Values . 258

Special Attributes . 259

The Encrypted Attribute . 259

The Component Attribute . 259

Index . 261
xi

Contents
xii

Preface

This manual defines the MAST language accurately and completely. Its primary
audiences are the tool implementers and advanced users. It is not intended as
a user guide on how to use MAST for modeling. Other resources such as
books, tutorials, and classes are better resources for learning the language and
how to model with it.

This document contains
■ the formal syntax and semantics of all MAST constructs
■ the definition of the elaboration and simulation semantics
■ the predefined language environment
■ the definition of the external interface

Related Documents

1. A. Mantooth and M. Fiegenbaum, Modeling with an Analogy Hardware
Description Language, Kluwer, Dordrecht, The Netherlands, 1995

2. P. Duran, A Practical Guide to Analog Behavioral Modeling for IC System
Design, Kluwer, Dordrecht, The Netherlands, 1998

3. R. Cooper, The Designer’s Guide to Analog & Mixed-Signal Modeling,
Avant! Corporation, Fremont, California, 2001

Conventions

This manual uses the following conventions:

Syntactic Description
The syntax of the MAST language is described using an extended Backus-
Naur form with the following conventions.

1. Lowercase words in regular font, some containing embedded underline
characters, are used to denote syntactic categories, for example:

lowercase_character
Saber® MAST Language Reference Manual xiii
Z-2007.03

Preface
Conventions
When the name of a syntax category is used other than in a syntax rule the
underline characters are replaced by space characters, i.e. in ordinary text
the syntax category of the example is called “lowercase character”.

2. Lowercase words in bold font are used to denote keywords in the MAST
language, for example:

template

3. A production consists of a left-hand side, the symbol "::=", and a right-hand
side. The left-hand side is always the name of a syntactic category; the right-
hand side is a replacement text.

4. A production is a rule for textual replacement: any occurrence of the left-
hand side may be replaced by an instance of the right-hand side.

5. Alternative items on the right-hand side of a production are either separated
by a vertical bar:

identifier ::= basic_identifier | extended_identifier

or presented as a list of single-character alternatives introduced by the
words “one of”:

digit ::= one of 0 1 2 3 4 5 6 7 8 9

In a production of this second form each alternative is interpreted literally. A
vertical bar that is part of the syntax defined by a production is enclosed
within quotation marks, i.e. "|".

6. Optional items on the right hand side of a production are enclosed in
italicized square brackets. The following two productions are equivalent:

unary_primary ::= [unary_operator] primary

unary_primary ::= primary | unary_operator primary

A left bracket or right bracket that is part of the syntax defined by a
production is enclosed within quotation marks, i.e. "[" or "]".

7. Repeated items on the right-hand side of a production are enclosed in
italicized braces. The items may appear zero or more times. Repetitions are
left-recursive. The following two productions are equivalent:

or_expression ::= and_expression { "|" and_expression }

or_expression ::=
and_expression
| or_expression "|" and_expression
xiv Saber® MAST Language Reference Manual
Z-2007.03

Preface
Conventions
A left brace or right brace that is part of the syntax defined by a production
is enclosed within quotation marks, i.e. "{" or "}".

8. A syntactic category whose name starts with an italicized part is equivalent
to the category named by the part in regular font. The italicized part intends
to convey some semantic information. For example, val_name and
parameter_name are syntactically identical and equivalent to just name.

Semantic Description
Narrative text is used to describe the meaning of a particular construct and to
introduce concepts. An italicized term indicates a new concept that is
subsequently defined. Finally, a term in uppercase characters refers to an item
in the predefined language environment.

A number of sections provide additional information; they are not part of the
language definition. Examples serve to illustrate a construct. Conclusions and
additional information specific to the definition are listed in a Notes section, and
cross References to other sections of the manual are given where useful.
Justifications for some design decisions are described in a Rationale section.
Finally, the Commentary section gives explanations that put a definition in
perspective with the rest of the language and describes hints, conventions etc.
that may be useful for users of the MAST language to know.

In the description the following terms are used:

error

The condition described represents an ill-formed description. An
implementation is required to detect the condition and report it to the user.

erroneous

The condition described represents an ill-formed description. However, an
implementation is not required to detect and report the condition. Usually it
is not possible to detect an erroneous condition during the processing of the
language, for example a division by zero.

illegal

A synonym for error.

legal

The condition described represents a well-formed description.

undefined

The result is not specified by this language definition. Therefore, it may be
different for different implementations.
Saber® MAST Language Reference Manual xv
Z-2007.03

Preface
Conventions
xvi Saber® MAST Language Reference Manual
Z-2007.03

1
1Design Entities

The chapter describes MAST design entities and their template definitions.

A design entity represents a portion of a hardware design that performs a well-
defined function and has a well-defined interaction with the rest of the design. It
may represent an entire system, a subsystem, a chip, an off-the-shelf part, or
anything in between.

A design entity may be composed of interconnected components, each bound
to a design entity that defines the behavior or structure of the component. Thus,
each design entity is at the root of a hierarchy of components, and its
immediate descendents are the components of which it is composed. The
design entity that represents a complete hardware design is at the root of the
design hierarchy.

In the MAST language a design entity is defined by a template definition. The
root template is the design entity at the root of the design hierarchy.

Template Definitions

A template definition defines the interface of, and the function performed by, a
design entity.

template_definition ::=
template_header "{" template_body "}" eos

root_template ::=
template_body

The template definition acts as the template declaration.
Saber® MAST Language Reference Manual 1
Z-2007.03

Chapter 1: Design Entities
Template Definitions
Template Header

The template header defines the interface of a design entity, that is, the way a
design entity interacts with the rest of a design.

template_header ::=
template_header_definition { template_header_sentence }

template_header_definition ::=
{ template_attribute } template identifier

[connection_list] [= template_argument_list] eos

template_attribute ::=
 encrypted
| element
| component

The identifier following the keyword template is the name of the design entity.

A template definition whose template header definition decorates the template
with the element attribute implicitly decorates each analog system variable
whose declaration is a declarative item in the corresponding template body with
the export attribute.

Notes
The encrypted and component template attributes have no meaning in the
MAST language. See Special Attributes.

The name of the root template is defined by the implementation, not by the text
of the model.

The root template cannot be decorated with any template attributes.

References
Argument Lists, Special Attributes

Template Connections
Template connections allow a design entity to interact with the rest of the
design.
2 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 1: Design Entities
Template Definitions
connection_list ::=
connection_element { [,] connection_element }

connection_element ::=
connection_definition [: connection_specification]

connection_definition ::=
 identifier
| decimal_literal

connection_specification ::=
 identifier
| decimal_literal

Each connection element defines a formal connection of the template. The
class and type of the formal connection must be defined by a subsequent
(possibly implicit) declaration; the class must be either a pin, or an analog
system variable of kind var or ref, or a state. A connection element without a
connection specification is equivalent to a connection element whose
connection specification is the same as the connection definition.

The connection definition defines a simple name or a decimal name that is said
to be the external name of the formal connection. Similarly, the connection
specification defines a simple name or a decimal name that is called the
internal name of the formal connection. It is an error if two formal connections
have the same external name. It is also an error if the external name of a formal
connection denotes the predefined pin 0.

If the internal name of a formal connection is different from the external name
of any formal connection in the connection list, and if the internal name is
different from the internal name of any formal connection whose connection
element precedes the formal connection in the connection list, and if the
internal name does not denote the predefined pin 0, then the connection
element implicitly declares an object in the template body whose name is the
internal name of the formal connection and whose class, subclass (if any), kind
(if any), and type or unit is the same as that of the object denoted by the
external name of the formal connection. The declaration is deemed to precede
any template body sentence.

If the internal name of a formal connection is different from the external name
of the formal connection, then the connection element also defines an implicit
collapse specification for the two objects denoted by the internal name and the
external name.
Saber® MAST Language Reference Manual 3
Z-2007.03

Chapter 1: Design Entities
Template Definitions
References
Simple Names, Decimal Names

Rationale
The external name of a formal connection cannot denote the predefined pin 0
to avoid the confusion caused by the common assumption that 0 is always the
name of the reference pin.

Template Header Declarations
Template header declarations declare the formal connections and formal
arguments of a template, as well as objects decorated with the external or
export attributes.

template_header_sentence ::=
 template_header_declarative_item
| eos

template_header_declarative_item ::=
 type_declaration
| unit_declaration
| pin_type_declaration
| parameter_declaration
| state_declaration
| analog_variable_declaration
| pin_declaration

The identifier in the declaration of a formal connection must be the external
name of the corresponding template connection element.

An alias is an alternate name for an entity.

The declaration of a formal argument of a template implicitly declares an alias
for the base type of the formal argument. The name of the alias is a qualified
name whose prefix is the name of the design entity and whose suffix is the
simple name of the formal argument. The declaration of a formal argument of a
template implicitly decorates the object with the export attribute.

Examples
The following two template definitions are equivalent:
4 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 1: Design Entities
Template Definitions
template one out:value = amplitude
state nu out # declares external name and internal

name of connection element
number amplitude # declares argument amplitude of type

number and the qualified name
one..amplitude as an alias for
number

{ ... }

template two out = amplitude
state nu out # declares external name of

connection element
number amplitude # declares amplitude as before
{

state nu value # declares object of the same
class and type as out

control_section { # collapse specification
collapse(out, value)

}
...

}

 References
Type Declarations, Unit Declarations, Pin Type Declarations, Objects,
Argument Lists, Qualified Names

Template Bodies

A template body defines the behavior or structure of a design entity.

template_body ::=
{ template_body_sentence }

template_body_sentence ::= sentence

sentence ::=
 declarative_item
| statement
| eos

declarative_item ::=
 declaration_statement
| alter_specification
| control_section_specification
Saber® MAST Language Reference Manual 5
Z-2007.03

Chapter 1: Design Entities
Template Definitions
It is an error if a variable declaration is a declarative item in a template body. It
is also an error if a return statement is a statement in a template body.

References
Declarations, Function Definitions, Specifications, Statements
6 Saber® MAST Language Reference Manual
Z-2007.03

2
2Functions

This chapter describes MAST functions.

Functions define algorithms for the computation of one or more values. They
may be used to improve the code organization of a design unit (see Design
Units) and support code re-use. Some functions may also be used to resolve
the value of a net, and for limiting the change of an independent variable from
one iteration to the next during the determination of an analog solution point.

There are two kinds of functions: MAST functions that are written using
statements of the MAST language, and foreign functions that are written in a
language other than MAST, for example C or Fortran. A foreign function is a
function that is decorated with the foreign attribute.

Functions can be called recursively.

Function Definitions

A function definition defines an MAST function.

function_definition ::=
function_header "{" function_body "}" eos

In the absence of a function declaration the function definition acts as the
declaration.

Function Header

The function header defines the name of the function, its formal arguments (if
any), and the values returned by the function.
Saber® MAST Language Reference Manual 7
Z-2007.03

Chapter 2: Functions
Function Definitions
function_header ::=
function_header_definition { function_header_sentence }

function_header_definition ::=
{ function_attribute } function result_indication =

identifier ([function_argument_list]) eos

function_attribute ::=
 encrypted
| foreign

result_indication ::=
 untyped_result_indication
| typed_result_indication

untyped_result_indication ::=
 identifier
| inline_group

typed_result_indication ::=
 variable_declaration
| (variable_declaration_list)

variable_declaration_list ::=
variable_declaration { , variable_declaration }

function_argument_list ::=
 argument_list
| variable_declaration_list

function_header_sentence ::=
 function_header_declarative_item
| eos

function_header_declarative_item ::=
variable_declaration

Each variable declaration in a typed result indication or a variable declaration
list must declare exactly one variable.
8 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 2: Functions
Function Definitions
The identifier in the function header definition denotes the function. The
function attributes, if present, are said to decorate the function. It is an error if a
function is decorated in a function header with the foreign attribute.

The result indication of the function header definition defines the profile of the
result of the function (see Common Types). If the result indication is an untyped
result indication that is an identifier, or if it is a typed result indication that is a
variable declaration, then the result of the function is a single value of the type
of the object. Otherwise, the result of the function is a group. If the result
indication is a typed result indication that is a variable declaration list enclosed
in parentheses, then the group constituents of the group defined by the typed
result indication are the variables declared by the variable declarations of the
variable declaration list.

If the result indication of the function header definition is an untyped result
indication that is an identifier, then this identifier must be declared by a variable
declaration that is a function header declarative item. Similarly, if the result
indication is an untyped result indication that is an inline group, then each
simple name that is a group constituent of the inline group must be declared by
a variable declaration that is a function header declarative item. It is an error if a
variable declaration that declares an object that is part of the result indication
includes an initial value expression.

If the function argument list is a variable declaration list, then each variable
declaration declares a formal argument of the function. The initial value
expression, if any, of the variable declaration must be a locally constant
expression.

A function is said to be pure if a function call calling the function with the same
values as actual arguments always returns the same result. The function is
impure otherwise.
Saber® MAST Language Reference Manual 9
Z-2007.03

Chapter 2: Functions
Function Definitions
Examples

Notes
1. The function attribute encrypted has no meaning in the MAST language.

See Special Attributes.

2. The function attribute foreign can only appear in a function declaration.

3. A variable declaration that is a function header declarative item can declare
more than one variable.

References
Variable Declarations, Argument Lists, Inline Groups

Rationale
Since type compatibility is defined by name equivalence, it does not make
sense to declare types and units in a function header.

Function Body

The function body defines the algorithm implemented by the function and the
result of the function.

function r = f1(n)
number r, n
{...}

A function with a single
argument returning a
single value

function number r =
f1(number n)

{...}

An alternative way to
define the same function

struc s1 { number r, i; }
function (a, b) = f2(c)
number a, b
struc s1 c[2]=[(0,0),(1,1)]
{...}

A function with a single
argument of an array type
returning two scalar
values
10 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 2: Functions
Function Definitions
function_body ::=
function_sentence { function_sentence }

function_sentence ::=
 function_body_declarative_item
| function_statement
| eos

function_body_declarative_item ::=
 function_declaration
| type_declaration
| unit_declaration
| variable_declaration
| group_declaration
| function_definition

function_statement ::=
 assignment_statement
| conditional_statement
| compound_statement
| return_statement
| loop_statement
| exit_statement
| next_statement

The algorithm performed by the function is defined by the sequence of function
statements in the function body. The execution of the function body consists of
executing the sequence of function statements. It is an error if any subelement
of the result has not been assigned a value when the execution of the function
body completes. It is also an error if a name that denotes a formal argument of
the function, or a subelement thereof, is assigned a value in the function body.
Finally, a function is erroneous if the value of a subelement of a formal
argument of the function is changed by a function call calling a foreign function.

Notes
1. The language does not define how function arguments are passed into the

function (by value, by address, etc.).

2. A foreign function call may change the value of an object if the function call
has an actual argument that is itself a function call calling the predefined
function ADDR whose actual argument is the object.
Saber® MAST Language Reference Manual 11
Z-2007.03

Chapter 2: Functions
Function Declarations
Rationale
The argument passing mechanism has not been defined to allow an
implementation to choose the mechanism best suited for each argument type.
As a consequence, and to provide consistent results for all types, assignments
to function arguments are not allowed.

The requirement that the function result be completely defined when a function
call returns helps prevent hard to find errors.

Function Declarations

A function declaration declares a function.

function_declaration ::=
foreign identifier_list eos
| { function_attribute } type_indication function_declarator_list eos

identifier_list ::=
identifier { , identifier }

type_indication ::=
 extended_type_mark
| (extended_type_mark_list)

function_declarator_list ::=
function_declarator { , function_declarator }

function_declarator ::=
identifier ([extended_variable_declaration_list])

extended_type_mark_list ::=
extended_type_mark { , extended_type_mark } [, ...]
| ...

extended_type_mark ::=
type_mark ["[" index_constraint { , index_constraint } "]"]

extended_variable_declaration_list ::=
variable_declaration_list [, ...]
| ...

There are two forms of function declarations.
12 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 2: Functions
Function Declarations
The first form of a function declaration declares each identifier in the identifier
list as the name of a function decorated with the foreign attribute; the
decorated identifier denotes the foreign function. The result of a foreign function
declared using this form of declaration is a group with an unspecified profile
(see Common Types). The argument profile of the foreign function is
unspecified.

The second form of a function declaration declares the identifier in each
function declarator of the function declarator list as the name of a function
whose result is one or more values with a profile defined by the type indication
of the function declaration. If the type indication is an extended type mark list
enclosed in parentheses, and if the extended type mark list ends in an ellipsis
(...), then the portion of the result profile corresponding to the ellipsis is
unspecified. The identifier of each function declarator is decorated with the
specified function attributes, and the decorated identifier denotes the function.
If present, the extended variable declaration list of a function declarator defines
the formal arguments and hence the argument profile of the function; the
argument profile is unspecified otherwise. If the extended variable declaration
list ends in an ellipsis, then the portion of the argument profile corresponding to
the ellipsis is unspecified. It is an error if the result profile or the argument
profile of a function that is not decorated with the foreign attribute is
unspecified or contains a portion that is unspecified. A function declaration that
is not decorated with the foreign attribute is erroneous if the profile of the result
is different from the profile of the result of the corresponding function definition,
or if the argument profile is different from the argument profile of the
corresponding function definition.

Each extended type mark in an extended type mark list defines the type of one
value of the result profile of the function. If the extended type mark does not
contain an index constraint, then the type of the value is the type denoted by
the type mark. Otherwise, the extended type mark defines an array type, as
follows. If the type mark denotes an array type, then the element type of the
array type defined by the extended type mark is the element type of the array
type denoted by the type mark. Otherwise, the element type of the array type is
the type denoted by the type mark. The index constraints of the extended type
mark define index ranges and index types of the array type in the order in which
the index constraints appear. If the type mark denotes an array type, then the
array type defined by the extended type mark has at additional index positions
the index ranges and index types of the array type denoted by the type mark in
the order in which they have been defined for that array type. It is an error if the
type mark (see Derived Units) of an extended type mark is a type definition.
Saber® MAST Language Reference Manual 13
Z-2007.03

Chapter 2: Functions
Function Declarations
Examples

Notes
1. The result of a foreign function declared using the first form can have a

different profile in different function calls.

2. A foreign function whose argument profile includes an unspecified portion
can be called with a different number of actuals in different function calls,
and the actuals at a particular argument position in the unspecified portion
of the argument profile can have different types in different function calls.
Similarly, a foreign function whose result profile includes an unspecified
portion can return a different number of values in different function calls, and
the values at a particular position in the unspecified portion of the result
profile can have different types in different function calls.

3. The names of foreign functions must be unique among all declarative
regions in a design.

4. The following three foreign function declarations are equivalent:

foreign xyz
foreign (...) xyz()
foreign (...) xyz(...)

foreign myfunc1, myfunc2 # Declaration of two
foreign functions with
unspecified argument
profile and unspecified
result profile

number f1(number) # Declaration of function
f1 defined in Function Header

(number, number) =
f2(struc s1 c[2] =

[(0,0),(1,1)])

Declaration of function
f2 defined in Function Header

foreign string myfunc3() # Declaration of a foreign
function with unspecified
argument profile returning
a single value of type
string
14 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 2: Functions
Special Purpose Functions
5. The name of a formal argument in a function declaration may be different
from the name of the corresponding formal argument in the function
definition. It is arbitrary if the function declared by the function declaration is
a foreign function.

6. The initial value expression of a formal argument in a function declaration
may be different from the initial value expression of the corresponding
formal argument in the function definition.

References
Index Constraints

Special Purpose Functions

Functions for special purpose applications must satisfy certain conditions. This
section describes these conditions.

Resolution Functions

A resolution function defines how multiple values driving a net are resolved into
a single value. A resolution function is declared as part of the declaration of a
resolved unit (see Enumeration Unit Declarations and Derived Unit
Declaration). It is called during the simulation cycle by the simulator and is
typically never called by a model directly.

A resolution function must be a function whose result is a single value. The type
of the result must be type compatible with the base type of the resolved unit,
and the argument profile of the resolution function must be a one-dimensional
unconstrained array whose element type is the type of the result of the function.

Before a resolution function is called to determine the resolved value of a net,
the values driving the net are placed into the argument array in an order
defined by the implementation. The length of the array is the number of values
driving the net. When the execution of the resolution function completes, the
value returned by the resolution function becomes the resolved value of the
net.

Limiting Functions

A limiting function is a foreign function whose purpose is to limit the change of
an independent variable (see section 11.3.1) from one iteration to the next.
Saber® MAST Language Reference Manual 15
Z-2007.03

Chapter 2: Functions
Special Purpose Functions
Limiting functions are called by the simulator during the determination of an
analog solution point. The semantics of limiting functions and the protocol of
calling such functions are described in section C.1.3.

References
Nonlinearity Specification, Limiting Functions
16 Saber® MAST Language Reference Manual
Z-2007.03

3
3Types and Units

This chapter describes MAST types, both scalar and composite, and units.

The type is a characteristic of an object or value through which the compatibility
of the object or value with other objects or values is established. Each type
includes a set of operations. A unit is a set of attributes of a scalar type.

There are two categories of types. A common type is characterized by a set of
values. A pin type is characterized by the absence of values.

Within each type category there are two kinds of types.
■ Scalar types are atomic; they cannot be further decomposed. The scalar

common types are the predefined types INTEGER, NUMBER and STRING
and types defined by an enumeration of their values. Scalar pin types are
types with a scalar across aspect and a scalar through aspect.

■ Composite types are composed of elements of simpler types of the same
type category. Composite common types are array types, structure types,
and union types. Composite pin types are array pin types and structure pin
types.

An element is a constituent of a composite type. A subelement is either a
scalar, or an element, or an element of a subelement.

A composite type must not have subelements whose type is the composite type
itself.
Saber® MAST Language Reference Manual 17
Z-2007.03

Chapter 3: Types and Units
Common Types
Common Types

type_definition ::=
 scalar_type_definition
| composite_type_definition

Each object of a common type has a value. The set of operations of a common
type includes the predefined operators (see Operators), functions that have
arguments or a result of the type, and the operations inherent in the following:
■ an assignment (in assignment statements and declarations)
■ a selected name, an indexed name, or a slice name
■ a structure aggregate, a union aggregate, an array aggregate, or a structure

overlay
■ an implicit type conversion of a value to the corresponding value of a

compatible type
■ a numeric literal, a string literal, or the literals undef and inf

In this manual the term type is used in place of the term common type if no
ambiguity exists.

The profile of an ordered collection of objects or values is the types of the
objects or values in the order defined by the collection. The cardinality of an
ordered collection of objects or values is the number of types in the profile of
the collection.

Scalar Common Types

Scalar common types consist of enumeration types and the predefined types
INTEGER, NUMBER, and STRING. Enumeration types and type INTEGER are
called discrete types. The types INTEGER and NUMBER are called numeric
types. All scalar common types are ordered; that is, the relational operators are
defined for their values.

scalar_type_definition ::=
enumeration_type_definition

Each scalar common type has a range, which describes the set of values that
are representable by the type.
18 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 3: Types and Units
Common Types
Integer
The predefined type INTEGER provides a subset of the integer numbers. The
range of INTEGER is implementation dependent, but is guaranteed to include
the range -2,147,483,647 to +2,147,483,647 and the value undef.

Number
The predefined type NUMBER provides an approximation to the real numbers.
The range of NUMBER is implementation dependent, but is guaranteed to
include the range -1.0E+300 to +1.0E+300 and the values undef and inf.

String
The predefined type STRING holds textual information. The range of STRING
includes any sequence of zero or more graphic characters (see Character Set)
or white space characters, and the value undef. A string value, other than the
value undef, has an index range whose lower bound is 1 and whose upper
bound is the number of characters in the string value. The index range of a
string whose value is undef is undefined.

Enumeration Types
An enumeration type definition defines an enumeration type.

enumeration_type_definition ::=
enum [tag_identifier] "{" enumeration_literal

{ , enumeration_literal } "}"

enumeration_literal ::= identifier

The optional identifier following the keyword enum is said to be the tag of the
enumeration type.

The identifiers representing the enumeration literals in an enumeration type
definition must be distinct within the enumeration type definition. Each identifier
is the declaration of the corresponding enumeration literal.

Each enumeration literal has a corresponding enumeration value. The
enumeration values corresponding to the enumeration literals of an
enumeration type span consecutive integers in the order in which the
enumeration literals appear in the enumeration type definition.
Saber® MAST Language Reference Manual 19
Z-2007.03

Chapter 3: Types and Units
Common Types
The range of an enumeration type includes the enumeration literals of the
enumeration type definition and the value undef.

An enumeration literal is said to be overloaded if the corresponding identifier is
specified in more than one enumeration type definition. The type of an
enumeration literal that is a primary in an expression is determined by using the
rules described in Overload Resolution.

Examples

Composite Common Types

Composite common types define collections of values. They include values of
structure types, union types, and array types.

composite_type_definition ::=
 structure_type_definition
| union_type_definition

An object of a composite common type represents a collection of objects, one
for each element of the composite common type. The elements of a composite
common type may be of either a scalar common type or a composite common
type. Thus, an object of a composite common type ultimately represents a
collection of objects of a scalar common type: its scalar subelements.

Note
Array types are defined implicitly rather than by a composite type definition.

Structure Types
A structure type is a composite common type whose elements are named. A
structure type definition defines a structure type.

enum yesno { _y, _n } # an enumeration type whose name
is enum yesno that has two
enumeration literals

enum { _n, _p } # an anonymous enumeration type
with two enumeration literals.

The enumeration literal _n is
distinct from _n of type enum
yesno
20 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 3: Types and Units
Common Types
structure_type_definition ::=
struc [tag_identifier] "{" { format_effector }

element_declaration { format_effector }
{ element_declaration { format_effector } } "}"

element_declaration ::=
variable_declaration

The optional identifier following the keyword struc is said to be the tag of the
structure type.

Each element declaration declares one element of the structure type for each
declarator of the corresponding variable declaration. If the variable declaration
contains an initial value expression (see Object Declarations), then the
expression must be a locally constant expression (see Locally Constant
Expressions). The default value of an element is the initial value of the
corresponding variable. It is an error if a name that denotes an element of the
structure type appears in an expression in an element declaration of the
structure type definition.

The structure type defined by a structure type definition consists of the
elements declared by the element declarations in the order in which they
appear in the structure type definition. A value of a structure type is the
composite of the values of its elements.

It is an error if some elements of a structure type are of a resolved unit (see
Enumeration Unit Declarations and Derived Unit Declaration) and other
elements are not of a resolved unit.

Note
It is a consequence of these rules that the default value or the size of an
element of a structure type cannot depend on the value of any other element.
Saber® MAST Language Reference Manual 21
Z-2007.03

Chapter 3: Types and Units
Common Types
 Examples

References
Variable Declarations, Enumeration Unit Declarations, Derived Unit
Declaration, Constant Expressions

Union Types
A union type is a composite common type whose elements are named. A union
type definition defines a union type.

union_type_definition ::=
union [tag_identifier] "{" { format_effector }

element_declaration { format_effector }
{ element_declaration { format_effector } } "}"

The optional identifier following the keyword union is said to be the tag of the
union type.

The elements of a union type are said to be the alternatives of the union type;
each element declaration declares an alternative. If the declaration of an
alternative contains an initial value expression, then the expression must be a
locally constant expression. It is an error if a name that denotes an alternative

struc complex {
number real, imag

}

A definition for type struc
complex with two elements
named real and imag, both of
type number

struc tree {
string name
enum {green, red}\

color = green
}

A definition for type struc
tree. Its elements are:
name of type string
color of an enumeration type
color has an initial value
expression

unit {“V”, “Volts”,
“voltage”} v

A declaration of a physical
unit named v

struc bus {
variable v strobe
variable v data[8]

}

A definition for type struc
bus whose elements have units
22 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 3: Types and Units
Common Types
of the union type appears in an expression in an element declaration of the
union type definition.

The union type defined by a union type definition consists of the alternatives
declared by the element declarations of the union type definition. A value of a
union type is the value of one of its alternatives; this alternative is said to be the
current alternative. The value is undef if there is no current alternative.

Notes
1. It is a consequence of these rules that the initial value or the size of an

alternative of a union type cannot depend on the value of any other
alternative.

2. The initial value of an alternative, although allowed, does not have any effect
and cannot be used when defining the value of an object of a union type.

Array Types
An array type is a composite common type whose elements all have the same
common type. The name of an element of an array object is an indexed name
consisting of the name of the object and one or more index values of a discrete
type.

Array types are anonymous types defined implicitly through the declaration of
an array object (see Object Declarations). Each array type is characterized by
the type of its elements, the number of indices and their order, and the type and
range of each index. The type of the elements is said to be the element type of
the array type. The number of indices is said to be the dimensionality of the
array type. The range of an index is called its index range. The length of an
index range is the number of values in the index range. Each index range has a
corresponding normalized index range whose lower bound is 1 and whose
upper bound is the length of the index range.

An array type is said to be unconstrained if one of its index ranges is assumed
(see Index Constraints).

A one-dimensional array type has a distinct element for each value in the range
of its index. A multi-dimensional array type has a distinct element for each
possible sequence of index values formed by selecting one value in the index
range of each index.

A value of an array type is the composite of the values of its elements.

Index Constraints An index constraint defines the type and index range of
an index of an array object or a slice.
Saber® MAST Language Reference Manual 23
Z-2007.03

Chapter 3: Types and Units
Common Types
index_constraint ::=
 [lower_bound :] upper_bound
| enumeration_type_mark

lower_bound ::=
expression

upper_bound ::=
 expression
| *

For an index constraint specified by a type mark, the type mark must denote an
enumeration type.

For an index constraint specified with an upper bound and lower bound, if the
upper bound is specified as an expression, then the expression must be a
simple expression of either a numeric type or an enumeration type. The type of
the upper bound is INTEGER if the expression is of a numeric type, or the type
of the expression otherwise. An upper bound specified by an asterisk (*) is said
to be assumed.

The expression specifying the lower bound, if present, must be a simple
expression of either a numeric type or an enumeration type. The type of the
lower bound is INTEGER if the expression is of a numeric type, or the type of
the expression otherwise. If the lower bound is not specified, then it is
determined as follows:
■ if the upper bound is either assumed or of type INTEGER, then the type of

the lower bound is INTEGER and its value is 1.
■ if the upper bound is of an enumeration type, then the type of the lower

bound is the same enumeration type and its value is the enumeration literal
with the smallest enumeration value of the enumeration type.

It is an error if the upper bound and lower bound are both specified by an
expression and their types are different.

The type of an index constraint is determined as follows. If the index constraint
is specified by a type mark, then its type is the type denoted by the type mark.
Otherwise, the type of the index constraint is the type of the lower bound.
24 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 3: Types and Units
Units
The index range of an index constraint is determined as follows.
■ if the index constraint is specified by a type mark, then its index range is the

range of the enumeration type denoted by the type mark.
■ if the upper bound is specified by an expression, then the index range of the

index constraint extends from the lower bound to the upper bound of the
index constraint, both inclusive.

■ if the upper bound is assumed, and if the index constraint is part of a slice
name that is a primary in an expression, then the index range of the index
constraint extends from the lower bound of the index constraint to the upper
bound of the object denoted by the prefix of the slice name, both inclusive.

■ otherwise, the index range of the index constraint is said to be assumed.

It is an error if the value of the upper bound or lower bound is undef.

References
Slice Names

Units

A unit is a scalar common type decorated with attributes specific to the kind of
the unit. Each unit has a base type through which its type compatibility is
established.

Physical Units

A physical unit definition defines a physical unit. Its base type is NUMBER.

physical_unit_definition ::=
unit "{" string_expression , string_expression , string_expression "}"

Each string expression in the physical unit definition defines the value of an
attribute of the unit. The expression must be a locally constant expression.

Note
The attributes of a physical unit have no meaning in the MAST language. Their
values are intended to be used as follows. The first attribute is an abbreviation
for the symbol associated with the physical unit (e.g. "V"). The second attribute
is the name of the symbol associated with the physical unit (e.g. "Volt"). The
Saber® MAST Language Reference Manual 25
Z-2007.03

Chapter 3: Types and Units
Units
third attribute is the name of the dimension associated with the physical unit
(e.g. "voltage").

Predefined Physical Units
The predefined physical units are ACROSS and THROUGH.

Enumeration Units

An enumeration unit definition defines an enumeration unit. The base type of
an enumeration unit is the corresponding enumeration type (see Enumeration
Unit Declarations).

enumeration_unit_definition ::=
unit state "{"

enumeration_literal , string_literal , string_literal , string_literal
{ , enumeration_literal , string_literal , string_literal , string_literal }

"}"

The identifiers representing the enumeration literals in an enumeration unit
definition must be distinct within the enumeration unit definition. Each identifier
is the declaration of the corresponding enumeration literal.

Each string literal following an enumeration literal defines the value of an
attribute of the enumeration literal.

Note
The attributes of an enumeration unit have no meaning in the MAST language.
Their values are intended to be used as follows. The first attribute specifies how
the enumeration value is to be used in boolean expressions (outside the MAST
language); its value must be either "0", or "1", or "X", or "x". The second
attribute specifies how the enumeration value is to be printed. The third
attribute specifies how the enumeration value is to be plotted; its value is case
insensitive and must be either "low", or "high", or "middle", or "unknown".

Derived Units

A derived unit definition defines a unit that is derived from an existing unit or
from a type.
26 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 3: Types and Units
Pin Types
derived_unit_definition ::=
unit unit_mark

unit_mark ::=
 unit_name
| type_mark

type_mark ::=
 integer
| number
| string
| type_definition
| type_reference

type_reference ::=
 enum enumeration_tag
| struc structure_tag
| union union_tag
| qualified_name

If the unit mark of a derived unit definition denotes a unit, then the unit must be
a physical unit or a derived unit. The base type of the derived unit is the base
type of the unit denoted by the unit mark, and the attributes of the derived unit
are the same as the attributes of the unit denoted by the unit mark. Otherwise,
the base type of the derived unit is the type denoted by the unit mark. The type
must be a scalar type other than type STRING.

Pin Types

An object of a pin type has no value. The set of operations of a pin type
includes the operations inherent in a selected name, an indexed name, a slice
name, or a branch name.

Each pin type implies a branch type, which is a common type.

References
Selected Names, Branch Names, Indexed Names, Slice Names

Scalar Pin Types

A scalar pin type definition defines a scalar pin type.
Saber® MAST Language Reference Manual 27
Z-2007.03

Chapter 3: Types and Units
Pin Types
scalar_pin_type_definition ::=
 across_aspect through_aspect
| through_aspect across_aspect

across_aspect ::=
across physical_unit_name

through_aspect ::=
through

_physical_unitname

The unit denoted by the physical unit name of the across aspect is called the
across unit of the scalar pin type. Similarly, the unit denoted by the physical unit
name of the through aspect is called the through unit of the scalar pin type. It is
an error if the across unit and the through unit of a scalar pin type are the same.

The branch type implied by a scalar pin type is the predefined type NUMBER.

Predefined Scalar Pin Types
The only predefined scalar pin type is pin type NEUTRAL. Its across unit is
ACROSS and its through unit is THROUGH.

Composite Pin Types

Composite pin types define collections of pins. They include structure pin types
and array pin types.

An object of a composite pin type represents a collection of pin objects, one for
each element of the composite pin type. The elements of a composite pin type
may be of either a scalar pin type or a composite pin type. An object of a
composite pin type thus ultimately represents a collection of objects of a scalar
pin type, its scalar subelements.

Structure Pin Types
A structure pin type is a composite pin type whose elements are named. A
structure pin type definition defines a structure pin type.
28 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 3: Types and Units
Pin Types
structure_pin_type_definition ::=
struc [tag_identifier] "{" { format_effector }

element_pin_declaration { format_effector }
{ element_pin_declaration { format_effector } } "}"

The optional identifier following the keyword struc is said to be the tag of the
structure pin type.

Each element pin declaration declares an element of the structure pin type.

The structure pin type defined by a structure pin type definition consists of the
elements declared by the element pin declarations in the order in which they
appear in the structure pin type definition.

The branch type implied by a structure pin type is an anonymous structure
type. For each element of the structure pin type there is a matching element of
the structure type with the same name; the type of the matching element is the
branch type implied by the pin type of the element of the structure pin type.

Array Pin Types
An array pin type is a composite pin type whose elements all have the same pin
type. The name of an element of an array pin object is an indexed name
consisting of the name of the array pin object and one or more index values of a
discrete type.

Array pin types are anonymous pin types defined implicitly through the
declaration of an array pin object (see Pin Type Declarations). Each array pin
type is characterized by the pin type of its elements, the number of indices and
their order, and the type and range of each index. The pin type of the elements
is said to be the element pin type of the array pin type. The number of indices is
said to be the dimensionality of the array pin type.

A one-dimensional array pin type has a distinct element for each value in the
range of its index. A multi-dimensional array pin type has a distinct element for
each possible sequence of index values formed by selecting one value in the
index range of each index.

The branch type implied by an array pin type is an array type whose element
type is the branch type implied by the element pin type of the array pin type and
whose index ranges and index types are the same as the index ranges and
index types of the array pin type.
Saber® MAST Language Reference Manual 29
Z-2007.03

Chapter 3: Types and Units
Type and Unit Compatibility
Type and Unit Compatibility

This section describes the rules that define when two or more common types,
units or pin types are compatible.

Each type has an associated base name. The base name of a predefined type
is the name of the type. The base name of an enumeration type, structure type
or union type whose type definition contains a tag is the name of the type. The
base name of a scalar pin type is the name of the pin type. The base name of a
structure pin type whose structure pin type definition contains a tag is the name
of the structure pin type. The base name of an anonymous type is a unique
identifier.

References
Type Declarations, Pin Type Declarations

Compatibility of Common Types

A numeric type is type compatible with any other numeric type. The predefined
type STRING is type compatible with itself. Two enumeration types are type
compatible if their enumeration type definitions define the same enumeration
literals in the same order.

Two structure types are type compatible if they have the same fully qualified
base name. Two union types are type compatible if they have the same fully
qualified base name. Two array types are type compatible if they have the same
dimensionality, the normalized index ranges at corresponding index positions
are either the same or one of them is assumed, and the element types of the
two array types are type compatible.

Two objects are type compatible if their types are type compatible.

References
Qualified Names

Unit Compatibility

A physical unit is unit compatible with itself and with the predefined physical
units ACROSS and THROUGH. An enumeration unit is unit compatible with
itself. Additionally, each unit is unit compatible with its base type.
30 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 3: Types and Units
Type and Unit Compatibility
Two structure types are unit compatible if they are type compatible. Two union
types are unit compatible if they are type compatible. Two array types are unit
compatible if they are type compatible and their elements are unit compatible.

Two objects are unit compatible if they are of a composite type and their types
are unit compatible, or if they are of a scalar type, both have a unit and their
units are unit compatible, or if they are of a scalar type, one or both have no
units, and the objects are type compatible.

Note
Two structure types or two union types that are type compatible are also unit
compatible because type compatibility by name implies that they have the
same elements.

Pin Type Compatibility

Two scalar pin types are pin type compatible if they have the same fully
qualified base name. Additionally, a scalar pin type is pin type compatible with
the predefined pin type NEUTRAL.

Two structure pin types are pin type compatible if they have the same fully
qualified base name. Two array pin types are pin type compatible if they have
the same dimensionality, the normalized index ranges at corresponding index
positions are the same, and the element pin types of the two array pin types are
pin type compatible.

Two pins are pin type compatible if their pin types are pin type compatible.

References
Qualified Names

Supertypes

The supertype implied by the two types is defined as follows.

The supertype implied by two numeric types is INTEGER if both types are
INTEGER, and NUMBER otherwise. The supertype implied by two string types
is STRING. The supertype implied by two array types that are type compatible
is an array type that is type compatible with the two array types and whose
index range at each index position is normalized and not assumed. The
supertype implied by two enumeration types, structure types or union types that
are type compatible is the type denoted by the base name of the types. The
supertype implied by a numeric type and a composite type with scalar
Saber® MAST Language Reference Manual 31
Z-2007.03

Chapter 3: Types and Units
Type and Unit Compatibility
subelements of a numeric type is a composite type that has, for each
subelement of the implying composite type, a matching subelement with the
same name, if applicable, and the type of each scalar subelement of the
implied composite type is the supertype implied by the numeric type and the
type of the corresponding scalar subelement of the implying composite type.
32 Saber® MAST Language Reference Manual
Z-2007.03

4
4Declarations

This chapter describes MAST declarations of named entities.

The language defines several kinds of named entities that are declared by
declarations, either explicitly or implicitly.

declaration_statement ::=
 function_declaration
| type_declaration
| unit_declaration
| pin_type_declaration
| object_declaration
| group_declaration
| function_definition
| template_definition

Each form of declaration, except a type declaration and a structure pin type
declaration, associates an identifier or a decimal literal with an entity. The
identifier or decimal literal is said to be declared by the declaration. Within the
scope of a declaration (see Scope of Declarations) there are places where the
identifier or decimal literal is sufficient to refer to the entity; these places are
defined by the visibility rules (see Visibility). At such places the identifier or
decimal literal is said to be the name of the entity. The name is said to denote
the entity. The name of a type is formed using the rules described in Type
Declarations. The name of a structure pin type is formed using the rules
described in Pin Type Declarations.

Template definitions are described in Design Entities. Function declarations
and function definitions are described in Functions. All other declaration
statements are described in this section.

Note
A decimal literal can be associated with an entity only by an implicit declaration.
Saber® MAST Language Reference Manual 33
Z-2007.03

Chapter 4: Declarations
Type Declarations
Type Declarations

A type declaration declares a type. Only enumeration types, structure types
and union types can be declared by type declarations.

type_declaration ::=
type_definition eos

It is an error if the type definition in a type declaration does not contain a tag.

The name of an enumeration type whose enumeration type definition contains
a tag is enum followed by the tag. Similarly, the name of a structure type whose
structure type definition contains a tag is struc followed by the tag. Finally, the
name of a union type whose union type definition contains a tag is union
followed by the tag. An enumeration type, structure type, or union type whose
corresponding type definition does not contain a tag is anonymous.

Unit Declarations

A unit declaration declares a unit.

Physical Unit Declarations

unit_declaration ::=
 physical_unit_declaration
| enumeration_unit_declaration
| derived_unit_declaration

A physical unit declaration declares a physical unit.

physical_unit_declaration ::=
physical_unit_definition identifier eos

The simple name declared by a physical unit declaration denotes the physical
unit.
34 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 4: Declarations
Unit Declarations
Examples

Enumeration Unit Declarations

An enumeration unit declaration declares an enumeration unit and defines and
declares an enumeration type corresponding to the enumeration unit.

enumeration_unit_declaration ::=
enumeration_unit_definition identifier = enumeration_default_value

["{" resolution_indication "}"] eos

enumeration_default_value ::= simple_name

resolution_indication ::=
conflict_resolution : function_declaration

The identifier declared by an enumeration unit declaration denotes the
enumeration unit. The enumeration default value must denote one of the
enumeration literals of the enumeration unit definition.

The enumeration type corresponding to the enumeration unit is defined by an
equivalent enumeration type definition. The tag of the equivalent enumeration
type definition is the identifier of the enumeration unit declaration, and the
name of the enumeration type is enum followed by the tag. The enumeration
literals of the equivalent enumeration type definition are the enumeration
literals of the enumeration unit in the order in which they appear in the
enumeration unit definition.

A resolution indication declares a resolution function and associates it with a
unit. It is an error if the function declaration of a resolution indication declares
more than one function. A resolution indication is erroneous if the function does
not meet the requirements of a resolution function (see Resolution Functions).

A unit declaration that includes a resolution indication is said to be a resolved
unit. Each state declared to be of that unit will be resolved, if necessary, by the
resolution function declared by the resolution indication.

unit { "A", "Ampere", "current" } i

unit { "m/s", "meter/second", "velocity" } vel

unit { "mph", "miles per hour", "velocity" } mph
Saber® MAST Language Reference Manual 35
Z-2007.03

Chapter 4: Declarations
Pin Type Declarations
Derived Unit Declaration

A derived unit declaration declares a derived unit.

derived_unit_declaration ::=
derived_unit_definition identifier [= default_value]

[resolution_indication] eos

default_value ::= literal

The identifier declared by a derived unit declaration denotes the derived unit.
The default value, if present, must be a literal whose type is type compatible
with the base type of the derived unit.

Examples

Pin Type Declarations

A pin type declaration declares a pin type.

pin_type_declaration ::=
 scalar_pin_type_declaration
| structure_pin_type_declaration

Scalar Pin Type Declarations

A scalar pin type declaration declares a scalar pin type.

scalar_pin_type_declaration ::=
pin identifier scalar_pin_type_definition eos

The simple name declared by a scalar pin type declaration denotes the scalar
pin type.

enum l4 { l4_0, l4_1, l4_x, l4_z }
unit enum l4 logic_4 = l4_x \

conflict_resolution: \
foreign l4cnfr

a resolved unit
whose base type
is an enumera-
tion type

unit vel vel_r \
conflict_resolution: \
foreign number nucnfr()

a resolved unit
derived from
unit vel
36 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 4: Declarations
Objects
Structure Pin Type Declarations

A structure pin type declaration declares a structure pin type.

structure_pin_type_declaration ::=
pin structure_pin_type_definition eos

The name of a structure pin type whose structure type definition contains a tag
is struc followed by the tag. A structure pin type whose structure pin type
definition does not contain a tag is anonymous.

Objects

An object is an entity of a given common type or pin type. Objects of a common
type also have a value. An object is one of the following:
■ An object declared by an object declaration, whether explicitly or implicitly
■ A formal argument of a foreign function

In addition, an element or slice of an object is itself an object but not an entity.

There are six classes of objects: parameters, variables, states, analog
variables, pins, and simulator variables. Analog variables are divided into two
subclasses: analog system variables and analog local variables. States have
two subclasses: event-driven states, and assigned states. The class of an
explicitly declared object is specified as part of the object declaration. The class
of an implicitly declared object is derived from the use of the object. The class
and subclass of a subelement of an object of a composite type or pin type is the
class and subclass of the object.

Object Declarations

An object declaration declares an object of a specified class and type or unit.
Such an object is said to be explicitly declared. An object declaration may also
include, either explicitly or implicitly, the specification of one or more attributes.
Such attributes are said to decorate the objects declared by the object
declaration and, if an object is of a composite type, all subelements of the
object. Finally, an object declaration may also define an array type or array pin
type.
Saber® MAST Language Reference Manual 37
Z-2007.03

Chapter 4: Declarations
Objects
object_declaration ::=
parameter_declaration

| variable_declaration
| state_declaration
| analog_variable_declaration
| pin_declaration
| simulator_variable_declaration

declarator_list ::=
declarator { , declarator }

declarator ::=
identifier ["[" index_constraint { , index_constraint } "]"]

[= expression]

An object declaration whose declarator list contains two or more declarators is
equivalent to a sequence of object declarations in the same order as the
declarator list, each object declaration in the sequence containing the text of
the object declaration preceding the declarator list followed by a single
declarator.

An object declaration (other than a pin declaration) whose type mark is a type
definition implicitly declares the type defined by the type definition.

An object declaration (other than a pin declaration) whose declarator contains
one or more index constraints defines an array type. If the object declaration
contains a unit name or a unit mark that denotes a unit, then the element type
of the array type is the base type of the unit denoted by the unit name.
Otherwise, if the type mark denotes an array type, then the element type of the
array type defined by the object declaration is the element type of the array type
denoted by the type mark. Otherwise, the element type of the array type is the
type denoted by the type mark. The index constraints of the declarator define
index ranges and index types of the array type in the order in which the index
constraints appear. If the type mark of the object declaration denotes an array
type, then the array type defined by the object declaration has at additional
index positions the index ranges and index types of the array type denoted by
the type mark in the order in which they have been defined for that array type.

The type of an object (other than a pin) declared by an object declaration is
determined as follows. If the object declaration defines an array type, then the
type of the object declared by the object declaration is the array type.
Otherwise, if the object declaration contains a unit name or a unit mark that
38 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 4: Declarations
Objects
denotes a unit, then the type of the object is the base type of the unit denoted
by the unit name. Otherwise, the type of the object is the type denoted by the
type mark.

If the declarator of an object declaration contains an expression, then the
expression must be a simple expression that is argument constant and type
compatible with the type of the object. Such an expression is said to be an
initial value expression; it defines the initial value associated with the object.

In the absence of an initial value expression a default initial value applies. The
default initial value of an object of an enumeration unit is the enumeration
default value of the enumeration unit. The default initial value of an object of a
derived unit is the default value of the derived unit, if present; if the derived unit
declaration does not define a default value then the default initial value is
dependent on the object class. The default initial value of a scalar analog
variable or a scalar branch through variable (see Branch Variable Declarations)
is the value 0.0. The default initial value of any other scalar object of class
parameter, variable, state, or analog variable, or of an object of a union type is
undef. The default initial value of an object of a structure type or an array type
is the composite of the default initial values of its elements.

Example
Given a template definition

and the declaration

a20by10 is now a two-dimensional array whose element type is number and
whose index ranges are 1:20 and 1:10.

Note
In some contexts an initial value expression is required to be a locally constant
expression.

template type = arg

number arg[10]

{}

type..arg a20by10[20]
Saber® MAST Language Reference Manual 39
Z-2007.03

Chapter 4: Declarations
Objects
Parameter Declarations
A parameter declaration declares a parameter.

parameter_declaration ::=
 { parameter_attribute } [parameter] type_mark

declarator_list eos
| { parameter_attribute } parameter unit_name

declarator_list eos

parameter_attribute ::=
 export
| external
| const

The value of a parameter cannot be modified after elaboration.

A parameter declaration that decorates a parameter with the export attribute
must be a template header declarative item. A parameter declaration that
decorates a parameter with the external attribute should be a template header
declarative item. A parameter declaration that decorates a parameter with the
const attribute must not be a template header declarative item.

The identifier associated with a parameter that is decorated with the external
attribute must not appear in the argument list of a template header definition.
Conversely, the identifier associated with a parameter that is decorated with the
export attribute must appear in the argument list of a template header
definition.

The type of a parameter whose declaration is a template header declarative
item must be a relaxed locally constant type. The type of a parameter whose
declaration is a template body sentence must be a relaxed argument constant
type.

A parameter declaration that decorates a parameter with the const attribute
must include an initial value expression that is a locally constant expression.
Similarly, the initial value expression of a parameter that is a template header
declarative item must be a locally constant expression. It is an error if a
parameter declaration that decorates a parameter with the external attribute
includes an initial value expression.
40 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 4: Declarations
Objects
Examples

Note
A parameter declaration that decorates a parameter with the external attribute
may be a declarative item in a template header or a template body, with the
template header the preferred location.

Rationale
The const attribute allows a parameter to be declared as a constant whose
value cannot be modified later in an assignment statement or an alter
specification.

Variable Declarations
A variable declaration declares a variable.

variable_declaration ::=
 [variable_attribute] [variable] type_mark declarator_list eos
| [variable_attribute] variable unit_name declarator_list eos

variable_attribute ::=
const

A variable declaration that decorates a variable with the const attribute must not
be a function header declarative item.

The type of a variable whose declaration appears in a template body must be a
globally constant type. The type of a variable whose declaration is a function

number a, b=3,
c[2:4]

declares three parameters a,
b, c. The initial value of
b is 3. c is of an array
type; its index range is
2 through 4, its index type
is integer

unit { "m","meter",
"length" } m

parameter m d=2

declares a parameter d whose
initial value is 2, whose
unit is m and whose type is
the base type of m: number

const number \
pi = 3.14159

declares a parameter whose
value is constant
Saber® MAST Language Reference Manual 41
Z-2007.03

Chapter 4: Declarations
Objects
header declarative item or a function body declarative item must be a relaxed
argument constant type.

State Declarations
A state declaration declares a state.

state_declaration ::=
{ state_attribute } [mode] state unit_mark declarator_list eos

state_attribute ::=
 external
| foreign

mode ::= input | output | inout

A state declaration that decorates a state with the external attribute should be
a template header declarative item. The identifier associated with a state that is
decorated with the external attribute must not be the connection definition of a
template connection element. A state declaration that decorates a state with
the foreign attribute must appear as a declarative item in a template body.

It is an error if a state declaration that includes a mode declares a state that is
neither a template connection element nor decorated with the foreign attribute.
It is also an error if a state declaration declares a state that has a subelement of
a union type or of the predefined type STRING.

The type of a state that is decorated with the external attribute must be a
relaxed locally constant type. The type of a state that is a connection element
must be a relaxed argument constant type. The type of a state whose
declaration is a template body sentence must be a globally constant type.

The state denoted by the longest constant prefix of the second argument of
function SCHEDULE_EVENT is said to be a driving state. A state is a
scheduled state if it contains a subelement that is a scheduled state or a driving
state or that is the connection actual part in a connection association element
whose connection formal part is a scheduled state. A state is an observed state
if it contains a subelement that is denoted by the first argument of function
EVENT_ON or that is the connection actual part in a connection association
element whose connection formal part is an observed state. It is an error if a
state that is decorated with the foreign attribute is neither a driving state nor an
observed state.

A state is an event-driven state if it is a scheduled state, or an observed state,
or a formal connection of a template, or the connection actual part in a
42 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 4: Declarations
Objects
connection association element, or if it is decorated with the external attribute.
A state is an assigned state if its value is updated by the execution of an
assignment statement or by an implicit assignment. It is an error if a state is
both an event-driven state and an assigned state.

A state is said to be read if it is an observed state, or if the name of one of its
subelements appears in an expression, or if the name of one of its subelements
is denoted by the first argument of one of the functions LAST_VALUE, RAMP,
or SLEW.

If a state declaration includes a mode, then one of the following conditions must
be true:
■ The mode is input and the state declared by the state declaration is not a

scheduled state.
■ The mode is output and the state declared by the state declaration is a

scheduled state that is not read.
■ The mode is inout and the state declared by the state declaration is a

scheduled state that is also read.

If a state declaration that declares a template connection element or that
decorates a state with the foreign attribute does not include a mode, then the
mode is implied according to these rules.

Notes
1. A state declaration that decorates a state with the external attribute may be

a declarative item in a template header or a template body, with the template
header the preferred location.

2. A state may have subelements that are driving states and others that are
not.

3. Some states are neither event-driven states nor assigned states.

Rationale
The modes are based on a state being scheduled or read rather than
scheduled or observed because if the name of a state appears in an
expression or as the argument of one of the functions LAST_VALUE, RAMP, or
SLEW we are interested in the (possibly resolved) value from the net. This
value might not be available (e.g. in the context of conversion models) if the
mode did depend on whether the state is scheduled or observed. In the case of
the DRIVEN function, however, we are interested in the “local” value, i.e. the
interface is not involved.
Saber® MAST Language Reference Manual 43
Z-2007.03

Chapter 4: Declarations
Objects
Analog Variable Declarations
An analog variable declaration declares an analog variable.

analog_variable_declaration ::=
 var_declaration
| ref_declaration
| val_declaration
| branch_variable_declaration

analog_attribute ::=
 export
| external

It is an error if an analog variable declaration declares an analog variable that
has a subelement of a union type. It is also an error if any scalar subelement of
an analog variable is not of the predefined type NUMBER.

An analog variable declaration that decorates an analog variable with the
export attribute must be a template header declarative item. An analog
variable declaration that decorates an analog variable with the external
attribute should be a template header declarative item.

An analog system variable is an analog variable declared by a var declaration
or a ref declaration, or a branch through system variable. An analog local
variable is an analog variable declared by a val declaration, a branch across
variable, or a branch through local variable.

It is an error if an analog local variable or a branch through variable is
decorated with the external attribute.

Note
An analog variable declaration that decorates an analog variable with the
external attribute may be a declarative item in a template header or a template
body, with the template header the preferred location.

References
Branch Variable Declarations

Var Declarations A var declaration declares an analog system variable of
kind var.

var_declaration ::=
{ analog_attribute } var_indication unit_mark declarator_list eos

var_indication ::= [output] [var]
44 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 4: Declarations
Objects
It is an error if a declarator in the declarator list of a var declaration contains an
initial value expression. It is also an error if a var indication includes neither the
keyword output nor the keyword var.

The type of an analog system variable of kind var that is decorated with the
external attribute must be a relaxed locally constant type. The type of an analog
system variable of kind var that is decorated with the export attribute must be
an argument constant type. The type of an analog system variable of kind var
that is a connection element must be a relaxed argument constant type. The
type of an analog system variable of kind var whose declaration is a template
body sentence must be a globally constant type.

Note
By convention, the keyword output is only used in the declaration of template
connection elements, where it is often used without the keyword var.

Ref Declarations A ref declaration declares an analog system variable of
kind ref.

ref_declaration ::=
{ analog_attribute } ref_indication unit_mark declarator_list eos

ref_indication ::= [input] [ref]

It is an error if a declarator in the declarator list of a ref declaration contains an
initial value expression. It is also an error if a ref indication includes neither the
keyword input nor the keyword ref.

The type of an analog system variable of kind ref that is decorated with the
external attribute must be a relaxed locally constant type. The type of an analog
system variable of kind ref that is decorated with the export attribute must be an
argument constant type. The type of an analog system variable of kind ref that
is a connection element must be a relaxed argument constant type. The type of
an analog system variable of kind ref whose declaration is a template body
sentence must be a globally constant type.

Note
By convention, the keyword input is only used in the declaration of template
connection elements, where it is often used without the keyword ref.

Val Declarations A val declaration declares an analog local variable of kind
val.
Saber® MAST Language Reference Manual 45
Z-2007.03

Chapter 4: Declarations
Objects
val_declaration ::=
{ analog_attribute } val unit_mark declarator_list eos

It is an error if a declarator in the declarator list of a val declaration contains an
initial value expression.

The type of an analog local variable of kind val that is decorated with the
export attribute must be an argument constant type. The type of an analog
local variable of kind val whose declaration is a template body sentence must
be a globally constant type.

Branch Variable Declarations A branch variable declaration declares a
branch variable.

branch_variable_declaration ::=
{ analog_attribute } branch branch_definition

{ , branch_definition } eos

branch_definition ::=
identifier = branch_name

A branch variable declaration that contains two or more branch definitions is
equivalent to a sequence of branch variable declarations in the same order as
the list of branch definitions, each branch variable declaration in the sequence
containing the keyword branch followed by a single branch definition.

The unit of the branch variable is the unit of the branch denoted by the branch
name. Similarly, the type of the branch variable is the type of the branch
denoted by the branch name. The type of a branch variable that is decorated
with the export attribute must be an argument constant type. The type of a
branch variable whose declaration is a template body sentence must be a
globally constant type.

A branch variable is a branch across variable if the branch denoted by the
branch name is an across branch. Similarly, a branch variable is a branch
through variable if the branch denoted by the branch name is a through branch.
A branch through variable is a branch through local variable if its name, or the
names of any of its subelements, appears as the target of an assignment
statement or as the name in a contribution statement, but does not appear as a
primary in an expression. Otherwise, the branch through variable is a branch
through system variable.
46 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 4: Declarations
Objects
References
Assignment Statement, Contribution Statement

Pin Declarations
A pin declaration declares a pin.

pin_declaration ::=
{ pin_attribute } pin_type_mark declarator_list eos

pin_attribute ::=
 export
| external

pin_type_mark ::=
 pin_type_name
| structure_pin_type_definition
| pin_type_reference

A pin declaration whose declarator contains one or more index constraints
defines an array pin type. The element pin type of the array pin type is the pin
type denoted by the pin type mark. The index constraints of the declarator
define the index types and index ranges of the array pin type in the order in
which the index constraints appear.

A pin declaration whose pin type mark is a structure pin type definition implicitly
declares the structure pin type defined by the structure pin type definition.

The pin type of a pin declared by a pin declaration is determined as follows. If
the pin declaration defines an array pin type, then the pin type of the pin
declared by the pin declaration is the array pin type. Otherwise, the pin type of
the pin is the pin type denoted by the pin type mark.

A pin declaration that decorates a pin with the export attribute must be a
template header declarative item. A pin declaration that decorates a pin with
the external attribute should be a template header declarative item. The
identifier associated with a pin that is decorated with the export or external
attribute must not denote a connection element.

The pin type of a pin that is decorated with the external attribute must be a
relaxed locally constant pin type. The pin type of a pin that is decorated with the
export attribute must be an argument constant pin type. The pin type of a pin
that is a connection element must be a relaxed argument constant pin type.
The pin type of a pin whose declaration is a template body sentence must be a
globally constant pin type.
Saber® MAST Language Reference Manual 47
Z-2007.03

Chapter 4: Declarations
Objects
It is an error if the declarator of a pin declaration contains an initial value
expression.

Note
A pin declaration that decorates a pin with the external attribute may be a
declarative item in a template header or a template body, with the template
header the preferred location.

Predefined Pins The only predefined pin is the reference pin 0. Its pin type is
the predefined pin type NEUTRAL.

Simulator Variable Declarations
A simulator variable declaration declares a simulator variable.

simulator_variable_declaration ::=
simvar identifier_list eos

Each identifier in the identifier list of a simulator variable declaration must
denote one of the simulator variables described in Simulator Variables.

Arguments

Argument Lists
Argument lists provide a way to parameterize a design unit.

argument_list ::=
identifier_list

Each identifier in the argument list defines a formal argument of the design unit.

Each identifier in a template argument list must be declared in a parameter
declaration that is a template header declarative item. Each identifier in a
function argument list must be declared in a variable declaration that is a
function header declarative item. The initial value expression, if any, of a
parameter declaration or variable declaration that declares a formal argument
of a design unit must be a locally constant expression.

The argument profile is the profile of the formal arguments in an argument list.

References
Common Types
48 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 4: Declarations
Objects
Rationale
The initial value expression of a formal argument must be locally constant to
allow for an ordered and efficient elaboration.

Argument Association Lists
An argument association list establishes a correspondence between the formal
arguments of a design unit and actual arguments.

argument_association_list ::=
argument_association_element { , argument_association_element }

argument_association_element ::=
[formal =] actual

formal ::=
_argumentsimple_name

actual ::=
expression

Each argument association element associates one or more simple
expressions with a corresponding number of formal arguments of a template
argument list or a function argument list. Additionally, an argument association
element of an instance argument association list may associate an expression
with a parameter of the template denoted by the prefix of the instance name;
such a parameter must be decorated with the external attribute. The
corresponding arguments or parameters are determined either by position or
by name.

An argument association element is said to be named if the element is
specified explicitly by its simple name defined in the template declaration or
function declaration; it is said to be positional otherwise. For a positional
association element the formal argument is implicitly specified by the textual
position of the argument association element in the argument association list.

Named association elements may appear in any order, but if named and
positional association elements appear in the same argument association list,
then any named association element must follow all positional association
elements.

The actual expression of an argument association element must be a simple
expression, unless the argument association element appears in the argument
association list of a function call that calls a function whose argument profile is
Saber® MAST Language Reference Manual 49
Z-2007.03

Chapter 4: Declarations
Objects
unspecified. If the actual expression is not a simple expression, then the
argument association element is implicitly substituted by a sequence of
argument association elements; the length of the sequence is equal to the
cardinality of the actual expression.

After any substitutions, the type of the actual expression in an argument
association element must be type compatible with the type of the
corresponding formal argument. If a subelement of the formal argument is of an
unconstrained array type, then the upper bound of each assumed index range
of the subelement is defined by the association such that the length of the index
range is equal to the length of the index range of the corresponding subelement
of the actual at the same index position.

An argument association list need not include an argument association
element for a formal argument if the declaration of the formal argument
includes an initial value expression. If the argument association element is not
included in the argument association list, then an implicit argument association
element associates the initial value expression with the formal argument. It is
an error if a formal argument is associated more than once with an actual in an
argument association list.

Note
A parameter decorated with the external attribute cannot be associated with an
expression by a positional association element since it is not a member of the
template argument list.

Implicit Declarations

In the absence of a declaration statement an object may be declared by using
its simple name or decimal name in a statement that is a template body
sentence. Such objects are said to be implicitly declared.
50 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 4: Declarations
Objects
Implicit Declaration of Branch Variables
The appearance of a branch name in a statement implicitly declares a branch
variable according to the following rules:
■ If the branch name is an across branch name, then a single branch variable

is implicitly declared whose name is the branch name and whose unit and
type is the unit and type, respectively, of the branch denoted by the branch
name.

■ If the branch name is a through branch name the following rules hold:

• If the branch name appears as a primary in an expression, then a single
branch variable is implicitly declared whose name is the branch name
and whose unit and type is the unit and type, respectively, of the branch
denoted by the branch name.

• If the through branch name appears as the target in an assignment
statement or as the name in a contribution statement, then each such
appearance implicitly declares a distinct through branch variable whose
name is a unique name.

The corresponding declaration is deemed to occur in the major declarative
region formed by the template, immediately preceding the statement that
contains the branch name or the outermost minor declarative region, if any, that
encloses the statement.

Note
It is a consequence of these rules that each implicitly declared branch through
variable defines a distinct branch between the plus pin and minus pin of its
branch name.

References
Assignment Statement, Contribution Statement

Implicit Declaration of Imported Objects
The appearance of an imported name or of a name whose prefix contains a
portion that is an imported name in a statement implicitly declares an imported
object of the same object class, subclass (if any), type or pin type, and unit (if
any) as the object denoted by the prefix of the imported name in the instance
denoted by the instance name of the imported name. If the object is an analog
system variable, then its kind is ref. The imported object is associated with the
object denoted by the simple name of the imported name in the instance
denoted by the instance name of the imported name. If the object is of class
parameter, then the declaration includes an initial value expression that is the
Saber® MAST Language Reference Manual 51
Z-2007.03

Chapter 4: Declarations
Group Declarations
value of the object associated with the imported object. The corresponding
declaration is deemed to occur in the major declarative region formed by the
template, immediately preceding the statement that contains the reference to
the imported object or the outermost minor declarative region, if any, that
encloses the statement.

Other Implicit Declarations
The following language elements may also implicitly declare objects:
■ An object declaration may declare a type or a pin type. See Object

Declarations and Pin Declarations.
■ A connection association element may declare the object denoted by the

connection actual part. See Instantiation Statement.
■ An assignment statement may declare the object denoted by the target of

the assignment statement. See Assignment Statement.

Group Declarations

A group declaration declares a group, which is an ordered collection of objects.

group_declaration ::=
group "{" group_constituent_list "}" identifier eos

group_constituent_list ::=
group_constituent { , group_constituent }

group_constituent ::= name

The simple name declared by a group declaration denotes the group. The
name of each group constituent must denote an object or a group that has
been declared in the same major declarative region.

The canonical group corresponding to a group is obtained by replacing each
group constituent in the group constituent list of the group that itself denotes a
group by the canonical group of the group constituent. Thus, a group ultimately
represents a collection of objects in an order defined by its corresponding
canonical group. It is an error if the same object appears more than once in the
canonical group corresponding to a group.

The profile of a group is the profile of its canonical group.
52 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 4: Declarations
Group Declarations
The objects denoted by the group constituents of the canonical group
corresponding to a group must meet one of the following conditions:
■ The class of each object must be parameter or variable. An object of class

variable must be declared either in the major declarative region associated
with a function or in a minor declarative region decorated with the
parameters attribute. Such a group is said to be a parameter group.

■ The class of each object must be state, or variable, or analog variable, or
simulator variable. An object of class variable must be declared in a minor
declarative region decorated with the states or values attribute. Such a
group is called a nonparameter group.

Note
Further restrictions on the constituents of a group exist if the group is the target
of an assignment statement. See Assignment Statement.

Inline Groups

An inline group is an unnamed group.

inline_group ::=
(group_constituent_list)

An inline group is declared by its appearance in a sentence. It is an error if a
group constituent of an inline group has not been declared.
Saber® MAST Language Reference Manual 53
Z-2007.03

Chapter 4: Declarations
Group Declarations
54 Saber® MAST Language Reference Manual
Z-2007.03

5
5Specifications

This chapter describes MAST specifications.

A specification associates additional information with an entity that either has
been previously declared or that is implied or declared by the specification. The
specification is said to relate to that entity.

A specification that relates to a design unit must appear within the declarative
region associated with the design unit. A specification that relates to a unit must
appear in a declarative region where the unit is visible. Any other specification
must appear in the same major declarative region as the declaration of the
entity to which it relates.

Alter Specification

An alter specification specifies the initial value expression of an object to which
it relates.

alter_specification ::=
alter specifier_list eos

specifier_list ::=
specifier { , specifier }

specifier ::=
simple_name = expression

An alter specification whose specifier list contains two or more specifiers is
equivalent to a sequence of alter specifications in the same order as the
specifier list, each alter specification in the sequence containing the reserved
word alter followed by a single specifier.
Saber® MAST Language Reference Manual 55
Z-2007.03

Chapter 5: Specifications
Control Section Specifications
The simple name in a specifier must denote an explicitly declared object for
which an initial value expression is a legal part of the declaration and whose
object declaration appears in a template body or a function body. The
expression must be an argument constant expression whose type is type
compatible with the type of the object denoted by the simple name. The value
of the expression replaces the initial value of the object denoted by the simple
name.

Control Section Specifications

Control section specifications are specifications that must be decorated with
the control_section attribute. It is an error if a control section specification is
decorated with any other statement attribute.

control_section_specification ::=
dc_help_specification
| noise_source_specification
| collapse_specification
| start_value_specification
| initial_condition_specification
| restart_specification
| device_type_specification
| nonlinearity_specification
| sample_point_specification
| newton_step_specification
| partial_derivative_specification
| small_signal_specification
| stress_measure_specification
| variable_range_specification
| unit_range_specification
| range_set_specification

A control section specification is said to apply to an entity if it relates to the
entity and has been elaborated.

DC_Help Specification

The dc_help specification relates to a through branch implied by the dc_help
specification and specifies a contribution to the through branch.
56 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 5: Specifications
Control Section Specifications
dc_help_specification ::=
[control_section]

dc_help (plus_pin_aspect , minus_pin_aspect) eos

The plus pin aspect and the minus pin aspect of a dc_help specification must
satisfy the rules for the plus pin aspect and the minus pin aspect of a branch
name.

The branch name of the through branch implied by the dc_help specification is
THROUGH (plus_pin -> minus_pin), where plus_pin is the pin denoted by the
plus pin aspect and minus_pin is the pin denoted by the minus pin aspect. The
contribution specified by the dc_help specification is:

THROUGH(plus_pin->minus_pin) += G * ACROSS(plus_pin,
minus_pin)

where G is a scalar parameter of type NUMBER whose value is controlled by
the simulator. The default value of G is zero.

It is an error if more than one dc_help specification applies to the same through
branch.

References
Branch Names

Noise Source Specification

A noise source specification specifies a contribution for a noise analysis only.

noise_source_specification ::=
 [control_section] noise_source (source_simple_name,

plus_pin_aspect [, minus_pin_aspect]) eos
| [control_section] noise_source (source_simple_name,

asv_simple_name) eos

A noise source specification of the first form relates to a through branch implied
by the noise source specification. A noise source specification of the second
form relates to an analog system variable of kind var.

The source simple name must denote an analog local variable of kind val.

For a noise source specification of the first form, the plus pin aspect and the
minus pin aspect must satisfy the rules for the plus pin aspect and the minus
pin aspect of a branch name. A noise source specification without a minus pin
aspect is equivalent to a noise source specification whose minus pin aspect is
Saber® MAST Language Reference Manual 57
Z-2007.03

Chapter 5: Specifications
Control Section Specifications
the literal 0. The branch name implied by the noise_source specification is
THROUGH (plus_pin -> minus_pin), where plus_pin is the pin denoted by the
plus pin aspect and minus_pin is the pin denoted by the minus pin aspect. The
noise analysis contribution specified by the noise source specification is:

THROUGH(plus_pin->minus_pin) += source

where source is the analog local variable denoted by the source simple name.

For a noise source specification of the second form, the asv simple name must
denote an analog system variable of kind var or a branch through system
variable. The noise analysis contribution specified by the noise source
specification is:

asv -= source

where asv is the analog system variable denoted by the asv simple name and
source is the analog local variable denoted by the source simple name. It is an
error if the asv simple name is not the label of a labeled equation statement.

Note
The definitions imply that the source denoted by the source simple name must
be type compatible with the through branch (for a noise source specification of
the first form) or the analog system variable denoted by the asv simple name
(for a noise source specification of the second form).

References
Branch Names

Collapse Specification

A collapse specification specifies an implicit connection between two objects.

collapse_specification ::=
 [control_section]

collapse (plus_pin_aspect, minus_pin_aspect) eos
| [control_section] collapse (simple_name, simple_name) eos

A collapse specification of the first form relates to the pin denoted by the plus
pin aspect. The plus pin aspect and the minus pin aspect of a collapse
specification must satisfy the rules for the plus pin aspect and the minus pin
aspect of a branch name.

A collapse specification of the second form relates to the object denoted by the
first simple name. Each simple name must denote either a state or an analog
system variable of kind var or ref. Both objects must belong to the same object
58 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 5: Specifications
Control Section Specifications
class, and they must be unit compatible. It is an error if a state whose name
appears in a collapse specification is an assigned state.

References
Branch Names

Start Value Specification

A start value specification relates to an analog variable and specifies the initial
value of that analog variable.

start_value_specification ::=
[control_section] start_value (analog_name, expression) eos

analog_name ::=
 simple_name
| branch_name

The analog name must denote either a pin or an analog variable whose scalar
subelements are independent variables (see Statements Decorated with the
Values Attribute). If the analog name denotes a pin, then it implies an across
branch name whose plus pin is the pin and whose minus pin is the predefined
pin 0, and the start value specification relates to the corresponding branch
across variable. The expression must be a globally constant expression that is
type compatible with the type of the object denoted by the simple name.

It is an error if more than one start value specification applies to the same
analog variable.

Initial Condition Specification

An initial condition specification relates to an analog variable and specifies the
initial condition for that analog variable.

initial_condition_specification ::=
[control_section]

initial_condition (analog_name, expression) eos

The analog name must denote either a pin or an analog variable whose scalar
subelements are independent variables (see Statements Decorated with the
Values Attribute). If the analog name denotes a pin, then it implies an across
branch name whose plus pin is the pin and whose minus pin is the predefined
pin 0, and the initial condition specification relates to the corresponding branch
Saber® MAST Language Reference Manual 59
Z-2007.03

Chapter 5: Specifications
Control Section Specifications
across variable. The expression must be a globally constant expression that is
type compatible with the type of the object denoted by the simple name.

It is an error if more than one initial condition specification applies to the same
analog variable.

Restart Specification

A restart specification relates to one or more states and specifies that the value
of these states must be adjusted when a time domain analysis starts (see The
Time Domain Initialization Phase).

restart_specification ::=
[control_section] adjust_on_restart (simple_name , simple_name }) eos

Each simple name must denote a state. The corresponding state is said to be
an adjustable state.

It is an error if more than one restart specification applies to the same state.

Device Type Specification

A device type specification relates to a template and specifies two attributes of
an instance of the template.

device_type_specification ::=
[control_section] device_type (device_class_expression,

device_subclass_expression) eos

Both expressions must be globally constant expressions of type STRING. The
device class expression defines the device class attribute of an instance of the
template. Similarly, the device subclass expression defines the device subclass
attribute of an instance of the template.

It is an error if more than one device type specification applies to the same
instance.

Note
The device class attribute and the device subclass attribute have no meaning in
the MAST language.
60 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 5: Specifications
Control Section Specifications
Nonlinearity Specification

A nonlinearity specification specifies the dependent variables and independent
variables (see Statements Decorated with the Values Attribute) of a nonlinearity
and optionally a limiting function and constant actual arguments for calling the
limiting function.

nonlinearity_specification ::=
[control_section] pl_set (dependent_set, independent_set

[, limiting_function_name [, expression]]) eos

set ::= analog_name | inline_group

A set is an unordered collection of objects. If a set is defined by an inline group
or by a simple name that denotes a group, then each group constituent of the
group or inline group is a member of the set. Otherwise, the set must be
defined by a simple name that denotes an object, and the object is the only
member of the set.

A nonlinearity specification relates to each member of the dependent set.

Each member of the dependent set must denote an analog variable whose
scalar subelements are dependent variables. Each member of the independent
set must denote either a pin or an analog variable whose scalar subelements
are independent variables. If a member denotes a pin, then it implies an across
branch name whose plus pin is the pin and whose minus pin is the predefined
pin 0. The limiting function name, if present, must denote a foreign function that
meets the requirements for a limiting function (see Limiting Functions). The
expression, if present, must be a globally constant expression that is either of
type NUMBER or of a one-dimensional array type whose element type is
NUMBER.

It is an error if more than one nonlinearity specification applies to the same
analog variable.

Sample Point Specification

A sample point specification specifies sample points for independent variables
(see Statements Decorated with the Values Attribute). It relates to each scalar
subelement of each member of a set.
Saber® MAST Language Reference Manual 61
Z-2007.03

Chapter 5: Specifications
Control Section Specifications
sample_point_specification ::=
[control_section]

sample_points (independent_set, expression) eos

Each member of the independent set must denote either a pin or an analog
variable whose scalar subelements are independent variables. If a member
denotes a pin, then it implies an across branch name whose plus pin is the pin
and whose minus pin is the predefined pin 0, and the sample point specification
relates to the corresponding branch across variable. A sample point
specification whose independent set is defined by a group is equivalent to a
sequence of sample point specifications. For each sample point specification in
the equivalent sequence the independent set denotes one group constituent of
the canonical group corresponding to the group, and the expression is the
same as the expression of the original sample point specification.

The expression must be a globally constant expression of a one-dimensional
array type whose element type is either the predefined type struc
BREAKPOINT or a user-defined structure type with two elements of type
NUMBER whose first element is considered equivalent to element BP of type
struc BREAKPOINT and whose second element is considered equivalent to
element INC of type struc BREAKPOINT. The value of the expression must
satisfy the following conditions:
■ The value of the subelement BP of any array element must be greater than

the value of the subelement BP of the immediately preceding array element,
if any.

■ The value of the subelement BP of one array element must be zero.
■ The value of the subelement INC of each array element, except the one

whose index value equals the upper bound of the index range of the array,
must be positive.

■ The value of the subelement INC of the array element whose index value
equals the upper bound of the index range of the array must be zero.
62 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 5: Specifications
Control Section Specifications
For each sample point specification in the equivalent sequence, the sample
points of each scalar subelement of the independent variable denoted by the
independent set are specified by the expression as follows:
■ The value of the subelement BP of each array element, except the array

element whose index value equals the upper bound of the index range of the
array, defines the left end of an interval.

■ The value of the subelement BP of each array element, except the array
element whose index value equals the lower bound of the index range of the
array, defines the right end of the interval whose left end is defined by the
immediately preceding array element.

■ Within each interval there is a sample point at bp + k * inc, where bp is the
value of the subelement BP of the array element that defines the left end of
the interval, inc is the value of the subelement INC of the same array
element, and k is any nonnegative integer.

It is an error if more than one sample point specification applies to the same
independent variable. If no explicit sample point specification applies to an
independent variable, then an implicit sample point specification applies to that
variable with an expression whose value is defined by the implementation.

Newton Step Specification

A newton step specification specifies newton steps for independent variables
(see Statements Decorated with the Values Attribute). It relates to each scalar
subelement of each member of a set.

newton_step_specification ::=
[control_section] newton_step (independent_set,

increase_expression [, decrease_expression]) eos

A newton step specification without a decrease expression is equivalent to a
newton step specification whose decrease expression is the same as the
increase expression.

Each member of the independent set must denote either a pin or an analog
variable whose scalar subelements are independent variables. If a member
denotes a pin, then it implies an across branch name whose plus pin is the pin
and whose minus pin is the predefined pin 0, and the newton step specification
relates to the corresponding branch across variable. A newton step
specification whose independent set is defined by a group is equivalent to a
sequence of newton step specifications. For each newton step specification in
Saber® MAST Language Reference Manual 63
Z-2007.03

Chapter 5: Specifications
Control Section Specifications
the equivalent sequence the independent set denotes one group constituent of
the canonical group corresponding to the group, and the increase expression
and decrease expression are the same as the corresponding expressions of
the original newton step specification.

The increase expression and the decrease expression must be globally
constant expressions of a one-dimensional array type whose element type is
either the predefined type struc BREAKPOINT or a user-defined structure type
with two elements of type NUMBER whose first element is considered
equivalent to element BP of type struc BREAKPOINT and whose second
element is considered equivalent to element INC of type struc BREAKPOINT.
The value of the increase expression and the decrease expression must satisfy
the following conditions:
■ The value of the subelement BP of any array element must be greater than

the value of the subelement BP of the immediately preceding array element,
if any.

■ The value of the subelement INC of each array element, except the one
whose index value equals the upper bound of the index range of the array,
must be nonnegative.

For each newton step specification in the equivalent sequence, the increase
newton steps of each scalar subelement of the independent variable denoted
by the independent set are specified by the increase expression, as follows:
■ The value of the subelement BP of each array element of the increase

expression defines the right end of an interval and the left end of the
subsequent interval. Additionally, the value -inf defines the left end of the
interval whose right end is the value of the subelement BP of the array
element whose index value equals the lower bound of the index range of the
array. Similarly, the value inf defines the right end of the interval whose left
end is the value of the subelement BP of the array element whose index
value equals the upper bound of the index range of the array.

■ The increase newton step of the interval whose left end is the value -inf is
0. The increase newton step of all other intervals is the value of the
subelement INC of the array element that defines the left end of the interval.

Similarly, for each newton step specification in the equivalent sequence, the
decrease newton steps of each scalar subelement of the independent variable
64 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 5: Specifications
Control Section Specifications
denoted by the independent set are specified by the decrease expression, as
follows:
■ The value of the subelement BP of each array element of the decrease

expression defines the right end of an interval and the left end of the
subsequent interval. Additionally, the value -inf defines the left end of the
interval whose right end is the value of the subelement BP of the array
element whose index value equals the lower bound of the index range of the
array. Similarly, the value inf defines the right end of the interval whose left
end is the value of the subelement BP of the array element whose index
value equals the upper bound of the index range of the array.

■ The decrease newton step of the interval whose right end is the value inf is
0. The decrease newton step of all other intervals is the value of the
subelement INC of the array element that defines the right end of the
interval.

It is an error if more than one newton step specification applies to the same
independent variable.

Partial Derivative Specification

A partial derivative specification relates to a variable declared by the partial
derivative specification and specifies the value of that variable.

partial_derivative_specification ::=
[control_section] ss_partial (identifier, expression, wrt_name) eos

The partial derivative specification declares the identifier as a variable of type
NUMBER in the minor declarative region immediately enclosing the
specification. If the partial derivative specification does not occur immediately
within a minor declarative region, then the declaration and the specification
together form a minor declarative region that is decorated with the statement
attribute of the partial derivative specification.

The expression must be a simple expression of type NUMBER. It is an error if a
primary in the expression denotes an imported object that is an analog local
variable. The wrt name must denote a scalar analog variable or a pin of a
scalar pin type. If the wrt name denotes an analog variable, then the partial
derivative specification specifies the partial derivative of the expression with
respect to the analog variable as the value of the variable denoted by the
identifier. Otherwise, the partial derivative specification specifies the partial
derivative of the expression with respect to ACROSS(pin) as the value of the
variable, where pin is the pin denoted by the wrt name.
Saber® MAST Language Reference Manual 65
Z-2007.03

Chapter 5: Specifications
Control Section Specifications
It is an error if the name of the variable denoted by the identifier appears in any
expression except in the expression of a small signal specification.

Small-Signal Specification

A small-signal specification relates to a variable declared by the small-signal
specification and specifies the value and two attributes of that variable.

small_signal_specification ::=
[control_section] small_signal (identifier, category_identifier,

report_expression, expression [, wrt_name]) eos

The small-signal specification declares the identifier as a variable of type
NUMBER in the minor declarative region immediately enclosing the
specification. If the small-signal specification does not occur immediately within
a minor declarative region, then the declaration and the specification together
form a minor declarative region that is decorated with the statement attribute of
the small-signal specification.

The category identifier defines the category attribute of the variable denoted by
the identifier. The report expression defines the report attribute of the variable
denoted by the identifier; it must be a globally constant expression of type
STRING.

The expression must be a simple expression of type NUMBER. It is an error if a
primary in the expression denotes an imported object that is an analog local
variable. The wrt name, if present, must denote a scalar analog variable or a
pin of a scalar pin type. If the wrt name is not present, then the small-signal
specification specifies the value of the expression as the value of the variable.
Otherwise, if the wrt name denotes an analog variable, then the small-signal
specification specifies the partial derivative of the expression with respect to
the analog variable as the value of the variable denoted by the identifier.
Otherwise, the small-signal specification specifies the partial derivative of the
expression with respect to ACROSS(pin) as the value of the variable, where pin
is the pin denoted by the wrt name.

It is an error if the name of the variable denoted by the identifier appears in any
expression. It is also an error if the wrt name is present in the small-signal
specification and the name of a variable declared by a partial derivative
specification appears in the expression.

Note
The category attribute and the report attribute have no meaning in the MAST
language.
66 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 5: Specifications
Control Section Specifications
Stress Measure Specification

A stress measure specification relates to a variable declared by the stress
measure specification and specifies the value and two attributes of that
variable.

stress_measure_specification ::=
[control_section] stress_measure (

identifier, category_identifier,
report_expression, stress_expression,
simple_name, rating_expression
[, reference_rating_expression]) eos

The stress measure specification declares the identifier as a variable of type
NUMBER in the minor declarative region immediately enclosing the
specification. If the stress measure specification does not occur immediately
within a minor declarative region, then the declaration and the specification
together form a minor declarative region that is decorated with the statement
attribute of the stress measure specification.

The category identifier defines the category attribute of the variable denoted by
the identifier. The report expression defines the report attribute of the variable
denoted by the identifier; it must be a globally constant expression of type
STRING. The stress expression must be a simple expression of type
NUMBER. The simple name must denote an enumeration literal of the
predefined type enum STRESS_MEASURES. The rating expression and the
reference rating expression, if present, must be simple expressions of type
NUMBER; they must be globally constant. A stress measure specification
without a reference rating expression is equivalent to a stress measure
specification whose reference rating expression is the literal 0.

The stress measure specification specifies the value of the variable denoted by
the identifier as the value of the expression

where measure is the function associated with the enumeration literal denoted
by the simple name, reference is the value of the reference rating expression,
rating is the value of the rating expression, and derate is an unspecified
function.

It is an error if the name of the variable denoted by the identifier appears in any
expression.

100 measure stress expression()× reference–()×
derate rating()× reference–()

--
Saber® MAST Language Reference Manual 67
Z-2007.03

Chapter 5: Specifications
Control Section Specifications
Note
The category attribute and the report attribute have no meaning in the MAST
language.

Variable Range Specification

A tolerance range is a 4-tuple of values of type NUMBER. The values are
called minimum, maximum, absolute tolerance, and relative tolerance.

A variable range specification specifies the tolerance range of analog system
variables. It relates to each scalar subelement of each analog system variable
in a set.

variable_range_specification ::=
[control_section] range_for_variable (variable_set,

min_expression, max_expression
[, abs_expression [, rel_expression]]) eos

Each member of the variable set of a variable range specification must denote
an analog system variable. A variable range specification whose variable set is
defined by a group is equivalent to a sequence of variable range specifications.
For each variable range specification in the equivalent sequence the variable
set denotes one group constituent of the canonical group corresponding to the
group, and the min expression, max expression, abs expression, and rel
expression are the same as the corresponding expressions of the original
variable range specification.

The min expression defines the minimum of the tolerance range. The max
expression defines the maximum of the tolerance range. The abs expression
defines the absolute tolerance of the tolerance range. In the absence of an abs
expression the value of the absolute tolerance is ABS*max(abs(minimum),
abs(maximum)), where ABS is a scalar value of a numeric type defined by the
implementation. The rel expression defines the relative tolerance of the
tolerance range. In the absence of a rel expression the relative tolerance is
defined by the implementation. All expressions must be globally constant
expressions of a numeric type.

It is an error if more than one variable range specification applies to the same
analog system variable.
68 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 5: Specifications
Control Section Specifications
Unit Range Specification

A unit range specification relates to a unit and specifies the tolerance range of
that unit.

unit_range_specification ::=
[control_section] range_for_unit (unit_name,

min_expression, max_expression
[, abs_expression [, rel_expression]]) eos

The unit name must denote a physical unit.

The min expression defines the minimum of the tolerance range. The max
expression defines the maximum of the tolerance range. The abs expression
defines the absolute tolerance of the tolerance range. In the absence of an abs
expression the value of the absolute tolerance is ABS*max(abs(minimum),
abs(maximum)), where ABS is a scalar value of a numeric type defined by the
implementation. The rel expression defines the relative tolerance of the
tolerance range. In the absence of a rel expression the relative tolerance is
defined by the implementation. All expressions must be globally constant
expressions of a numeric type.

It is an error if more than one unit range specification applies to the same unit in
an instance of a template.

Note
Different unit range specifications may apply to the same unit in different
instances.

Range Set Specification

A range set is a named collection of tolerance ranges.

A range set specification relates to a template and specifies the name of the
range set of an instance of that template.

range_set_specification ::=
[control_section] range_set (expression) eos

The expression must be a globally constant expression of type STRING. Its
value specifies the name of the range set of an instance of a template.

It is an error if more than one range set specification applies to the same
instance.
Saber® MAST Language Reference Manual 69
Z-2007.03

Chapter 5: Specifications
Control Section Specifications
Notes
Range sets are defined by an implementation.

An implementation may define alternative mechanisms to specify the range set
of the root instance.
70 Saber® MAST Language Reference Manual
Z-2007.03

6
6Names

This chapter describes the different types of MAST names.

Names

A name denotes an explicitly declared or implicitly declared entity. Names can
also denote subelements of composite objects.

name ::=
 simple_name
| instance_name
| imported_name
| selected_name
| branch_name
| indexed_name
| slice_name
| qualified_name

extended_name ::=
 name
| decimal_name

prefix ::= name

The evaluation of an extended name consists of the determination of the entity
denoted by the extended name. It is an error if the extended name is
ambiguous after overload resolution.

Certain forms of names include a prefix that is itself a name.
Saber® MAST Language Reference Manual 71
Z-2007.03

Chapter 6: Names
Simple Names
An extended name can be a constant name or even a locally constant name.
Each locally constant name is a constant name.
■ Simple names, decimal names, instance names, imported names, and

qualified names are locally constant names.
■ A selected name is a (locally) constant name if its prefix is a (locally)

constant name.
■ A branch name is a (locally) constant name if its plus pin aspect and minus

pin aspect are both (locally) constant names.
■ An indexed name is a (locally) constant name if its prefix is a (locally)

constant name, and every index expression is a (locally) constant
expression.

■ A slice name is a constant name if its prefix is a constant name and the index
range of its index constraint is globally constant. A slice name is a locally
constant name if its prefix is a locally name and the index range of its index
constraint is locally constant.

If the name is a constant name, then its longest constant prefix is the name
itself. Otherwise, the longest constant prefix of the name is the longest prefix
that is a constant name.

Simple Names

A simple name is the identifier associated with an entity by a declaration.

simple_name ::= identifier

Decimal Names

A decimal name is the textual form of a decimal literal associated with an entity
by a declaration. The textual form includes any leading zeros of the decimal
literal.

decimal_name ::= decimal_literal

Note
Decimal names are only allowed in the following places:
■ As a connection definition in a connection element
■ As a connection specification in a connection element
72 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 6: Names
Instance Names
■ As the connection formal part of a connection association element
■ As the connection actual part of a connection association element

In addition, the decimal name 0 may be part of a pin aspect.

Instance Names

An instance name denotes an instance of a design entity.

instance_name ::=
 prefix . reference_designator

reference_designator ::=
 identifier
| special_reference_designator

The evaluation of an instance name consists of the evaluation of the prefix and
the determination of the design entity denoted by the prefix.

Examples

Note
The prefix of an instance name is either a simple name or a qualified name.

Imported Names

An imported name denotes an object whose declaration appears in an instance
of another design entity.

imported_name ::= simple_name (instance_name)

The evaluation of an imported name consists of the evaluation of the instance
name followed by the determination, within the scope of the named instance, of
the object denoted by the simple name. It is an error if this object has not been
decorated, either explicitly or implicitly, with the export attribute.

inductor.shunt gearbox . @"5I317"

@"foo".1e5
Saber® MAST Language Reference Manual 73
Z-2007.03

Chapter 6: Names
Selected Names
Examples

Note
The instance name part of an imported name may create a forward reference
to an instance that is defined at a textually-later place in a template.

Selected Names

A selected name denotes an entity whose declaration appears within the
declaration of a structure type, structure pin type, or union type.

selected_name ::= prefix -> simple_name

The prefix of a selected name must denote an object of a structure type,
structure pin type, or union type. The simple name must denote an element of
the structure type, structure pin type or union type denoted by the prefix.

The evaluation of a selected name consists of the evaluation of the prefix and
the determination of the object denoted by the simple name within the object
denoted by the prefix. It is an error if a selected name whose prefix denotes an
object of a union type appears in an expression and the selected name does
not denote the current alternative.

Note
A selected name whose prefix is an object of a union type and that does not
denote the current alternative may only appear as the target in an assignment
statement.

Branch Names

A branch name denotes a branch between two pins.

power(r.load) i(short.sense) c(c.10)
74 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 6: Names
Branch Names
branch_name ::=
unit_aspect (plus_pin_aspect

[branch_name_separator minus_pin_aspect])

unit_aspect ::= unit_name

pin_aspect ::=
 pin_name
| (pin_name)
| 0

branch_name_separator ::= ,| ->

The pin name in a pin aspect must not denote an imported object. A pin name
that is a selected name must be enclosed in parentheses.

A branch name without a minus pin aspect is equivalent to a branch name
whose minus pin aspect denotes the predefined reference pin 0. It is an error if
the plus pin aspect and the minus pin aspect of a branch name both denote the
predefined reference pin 0.

The pin denoted by the plus pin aspect of a branch name is the plus pin of the
branch. If the plus pin of the branch is of a composite pin type, then the plus pin
of each scalar subelement of the branch is the corresponding scalar
subelement of the plus pin of the branch. Similarly, the pin denoted by the
minus pin aspect of a branch name is the minus pin of the branch. If the minus
pin of the branch is of a composite pin type, then the minus pin of each scalar
subelement of the branch is the corresponding scalar subelement of the minus
pin of the branch. For each scalar subelement of a branch, the plus pin and
minus pin of the scalar subelement must either be of the same pin type, or one
must be of the predefined pin type NEUTRAL.

The type of a branch is determined as follows. If the plus pin of the branch is of
a composite pin type, or if both pins of the branch are of a scalar pin type, then
the type of the branch is the branch type implied by the pin type of the plus pin
of the branch. Otherwise, the type of the branch is the branch type implied by
the pin type of the minus pin of the branch.
Saber® MAST Language Reference Manual 75
Z-2007.03

Chapter 6: Names
Branch Names
The unit of each scalar subelement of a branch is determined as follows.
■ If the unit aspect of the branch name denotes the predefined unit ACROSS,

and if the pin type of the plus pin of the scalar subelement is any pin type
other than the predefined pin type NEUTRAL, then the unit of the scalar
subelement is the across unit of the pin type of the plus pin of the branch.

■ If the unit aspect of the branch name denotes the predefined unit ACROSS,
and if the pin type of the plus pin of the scalar subelement is the predefined
pin type NEUTRAL, then the unit of the scalar subelement is the across unit
of the pin type of the minus pin of the branch.

■ If the unit aspect of the branch name denotes the predefined unit
THROUGH, and if the pin type of the plus pin of the scalar subelement is
any pin type other than the predefined pin type NEUTRAL, then the unit of
the scalar subelement is the through unit of the pin type of the plus pin of
the branch.

■ If the unit aspect of the branch name denotes the predefined unit
THROUGH, and if the pin type of the plus pin of the scalar subelement is the
predefined pin type NEUTRAL, then the unit of the scalar subelement is the
through unit of the pin type of the minus pin of the branch.

If all scalar subelements of a branch have the same unit, then the name of this
unit may be used instead of the predefined units ACROSS or THROUGH as
the unit aspect of the branch name.

A branch is an across branch if the unit of each scalar subelement is the across
unit of the pin type of the plus pin or minus pin of that scalar subelement.
Similarly, a branch is a through branch if the unit of each of its scalar
subelements is the through unit of the pin type of the plus pin or minus pin of
that scalar subelement.

The evaluation of a branch name consists of the evaluation of its plus pin
aspect and minus pin aspect, followed by the evaluation of its unit aspect.
76 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 6: Names
Branch Names
Examples

Notes
1. With the exception of the predefined reference pin 0, decimal literals used

to denote pins cannot appear in branch names.

2. By convention, the comma (,) is used as the branch name separator in an
across branch name, while the right arrow (->) is used in through branch
names.

unit { "V", "Volt", "voltage" } v
unit { "A", "Ampere", "current" } i
unit { "K", "Kelvin", "temperature" } tk
unit { "W", "Watt", "power" } p
pin electrical across v through i
pin thermal across tk through p
electrical p1, p2
struc { electrical p1, p2; } p3
struc { electrical e; thermal t; } p4, p5

ACROSS(p1, p2) # an across branch with plus pin p1
and minus pin p2

i(p2->p1) # a through branch with plus pin
p2 and minus pin p1

v(p1) # an across branch with p1 as plus pin
and the reference pin 0 as minus pin

v(0, p1) # an across branch whose value is the
negative of that in the previous
example

THROUGH((p3->p1)) # a through branch between subelement
p1 of pin p3 and the reference pin 0

THROUGH(p3->p1) # a through branch between composite
pin p3 and scalar pin p1

ACROSS(p4, p5) # an across branch between composite
pins p4 and p5. The units of the
scalar subelements of the branch are
v and tk
Saber® MAST Language Reference Manual 77
Z-2007.03

Chapter 6: Names
Indexed Names
References
Implicit Declaration of Imported Objects

Commentary
The essence of these definitions is that a branch denoted by a branch name
takes its shape from its pins, as shown in the following figure. The unit of each
scalar subelement of the branch is the across or through unit of its plus pin or, if
the pin type of the plus pin is NEUTRAL, of its minus pin.

Decimal literals cannot appear in a pin aspect of a branch name because unit
names and function names are in different name spaces. This makes it
impossible to determine whether v(1) is a function call or a branch name (for
example, the voltage between electrical pin 1 and the reference pin 0).
Therefore, a decimal literal that denotes a pin can appear only as a connection
definition or a connection specification in a template connection element, or as
the connection actual part or the connection formal part in a connection
association element of an instantiation statement.

Indexed Names

An indexed name denotes an element of an array.

indexed_name ::= prefix "[" expression { , expression } "]"

The prefix of an indexed name must denote an object of an array type. The
expressions specify index values; they must be simple expressions. There must
be one expression for each index position of the array object denoted by the
prefix, and the type of the expression must be type compatible with the type of
the index constraint of the corresponding index position of the prefix.

The evaluation of an indexed name consists of the evaluation of its prefix and
the index expressions. It is an error if the value of any index expression is

...

...
...

plus pin

minus pin
78 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 6: Names
Slice Names
smaller than the lower bound or larger than the upper bound of the
corresponding index position of the array object denoted by the prefix.

Slice Names

A slice name denotes a substring or a one-dimensional array consisting of
consecutive elements of another one-dimensional array.

slice_name ::= prefix "[" index_constraint "]"

The prefix of a slice name must denote an object of the predefined type
STRING or of a one-dimensional array type. The object class of the slice is the
same as the object class of the prefix of the slice name. Similarly, if the prefix of
the slice name is of an array type then the element type of the slice is the
element type of the array type.

The index constraint of a slice name must include both the lower bound and the
upper bound. If the prefix is of an array type, then the type of the index
constraint must be type compatible with the type of the index of the prefix.
Otherwise, the type of the index constraint must be the predefined type
INTEGER. The slice is a null slice if the value of the lower bound exceeds the
value of the upper bound.

The evaluation of a slice name consists of the evaluation of the prefix and the
index constraint. It is an error if the value of the prefix is undef. Unless the
name denotes a null slice, it is also an error if the value of the lower bound is
smaller than the lower bound of the string object or array object denoted by the
prefix, or if the value of the upper bound is larger than the upper bound of the
string object or array object denoted by the prefix.

Examples

Note
The declaration of the array object is implicit if the prefix is itself a slice name.

number gain[10]
string s = "abc"

gain[3:5]# a slice of length 3

gain[6:5]# the null slice

s[3:*] # a slice of length 1 with value "c"
Saber® MAST Language Reference Manual 79
Z-2007.03

Chapter 6: Names
Qualified Names
Qualified Names

A qualified name denotes an entity declared in a template or contained in a
design library.

qualified_name ::= prefix .. suffix

suffix ::= simple_name

If the prefix of a qualified name denotes a template, then the suffix must be a
simple name that is either the external name of a formal connection of the
template or that appears in the argument list of the template header definition
of that template; the qualified name is an alias for the base name of the type of
the connection or argument denoted by the suffix. It is an error if the template
denoted by the prefix has not been analyzed.

If the prefix of a qualified name denotes a design library, then the suffix must
denote a design unit contained in that design library. It is an error if the prefix of
a qualified name is itself a qualified name and the prefix of that qualified name
does not denote a design library.

A qualified name is said to be a fully qualified name if the simple name
preceding the first delimiter of the qualified name denotes a design library.

The evaluation of a qualified name consists of the evaluation of its prefix and its
suffix.

Examples

Note
The tag in a type reference may be a fully qualified name.

q..model # if q is the name of a template,
the type of its argument model

work..base # the fully qualified name of
entity base declared in library
work
80 Saber® MAST Language Reference Manual
Z-2007.03

7
7Expressions

An expression is a formula that defines the computation of one or more values.
This section defines the syntax, the order of evaluation, and the meaning of
expressions.

Expressions

The order of evaluation and the precedence of operators is defined by the
following grammar.

expression ::=
logical_or_expression

logical_or_expression ::=
logical_and_expression { "|" logical_and_expression }

logical_and_expression ::=
equality_expression { & equality_expression }

equality_expression ::=
relational_expression { equality_operator relational_expression }

relational_expression ::=
additive_expression { relational_operator additive_expression }

additive_expression ::=
term { additive_operator term }

term ::=
factor { multiplicative_operator factor }

factor ::=
[unary_operator] primary { ** [unary_operator] primary }
Saber® MAST Language Reference Manual 81
Z-2007.03

Chapter 7: Expressions
Expressions
An operator is said to be a binary operator if it has two operands. The left
operand precedes the binary operator, and the right operand follows the binary
operator.

In a sequence of binary operators with the same precedence level the
operators associate with their operands as follows:
■ The ** operator (exponentiation) associates from right to left.
■ All other binary operators associate from left to right.

An expression is said to be a simple expression if the cardinality of its profile is
one. Only simple expressions can be the operands of an operator.

The type of a simple expression depends only on the operators and the
operands appearing in the simple expression. The corresponding rules are
described in Operators and Primaries. Type conversions are described in Type
Conversions. Constant expressions are described in Constant Expressions.

Notes
An expression that is not a simple expression can appear only in an
assignment statement and as an actual argument of a function call calling a
foreign function, where the expression must match a sequence of arguments in
the unspecified portion of the argument profile.

It is a consequence of the precedence and associativity rules that the following
pairs of expressions are equivalent:

Commentary
The expression grammar completely defines the precedence of operators in
the MAST language. The following table presents a summary of this
information in order from the highest to the lowest precedence. It includes the
operator symbols that will be described in the following sections.

a+b-c*d/e+f (((a+b)-((c*d)/e))+f)

-a--b ((-a)-(-b))

-a**-b**-c (-(a**(-(b**(-c)))))

exponentiation and unary operators ** + - ~

multiplicative operators * / %

additive operators + - //
82 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 7: Expressions
Operators
Operators

Logical Operators

The logical operators are defined for operands of any numeric type. The type of
the result returned by a logical operator is the predefined type INTEGER. The
result is defined by the following table.

The result is undefined if the value of any operand equals the value of the literal
undef.

For the determination of the result of a logical operator the left operand of the
logical operator is evaluated first. The right operand is evaluated only if the
value of the left operand does not completely specify the result of the logical
operator.

relational operators < > <= >=

equality operators == ~=

logical and operator &

logical or operator |

value of
left operand

value of
right operand

result of
logical or (|)

result of
logical and (&)

zero zero 0 0

zero nonzero 1 0

nonzero zero 1 0

nonzero nonzero 1 1
Saber® MAST Language Reference Manual 83
Z-2007.03

Chapter 7: Expressions
Operators
Examples

Rationale
The result is undefined if the value of an operand is undef for efficiency
reasons. Otherwise, each operation would require testing each operand for this
value.

Equality Operators

equality_operator ::= == | ~=

The equality operators are defined for operands of any type. The operands of
an equality operator must have compatible types, and their expected type (see
Overload Resolution) is the supertype implied by the types of the two
operands. The type of the result returned by an equality operator is the
predefined type INTEGER.

The == operator (equal to) returns 1 if its left operand is equal to its right
operand; it returns 0 otherwise. The ~= operator (not equal to) returns 0 if its
left operand is equal to its right operand; it returns 1 otherwise.

Two operands A and B are equal if:
■ The operands are of a scalar type and have the same value.
■ The operands are of an array type, and for each element of operand A there

is a matching element of operand B and vice-versa, and the two matching
elements are equal.

■ The operands are of a structure type, and each element of operand A and
the matching element of operand B are equal.

number a=1string
s="abc"

a==0 | s=="abc" # logical expression with value 1.

Right operand is evaluated because

value of left operand is zero

a==0 & s=="abc" # logical expression with value 0.
Right operand is not evaluated

a | s # illegal: right operand is not of
a numeric type
84 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 7: Expressions
Operators
■ The operands are of a union type, the same alternative is the current
alternative of both operands, and the current alternatives are equal.

■ Both operands are the literal undef.

For the determination of the result of an equality operator the left and the right
operand of the equality operator are evaluated, in this order. It is an error if the
types of the operands cannot be determined.

Examples

Notes
■ A group whose canonical profile has a cardinality greater than 1 cannot be

an operand of an equality operator because it does not have a type.
■ The type of the operands cannot be determined if both operands are

structure aggregates or union aggregates.

Relational Operators

relational_operator ::= < | > | <= | >=

The relational operators are defined for operands of any ordered type and of
any one-dimensional array type whose elements are of an ordered type. If both
operands of a relational operator are of a one-dimensional array type, then the
element types of the two operands must be type compatible; the expected type
of each element is the supertype implied by the two element types. Otherwise,
the two operands must have compatible types, and their expected type is the
supertype implied by the types of the two operands. The type of the result
returned by a relational operator is the predefined type INTEGER.

struc st1 { number a,b; } s1=(1,2),s2=(2,3)
struc st2 { number a,b,c; } s3=(1,2,3)

s1==s2 # Equality expression with value 0

s1~=s3 # illegal: left and right operand
have different types

(1,2)==(1,2) # illegal: type of operands cannot
be determined
Saber® MAST Language Reference Manual 85
Z-2007.03

Chapter 7: Expressions
Operators
The > operator (greater than) returns 1 if its left operand is greater than its right
operand; it returns 0 otherwise. For two operands A and B, operand A is greater
than operand B if:
■ The operands are of a numeric type and the value of the expression A - B is

positive.
■ The operands are of an enumeration type and the enumeration value of

operand A is greater than the enumeration value of operand B.
■ The operands are of the predefined type STRING, the slices A[1:i] and B[1:i]

are equal for some integer value i, and either the slice A[i+1:i+1] follows the
slice B[i+1:i+1] in the ISO 8859-1 collation order, or the length of operand B
is i and the length of operand A is greater than i.

■ The operands are of a one-dimensional array type, a slice SA of some
length i whose prefix is A and whose lower bound is the lower bound of A is
equal to a slice SB of length i whose prefix is B and whose lower bound is
the lower bound of B, and either the element of A immediately following SA
is greater than the element of B immediately following SB, or the length of B
is i and the length of A is greater than i.

The >= operator (greater than or equal to) returns 1 if either the > operator or
the == operator for the same two operands returns 1; it returns 0 otherwise.
The < operator (smaller than) returns 1 if the >= operator for the same two
operands returns 0; it returns 0 otherwise. The <= operator (smaller than or
equal to) returns 1 if the > operator for the same two operands returns 0; it
returns 0 otherwise.

For the determination of the result of a relational operator the left and the right
operand of the relational operator are evaluated, in this order. The result is
undefined if the value of any operand, or subelement thereof, equals the value
of the literal undef.
86 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 7: Expressions
Operators
Examples

Notes
1. The meaning of the expression a < b < c is (a < b) < c rather than (a < b) &

(b < c).

2. While the language does support comparing undef values for equality or
inequality, it does not define the result of a relational operator if one of the
operands has the value undef. Therefore, undef == undef returns 1, but the
result of undef >= undef is undefined.

References
Literals

Rationale
The result is undefined if the value of an operand is undef for efficiency
reasons. Otherwise, the evaluation of each operator would require testing both
operands for this value.

Additive Operators

additive_operator ::= + | - | //

The + operator (plus) and - operator (minus) are defined for any numeric type
and for composite types whose scalar subelements are of a numeric type; the
two types must be type compatible and for each scalar subelement of the left
operand there must be a matching scalar subelement of the right operand. The
expected type of the operands is the supertype implied by the types of the two
operands, and the type of the result returned by a + operator or - operator is the
expected type of its operands. The // operator (concatenation) is defined for the
predefined type STRING and for all one-dimensional array types. If the types of
both operands are one-dimensional array types, then the element types of the
two operands must be type compatible; the expected type of each element is

number a=4,b=3,c[2]=[1,2],d[2]=[3.5,2]

a < b # Relational expression with value 0

c <= d # Relational expression with value 1

a > c # illegal: left and right operands
have different types
Saber® MAST Language Reference Manual 87
Z-2007.03

Chapter 7: Expressions
Operators
the supertype implied by the two element types. Otherwise, the types of the
operands must be type compatible.

The + operator and the - operator have their conventional mathematical
meaning. If their operands are of a composite type, then the operator is applied
to each pair of matching scalar subelements as operands. The result of the //
operator whose operands are of type STRING is a value consisting of the value
of the left operand followed by the value of the right operand. The result of the /
/ operator whose operands are of an array type is an array value whose
elements are the elements of the left operand of the // operator followed by the
elements of the right operand. The index constraint of the result is normalized,
and its upper bound is the sum of the lengths of the two operands.

For the determination of the result of an additive operator the left and the right
operand of the additive operator are evaluated, in this order. The result is
undefined if its value is outside the range defined for its type, or if the value of
any scalar operand of a + operator or a - operator equals the value of one of the
literals inf or undef. It is an error if the value of any operand of a // operator
equals the value of the literal undef.

Example

Multiplicative Operators

multiplicative_operator ::= * | / | %

The multiplicative operators are defined for any numeric type. The * operator
(multiplication) is also defined for one operand of a numeric type and the other
operand of a composite type with scalar subelements of a numeric type. The /
operator (division) and the % operator (modulus) are also defined for a left
operand of a composite type with scalar subelements of a numeric type and a
right operand of a numeric type. The expected type of the operands of a
multiplicative operator is the supertype implied by the types of the two
operands. The type of the result returned by a multiplicative operator is the
expected type of its operands.

The * operator and the / operator returning type NUMBER have their
conventional mathematical meaning. The result of the / operator returning type
INTEGER with a left operand A and a right operand B is the integer i such that

string s1="abc", s2="cbadef", s3

s3 = s1 // s2[4:*] # result is the string "abcdef"
88 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 7: Expressions
Operators
the expression A - i * B has the same sign as A and its magnitude is less than
the magnitude of B. The result of the % operator with a left operand A and a
right operand B is the value A - i * B for some integer i such that the result has
the same sign as A and its magnitude is less than the magnitude of B. In all
cases, if one operand is of a composite type, then the operator is applied to
each scalar subelement of that operand.

For the determination of the result of a multiplicative operator with scalar
operands the left and the right operand of the multiplicative operator are
evaluated, in this order. The result is undefined if its value is outside the range
defined for its type, or if the value of any operand equals the value of one of the
literals inf or undef. It is an error if the value of the right operand of a / operator
or a % operator equals zero.

Note
The definition of the % operator is equivalent to the definition of the fmod
function in the C language and to the definition of the remainder in VHDL.

Unary Operators

unary_operator ::= + | - | ~

The unary operators are defined for any numeric type. The unary + operator
(unary plus) and the unary - operator (unary minus) are also defined for any
operand of a composite type with scalar subelements of a numeric type. The
type of the result returned by the unary + operator or the unary - operator is the
type of its operand. The type of the result of the ~ operator (not) is the
predefined type INTEGER.

The unary + operator returns the value of its operand. The unary - operator
returns the negative of the value of its operand. If the operand is of a composite
type, then the unary - operator is applied to each scalar subelement. The ~
operator returns 1 if the value of its operand is zero; it returns 0 otherwise.

For the determination of the result of a unary operator the operand of the unary
operator is evaluated. The result is undefined if the value of the operand of a
unary - operator or of a ~ operator equals the value of the literal undef.

Exponentiation Operator

The ** operator (exponentiation) is defined for any numeric type and for a left
operand of a composite type with scalar subelements of a numeric type and a
Saber® MAST Language Reference Manual 89
Z-2007.03

Chapter 7: Expressions
Primaries
right operand of a numeric type. The expected type of the operands of the
exponentiation operator is the supertype implied by the types of the two
operands. The type of the result returned by the exponentiation operator is the
expected type of its operands.

The exponentiation operator raises its left operand to the power specified by its
right operand. If the left operand is of a composite type, then the exponentiation
operator is applied to each scalar subelement.

For the determination of the result of an exponentiation operator with scalar
operands the right and left operand of the exponentiation operator are
evaluated, in this order. The result is undefined if its value is outside the range
defined for its type, or if the value of any operand equals the value of one of the
literals inf or undef. It is an error if the value of the right operand is negative
and the value of the left operand is zero. It is also an error if the value of the
right operand is negative and the return type of the operator is INTEGER.
Finally, it is an error if the value of the left operand is negative and the value of
the right operand is not an integral number.

Primaries

A primary is a basic building block of an expression.

primary ::=
 name
| literal
| function_call
| aggregate
| structure_overlay
| conditional_expression
| (expression)

Each primary has one or more types and a corresponding number of values.
The profile of a primary denoted by a name is the profile of the entity
associated with the name. The profile of an expression enclosed in
parentheses is the profile of the expression.

Notes
1. It is a consequence of these rules that the name of a pin is not a primary.

2. A primary may have more than one type if it is a name that denotes a group,
a function call, or a group name or function call enclosed in parentheses.
90 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 7: Expressions
Primaries
Literals

literal ::=
 numeric_literal
| string_literal
| enumeration_literal
| inf
| undef

Numeric literals include integer literals and real literals; they are described in
Numeric Literals. String literals are described in String Literals. Enumeration
literals are literals of an enumeration type; they are described in Enumeration
Types.

The literal inf represents a value of the predefined type NUMBER with the
following properties:
■ inf is greater than any other value of type NUMBER
■ any other value of type NUMBER is greater than -inf

The literal undef is type compatible with any scalar type and any union type,
and its value is different from any other value representable by the type.

The evaluation of a literal yields the corresponding value.

Note
On a computer architecture that supports IEEE Std. 754 or IEEE Std. 854 for
floating point number representation, a possible implementation of the literal inf
is the value Infinity.

Function Calls

function_call ::=
name ([function_argument_association_list])

A function call invokes the function denoted by the name and specifies the
actual arguments, if any, to be associated with the formal arguments of the
function. The evaluation of the function call yields a result whose profile is
defined by the corresponding function declaration. If the profile is unspecified or
contains an unspecified portion, then it is determined as part of the evaluation
of the function call. It is an error if the result profile of a function call cannot be
determined.
Saber® MAST Language Reference Manual 91
Z-2007.03

Chapter 7: Expressions
Primaries
For the evaluation of a function call, each association element of the function
argument association list is first evaluated in the order in which the elements
appear in the function argument association list. Then, the initial value
expression of each remaining formal argument, defined in the function
declaration, is evaluated and associated with the formal argument in the order
of the corresponding declarations. Finally, if the function is an MAST function,
then its body is executed. Otherwise, the foreign function is called.

Notes
1. Only foreign functions can have an unspecified profile or a profile with an

unspecified portion.

2. A function with an unspecified result profile can only be called in an
assignment statement whose expression is the function call.

References
 Argument Association Lists, Foreign Functions Called from a Template or a
MAST Function

Aggregates

An aggregate combines one or more values into a composite value. The
aggregate may be of an array type, a structure type, or a union type.

aggregate ::=
 array_aggregate
| structure_aggregate
| union_aggregate

The type of the aggregate must be determinable from the context in which the
aggregate appears. That is, an aggregate may only appear:
■ As the initial value expression in an object declaration
■ As the expression in an assignment statement whose target is a declared

object
■ As the expression in a contribution statement
■ As an expression in a labeled equation statement or a make statement, if

and only if the type of the other expression is defined
■ As the actual expression in an argument association element, if and only if

the formal is a declared object
■ As the expression in an aggregate association element
92 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 7: Expressions
Primaries
■ As a subaggregate (see Array Aggregates) of an array aggregate
■ As an operand of an equality or inequality operator, if and only if the type of

the other operand is defined

Note
The formal in an argument association element is not a declared object if the
argument association element corresponds to an argument in the unspecified
portion of the argument profile.

References
 Object Declarations, Argument Association Lists, Assignment Statement,
Equation Statements

Array Aggregates
An array aggregate defines a value of an array type.

array_aggregate ::=
"[" expression_list "]"

expression_list ::=
expression { , expression }

Each expression in the expression list of an array aggregate defines one
element of the array value; it must be a simple expression.

The type of a one-dimensional array aggregate is determined as follows. The
element type is the supertype implied by the types of the expressions in the
expression list. The index range is normalized, it has an upper bound that is
equal to the cardinality of the expression list, and its type is INTEGER.

For an n-dimensional array aggregate each expression in the expression list is
a subaggregate that is an (n-1)-dimensional array or array aggregate. It is an
error if the types of the subaggregates of an n-dimensional array aggregate are
not type compatible.

The type of an n-dimensional array aggregate is determined as follows. The
element type is the supertype implied by the element types of its
subaggregates. The index range at the first position has a lower bound of 1 and
an upper bound that is equal to the number of subaggregates; its type is
INTEGER. The index ranges at positions 2 through n of the n-dimensional
array aggregate are the normalized index ranges at positions 1 through n-1 of
the first subaggregate.
Saber® MAST Language Reference Manual 93
Z-2007.03

Chapter 7: Expressions
Primaries
For the evaluation of an array aggregate the expression list is evaluated, then
each value that is not a subaggregate is converted to the element type of the
array aggregate. For the evaluation of an expression list the expressions are
evaluated in the order in which they appear in the expression list.

Examples

Structure Aggregates
A structure aggregate defines a value of a structure type.

structure_aggregate ::=
([aggregate_association_list])

aggregate_association_list ::=
aggregate_association_element { , aggregate_association_element }

aggregate_association_element ::=
[simple_name =] expression

Each aggregate association element in the aggregate association list of a
structure aggregate associates an expression with an element of the structure
value. The expression in an aggregate association element must be a simple
expression.

number a=4
enum {y, n} yn=y

[1,2.5,a+3] # one-dimensional array aggregate
whose element type is number and
whose index range is 1 through 3

[[1,2,3],[4,5,6]] # two-dimensional array aggregate
whose element type is integer. Its
first index range is 1 through 2,
its second is 1 through 3

[2,yn,5] # illegal: element types are not
compatible

[[1,2,3],[4,5]] # illegal: subaggregates have different
types
94 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 7: Expressions
Primaries
The type of a structure aggregate is determined by considering the syntax rules
and any rule that requires the structure aggregate to be of a certain type or type
compatible with the type of an entity or an expression.

An aggregate association element is said to be named if the element is
specified explicitly by its simple name; it is said to be positional otherwise. For a
positional association the element of the value is implicitly specified by the
textual position of the aggregate association element in the structure
aggregate.

Named association elements may appear in any order, but if named and
positional association elements appear in the same aggregate association list,
then any named association element must follow all positional association
elements. An aggregate association list containing only a single aggregate
association element must be specified using a named association element.

The type of the expression in an aggregate association element must be type
compatible with the type of the corresponding element of the structure type. If a
subelement of the structure type is of an unconstrained array type, then the
upper bound of each assumed index range of the subelement is defined by the
association such that the length of the index range is equal to the length of the
index range of the corresponding subelement of the expression at the same
index position.

Each element of the value defined by the structure aggregate must be specified
at most once in the aggregate association list of the structure aggregate. If a
particular element is not specified in the aggregate association list of the
structure aggregate, then its value is the default value of the corresponding
element in the structure type definition of the type of the structure aggregate.

For the evaluation of a structure aggregate the aggregate association list is
evaluated. For the evaluation of an aggregate association list the aggregate
association elements are evaluated in the order in which they appear in the
aggregate association list. For the evaluation of an aggregate association
element the name, if any, and the expression are evaluated.
Saber® MAST Language Reference Manual 95
Z-2007.03

Chapter 7: Expressions
Primaries
Examples

Note
The rules to determine the type of a structure aggregate are similar to the
overload resolution rules of Overload Resolution.

Union Aggregates
A union aggregate defines a value of a union type.

union_aggregate ::=
(aggregate_association_element)

The type of a union aggregate is determined by considering the syntax rules
and any rule that requires the union aggregate to be of a certain type or type
compatible with the type of an entity or an expression.

The single aggregate association element of a union aggregate must be
specified using a named association. The simple name of the aggregate
association element must denote the name of an alternative of the union type,
and the type of the expression must be type compatible with the type of this
alternative.

struc s1 { number a,b=4,c=4; } p1, p2, p4
struc s2 { number d[2],e; } p3, p5

p1 = (1,2,3) # the element values are:
a=1, b=2, c=3

p2 = (3,c=3) # the element values are:
a=3, b=4, c=3

p3 = (d=[3,4]) # the element values are:
d=[3,4], e=undef

p4 = (1,2,b=3) # illegal: b specified more than
once

p5 = (e=4,[5,2]) # illegal: positional association
follows named association

([1,2]) # not a structure aggregate because
a single element must be
specified by named association
96 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 7: Expressions
Primaries
For the evaluation of a union aggregate the aggregate association element is
evaluated.

Examples

Note
The rules to determine the type of a union aggregate are similar to the overload
resolution rules of Overload Resolution.

Structure Overlays

A structure overlay defines a value of a structure type.

structure_overlay ::=
prefix <- ([aggregate_association_list])

The prefix of a structure overlay must denote an object of a structure type; its
type is the type of the structure overlay. Each aggregate association element in
the aggregate association list of a structure overlay associates an expression
with an element of the structure value.

Each element of the value defined by the structure aggregate must be specified
at most once in the aggregate association list of the structure overlay. If a
particular element is not specified in the aggregate association list of the
structure overlay, then its value is the value of the corresponding element of the
prefix of the structure overlay.

For the evaluation of a structure overlay the prefix of the structure overlay and
its aggregate association list are evaluated.

union u1 { number a; string s; } p

p = (a=3) # the union aggregate specifies
alternative a with value 3

p = (s="abc") # the union aggregate specifies
alternative s with value "abc"

p = (d=5) # illegal because union u1 has no
alternative d
Saber® MAST Language Reference Manual 97
Z-2007.03

Chapter 7: Expressions
Type Conversions
Examples
The following structure overlays must be considered in the context of the
examples of Structure Aggregates.

Conditional Expressions

A conditional expression defines a value that is dependent on a condition.

conditional_expression ::=
if condition then expression else expression

condition ::=
expression

The third expression matches the longest text that describes a syntactically
correct expression.

The condition must be a simple expression of a numeric type. The second and
the third operand in a conditional expression must be simple expressions of
compatible types; their expected type is the supertype implied by their types.
The type of a conditional expression is the expected type of its second
operand.

For the evaluation of a conditional expression the condition is evaluated first. If
the value of the condition is nonzero, then the second operand is evaluated and
its value becomes the value of the conditional expression; otherwise, the third
operand is evaluated and its value becomes the value of the conditional
expression.

Type Conversions

Type conversions are necessary if the type of a simple expression differs from
the expected type of the expression. Automatic type conversion is defined
between compatible types.

p1<-(4) # the element values are:
a=4, b=2, c=3

p2<-(c=-1) # the element values are:
a=3, b=4, c=-1
98 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 7: Expressions
Constant Expressions
The conversion of a value that corresponds to the value of the literal undef
consists of setting it to the value of the literal undef in the expected type.

The conversion of a value from the predefined type NUMBER to the predefined
type INTEGER consists of setting the result to the integral part of the value.
The behavior is undefined if the integral part of the value is outside the range
defined for type INTEGER.

The conversion of a value from the predefined type INTEGER to the predefined
type NUMBER consists of setting the integral part of the result to the value and
the fractional part to zero.

The conversion of a value of an array type to another array type consists of the
conversion of each index range and the conversion of each element of the
value. For the conversion of an index range F to an index range T, if the upper
bound of T is not assumed then F is replaced by T; otherwise, F is replaced by
an index range whose lower bound is the lower bound of T and whose upper
bound is determined such that the length of T is equal to the length of F.

Constant Expressions

Certain expressions are said to be constant. There are three kinds of constant
expressions. An expression is locally constant if it can be evaluated during the
compilation of a design unit. An expression is argument constant if it can be
evaluated after the elaboration of the arguments of an instance. An expression
is globally constant if it can be evaluated as part of the elaboration of the design
unit in which it appears.

Locally Constant Expressions

An expression is locally constant if and only if each primary appearing in the
expression is locally constant. A locally constant primary is one of the following:

1. A literal of any type

2. A simple name that denotes an object decorated with the const attribute

3. A subelement of a locally constant primary, if and only if any index
expressions are locally constant expressions

4. A slice of a locally constant primary, if and only if its index constraint is locally
constant (see below)
Saber® MAST Language Reference Manual 99
Z-2007.03

Chapter 7: Expressions
Constant Expressions
5. A conditional expression, if and only if each of its three operands is a locally
constant expression

6. A locally constant expression enclosed in parentheses

A locally constant index range is either an index range specified by a type mark
or an index range whose lower bound, if present, and upper bound are locally
constant expressions. A locally constant index constraint is an index constraint
whose index range is locally constant. A locally constant type is a scalar type
other than type STRING, an array type whose element type is a locally
constant type and whose index constraints are all locally constant, or a
structure type or union type whose elements are of a locally constant type. A
locally constant pin type is a scalar pin type, an array pin type whose element
pin type is a locally constant pin type and whose index constraints are all locally
constant, or a structure pin type whose elements are of a locally constant pin
type.

Similarly, a relaxed locally constant index range is an index range that is either
locally constant or that has an upper bound that is assumed. A relaxed locally
constant index constraint is an index constraint whose index range is relaxed
locally constant. A relaxed locally constant type is a scalar type, an array type
whose element type is a relaxed locally constant type and whose index
constraints are all relaxed locally constant, or a structure type or union type
whose elements are of a relaxed locally constant type. A relaxed locally
constant pin type is a scalar pin type, an array pin type whose element pin type
is a relaxed locally constant pin type and whose index constraints are all
relaxed locally constant, or a structure pin type whose elements are of a
relaxed locally constant pin type.

Argument Constant Expressions

An expression is argument constant if and only if each primary appearing in the
expression is argument constant. An argument constant primary is one of the
following:

1. A locally constant primary

2. A simple name that denotes a parameter declared in the header of a
template

3. A simple name that denotes a parameter declared in the body of a template,
if and only if it is neither the target of an assignment statement nor the actual
argument of a function call calling the ADDR function in a statement
decorated with the parameters attribute
100 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 7: Expressions
Constant Expressions
4. A subelement of an argument constant primary, if and only if it is not the
target of an assignment statement and any index expressions are argument
constant expressions

5. A slice of an argument constant primary, if and only if it is not the target of
an assignment statement and its index constraint is argument constant (see
below)

6. An array aggregate, if and only if each expression in its expression list is an
argument constant expression

7. A structure aggregate, if and only if the expression in each aggregate
association element of its aggregate association list is an argument
constant expression

8. A union aggregate, if and only if the expression in its aggregate association
element is an argument constant expression

9. A function call whose function name denotes a pure function and whose
actual arguments are argument constant expressions

10. An argument constant expression enclosed in parentheses

An argument constant index range is either an index range specified by a type
mark or an index range whose lower bound, if present, and upper bound are
argument constant expressions. An argument constant index constraint is an
index constraint whose index range is argument constant. An argument
constant type is a scalar type other than type STRING, an array type whose
element type is an argument constant type and whose index constraints are all
argument constant, or a structure type or union type whose elements are of an
argument constant type. An argument constant pin type is a scalar pin type, an
array pin type whose element pin type is an argument constant pin type and
whose index constraints are all argument constant, or a structure pin type
whose elements are of an argument constant pin type.

Similarly, a relaxed argument constant index range is an index range that is
either argument constant or that has an upper bound that is assumed. A
relaxed argument constant index constraint is an index constraint whose index
range is relaxed argument constant. A relaxed argument constant type is a
scalar type, an array type whose element type is a relaxed argument constant
type and whose index constraints are all relaxed argument constant, or a
structure type or union type whose elements are of a relaxed argument
constant type. A relaxed argument constant pin type is a scalar pin type, an
array pin type whose element pin type is a relaxed argument constant pin type
and whose index constraints are all relaxed argument constant, or a structure
pin type whose elements are of a relaxed argument constant pin type.
Saber® MAST Language Reference Manual 101
Z-2007.03

Chapter 7: Expressions
Constant Expressions
Globally Constant Expressions

An expression is globally constant if and only if each primary appearing in the
expression is globally constant. A globally constant primary is one of the
following:

1. An argument constant primary

2. A simple name that denotes a parameter declared in the body of a template

3. A subelement of a globally constant primary, if and only if any index
expressions are globally constant expressions

4. A slice of a globally constant primary, if and only if its index constraint is
globally constant (see below).

5. An array aggregate, if and only if each expression in its expression list is a
globally constant expression

6. A structure aggregate, if and only if the expression in each aggregate
association element of its aggregate association list is a globally constant
expression

7. A union aggregate, if and only if the expression in its aggregate association
element is a globally constant expression

8. A function call whose function name denotes a pure function and whose
actual arguments are globally constant expressions

9. The simulator variables STATISTICAL and WORST_CASE

10. A globally constant expression enclosed in parentheses

A globally constant index range is either an index range specified by a type
mark or an index range whose lower bound, if present, is a globally constant
expressions and whose upper bound is either assumed or a globally constant
expression. A globally constant index constraint is an index constraint whose
index range is globally constant. A globally constant type is a scalar type, an
array type whose element type is a globally constant type and whose index
constraints are all globally constant, or a structure type or union type whose
elements are of a globally constant type. A globally constant pin type is a scalar
pin type, an array pin type whose element pin type is a globally constant pin
type and whose index constraints are all globally constant, or a structure pin
type whose elements are of a globally constant pin type.

An expression is relaxed globally constant if and only if each primary appearing
in the expression is relaxed globally constant. A relaxed globally constant
102 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 7: Expressions
Constant Expressions
primary is a globally constant primary or a name that denotes an imported
object of class parameter.
Saber® MAST Language Reference Manual 103
Z-2007.03

Chapter 7: Expressions
Constant Expressions
104 Saber® MAST Language Reference Manual
Z-2007.03

8
8Statements

This chapter describes the three classes of statements.

statement ::=
 executable_statement
| nonexecutable_statement
| generic_statement

statement_attribute ::=
 parameters
| equations
| values
| states
| control_section

There are three classes of statements. Executable statements define the
algorithm in a function or the behavior of a design entity. Nonexecutable
statements define the structure of a design entity. Generic statements can be
used to define the algorithm in a function, the behavior or the structure of a
design entity, or specifications in a design entity.

Some statements may include the specification of a statement attribute. Such
attributes are said to decorate the statement. Additionally, each statement that
is guarded (see Loop Statement, When Statement, and Conditional Statement)
is implicitly decorated with the statement attributes of its guard. Similarly, each
statement that is a sentence in a compound statement is implicitly decorated
with the statement attributes of the compound statement. Implicit decorations
as described in this paragraph are said to be inherited.

It is an error if a function statement or a nonexecutable statement is decorated
with any statement attribute. It is also an error if an executable statement or a
generic statement in a template body is decorated with more than one
statement attribute.
Saber® MAST Language Reference Manual 105
Z-2007.03

Chapter 8: Statements
Executable Statements
Note
Some statements are implicitly decorated with statement attributes in additional
ways.

Executable Statements

Executable statements define the algorithm in a function or the behavior of a
design entity.

executable_statement ::=
 assignment_statement
| loop_statement
| exit_statement
| next_statement
| return_statement
| when_statement
| equation_statement

Statements with the same statement attributes (including no statement
attributes) execute in the order in which they appear. It is an error if an
executable statement is decorated with the control_section attribute.

Assignment Statement

An assignment statement either replaces the value of zero or more objects with
new values specified by an expression or defines characteristic expressions
(see Equation Statements).

assignment_statement ::=
[statement_attribute] [target =] expression eos

target ::=
 name
| inline_group

An assignment statement is said to be a simple assignment statement if the
expression is a simple expression. The target, if present, of a simple
assignment statement must be a name that denotes an object. The object must
not be an imported object or a formal argument of a function. If the name has
not been declared, and if the simple assignment statement has neither an
explicit nor an inherited decoration, then the name must be a simple name, and
106 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 8: Statements
Executable Statements
the simple assignment statement implicitly declares the simple name, as
follows.
■ If the expression is a globally constant expression, then the assignment

statement declares an object of class parameter whose name is the simple
name and whose type is the type of the expression.

■ If the simple name is the external name or the internal name of a formal
connection of the design entity in which the assignment statement appears,
then the assignment statement declares an object of class analog system
variable whose kind is var. The name of the object is the external name of
the formal connection and the type of the object is the type of the
expression.

■ Otherwise, the assignment statement declares an object of class analog
local variable whose kind is val and whose name is the simple name and
whose type is the type of the expression.

It is an error if the type of the expression cannot be determined. It is also an
error if a simple assignment statement whose target has not been declared
appears in a function body.

If the expression is not a simple expression, then the assignment statement is
equivalent to a sequence of simple assignment statements, one for each
simple expression in the expression. Each simple assignment statement in the
equivalent sequence is decorated with the statement attributes, if any, of the
assignment statement. The target of each simple assignment statement in the
equivalent sequence is determined as follows.
■ If the assignment statement has no target, then each simple assignment

statement in the equivalent sequence has no target.
■ If the target of the assignment statement is a name that denotes an object,

then this name is the target of the first simple assignment statement in the
equivalent sequence. The remaining simple assignment statements in the
equivalent sequence have no target.

■ If the target of the assignment statement is an inline group or a name that
denotes a group, then the target, if any, of each simple assignment
statement in the equivalent sequence is the name of the object at the
matching position in the canonical group corresponding to the group. It is an
error if the cardinality of the group is greater than the cardinality of the
expression.

It is an error if the target of an assignment statement that is not a simple
assignment statement is a name that has not been declared. It is also an error
if an assignment statement that is decorated with the equations attribute has
Saber® MAST Language Reference Manual 107
Z-2007.03

Chapter 8: Statements
Executable Statements
no target or is not a simple assignment statement. Similarly, it is an error if an
assignment statement decorated with the values attribute has no target.

Some simple assignment statements in a template body are implicitly
decorated with a statement attribute, as follows.
■ If the object denoted by the target is of class parameter, or if the assignment

statement has no target and the expression is a globally constant
expression, then the simple assignment statement is implicitly decorated
with the parameters attribute.

■ If the object denoted by the target is a branch variable or an analog system
variable of kind var, then the simple assignment statement is implicitly
decorated with the equations attribute.

■ If the object denoted by the target is an analog local variable of kind val or a
simulator variable, and if the assignment statement is not decorated with the
equations attribute (implicitly or explicitly), then the simple assignment
statement is implicitly decorated with the values attribute.

It is an error if the target denotes an analog system variable of kind ref. It is
also an error if the target denotes an object of class state and the assignment
statement is not guarded by a when statement. Finally, it is an error if a
subelement of the target of a simple assignment statement is of an
unconstrained array type or of the predefined type STRING and the simple
assignment statement is neither a function statement nor a statement
decorated with the parameters attribute.

The simple assignment statements in the equivalent sequence corresponding
to an assignment statement in a template body must belong to one of the
following categories:
■ Each simple assignment statement is decorated with only the parameters

attribute.
■ Each simple assignment statement is decorated with either the values

attribute or the equations attribute, but not with any other attributes.
■ Each simple assignment statement is decorated only with the states

attribute.

It is an error if an assignment statement is decorated with the parameters
attribute and the expression is not globally constant. It is also an error if the
target of an assignment statement is decorated with the external or the const
attribute.

An assignment statement that is decorated with the equations attribute defines
the stamp expression (see Equation Statements) expression - target. The
108 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 8: Statements
Executable Statements
execution of an assignment statement decorated with the equations attribute
consists of the following steps for each scalar subelement S of the target:

1. An analog net N is selected as follows:

• If S is a branch through variable or an analog system variable of kind
var, then N is the analog net associated with S. It is an error if S has
been marked.

• Otherwise, N is an analog net that is associated with an unmarked
scalar subelement of a branch through variable or an analog system
variable of kind var that is not a subelement of the target of an
assignment statement decorated with the equations attribute. It is an
error if no analog net can be selected.

2. The characteristic expression associated with N is replaced by an
expression that is the sum of the characteristic expression and the scalar
subelement corresponding to S of the stamp expression.

3. The analog variable associated with N is marked.

For the execution of an assignment statement that is not decorated with the
equations attribute, the expression is evaluated first. Then, the following steps
are performed for a simple assignment statement or for each simple
assignment statement in the sequence equivalent to the assignment statement:

1. The target, if present, of the simple assignment statement is evaluated; its
type must be type compatible with the type of the simple expression.

2. If the statement is decorated with the parameters attribute, then the target,
if present, of the simple assignment statement is update elaborated (see
Update Elaboration of an Object) in the context of the value of the simple
expression.

3. The value of the simple expression becomes the new value of the object
denoted by the target, if present.
Saber® MAST Language Reference Manual 109
Z-2007.03

Chapter 8: Statements
Executable Statements
Notes
1. The type of the expression cannot be determined if, for example, the

expression is a structure aggregate or a union aggregate, or if a name
appears in the expression that has not been declared.

2. The execution of an assignment statement without target has no effect
unless the evaluation of the expression has a side effect (for example,
writing a string).

3. Certain semantic checks can only be made during the execution of an
assignment statement if the expression is a function call calling a foreign
function with an unspecified profile.

Rationale
The introduction of statement attributes provides for a consistent treatment of
templates written with and without sections.

The definition of an assignment statement with optional target instead of
separate assignment statement and expression statement provides for
consistent treatment of statements whose expression is a group (e.g. the result
of a function call) and whose target has a cardinality that is smaller than the
cardinality of the group.

These definitions allow the target of an assignment statement to be an
unconstrained array only if the target is of class parameter. The reason for this
restriction is simulation efficiency.

Loop Statement

A loop statement executes a statement repeatedly.

loop_statement ::=
[statement_attribute] iteration_scheme { format_effector } statement

iteration_scheme ::=
 while (condition)
| for ([initial_assignment] ; [condition] ; [update_assignment])

assignment ::=
simple_name = expression

The simple name in an assignment must denote an object of a discrete type or
a numeric type. The type of the expression must be type compatible with the
type of the object.
110 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 8: Statements
Executable Statements
A loop with a for iteration scheme with no condition is equivalent to a loop with
a for iteration scheme whose condition is the integer literal 1.

The statement is said to be guarded by the loop statement. Additionally, the
statement is guarded by any statement that guards the loop statement. These
statements are collectively called the guards of the statement.

A loop statement is implicitly decorated with the statement attributes of the
statement that it guards.

The execution of a loop statement with a while iteration scheme consists of the
execution of one or more iterations. The execution of one iteration consists of
the evaluation of the condition and the execution of the statement.

The execution of a loop statement with a for iteration scheme consists of the
execution of an initial iteration followed by the execution of subsequent
iterations, if any. The execution of the initial iteration consists of the execution of
the initial assignment, if present, followed by the evaluation of the condition,
followed by the execution of the statement. The execution of any subsequent
iteration consists of the execution of the update assignment, if present, followed
by the evaluation of the condition, followed by the execution of the statement.
For the execution of an assignment, the expression and the simple name are
evaluated, then the value of the expression becomes the new value of the
object denoted by the simple name.

Execution of an iteration is complete when the statement has been executed in
its entirety, or when a next statement associated with the loop statement is
executed, or when the loop statement completes. Execution of a loop
statement is complete when the value of the condition is zero, when an exit
statement associated with the loop statement is executed, or when a return
statement appearing in the same major declarative region is executed. A loop
statement is erroneous if it never completes.
Saber® MAST Language Reference Manual 111
Z-2007.03

Chapter 8: Statements
Executable Statements
Examples

Note
It is a consequence of these rules that a loop with a for iteration scheme is
equivalent, except for the behavior of the next statement, to the following
sequence of statements:

initial_assignment ;
while (condition) {

statement
update_assignment ;
}

References
Conditional Expressions

Exit Statement

An exit statement is used to complete the execution of a loop statement.

exit_statement ::=
exit eos

An exit statement is associated with the innermost loop statement guarding the
exit statement. It is an error if an exit statement is not guarded by a loop
statement.

The execution of an exit statement completes the execution of the loop
statement associated with the exit statement.

Note
Several exit statements may be associated with the same loop statement.

p2 = 1
while (p2 < 100)

p2 = 2 * p2

Determine the smallest
power of 2 larger
than 100

fac = 1
for (i=2;i<=n;i=i+1)

fac = fac * i

Determine n factorial
112 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 8: Statements
Executable Statements
Next Statement

A next statement is used to complete the execution of one iteration of a loop
statement.

next_statement ::=
next eos

A next statement is associated with the innermost loop statement guarding the
next statement. It is an error if a next statement is not guarded by a loop
statement.

The execution of a next statement completes the execution of the current
iteration of the loop statement associated with the next statement.

Note
Several next statements may be associated with the same loop statement.

Return Statement

A return statement is used to complete the execution of a function body.

return_statement ::=
return eos

It is an error if a return statement appears in a template body.

The execution of a return statement completes the execution of a function body.

When Statement

A when statement defines a portion of the event-driven behavior of a design
entity.

when_statement ::=
[statement_attribute]

when (condition) { format_effector } statement

The statement is said to be guarded by the when statement. The when
statement is called the guard of the statement. It is an error if a when statement
is a guarded statement.

A when statement is implicitly decorated with the states attribute and with the
statement attributes of the statement that it guards.
Saber® MAST Language Reference Manual 113
Z-2007.03

Chapter 8: Statements
Executable Statements
A when statement is said to be sensitive to a state S if its condition includes
one of the following:

A function call calling the predefined function EVENT_ON whose first argument
is S.

A function call calling the predefined function THRESHOLD. S is an implicit
state maintained by the kernel.

A name that denotes one of the simulator variables DC_INIT, DC_START,
DC_DONE, TIME_INIT, TR_START, TR_DONE, or TIME_STEP_DONE. S is
the state corresponding to the simulator variable.

It is an error if a when statement is not sensitive to any state.

For the execution of a when statement the condition is evaluated first. If the
condition evaluates to a nonzero value, then the statement guarded by the
when statement is executed.

Equation Statements

Equation statements, together with assignment statements decorated with the
equations attribute, define stamp expressions that are used to construct the
characteristic expressions used by the analog solver to determine the values of
the analog variables. Characteristic expressions constructed from stamp
expressions are called explicit.

equation_statement ::=
 contribution_statement
| labeled_equation_statement
| make_statement

Each equation statement is implicitly decorated with the equations attribute. It
is an error if a name that denotes an imported object of class analog local
variable appears in an expression in a statement decorated with the equations
attribute.

Contribution Statement
A contribution statement replaces characteristic expressions specified by a
name.
114 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 8: Statements
Executable Statements
contribution_statement ::=
[statement_attribute] name contribution_op expression eos

contribution_op ::= += | -=

The name must be a constant name that is one of the following:
■ A branch name that denotes a through branch.
■ The name of a branch through variable.
■ The name of an analog system variable of kind var or ref.

The expression must be a simple expression whose type is type compatible
with the type of the name, and for each scalar subelement of the name there
must be a matching scalar subelement of the expression.

The stamp expression defined by the contribution statement is determined as
follows. If the name is an analog system variable of kind var or ref, then the
stamp expression defined by the contribution statement is the expression.
Otherwise, the stamp expression defined by the contribution statement is
expression - name.

The execution of a contribution statement consists of the following steps for
each scalar subelement S of the object denoted by the name:

1. The analog net N associated with S is selected. It is an error if S has been
marked.

2. The characteristic expression associated with N is replaced by an
expression that is:

• if the contribution operator is +=, the sum of the characteristic
expression and the scalar subelement corresponding to S of the stamp
expression.

• if the contribution operator is -=, the difference of the characteristic
expression and the scalar subelement corresponding to S of the stamp
expression.

3. If S is a subelement of a branch through variable, then S is marked.

Labeled Equation Statement
A labeled equation statement replaces characteristic expressions specified by
a label.
Saber® MAST Language Reference Manual 115
Z-2007.03

Chapter 8: Statements
Executable Statements
labeled_equation_statement ::=
[statement_attribute] name : lhs_expression = rhs_expression eos

The name is said to be the label of the labeled equation statement; it must be a
constant name that denotes an analog system variable of kind var or an
explicitly declared branch through variable. It is an error if the label is a name
that denotes an imported object.

Both expressions must be simple expressions of compatible constant types.
Their types must be type compatible with the type of the label, and for each
scalar subelement of the label there must be a matching scalar subelement of
the lhs expression and of the rhs expression.

The stamp expression defined by the labeled equation statement is
lhs_expression - rhs_expression.

The execution of a labeled equation statement consists of the following steps
for each scalar subelement S of the label:

1. The analog net N associated with S is selected. It is an error if S has been
marked.

2. The characteristic expression associated with N is replaced by an
expression that is the sum of the characteristic expression and the scalar
subelement corresponding to S of the stamp expression.

3. S is marked.

Note
It is a consequence of these definitions that a labeled equation statement
replaces characteristic expressions in an identical way as the contribution
statement name += lhs_expression - rhs_expression.

Make Statement

A make statement replaces unspecified characteristic expressions.

make_statement ::=
[statement_attribute] make lhs_expression = rhs_expression eos

Both expressions must be simple expressions of compatible constant types
with scalar subelements of a numeric type, and for each scalar subelement of
the lhs expression there must be a matching scalar subelement of the rhs
expression.
116 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 8: Statements
Nonexecutable Statements
The stamp expression defined by the make statement is rhs_expression -
lhs_expression.

The execution of a make statement consists of the following steps for each
scalar subelement S of the stamp expression:

1. An analog net N that is associated with an unmarked scalar subelement of
a branch through variable or an analog system variable of kind var is
selected. It is an error if no analog net can be selected.

2. The characteristic expression associated with N is replaced by an
expression that is the sum of the characteristic expression and S.

3. The analog variable associated with N is marked.

Note
The order in which analog nets are selected is not defined by the language.

Nonexecutable Statements

Nonexecutable statements define the structural composition of a design entity.

nonexecutable_statement ::=
instantiation_statement

It is an error if a nonexecutable statement is a guarded statement.

Instantiation Statement

An instantiation statement defines a component of the design entity in which it
appears and specifies the actual connections, if any, to be associated with the
formal connections of the component and the actual arguments, if any, to be
associated with the formal arguments of the component. The component is one
instance of the design entity denoted by the prefix of the instance name.
Saber® MAST Language Reference Manual 117
Z-2007.03

Chapter 8: Statements
Nonexecutable Statements
instantiation_statement ::=
instance_name connection_association_list

[= instance_argument_association_list] eos

connection_association_list ::=
{ connection_association_element }

connection_association_element ::=
[connection_formal_part :] connection_actual_part

connection_formal_part ::= extended_name

The instantiation statement declares the instance name by associating it with
the component. It is an error if the design entity denoted by the prefix of the
instance name has not been analyzed.

The connection association list establishes a correspondence between the
formal connections, the pins decorated with the external attribute, and the
analog system variables decorated with the external attribute of an instance of
a design entity, and actual pins, states, and analog system variables declared
in the design entity in which the instantiation statement appears. Each
connection association element associates one actual object with a formal
connection of the instance, or a pin or analog system variable decorated with
the external attribute of the instance, or a subelement thereof. The
corresponding formal connections are determined either by position or by
name.

An connection association element is said to be named if it contains a
connection formal part; it is said to be positional otherwise. For a named
connection association element the connection formal part must specify either
the external name of a formal connection of the design entity denoted by the
prefix of the instance name, or a subelement, a slice, or a slice of a
subelement, of such an external name. For a positional connection association
element the formal connection is implicitly specified by the textual position of
the connection association element in the connection association list.

Named connection association elements may appear in any order, but if named
and positional connection association elements appear in the same connection
association list, then any named connection association element must follow all
positional connection association elements.

The connection formal part and the connection actual part of a connection
association element must both be constant names.
118 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 8: Statements
Nonexecutable Statements
If the connection actual part of a connection association element is specified by
a simple name or a decimal name that has not been declared, then the
connection association element implicitly declares an object:
■ If the simple name or decimal name is the external name or internal name

of a template connection element of the design entity in which the
instantiation statement appears, then the connection association element
declares an object whose name is the external name of the template
connection element. The corresponding declaration is deemed to occur
following any previously declared header declarative item.

■ Otherwise, the connection association element declares an object whose
name is the simple name or the decimal name. The corresponding
declaration is deemed to occur in the major declarative region formed by the
template in which the instantiation statement appears, immediately before
the instantiation statement or any compound statement whose declarative
region encloses the instantiation statement.

The class, subclass, and type or unit of the implicitly declared object is the
class, subclass, and type or unit, respectively, of the object denoted by the
connection formal part of the connection association element. If the object is of
class analog system variable, then its kind is ref. It is an error if a connection
association element implicitly declares an object and the type of the connection
formal part is not locally constant. It is also an error if the object denoted by the
connection actual part has not been declared and the name is neither a simple
name nor a decimal name.

The objects denoted by the connection actual part and the connection formal
part of a connection association element must satisfy one of the following rules.
■ Both objects are of class pin and are pin type compatible.
■ The object denoted by the connection formal part is an analog system

variable of kind ref, the object denoted by the connection actual part is an
analog system variable, and the two objects are unit compatible.

■ The object denoted by the connection formal part is an analog system
variable of kind var, the object denoted by the connection actual part is an
analog system variable of kind ref or a branch through variable, and the two
objects are unit compatible.

■ Both objects are of class state and are unit compatible. If the object A
denoted by the connection actual part has a mode, then one of the following
conditions must be true:

• The mode of the object denoted by the connection formal part is input
and the mode of A is either input or inout.
Saber® MAST Language Reference Manual 119
Z-2007.03

Chapter 8: Statements
Nonexecutable Statements
• The mode of the object denoted by the connection formal part is output
and the mode of A is either output or inout.

• The mode of the object denoted by the connection formal part is inout
and the mode of A is inout.

If the connection formal part of a connection association element denotes an
object of a composite type or pin type, then the connection association element
associates each scalar subelement of the connection formal part with the
corresponding scalar subelement of the connection actual part. If a subelement
of the formal connection is of an unconstrained array type or an unconstrained
array pin type, then the upper bound of each assumed index range of the
subelement is defined by the association such that the length of the index
range is equal to the length of the index range of the corresponding subelement
of the actual connection at the same index position.

If the name of the connection formal part denotes an entity declared in the
template denoted by the prefix of the instance name, then the formal
connection is said to be associated in whole. Otherwise, the formal connection
is said to be associated individually. For a formal connection that is associated
individually, each scalar subelement must be associated exactly once with an
actual connection, or a subelement thereof, in a connection association list.

A connection association element need not include a connection association
element for a formal connection. It is an error if a formal connection is
associated more than once with an actual connection in a connection
association list.

The instance argument association list associates actual values with the formal
arguments of the instance and with parameters declared in the template
denoted by the prefix of the instance name that are decorated with the external
attribute. It is an error if the actual expression in any argument association
element of the instance argument association list is not a relaxed globally
constant expression.
120 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 8: Statements
Nonexecutable Statements
Examples

Notes
1. A formal connection denoted by a decimal name can only be associated in

whole.

2. For a formal connection associated individually, the requirement that each
scalar subelement be associated exactly once uniquely defines the index
ranges of any subelement of the object denoted by the connection formal
part that is of an array type or an array pin type.

3. The upper bound of a subelement of a formal connection that is of an
unconstrained array type cannot be determined until the model is elaborated
if the corresponding subelement of the actual connection is itself of an
unconstrained array type.

4. Pins and analog system variables decorated with the external attribute can
only be associated in a named connection association element since they
are not part of the connection list.

Rationale
The type or unit of the connection formal part of a connection association
element that implicitly declares an object must be locally constant to allow the

state number s1, s2, s3[2]
electrical dc
...
template driver bus
state number bus[*]
external electrical vcc
{ ... }

driver.1 s3 # bus has length 2

driver.2 bus[1]:s1 \
bus[2]:s2 bus[3:4]:s3

bus has length 4

driver.3 s3 vcc:dc # bus has length 2, ex-
ternal pin associated
explicitly

driver.4 s1 # illegal: type mismatch

driver.5 bus[2:3]:s3 # illegal: no association
for bus[1]
Saber® MAST Language Reference Manual 121
Z-2007.03

Chapter 8: Statements
Generic Statements
elaboration of a design hierarchy to proceed in a top-down fashion. Without this
restriction certain instances would have to be elaborated bottom-up, and
complicated rules would have to define what is legal. This has an implication on
the specification of array connections: An actual object associated with a formal
connection that has a subelement of an array type must be declared explicitly
unless the index ranges of the subelement of the object denoted by the
connection formal part are locally constant.

Since the connection actual part of a connection association element can be
specified as a decimal name, it is not possible to support the association of a
formal connection with an expression.

The requirement that the design unit denoted by the prefix of the instance
name be analyzed, not just declared, makes it illegal to write an instantiation
statement that instantiates a design unit that is being analyzed (i.e., recursive
instantiations).

Generic Statements

Generic statements can be used to define the algorithm in a function, the
behavior or the structure of a design entity, or specifications of a design entity.

generic_statement ::=
 conditional_statement
| compound_statement

A generic statement decorated, either explicitly or implicitly, with the
parameters, states, values, or equations attribute defines the behavior of a
design entity. A generic statement decorated, either explicitly or implicitly, with
the control_section attribute defines specifications of a design entity. A
generic statement decorated with no attributes defines the structure of a design
entity or the algorithm in a function.

Conditional Statement

A conditional statement selects for execution or elaboration one or none of the
statements, based on the value of a condition.
122 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 8: Statements
Generic Statements
conditional_statement ::=
[statement_attribute] if (condition) { format_effector }

then_part [else_part]

then_part ::=
[then { format_effector }] conditional_sentence

else_part ::=
else { format_effector } conditional_sentence

conditional_sentence ::=
 statement
| control_section_specification

The else part is associated with the closest conditional statement in the
declarative region that does not have an else part. The statements of the then
part and the else part are said to be guarded by the conditional statement.
Additionally, the statements of the then part and the else part are guarded by
any statement that guards the conditional statement. These statements are
collectively called the guards of the statements of the then part and the else
part.

A conditional statement is implicitly decorated with the statement attributes of
the statements that it guards. It is an error if a conditional statement is
decorated with the parameters or control_section attribute and the condition
is not globally constant. It is also an error if a name that denotes an imported
object of class analog local variable is a primary in the condition of a conditional
statement that is decorated with the equations or values attribute. Finally, it is
an error if the conditional sentence in the then part or else part of a conditional
statement decorated with the control_section attribute is an executable
statement or a nonexecutable statement, or if the conditional sentence in the
then part or else part of a conditional statement not decorated with the
control_section attribute is a control section specification.

For the evaluation of a conditional statement, the condition is evaluated first. If
the value of the condition is nonzero, then the statement of the then part is
selected. Otherwise, if the conditional statement includes the else part, then
the statement of the else part is selected. Otherwise, no statement is selected.
Saber® MAST Language Reference Manual 123
Z-2007.03

Chapter 8: Statements
Generic Statements
Example

After evaluation of the statement, if the value of a is greater than 0, then the
value of c is either 1 or -1, but never 0. If the value of a is equal to or less than
0, then the value of c is undefined.

References
Conditional Expressions

Compound Statement

A compound statement groups a sequence of sentences into a single syntactic
unit.

compound_statement ::=
[statement_attribute] "{" { compound_sentence } "}" eos

compound_sentence ::=
 compound_declarative_item
| statement
| eos

compound_declarative_item ::=
 type_declaration
| unit_declaration
| variable_declaration
| simulator_variable_declaration
| group_declaration
| control_section_specification

Each statement that is a sentence in a compound statement is guarded by any
statement that guards the compound statement.

The compound statement is implicitly decorated with the statement attributes of
any statement that is a sentence in the compound statement. Conversely, each

if (a > 0)
if (b > 0)c = 1

else
if (b > 0)c = 0
elsec = -1

Associated with if statement
on preceding line
Associated with if statement
on preceding line
124 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 8: Statements
Generic Statements
statement that is a sentence in a compound statement is implicitly decorated
with the statement attributes of the compound statement.

It is an error if a compound declarative item or a statement that is not allowed in
the declarative region enclosing the compound statement is a compound
sentence. It is also an error if an executable statement, a nonexecutable
statement, or a compound declarative item other than a control section
specification appears in a compound statement that is decorated with the
control_section attribute.

Note
It is a consequence of these rules that the statement attributes of a compound
statement and of all statements that are sentences in the compound statement
are the same.
Saber® MAST Language Reference Manual 125
Z-2007.03

Chapter 8: Statements
Generic Statements
126 Saber® MAST Language Reference Manual
Z-2007.03

9
9Scope and Visibility

This chapter describes the rules defining the scope of a declaration and the
rules defining which identifier is visible at various places in the text of a
description.

Declarative Regions

A declarative region is a portion of the text of a description. The following each
form a single declarative region:
■ The predefined language environment
■ A compilation unit
■ A template header together with the template body
■ A function header together with the function body
■ A structure type declaration
■ A structure pin type declaration
■ A union type declaration
■ All statements in a template that are decorated with the control_section

attribute. The declarative region includes all such statements in the order in
which the statements occur.

■ A compound statement that is not decorated with the control_section
attribute.

In each of these cases the declarative region is said to be associated with the
corresponding statement or declaration.

There are two kinds of declarative regions. A compound statement is a minor
declarative region, all other declarative regions are major declarative regions.
Saber® MAST Language Reference Manual 127
Z-2007.03

Chapter 9: Scope and Visibility
Scope of Declarations
Declarative regions can be nested. A declaration is said to occur immediately
within a declarative region if this region is the innermost declarative region that
encloses the declaration, not counting the declarative region (if any) associated
with the declaration itself.

Although some declarative regions include disjoint parts, they are considered
logically continuous portions of text.

Scope of Declarations

The scope of a declaration is the portion of a description over which that
declaration is active. The scope of the declaration is also the scope of any
entity declared by the declaration and the scope of any identifier associated
with an entity by the declaration. It is legal to refer to an entity only at certain
places within its scope. These places are defined by the rules of visibility and
overloading.

The immediate scope of a declaration is a portion of the declarative region
immediately enclosing the declaration. The immediate scope extends from the
beginning of the declaration to the end of the declarative region. In addition, the
scope of the following declarations extends beyond the immediate scope to the
end of the scope of the enclosing declaration:
■ A declaration decorated, either explicitly or implicitly, with the export

attribute
■ A declaration of the type or pin type of a formal connection
■ A declaration of a function argument
■ An element declaration in a structure type declaration
■ An element declaration in a union type declaration
■ An element pin declaration in a structure pin type declaration

Note
The scope rules apply to all kinds of declarations, including implicit
declarations.
128 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 9: Scope and Visibility
Visibility
Visibility

The visibility rules and, in the case of overloaded declarations, the overloading
rules, determine the meaning of a given identifier appearing at a particular
place in the text of a description.

A declaration is said to be directly visible if the identifier associated with an
entity by the declaration is sufficient to denote the entity. A declaration is visible
wherever it is directly visible, and additionally at places where some name
(such as a selected name or a qualified name) can denote the entity.

A declaration is directly visible within certain parts of its scope. For a template
declaration this part starts at the end of the template header definition; for all
other declarations the part starts at the end of the declaration element that
associates the identifier with an entity. Additionally, a declaration is visible at the
following places:

1. For a design unit contained in a design library: at the place of the suffix in a
qualified name whose prefix denotes the library.

2. For the external name of a template connection element: in the connection
formal part of a connection association element of an instantiation
statement whose instance_name prefix denotes the template; also at the
place of the suffix of a qualified name whose prefix denotes the template.

3. For the name of the type of a formal connection: in the implicit declaration
of the actual connection associated with the formal connection.

4. For a template argument: at the place of the formal in an argument
association element of the argument association list of a corresponding
instantiation statement; also at the place of the suffix of a qualified name
whose prefix denotes the template.

5. For a function argument: at the place of the formal in an argument
association element of the argument association list of a corresponding
function call.

6. For a declaration decorated, either explicitly or implicitly, with the export
attribute: at the place of the simple name in an imported name whose
instance name has a prefix that denotes the template containing the
declaration.
Saber® MAST Language Reference Manual 129
Z-2007.03

Chapter 9: Scope and Visibility
Visibility
7. For a variable declaration appearing immediately within a structure type
declaration: at the place of the simple name in a selected name whose prefix
denotes an object of the structure type; also at the place of the simple name
in an association element of a structure aggregate or structure overlay of the
type.

8. For a pin declaration appearing immediately within a structure pin type
declaration: at the place of the simple name in a selected name whose prefix
denotes an object of the structure pin type.

9. For a variable declaration appearing immediately within a union type
declaration: at the place of the simple name in a selected name whose prefix
denotes an object of the union type; also at the place of the simple name in
the single association element of a union aggregate of the type.

A declaration can be hidden within certain parts of its scope. For a declaration
appearing immediately within a declarative region the following rules apply:

1. A group declaration or an object declaration other than a simulator variable
declaration is hidden in any nested major declarative region.

2. A simulator variable declaration is hidden in any nested major declarative
region that is associated with a function definition.

3. A declaration, template definition, or function definition is hidden within the
immediate scope of another declaration that associates the same identifier
with an entity in the same overloading class.

It is an error if a declaration is hidden by another declaration and the immediate
scope of the hidden and the hiding declarations end at the same place.
130 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 9: Scope and Visibility
Visibility
 Examples

Note
It is a consequence of the visibility rules that it is an error if more than one
declaration associating the same identifier with an entity in the same
overloading class appears in the same declarative region.

template x p m = y, z
electrical p, m
number y
x..y z = 0
{...}

legal since the declaration for
template x is visible at the
end of line 1

template t1 a b
{val v vab
vab = v(a,b)

x.1 a b = 1k
}

error: a and b have no legal
interpretation, since object
class and type are unknown

template t2 a b
{val v vab
x.1 a b = 1k

vab = v(a,b)
}

per 8.2.1 a and b are declared
as pins of pin type electrical
legal: a and b now have a legal
interpretation

unit {"a","b","c"} u
number n = 1
template t3
{
 function r = x(a)
 number r, a
 {...}
 number time
 ...
 number u v = n
 ...
 x.1 a b = 1k
}

declaration hides template x
defined above

declaration hides predefined
simulator variable time
error: although unit u is
visible here, number n is not
error: template x is not visible
Saber® MAST Language Reference Manual 131
Z-2007.03

Chapter 9: Scope and Visibility
Overload Resolution
Overload Resolution

An identifier that is associated with more than one entity in a declarative region
is said to be overloaded. Overloading is defined for names and enumeration
literals. Overload resolution determines the entity to which an identifier refers in
a particular context when according to the visibility rules more than one
meaning is acceptable.

Overloading Classes

Overload resolution uses the concept of overloading classes (also called name
spaces). Within each overloading class the identifiers denoting members of
that class must be unique in a declarative region.

The language predefines the following overloading classes:

1. Names of design libraries, templates and functions

2. Names of units

3. Names of types and pin types

4. Names of parameters, variables, states, analog variables, pins, simulator
variables, and groups

5. Instance names

6. Names of unreserved keywords

Within overloading class 1 (Names of design libraries, templates and functions)
the names of foreign functions form a subclass whose members must be
unique among all declarative regions in a design.
132 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 9: Scope and Visibility
Overload Resolution
Other overloading classes may be defined as follows.

1. The definition of an enumeration type defines an overloading class
containing the enumeration literals of the type.

Examples

Notes
1. The entity associated with an unreserved keyword is the keyword itself.

Similarly, the entity associated with a control_section specification is the
specification itself.

2. It is a consequence of these definitions and the definitions in Compilation
Units that a template or function cannot be named WORK.

Rationale
Functions and templates are design units that can be compiled separately. The
ability to uniquely identify a design unit by its name mandates that templates
and functions are in the same name space. Design libraries are in the same
name space because a qualified name is used to specify both an entity in a
template and a design unit in a design library.

unit {"a","b","c"} x
pin x across v through i

declares unit x

declares pin type x

template x x

x x

{...}

declares template x

declares connection x as

a pin of pin type x

template y x = y, z
state x x
number y
y..y z = 1
{...}

declares template y
declares connection x as a
state of unit x

number y and template y are
in different overloading
classes, so both are visible

template z z = z

...

illegal: the objects declared

in a template header are all

in the same overloading class
Saber® MAST Language Reference Manual 133
Z-2007.03

Chapter 9: Scope and Visibility
Overload Resolution
Overload Resolution

When the visibility rules have determined that an identifier appearing at a
particular place in a sentence may refer to more than one entity, all visible
declarations that associate this identifier with an entity are considered. It is an
error if there is not exactly one interpretation for the identifier at that place.

When considering possible interpretations, the only rules considered are the
syntax rules, the scope and visibility rules, and the rules of the form described
below.

1. Any rule that requires the entity associated with the identifier to be of a
certain class, or of the same class as another name.

2. Any rule that requires the entity associated with the identifier to be of a
certain type, the expected type, or of the same type as another name or
expression.

Note
If there is only one interpretation for an identifier appearing at a particular
place, the identifier denotes the corresponding entity. However, the appearance
may still be illegal because of other rules that are not considered for overload
resolution, for example, whether an expression must be a constant expression.
134 Saber® MAST Language Reference Manual
Z-2007.03

10
10Design Units and Their Compilation

This chapter describes the organization and compilation of a description.

Design Units

A design unit is a portion of code that can be independently compiled and
inserted into a design library.

design_unit ::=
library_unit

library_unit ::=
 root_template
| template_definition
| function_definition

The name of a library unit other than a root template is the name of the
template or function. The name of a root template is defined by the
implementation.

Note
It is a consequence of these rules that a template definition that is a declarative
item in a template body is not a design unit. Similarly, a function definition that
is a declarative item in a template body or in a function body is not a design
unit.

References
 Design Entities, Functions

Contexts

A context is a (possibly empty) collection of declarations.
Saber® MAST Language Reference Manual 135
Z-2007.03

Chapter 10: Design Units and Their Compilation
Compilation Units
context ::=
{ context_sentence }

context_sentence ::=
 context_declarative_item
| eos

context_declarative_item ::=
 function_declaration
| type_declaration
| unit_declaration
| pin_type_declaration
| parameter_declaration
| state_declaration
| ref_declaration
| pin_declaration
| template_definition

Compilation Units

The text of a description is compiled one compilation unit at a time in a
compilation environment defined by one or more contexts.

compilation_unit ::=
{ named_library_unit } [root_template]

named_library_unit ::=
 template_definition
| function_definition

A compilation unit consists of an arbitrary number (including zero) of design
units in one or more source files. A compilation unit consisting of more than one
source file is formed by concatenating the source files in the order in which the
source files are presented. The sentences in the compilation unit are compiled
in the order in which they appear.

The compilation environment is formed by the concatenation of one or more
contexts. The implementation must establish the compilation environment in
such a way that the declarations of the contexts that form the compilation
environment are visible prior to the first sentence of the compilation unit.
136 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 10: Design Units and Their Compilation
Design Libraries
Notes
1. This specification does not define how an implementation should manage

contexts and how it should establish the compilation environment.

2. An implementation may restrict the number of source files per compilation
unit.

Design Libraries

A design library is an implementation-dependent container of compiled design
units. Each design library has an associated symbolic name that is an identifier.
An implementation may support any number of design libraries.

There are two kinds of design libraries: working libraries and resource libraries.
A design unit may contain references to library units contained in resource
libraries. For each compilation there is a single working library denoted by the
symbolic name WORK into which the result of a successful compilation is
entered. For a particular compilation the same library may be both the working
library and a resource library.

Note
The means of associating a symbolic name with a design library are defined by
the implementation.

Order of Compilation

The order in which design units can be compiled is a direct consequence of the
visibility rules. In particular, a design unit A that is referenced in a given design
unit B must be compiled prior to the compilation of design unit B. Further, if
design unit A changes, then design unit B must be recompiled since it depends
on design unit A. Similarly, if a context changes, any design unit whose
compilation environment includes the context must be recompiled.

If an error is encountered during the compilation of a design unit, then the
compilation of that design unit has no effect. Otherwise, the resulting compiled
design unit is entered into the working library, thereby replacing any design unit
with the same name that may be present in the working library.
Saber® MAST Language Reference Manual 137
Z-2007.03

Chapter 10: Design Units and Their Compilation
Order of Compilation
138 Saber® MAST Language Reference Manual
Z-2007.03

11
11Elaboration

This chapter describes the process by which a sentence takes effect, called
elaboration. Elaboration is defined for a design hierarchy and for the declarative
items (including implicit declarations) and statements of the language.

Elaboration of a Design Hierarchy

Elaboration of a design hierarchy consists of the elaboration of each context
that forms the compilation environment of a root template followed by the
elaboration of the template body defining the root template. The instance
corresponding to the root template is called the root instance.

The result of elaborating a design hierarchy is a simulatable model that
consists of a tree of instances, a collection of when statements in these
instances connected by nets, and a set of characteristic expressions. The
behavior of the design can be simulated by executing the when statements to
determine the values of the nets, and evaluating the characteristic expressions
while determining the values of the analog variables.

Note
The means of specifying the root template for a design hierarchy are defined by
an implementation.

Elaboration of Declarative Items

Contexts

The elaboration of a context consists of the elaboration of the declarations in
the context in the order in which they occur. If the declarations include an object
Saber® MAST Language Reference Manual 139
Z-2007.03

Chapter 11: Elaboration
Elaboration of Declarative Items
declaration, then the resulting object is created in the root instance. It is an
error if an object with the same name already exists in the root instance.

Template Headers

Elaboration of a template header consists of two parts.

Part 1 of the elaboration of a template header consists of the elaboration of
each unelaborated context in the compilation environment of the template,
followed by the elaboration of each template header declarative item and each
implicit declaration in the template header that is a type declaration, a unit
declaration, a pin type declaration, or a parameter declaration. The declarative
items are elaborated in the order in which they occur.

Part 2 of the elaboration of a template header consists of the elaboration of the
remaining template header declarative items and implicit declarations in the
template header in the order in which they occur.

Template Bodies

Elaboration of a template body consists of the following steps:

1. Elaboration of all declarations except the following declarations:

• type declarations declaring globally constant types

• pin type declarations

• state declarations

• analog variable declarations

• pin declarations

• group declarations of nonparameter groups

and part 1 of the elaboration of all alter specifications, in the order in which
the declarative items occur in the major declarative region associated with
the template.

2. Execution of all statements decorated with the parameters attribute. This
may cause an update elaboration of some objects.

3. Elaboration of all remaining declarations, except the declaration of imported
objects, and part 2 of the elaboration of all alter specifications, in the order
in which the declarative items occur in the major declarative region
associated with the template.
140 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 11: Elaboration
Elaboration of Declarative Items
4. Reordering of the instantiation statements such that an instantiation
statement whose argument association list contains an argument
association element whose actual expression contains a name that denotes
an imported object does not precede the instantiation statement declaring
the object associated with the imported object. It is an error if no such
ordering is possible.

5. Part 1 of the elaboration of each instantiation statement in the order
established by Step 4.

6. Elaboration of the implicit declarations of imported objects of class pin or
analog variable. Additionally, the elaboration includes one of the following:

• If the imported object is a pin or an analog system variable, then an
implicit connection association element is created whose connection
actual part is the imported object and whose connection formal part is
the object associated with the imported object. The connection
association element is elaborated in turn.

• If the imported object is an analog local variable, then an implicit
assignment statement is created whose target is the imported object
and whose expression is the object associated with the imported object.
The statement is decorated with the values attribute and is deemed to
precede any other statement decorated with the values attribute.

7. Elaboration of statements decorated with the values attribute.

8. Elaboration of statements decorated with the control_section attribute.

9. Determination of the tolerance range of each scalar subelement of each
analog variable (see Determination of Tolerance Range).

10. Part 2 of the elaboration of each instantiation statement in the order
established by Step 4.

Note
The algorithm described in Step 4 defines a partial ordering of the instantiation
statements of an instance. Partial ordering is not possible if circular references
exist.

Rationale
The elaboration order is dictated by the information necessary at each step.
Step 1 makes declarations available that are necessary to execute statements
decorated with the parameters attribute. In Step 3 the declarations that may
depend on Step 2 can be elaborated. Step 5 and Step 6 make imported objects
available for the subsequent steps, in an order established by Step 4 such that
no forward references are necessary. Step 7 classifies the analog variables into
Saber® MAST Language Reference Manual 141
Z-2007.03

Chapter 11: Elaboration
Elaboration of Declarative Items
dependent and independent variables, which is necessary for Step 8. Step 9
defines the tolerance range of each analog variable, which may be necessary
for Step 10.

Determination of Tolerance Range
The tolerance range of a scalar subelement S of an analog variable V is
determined as the first tolerance range found when using the following
algorithm:

1. If V is the connection formal part in a connection association element whose
connection actual part is A, then the tolerance range of S is the tolerance
range of the corresponding scalar subelement of A.

2. If V is an across branch whose plus pin is P and whose minus pin is the
reference pin 0, and if P is the connection formal part in a connection
association element whose connection actual part is A, then the tolerance
range of S is the tolerance range of an across branch whose plus pin is A
and whose minus pin is the reference pin 0.

3. If a variable range specification applies to V, then the tolerance range of S
is the tolerance range defined by that variable range specification.

4. If S is of unit U, and if a unit range specification applies to U, then the
tolerance range of S is the tolerance range defined by that unit range
specification.

5. If no range set specification applies to the instance I in which V has been
declared, and if I is not the root instance, then the range set specification
that applies to the parent of I also applies to I. The tolerance range of S is
obtained in an implementation-dependent way from the range set specified
by the range set specification that applies to I.

It is an error if this algorithm does not define a tolerance range for a scalar
subelement of an analog variable.

Type Declarations, Type Definitions, and Index Constraints

Elaboration of a type declaration consists of the elaboration of the
corresponding type definition.

Elaboration of a scalar type definition creates the type.

Elaboration of a structure type definition consists of the elaboration of each
element declaration in the order in which they occur, followed by the creation of
the structure type.
142 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 11: Elaboration
Elaboration of Declarative Items
Elaboration of a union type definition consists of the elaboration of each
element declaration in the order in which they occur, followed by the creation of
the union type.

Elaboration of an array type definition consists of the elaboration of each of its
index constraints in an order not defined by the language, followed by the
creation of the array type.

Elaboration of an index constraint consists of the evaluation of the lower bound
and the upper bound.

Unit Declarations

Elaboration of a unit declaration in general creates the unit.

Elaboration of a physical unit declaration additionally consists of the evaluation
of the string expressions of the physical unit definition and the decoration of the
unit with the corresponding attributes.

Elaboration of an enumeration unit declaration additionally consists of the
creation of enumeration type corresponding to the enumeration unit definition,
the decoration of each enumeration literal with its attributes, the association of
the enumeration default value with the enumeration unit, and, if the
enumeration unit declaration includes a resolution indication, of the association
of the resolution function declared by the resolution indication with the
enumeration unit.

Elaboration of a derived unit declaration additionally consists of the following. If
the unit mark of the derived unit definition denotes a unit that is decorated with
attributes, then the derived unit is decorated with these attributes. If the derived
unit declaration includes a default value, then this default value is associated
with the derived unit. If the derived unit declaration includes a resolution
indication, then the resolution function declared by the resolution indication is
associated with the derived unit.

Pin Type Declarations and Pin Type Definitions

Elaboration of a scalar pin type declaration creates the scalar pin type.

Elaboration of a structure pin type declaration consists of elaborating the
corresponding structure pin type definition.
Saber® MAST Language Reference Manual 143
Z-2007.03

Chapter 11: Elaboration
Elaboration of Declarative Items
Elaboration of a structure pin type definition consists of the elaboration of each
element pin declaration in the order in which they occur, followed by the
creation of the structure pin type.

Elaboration of an array pin type definition consists of the elaboration of each of
its index constraints in an order not defined by the language, followed by the
creation of the array pin type.

Unit Marks, Unit Names, Type Marks and Pin Type Marks

Elaboration of a unit mark consists of the elaboration of the type mark or the
unit name.

Elaboration of a unit name has no effect.

Elaboration of a type mark consists of the following:
■ If the type mark is a type definition, then its elaboration consists of the

elaboration of the type definition.
■ If the type mark is a type reference defined by a qualified name whose prefix

denotes a template, then its elaboration consists of part 1 of the elaboration
of the template header of that template.

■ Otherwise, the elaboration has no effect.

Elaboration of a pin type mark consists of the following:
■ If the pin type mark is a structure pin type definition, then its elaboration

consists of the elaboration of the structure pin type definition.
■ Otherwise, the elaboration has no effect.

Function Calls

Elaboration of a function call consists of the elaboration of the unelaborated
contexts in the compilation environment of the corresponding function
definition.

References
Function Calls
144 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 11: Elaboration
Elaboration of Declarative Items
Object Declarations

Elaboration of an object declaration consists of the following steps:

1. The type and/or unit of the object is determined.

• If the object declaration declares a parameter or a variable, then the
type mark or the unit name is elaborated.

• If the object declaration declares a state or an analog variable of kind
var, ref, or val, then the unit mark is elaborated.

• If the object declaration declares a branch variable, then the unit name
of the unit aspect of the branch name is elaborated.

• If the object declaration declares a pin, then the pin type mark is
elaborated.

• If the object declaration declares a simulator variable, then its type is
obtained from the predefined language environment.

2. The initial value expression, if present, is evaluated.

3. The object is created.

4. The object is decorated with its attributes.

5. If an initial value expression has been defined, then the initial value is
assigned to the object.

6. If the object declaration is a template header declarative item that declares
a parameter, then the alias for the type of the parameter is created.

Elaboration of some object declarations has additional effects. See below,
Association of Parameters Decorated with the External Attribute and
Association of Other Objects Decorated with the External Attribute.

Rationale
The initial value expression is evaluated before the creation of the object
because it will define the size of an unconstrained array.

Branch Variables
If the object declaration declares a branch variable, then its elaboration also
creates an analog net for each scalar subelement S of the branch variable and
associates S with the analog net. Additionally, if the object declaration declares
a branch across variable, then its elaboration associates, for each scalar
subelement B of the branch across variable, the characteristic expression B -
Saber® MAST Language Reference Manual 145
Z-2007.03

Chapter 11: Elaboration
Elaboration of Declarative Items
ACROSS(plus) + ACROSS(minus), where plus and minus are the plus pin and
minus pin of B, with the corresponding analog net.

Pins
The pin flow expression of a scalar subelement P of a pin is defined as follows.
If P is the connection actual part in an implicit connection association element
due to a collapse specification (see Collapse Specification), then the pin flow
expression of P is:

 sum of all branch through variables whose plus pin is P
- sum of all branch through variables whose minus pin is P

Otherwise, the pin flow expression of P is:

 sum of all branch through variables whose plus pin is P
- sum of all branch through variables whose minus pin is P
+ sum of the pin flow expressions of all formal connections that are associated
in a connection association element with P as the connection actual part

If the object declaration declares a pin that is not the connection formal part in
any connection association element, then its elaboration also creates an
analog net for each scalar subelement S of the pin and associates S with the
analog net. Additionally, the pin flow expression of S is associated as a
characteristic expression with the analog net.

Note
The analog net associated with a pin is often called a node.

Unassociated Analog System Variables of Kind Var or Ref
If the object declaration declares an analog system variable of kind var or ref
that is not a connection formal part in any connection association element, then
its elaboration also creates an analog net for each scalar subelement S of the
analog system variable and associates S with the analog net.

Unassociated States
If the object declaration declares an event-driven state that is not a connection
formal part in any connection association element, then its elaboration also
creates a net for each scalar subelement of the state and associates the scalar
subelement with the net. The type and unit of the net is the type and unit of the
scalar subelement of the state. Additionally, if the state is a driving state, then
the elaboration of its declaration associates the driver of each scalar
subelement of the state (see Drivers) with the corresponding net.
146 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 11: Elaboration
Elaboration of Declarative Items
Update Elaboration of an Object
The update elaboration of an object in the context of a value consists of the
following steps:

1. The value, if any, of the object is deleted.

2. If the object has a subelement of an unconstrained array type, then the
upper bound of each assumed index range of the subelement is defined by
the value such that the length of the index range is equal to the length of the
index range of the corresponding subelement of the value at the same index
position.

Group Declarations

Elaboration of a group declaration creates the canonical group corresponding
to the group.

Alter Specifications

Elaboration of an alter specification consists of two parts.

Part 1 of the elaboration of an alter specification consists of the elaboration of
each specifier in the specifier list whose simple name denotes a parameter, in
the order in which the specifiers occur in the specifier list.

Part 2 of the elaboration of an alter specification consists of the elaboration of
each specifier in the specifier list whose simple name does not denote a
parameter, in the order in which the specifiers occur in the specifier list.

The elaboration of a specifier consists of the following steps:

1. The expression is evaluated.

2. The object denoted by the simple name is update elaborated in the context
of the value of the expression.

3. The value of the expression is assigned to the object.
Saber® MAST Language Reference Manual 147
Z-2007.03

Chapter 11: Elaboration
Elaboration of Declarative Items
Control Section Specifications

DC_Help Specification
Elaboration of a dc_help specification consists of the following steps:

1. The through branch name implied by the dc_help specification is elaborated
if it has not been previously elaborated.

2. For each scalar subelement of the through branch the corresponding scalar
subelement of the contribution statement specified by the dc_help
specification is associated with the net that is associated with the scalar
subelement of the through branch.

Noise Source Specification
Elaboration of a noise source specification of the first form (see Noise Source
Specification) consists of the following steps:

1. The through branch name implied by the noise source specification is
elaborated.

2. For each scalar subelement of the through branch the corresponding scalar
subelement of the contribution statement specified by the noise source
specification is marked as s noise contribution and associated with the
analog net that is associated with the scalar subelement of the through
branch.

Elaboration of a noise source specification of the second form consists, for
each scalar subelement of the analog system variable to which the noise
source specification relates, of marking the corresponding scalar subelement
of the contribution statement as a noise contribution and associating it with the
analog net that is associated with the scalar subelement of the analog system
variable.

Collapse Specification
Elaboration of a collapse specification consists of the following steps:

1. An implicit connection association element is created whose connection
formal part F is the object denoted by the first pin aspect or simple name of
the collapse specification and whose connection actual part A is the object
denoted by the second pin aspect or simple name of the collapse
specification.
148 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 11: Elaboration
Elaboration of Declarative Items
2. If F is a pin, then the characteristic expression associated with the analog
net that is associated with A is replaced by an expression that is the sum of
the characteristic expression associated with the analog net associated with
F and the characteristic expression associated with the analog net
associated with A. The characteristic expression associated with the analog
net associated with F is then deleted.

3. If F is a pin or an analog system variable, then the analog net associated
with F is deleted.

4. The implicit connection association element is elaborated.

Start Value Specification and Initial Condition Specification
Elaboration of a start value specification or an initial condition specification
consists of the following steps:

1. The expression is evaluated.

2. For each scalar subelement of the expression, if the value of the scalar
subelement is not equal to undef, then the value is associated with the
corresponding scalar subelement of the analog variable to which the
specification relates.

Restart Specification
Elaboration of a restart specification has no effect.

Nonlinearity Specification
Elaboration of a nonlinearity specification consists of the following steps:

1. Each scalar subelement of each member of the independent set is
associated with each scalar subelement of each member of the dependent
set.

2. If present, the limiting function denoted by the limiting function name is
associated with the dependent set.

3. If present, the expression is evaluated, and its value is associated with the
dependent set.
Saber® MAST Language Reference Manual 149
Z-2007.03

Chapter 11: Elaboration
Elaboration of Declarative Items
Partial Derivative Specification
Elaboration of a partial derivative specification consists of the creation of the
variable denoted by the identifier, followed by the association of the expression
and the wrt name with the variable.

Small-Signal Specification
Elaboration of a small-signal specification consists of the following steps:

1. The variable denoted by the identifier is created.

2. The report expression is evaluated.

3. The variable is decorated with the category attribute and the report attribute.

4. The expression and the wrt name, if present, are associated with the
variable.

Stress Measure Specification
Elaboration of a stress measure specification consists of the following steps:

1. The variable denoted by the identifier is created.

2. The report expression, the rating expression and the reference rating
expression, if present, are evaluated.

3. The variable is decorated with the category attribute and the report attribute.

4. The expression, the simple name, the value of the rating expression and the
value of the reference rating expression, if present, are associated with the
variable.

Variable Range Specification
Elaboration of a variable range specification consists of the evaluation of the
min expression, the max expression, the abs expression (if present), and the rel
expression (if present), followed by the association of the values of these
expressions with each scalar subelement of each member of the variable set.

Unit Range Specification
Elaboration of a unit range specification consists of the evaluation of the min
expression, the max expression, the abs expression (if present), and the rel
expression (if present), followed by the association of the values of these
expressions with the unit denoted by the unit name.
150 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 11: Elaboration
Elaboration of Statements
Range Set Specification
Elaboration of a range set specification consists of the evaluation of the
expression followed by the association of the value of the expression with the
instance.

Other Control Section Specifications
Elaboration of any other control section specification consists of the evaluation
of the expressions followed by the association of the values of the expressions
with each entity to which the specification relates.

Elaboration of Statements

Statements Decorated with the Values Attribute

Elaboration of statements decorated with the values attribute establishes
certain properties of analog variables. The statements are elaborated in two
parts.

Part 1 of the elaboration of the statements decorated with the values attribute
performs part 1 of the elaboration of each such statement in the order in which
the statements appear in the template.

Part 2 of the elaboration of the statements decorated with the values attribute
performs part 2 of the elaboration of each such statement in the order in which
the statements appear in the template.

An independent variable is a scalar subelement of one of the following:
■ an analog system variable
■ a branch across variable
■ an analog local variable that is the target of an assignment statement whose

associated transformed expression (see Assignment Statements), after
applying trivial symbolic identity transformations to remove parentheses, is
either a name denoting an analog system variable or a branch across
variable, optionally preceded by a unary plus or unary minus operator, or the
difference of two names that each denotes an analog system variable, a
branch across variable with one pin aspect denoting the reference pin 0, or
an across branch name with one pin aspect denoting the reference pin 0.
The assignment statement must not be followed by another assignment
statement with the same target in the sequence of statements.
Saber® MAST Language Reference Manual 151
Z-2007.03

Chapter 11: Elaboration
Elaboration of Statements
An analog local variable is an output variable if its name does not appear in an
expression in a statement decorated with the equations attribute and if it was
not substituted to create a transformed expression in part 1 of the elaboration
of statements decorated with the values attribute, except in an expression of a
statement whose target is an output variable. It is an error if a name that
denotes an imported object of class analog local variable appears in the
expression of an assignment statement whose target is not an output variable.

A scalar subelement of an analog local variable is a dependent variable if it is
the target of an assignment statement whose associated partially transformed
expression (see Assignment Statements) depends nonlinearly on independent
variables and if its name, or a name of which the scalar subelement is a
subelement, is a term in an expression, in a transform, or in an actual
expression in a function call, in a statement decorated with the equations
attribute. The assignment statement must not be followed by another
assignment statement with the same target in the sequence of statements.

Assignment Statements
Part 1 of the elaboration of an assignment statement decorated with the values
attribute associates a transformed expression with each assignment statement.
The transformed expression associated with an assignment statement A is
obtained from the expression of A by textually substituting each analog local
variable V of kind val that appears in the expression by the transformed
expression associated with the closest assignment statement preceding A
whose target is V.

Part 2 of the elaboration of an assignment statement decorated with the values
attribute associates a partially transformed expression with each assignment
statement. The partially transformed expression associated with an assignment
statement A is obtained from the expression of A by textually substituting each
analog local variable V that appears in the expression and is not an
independent variable by the partially transformed expression associated with
the closest assignment statement preceding A whose target is V.

Conditional Statements
Elaboration of a conditional statement decorated with the values attribute
whose condition is a constant expression consists of first evaluating the
condition. If the value of the condition is nonzero, then the statement of the then
part is elaborated. Otherwise, the statement of the else part is elaborated.
152 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 11: Elaboration
Elaboration of Statements
Part 1 of the elaboration of a conditional statement decorated with the values
attribute whose condition is not a constant expression consists of part 1 of the
elaboration of both the then part and the else part, followed by combining the
elaborated parts, as follows:
■ For each analog local variable V of kind val that is the target of an

assignment statement in both the then part and the else part of the
conditional statement, a single assignment statement is generated whose
target and expression is V. Then, the expression

if condition then then_t_expression else else_t_expression

is associated as the transformed expression with the generated assignment
statement, where condition is the condition of the conditional statement,
then_t_expression is the transformed expression associated with the
assignment statement whose target is V in the then part of the conditional
statement, and else_t_expression is the transformed expression associated
with the assignment statement whose target is V in the else part of the
conditional statement.

■ For each analog local variable V of kind val that is the target of an
assignment statement in only the then part of the conditional statement, a
single assignment statement is generated whose target and expression is
V. Then, the expression

if condition then then_t_expression else V

is associated as the transformed expression with the generated assignment
statement.

■ For each analog local variable V of kind val that is the target of an
assignment statement in only the else part of the conditional statement, a
single assignment statement is generated whose target and expression is
V. Then, the expression

if condition then V else else_t_expression

is associated as the transformed expression with the generated assignment
statement.

Part 2 of the elaboration of a conditional statement decorated with the values
attribute whose condition is not a constant expression consists of part 2 of the
Saber® MAST Language Reference Manual 153
Z-2007.03

Chapter 11: Elaboration
Elaboration of Statements
elaboration of both the then part and the else part, followed by combining the
elaborated parts, as follows:
■ For each analog local variable V of kind val that is the target of an

assignment statement in both the then part and the else part of the
conditional statement, the expression

if condition then then_pt_expression else else_pt_expression

is associated as the partially transformed expression with the assignment
statement generated in part 1, where condition is the condition of the
conditional statement, then_pt_expression is the partially transformed
expression associated with the assignment statement whose target is V in
the then part of the conditional statement, and else_pt_expression is the
partially transformed expression associated with the assignment statement
whose target is V in the else part of the conditional statement.

■ For each analog local variable V of kind val that is the target of an
assignment statement in only the then part of the conditional statement, the
expression

if condition then then_pt_expression else V

is associated as the partially transformed expression with the assignment
statement generated in part 1.

■ For each analog local variable V of kind val that is the target of an
assignment statement in only the else part of the conditional statement, the
expression

if condition then V else else_pt_expression

is associated as the partially transformed expression with the assignment
statement generated in part 1.

Note
Part 1 and part 2 of the elaboration of a conditional statement decorated with
the values attribute whose condition is a constant expression are identical.

Compound Statements
Elaboration of a compound statement decorated with the values attribute
consists of the elaboration of each compound sentence.
154 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 11: Elaboration
Elaboration of Statements
Statements Decorated with the Control_section Attribute

Elaboration of statements decorated with the control_section selects certain
control section specifications for elaboration. The statements are elaborated in
the order in which they appear in the template.

Conditional Statements
Elaboration of a conditional statement decorated with the control_section
attribute consists of the following steps:

1. The condition is evaluated.

2. If the value of the condition is nonzero, then the conditional sentence of the
then part is elaborated. Otherwise, if the else part is present, then the
conditional sentence of the else part is elaborated.

Compound Statements
Elaboration of a compound statement decorated with the control_section
attribute consists of the elaboration of each compound sentence.

Instantiation Statements

Elaboration of an instantiation statement consists of two parts.

Part 1 of the elaboration of an instantiation statement consists of the following
steps:

1. Part 1 of the elaboration of the template header of the template denoted by
the prefix of the instance name is performed.

2. The instance argument association list is elaborated (see Instance
Argument Association Lists, Argument Association Elements).

3. Each unassociated parameter that is decorated with the external attribute is
associated with a previously elaborated object (see Association of
Parameters Decorated with the External Attribute).

4. Part 2 of the elaboration of the template header of the template denoted by
the prefix of the instance name is performed.

5. The connection association list is elaborated (see Connection Association
Lists, Connection Association Elements).
Saber® MAST Language Reference Manual 155
Z-2007.03

Chapter 11: Elaboration
Elaboration of Statements
6. Each unassociated pin, analog system variable or state that is decorated
with the external attribute is associated with a previously elaborated object
(see Association of Other Objects Decorated with the External Attribute).

Part 2 of the elaboration of an instantiation statement consists of the
elaboration of the template body of the template denoted by the prefix of the
instance name.

The instance containing the instantiation statement is said to be the parent
instance of the instance defined by the instantiation statement. The parent
instance, its parent instance, the parent instance of its parent instance, etc., up
to the root instance are collectively called the ancestors of the instance defined
by the instantiation statement.

Instance Argument Association Lists, Argument Association
Elements
Elaboration of an instance argument association list consists of ordering the
argument association elements, followed by the elaboration of each argument
association element in the order in which they appear in the ordered list.

The argument association elements of an instance argument association list
are ordered such that an argument association element whose actual
expression contains a name that denotes an imported object that is associated
with an object of the instance does not precede the argument association
element, if any, whose formal denotes the object of the instance. It is an error if
no such ordering is possible.

The elaboration of an argument association element consists of the following
steps:

1. If the actual expression contains a name that denotes an imported object,
and if the imported object does not yet exist, then the implicit declaration
declaring the imported object is elaborated.

2. The actual expression is evaluated.

3. The formal is update elaborated in the context of the value of the expression.

4. The value of the expression is assigned to the formal.

5. If an imported object is associated with the formal, then an implicit alter
specification is created that specifies the initial value of the imported object
as the value of the formal. The alter specification is elaborated in turn.
156 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 11: Elaboration
Elaboration of Statements
Note
The algorithm described in this section defines a partial ordering of the
argument association elements of an instance argument association list. Partial
ordering is not possible if circular references exist.

Connection Association Lists, Connection Association
Elements
Elaboration of a connection association list consists of the elaboration of each
connection association element in the order in which they appear.

Elaboration of a connection association element consists of the following:
■ If the connection formal part denotes a pin, then the elaboration of the

connection association element associates each scalar subelement F of the
formal connection with the analog net that is associated with the
corresponding scalar subelement A of the connection actual part.
Additionally, the elaboration associates the characteristic expression

ACROSS(A) - ACROSS(F)

with F.
■ If the connection formal part denotes an analog system variable, then the

elaboration of the connection association element associates each scalar
subelement F of the formal connection with the analog net that is associated
with the corresponding scalar subelement A of the connection actual part.
Additionally, the elaboration associates the characteristic expression

A - F

with F.
■ If the connection formal part denotes a state, then the elaboration of the

connection association element associates each scalar subelement F of the
formal connection with the net associated with the corresponding scalar
subelement A of the connection actual part. If F is a driving state, then the
elaboration also associates the driver of each scalar subelement of F (see
Drivers) with the corresponding net. It is an error if more than one driver is
associated with a net and the unit of the net is not a resolved unit.

Association of Parameters Decorated with the External
Attribute
To determine the object with which an unassociated parameter decorated with
the external attribute may be associated, the parent instance is searched for a
Saber® MAST Language Reference Manual 157
Z-2007.03

Chapter 11: Elaboration
Elaboration of Statements
declaration that declares an entity with the same name in the same overloading
class as the parameter. If no such declaration is found, the argument
association list of the instantiation statement instantiating the parent instance is
searched for an argument association element whose formal denotes an object
whose name matches that of the parameter. Then, if no such argument
association element exists, the search continues for a declaration or an
argument association element in the parent instance of the parent instance,
then in the parent instance of that instance, etc., up to the root instance, until a
matching declaration is found. If a matching declaration has been found, and if
the entity declared by that declaration is an object of class parameter that is
unit compatible with the parameter decorated with the external attribute, then
the elaboration creates an implicit argument association element whose formal
is the name of the parameter decorated with the external attribute and whose
actual is a primary that denotes the parameter found in an ancestor. The
argument association element is elaborated in turn.

It is an error if this algorithm does not define an association for a parameter
decorated with the external attribute.

Association of Other Objects Decorated with the External
Attribute
To determine the object with which a pin, analog system variable, or state
decorated with the external attribute may be associated, the parent instance is
searched for a declaration that declares an entity with the same name in the
same overloading class as the decorated object. If no such declaration is
found, the search continues in the parent instance of the parent instance, then
in the parent instance of that instance, etc., up to the root instance, until a
matching declaration is found. If a matching declaration has been found, and if
the entity declared by that declaration is an object that is of the same object
class as the decorated object and that is pin type compatible (if the decorated
object is of class pin) or unit compatible (if the decorated object is of class
analog system variable or state) with the decorated object, then the elaboration
creates an implicit connection association element whose connection formal
part is the name of the decorated object and whose connection actual part is
the object found in an ancestor. The connection association element is
elaborated in turn.
158 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 11: Elaboration
Dynamic Elaboration
Notes
1. If no matching declaration is found, the effect is the same as that of a formal

connection that is left unassociated.

2. It is a consequence of these rules that the actual associated with a formal
state decorated with the external attribute must be an event-driven state.

Dynamic Elaboration

The execution of certain statements may involve elaboration during the
execution of a model.

Function Calls

Execution of a function call involves the following steps:

1. Elaboration of the function header declarative items in the order in which
they occur.

2. Association of the actual value or initial value with each formal (see Function
Calls).

3. Elaboration of the function body declarative items in the order in which they
occur.

4. Execution of the statements in the function body.

Compound Statements

Execution of a compound statement involves elaboration of the compound
declarative items in the order in which they occur.

Inline Groups

Execution of an assignment statement whose target is an inline group involves
the elaboration of the group declaration implied by the inline group.
Saber® MAST Language Reference Manual 159
Z-2007.03

Chapter 11: Elaboration
Dynamic Elaboration
160 Saber® MAST Language Reference Manual
Z-2007.03

12
12Simulation

After a model has been elaborated, simulation may begin. This chapter
describes the different simulation scenarios and the agents supporting them: the
event-driven engine and the analog solver.

The Event-Driven Engine

The event-driven engine updates event-driven states and executes when
statements that are sensitive to such states.

Drivers

A driver is an ordered sequence of one or more transactions, each consisting of
a time and a value and written as “value at time”. Each driving state in an
instance has a driver for each scalar subelement. Additionally, the simulator
variables with state semantics, the implicit break and halt states and the implicit
state associated with each function call calling the THRESHOLD function each
has a driver. The time element of a transaction specifies the time at which the
scalar subelement of the state attains the value specified by the value element
of the transaction.

A driver has exactly one transaction whose time element is not greater than the
current simulation time. This transaction is said to be the effective transaction of
the driver. Its value element is called the current value of the driver.

The initial content of a driver is defined by the initial value of the corresponding
scalar subelement of the state. The driver is modified by the addition and
deletion of transactions. When a new transaction is added to a driver, it is
inserted into the sequence of transactions such that the time element of any
transaction is greater than or equal to the time element of the preceding
transaction. If a driver already contains a transaction with the same time
element, then this transaction is first deleted from the driver unless it is the
Saber® MAST Language Reference Manual 161
Z-2007.03

Chapter 12: Simulation
The Event-Driven Engine
effective transaction, in which case the new transaction is inserted immediately
after the effective transaction. A model is erroneous if it adds a transaction to a
driver and the current time is greater than the time element of the transaction. A
driver is said to be cleared if all transactions except the effective transaction are
deleted from the driver.

The drivers of simulator variables with state semantics are modified by the
event-driven engine. The drivers of the implicit states associated with function
calls calling the THRESHOLD function are modified by the analog solver. The
drivers for all other states are modified as follows:
■ For a scalar subelement of an event-driven state declared by a state

declaration, a transaction “V at T” is added to the driver of the state by a
function call calling the SCHEDULE_EVENT function whose second
argument contains the state as a subelement. T is the first argument of the
function call, and V is the scalar subelement of its third argument that
corresponds to the scalar subelement of the state. The value returned by the
function call is associated with the transaction.

■ For the implicit break state, a transaction “1 at T” is added to its driver by a
function call calling the SCHEDULE_NEXT_TIME function, where T is the
argument of the function call. The value returned by the function call is
associated with the transaction.

■ For the implicit halt state, a transaction “1 at T” is added to its driver by a
function call calling the HALT_SIMULATION function, where T is the
argument of the function call. The value returned by the function call is
associated with the transaction.

■ A transaction is deleted from a driver by a function call calling the
DESCHEDULE function with an argument that is associated with the
transaction, unless the transaction is the effective transaction of the driver.

Propagation of State Values

When during simulation the current time becomes equal to the time element of
the transaction that follows the effective transaction of a driver, then the driver is
said to be active. When a driver is active, the effective transaction is deleted
from the driver and the next transaction becomes the effective transaction.

A state is active if it is a component of a net and at least one driver of the net is
active.
162 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 12: Simulation
The Event-Driven Engine
The driving value of a scalar driving state is the current value of the driver of the
state. The driving value of a composite driving state is the aggregate of the
driving values of the scalar subelements of the state.

The effective value of an event-driven state is the value obtained when
evaluating a primary denoting the state. The effective value of a scalar event-
driven state is the value of the net of which the state is a component. The value
of the net is determined as follows:
■ If the net has a single driver and is not of a resolved unit, then the value of

the net is the current value of that driver.
■ If the net has a single driver and is of a resolved unit, or if it has multiple

drivers, then the value of the net is the result returned by the resolution
function of the net when called with an argument array whose length is the
number of drivers of the net and whose value is the aggregate of the current
values of each driver of the net in an order defined by the implementation.

■ If the net has no driver, then the value of the net is the initial value of the
state at the root of the net.

The effective value of a composite event-driven state is the aggregate of the
effective values of the scalar subelements of the state.

When the event-driven engine updates an event-driven state it determines the
driving value, if any, and the effective value of the state. Updating an event-
driven state causes an event to occur on the state.

Notes
1. An assigned state cannot be an active state.

2. A state that is not a driving state does not have a driving value.

The State Propagation Algorithm
State values are propagated by the state propagation algorithm, which consists
of the following steps:

1. Update each active state in the model.

2. For each instance in the design and each when statement W in the order in
which the when statements appear in the instance, if W is sensitive to any
state that was updated in the previous step, and if the condition of W
evaluates to a nonzero value, then execute the statement guarded by W.
Saber® MAST Language Reference Manual 163
Z-2007.03

Chapter 12: Simulation
The Analog Solver
The Analog Solver

The analog solver determines analog solution points and updates the driver of
the state associated with each threshold function.

Analog Solution Points

The analog solver is said to determine the explicit characteristic expressions
when it creates the characteristic expressions associated with each analog net
and executes the statements decorated with the equations attribute in each
instance of the simulatable model. The determination of the explicit
characteristic expressions consists of the following steps for each instance of
the model:

1. For each analog net N that is associated with a scalar subelement of a
branch through variable or an unassociated analog system variable of kind
var or ref, disassociate and delete any characteristic expression that may be
associated with N, then create the characteristic expression 0 (zero) and
associate it with N.

2. Unmark all scalar subelements of each branch through variable and each
analog system variable of kind var.

3. Execute the conditional statements, labeled equation statements, and
contribution statements decorated with the equations attribute.

4. Execute the conditional statements and assignment statements decorated
with the equations attribute.

5. Execute the conditional statements and make statements decorated with
the equations attribute.

It is an error if any scalar subelement of a branch through variable or an analog
system variable of kind var is unmarked after Step 5.

Threshold Detection

The difference of the waveform and the reference waveform of a function call
calling the THRESHOLD function is said to be the threshold expression of the
function call.

The simulatable model contains an implicit state for each function call calling
the THRESHOLD function. The implicit state, whose type is
164 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 12: Simulation
DC Operating Point Simulation
struc { integer before, after ; }

is associated with the threshold expression of the corresponding function call.

When the analog solver has determined an analog solution point at time Tn, it
also determines the earliest time Tt in the interval [Tc, Tn) not including Tn such
that the sign of any threshold expression changes in an interval (Tt-Δ,Tt] not
including Tt-Δ. It then adds the transaction “(before, after) at Tt” to the driver of
the implicit state associated with that threshold expression, where “before” is
the sign of the threshold expression at a time Tt-Δ and “after” is the sign of the
threshold expression at a time Tt+Δ.

Note
The value of Δ is not specified in this document. It may be different for different
transactions.

References
Semi-Numerical Functions

DC Operating Point Simulation

DC operating point simulation consists of the DC initialization phase, followed
by the DC simulation cycle, followed by the DC termination phase.

The DC Initialization Phase

The DC initialization phase consists of the following steps:

1. Set the value of the current time Tc to 0. Set the value of the current
frequency to 0. Set the value of the simulator variable DC_DOMAIN to 1.

2. Compute the driving value and effective value of each event-driven state.
Set the current value of each event-driven state to its effective value. Set the
current value of each assigned state to its initial value. Set the effective
transaction of the driver of the implicit break and halt states to “0 at 0” and
set their current value 0.

3. Set the value of each analog system variable to 0.

4. Add the transaction “1 at Tc” to the driver of the simulator variable DC_INIT,
then execute the DC event cycle. Tc may advance as a result.
Saber® MAST Language Reference Manual 165
Z-2007.03

Chapter 12: Simulation
DC Operating Point Simulation
5. If the analysis executing the DC algorithm is not a DC analysis, skip the
remainder of this step. Otherwise, add the transaction “1 at Tc” to the driver
of the simulator variable DC_START, then execute the DC event cycle. Tc
may advance as a result.

6. Detect any threshold crossings, then execute the DC event cycle. Tc may
advance as a result.

7. Set the value of each analog variable that appears in a start_value
specification to the value of the expression in the start_value specification.

Notes
1. The initial value of analog local variables is undefined.

2. An implementation may support alternate means to set the current value of
each state and the value of each analog system variable.

The DC Simulation Cycle

The DC simulation cycle consists of the repeated execution of the following
steps:

1. Reset Tc to 0. Set the time element of the effective transaction of the driver
of the implicit break and halt states to 0.

2. Determine an analog solution point using the DC equations at time Tc and
the current values of all states.

3. Detect any threshold crossings, then execute the DC event cycle. Tc may
advance as a result.

4. If the break state has not been updated in the preceding step, the DC
simulation cycle ends.

Note
The halt state is ignored.
166 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 12: Simulation
DC Operating Point Simulation
The DC Termination Phase

The DC termination phase consists of the following steps:

1. Add the transaction “1 at Tc” to the driver of the simulator variable
DC_DONE and set the current time Tc to the earliest time at which any
driver becomes active, then execute the state propagation algorithm and set
the current value of the simulator variable DC_DONE to 0.

2. Reset Tc to 0. Set the effective transaction of the driver of the implicit break
and halt states to “0 at 0” and set their current value to 0.

3. Set the value of the simulator variable DC_DOMAIN to 0.

An initial point is a collection of values related to a design, consisting of:
■ A time
■ A value for each analog system variable in the design
■ A value for each state in the design
■ A driver for each scalar driving state in the design

The result of the execution of the DC algorithm is an initial point whose time is
Tc.

The DC Event Cycle

The DC event cycle consists of the repeated execution of the following steps:

1. Set the value of the next event time Te to the smaller of:

• The value of the literal inf

• The earliest time at which any driver becomes active

2. If Te = inf the DC event cycle ends. Otherwise, set the current time Tc to Te.

3. Execute the state propagation algorithm.

4. If DC_INIT = 1, set its current value to 0. If DC_START = 1, set its current
value to 0.
Saber® MAST Language Reference Manual 167
Z-2007.03

Chapter 12: Simulation
Time Domain Simulation
Time Domain Simulation

Time domain simulation consists of the time domain initialization phase,
followed by the time domain simulation cycle, followed by the time domain
termination phase.

The Time Domain Initialization Phase

The time domain initialization phase consists of the following steps:

1. Set the value of the current frequency to 0. Set the value of the simulator
variable TIME_DOMAIN to 1.

2. Set the value of the current time Tc to the value of the time from the initial
point. Set the current value of each event-driven state to its corresponding
value from the initial point. Assign to the driver of each event-driven state all
transactions in the corresponding driver from the initial point. Set the value
of each assigned state to its corresponding value from the initial point. Set
the value of each analog system variable to its corresponding value from the
initial point.

3. If Tc is equal to the beginning time Tb of the time domain simulation, skip the
remainder of this step. Otherwise, adjust the time of each transaction in
each driver by adding the value Tb - Tc to the time of the transaction. Then,
for each adjustable state in the model add the value Tb - Tc to the value of
the state and, if applicable, to the value of each transaction in its driver.
Finally, set the value of Tc to the value of Tb.

4. If the initial point has been generated by a time domain analysis, skip the
remainder of this step. Otherwise, add the transaction “1 at Tc” to the driver
of the simulator variable TIME_INIT and set the current time Tc to the
earliest time at which any driver becomes active, then execute the state
propagation algorithm and set the current value of the simulator variable
TIME_INIT to 0.

5. Add the transaction “1 at Tc” to the driver of the simulator variable
TR_START and set the current time Tc to the earliest time at which any
driver becomes active, then execute the state propagation algorithm and set
the current value of the simulator variable TR_START to 0.

Note
The initial value of analog local variables is undefined.
168 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 12: Simulation
Time Domain Simulation
The Time Domain Simulation Cycle

The time domain simulation cycle consists of the repeated execution of the
following steps:

1. If the driver of the implicit break state or the driver of the implicit halt state
becomes active at the current time Tc, clear the driver of the simulator
variable TIME_STEP_DONE.

2. If the driver of the simulator variable TIME_STEP_DONE contains only the
effective transaction, determine the next continuous time Tn and add the
transaction “1 at Tn” to the driver of the simulator variable
TIME_STEP_DONE.

3. Find the earliest threshold crossings in the interval [Tc, Tn) open to the right.

4. Set the value of the current time Tc to the smaller of:

• The value of the literal inf.

• The earliest time at which any driver becomes active

5. Determine an analog solution point at Tc.

6. Execute the state propagation algorithm.

7. Set the current value of the simulator variable TIME_STEP_DONE to 0.

8. If the value of the halt state is 1, or if the value of Tc equals the value of the
literal inf, the time domain simulation cycle ends.

Time Domain Termination Phase

The time domain termination phase consists of the following steps:

1. Add the transaction “1 at Tc” to the driver of the simulator variable
TR_DONE and set the current time Tc to the earliest time at which any
driver becomes active, then execute the state propagation algorithm and set
the current value of the simulator variable TR_DONE to 0.

2. Set the value of the simulator variable TIME_DOMAIN to 0.
Saber® MAST Language Reference Manual 169
Z-2007.03

Chapter 12: Simulation
Time Domain Simulation
170 Saber® MAST Language Reference Manual
Z-2007.03

13
13Lexical Elements

The description of a design consists of one or more text files. A text file is a
sequence of lexical elements, each composed of characters. This chapter
describes the composition rules.

Character Set

The only characters allowed in the text of an MAST description are the
characters of the basic character set. Each character corresponds to a unique
code of the ISO 8859-1 character set. Each graphic character is visually
represented by a graphical symbol.

graphic_character ::=
 lowercase_letter
| uppercase_letter
| digit
| punctuation_character
| special_character

basic_character ::=
 graphic_character
| white_space_character
| format_effector

The basic character set is sufficient to write any MAST description. The
characters included in each of the categories are defined as follows.
Saber® MAST Language Reference Manual 171
Z-2007.03

Chapter 13: Lexical Elements
Character Set
lowercase_letter ::= one of
a b c d e f g h i j k l m n o p q r s t u v w x y z
ß à á â ã ä å æ ç è é ê ë ì í î ï ñ ò ó ô õ ö ø ù ú û ü ÿ

uppercase_letter ::= one of
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ñ Ò Ó Ô Õ Ö Ø Ù Ú Û Ü

digit ::= one of
0 1 2 3 4 5 6 7 8 9

punctuation_character ::= one of
" # % & () * + , - . / : ; < = > @ [] \ _ { } | ~ m

special_character ::= one of

` ! $ ' ? ^ ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ – ® ¯ ° ± ´ ¶ · ¸ º » ¿

white_space_character ::= one of
SP NBSP HT

format_effector ::= one of
VT CR LF FF

Notes
1. Characters that have no graphical symbol are represented by their ISO

8859-1 abbreviation. Their full ISO 8859-1 names are:

2. The line feed character (LF) is sometimes called newline and abbreviated
as NL.

Commentary
Of the ISO 8859-1 character set only the graphic characters, the white space
characters and the format effectors may appear in a text written in the MAST
language. Letters, digits, punctuation characters and white space characters

SP space VT vertical tabulation

NBSP nonbreaking space CR carriage return

HT horizontal tabulation LF line feed

FF form feed

∂́ ý Ip

D– Ý IP

2 3 1 /41 /21 /43/43/4
172 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 13: Lexical Elements
Lexical Elements and Separators
are needed to form valid statements in the language. Special characters may
only appear in string literals. White space characters and format effectors may
be used to lay out the text of an MAST description in a way that is pleasing to a
human reader. Unescaped format effectors also mark the end of a sentence.

Lexical Elements and Separators

A lexical element is either a delimiter, an identifier (which may be a keyword), a
numeric literal, a string literal, a special reference designator, or a file name
literal.

In some cases adjacent lexical elements must be separated by an explicit
separator. A separator is either a format effector, or a semicolon (;) or white
space character that is not part of a string literal or a comment.

A format effector or a CR character immediately followed by a LF character
marks the end of a line.

Any number of separators are allowed between adjacent lexical elements,
before the first lexical element in a text file, or after the last lexical element in a
text file. At least one separator is required between an identifier, a literal or a
special reference designator and an adjacent identifier or literal.

Example

Note
Each lexical element must fit on one line since the end of a line is a separator.

Delimiters

A delimiter is either one of the following punctuation characters from the basic
character set:

val nu foo # space characters separate
adjacent lexical elements

() [] { } , . = < > + - * / % & | : ~ \
Saber® MAST Language Reference Manual 173
Z-2007.03

Chapter 13: Lexical Elements
Identifiers
or one of the following compound delimiters composed of two adjacent
punctuation characters:

Each of the single characters listed in this section is a single delimiter except if
it is part of a compound delimiter, a numeric literal, a string literal, or a
comment. Each of the character combinations listed in this section is a single
delimiter except if the characters are part of a string literal or a comment.

Examples

Identifiers

Identifiers are used as names and as reserved words.

identifier ::= basic_identifier | extended_identifier

Basic Identifiers

A basic identifier consists only of letters, digits, and underlines.

basic_identifier ::=
letter_or_underline { letter_or_digit_or_underline }

letter_or_underline ::=
lowercase_letter | uppercase_letter | _

letter_or_digit_or_underline ::=
lowercase_letter | uppercase_letter | digit | _

Basic identifiers are case insensitive, and all characters are significant.

== ~= <= >= += -= -> <- ** // ..

a=SQRT(b)**3 # a,=,SQRT,(,b,),**,3 are lexical
elements, =,(,),** are delimiters

a = SQRT (b) ** 3 # the same statement, but with
separators to improve readability
174 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 13: Lexical Elements
Numeric Literals
Examples

The following identifiers refer to the same name:

Extended Identifiers

Extended identifiers may contain any graphic character or white space
character.

extended_identifier ::=
@ " graphic_or_space_character { graphic_or_space_character } "

graphic_or_space_character ::=
graphic_character | white_space_character

If a quotation mark (") is to be used as one of the graphic characters in an
extended identifier, it must be doubled. Extended identifiers are case sensitive,
and all characters are significant (a double quotation mark counting as one
character). An extended identifier is distinct from any basic identifier.

Examples

The following extended identifiers are all different and different from the
identifier used in the example in Basic Identifiers:

Numeric Literals

Numeric literals specify integer values and real values.

clock_rate N573UA _off _1 A__b

MAST mast Mast

@"a and b" @"i#523" @"n$3.5" @"<=>"

@"MAST" @"mast" @"Mast"
Saber® MAST Language Reference Manual 175
Z-2007.03

Chapter 13: Lexical Elements
Numeric Literals
numeric_literal ::=
integer_literal | real_literal

Integer Literals

An integer literal specifies an integral value in decimal, octal or hexadecimal
notation.

integer_literal ::=
decimal_literal | octal_literal | hex_literal

decimal_literal ::=
digit { digit }

octal_literal ::=
0 octal_mark digit { digit }

hex_literal ::=
0 hex_mark hex_digit { hex_digit }

octal_mark ::= o | O

hex_mark ::= x | X

hex_digit ::= digit | a | b | c | d | e | f | A | B | C | D | E | F

In a hexadecimal literal the characters a through f (or A through F) represent
the values 10 through 15. It is an error if one of the digits 8 or 9 appears in an
octal literal.

Examples

The following integer literals have the same value:

Note
The octal mark is the uppercase or lowercase letter O.

1 15573 0o777 0x1ab

59 0o73 0x3b
176 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 13: Lexical Elements
Numeric Literals
Rationale
Octal literals are prefixed with the sequence 0o, not just a 0 as in the C
language, to support the common practice of entering a literal by appending
appropriate digits to a default of 0 in schematic capture systems.

Real Literals

A real literal specifies a floating point value.

real_literal ::=
 decimal_literal [. decimal_literal] [exponent]
| . decimal_literal [exponent]

exponent ::=
 exponent_mark [+] decimal_literal
| exponent_mark - decimal_literal
| scale_factor

exponent_mark ::= e | d | E | D

The scale factors and their interpretation are as follows. Scale factors are case
insensitive.

a atto 10-18

f femto 10-15

p pico 10-12

n nano 10-9

u | mu | μ micro 10-6

m milli 10-3

k kilo 103

meg | me mega 106

g giga 109
Saber® MAST Language Reference Manual 177
Z-2007.03

Chapter 13: Lexical Elements
String Literals
Examples

The following real literals have the same value:

The following forms are not real literals:

Notes
1. A real literal is syntactically a superset of a decimal literal.

2. m means 10-3, mu means 10-6, me or meg mean 106.

String Literals

A string literal consists of a (possibly empty) sequence of graphic characters or
white space characters bracketed by a pair of quotation marks.

string_literal ::= " { graphic_or_space_character } "

If a quotation mark (") is to be used as one of the graphic characters in a string
literal, it must be doubled. The value of a string literal is the sequence of
characters between the bracketing quotation marks, with any pair of adjacent
quotation marks counted as a single character. Its length is equal to the
number of characters that form its value.

t tera 1012

1 1.5 .2 1e5 1.2d-6

1k 4.7p 1.2m 10Meg

3n .003u 3000p 0.3e-8 3D-9

3 meg # no space allowed

1.2e5meg # cannot have both numeric exponent and
scale factor
178 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 13: Lexical Elements
Special Reference Designators
Examples

Notes
1. A string literal must fit on one line. Longer strings can be created by the

concatenation of string literals.

2. Certain characters and character combinations have a special meaning in a
string value used as a format specifier in a message function.

References
Messages, Additive Operators

Rationale
A quotation mark (") is entered into a string literal by doubling it. An alternative
could be to escape the quotation mark with a backslash (\), but this would
require escaping the backslash itself in a string literal. Backward compatibility
rules out this alternative because the character combinations \\, \n, \t, and \%
have a special meaning as format specifiers in message functions.

The MAST definition is the converse of the corresponding definition in the C
language. In C, special characters are escaped with a backslash in the string
literal, and in a format specification the percent character (%) must be doubled
to print a single percent character.

Special Reference Designators

A special reference designator consists of letters, digits and underlines.

special_reference_designator ::=
digit { letter_or_digit_or_underline }

Special reference designators are case insensitive, and all characters are
significant.

"string""rise time"

"!$'?^¡¢£¤¥ may appear in a string"

"" # the empty string

"""" # a string containing a single quotation mark
Saber® MAST Language Reference Manual 179
Z-2007.03

Chapter 13: Lexical Elements
Comments
Examples

Note
Some numeric literals also satisfy the syntax rules for a special reference
designator.

Comments

A number sign (#) that is not part of a string literal marks the beginning of a
comment. The comment ends immediately before the format effector marking
the end of the line. A comment can appear on any line of a MAST description.
The absence or presence of comments has no influence on whether a
description is legal or not.

Examples

Keywords

A keyword is an identifier that has a special meaning in the language. Some
keywords are reserved words; they must not be used as the name of a
declared identifier.

The following identifiers are reserved words.

1 1a 1d5 2n3055 7_11

This is a comment that spans the entire line

a = 5 # this comment follows a MAST statement
and is split over two lines

alter for state

branch foreign states

component function string

conflict_resolution if struc
180 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 13: Lexical Elements
Sentence Termination
The following identifiers are keywords but their use is not reserved.

Sentence Termination

A sentence consists of a sequence of lexical elements terminated by an eos
(end of sentence) mark.

const inf template

control_section integer then

element make undef

else next union

encrypted number unit

enum parameter val

equations parameters values

exit pin variable

export return when

external simvar while

across input ref

adjust_on_restart newton_step sample_points

collapse noise_source small_signal

dc_help output ss_partial

device_type pl_set start_value

group range_for_unit stress_measure

initial_condition range_for_variable through

inout range_set var
Saber® MAST Language Reference Manual 181
Z-2007.03

Chapter 13: Lexical Elements
File Inclusion
eos ::= format_effector | ;

A format effector ends a sentence only if the immediately preceding lexical
element is not one of the following delimiters.

Such a delimiter extends the sentence such that the sentence includes at least
the next lexical element from the text file. A backslash (\) used to extend a
sentence is ignored in the syntax of the sentence. It is an error if no lexical
element follows a delimiter that extends a sentence.

Examples

Note
Since a comment ends immediately before the end of a line but is not a lexical
element, a backslash used to escape the end of the line must be the lexical
element immediately preceding the comment.

File Inclusion

A line whose first character is the less-than sign (<) specifies file inclusion.

file_inclusion ::=
< file_name_literal

file_name_literal ::=
graphic_character { graphic_character }

A file name literal cannot contain the number sign (#).

([{ , . = < > + - * / % & | : ~ \ == ~= <= >= += -= -> <- ** // ..

a = 5 ; b = 6 # two sentences on one line, the first
terminated with a semicolon, the
second with a format effector

number c = 5,
d = 6, e = 6

no eos here because of trailing ","

number f = 5,
 g
= 7

no eos here because of backslash
no eos here because line contains no
lexical element
182 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 13: Lexical Elements
File Inclusion
If the file name literal contains neither a solidus (/) nor a backslash (\) character,
then it specifies the name of the file to be included. Otherwise, the name of the
file is specified by the sequence of characters after the last character that is
either a solidus or a backslash, and the sequence of characters preceding the
file name specify a hierarchical path whose path components must be
separated by either a solidus or a backslash.

The file name literal must specify the location of the file to be included either
completely or in conjunction with the data search path of the simulator.

The sequence of lexical elements in the file replaces the line specifying the file
inclusion.

Example
The line

specifies that the file consts.sin be found in the simulator’s data search path. Its
content replaces the line.

Notes
1. The less-than sign must be the first character on a line and cannot be

preceded by white space characters.

2. A file inclusion cannot extend to the following line because it is not an MAST
sentence.

3. The graphic characters that may appear in a file name literal may be
restricted by the operating system.

4. Whether a file name literal is case sensitive or not depends on the operating
system.

5. The definition of the simulator data search path is not part of the MAST
language.

<consts.sin # Get constants from consts.sin
Saber® MAST Language Reference Manual 183
Z-2007.03

Chapter 13: Lexical Elements
File Inclusion
184 Saber® MAST Language Reference Manual
Z-2007.03

14
14Predefined Language Environment

This chapter describes predefined common types, units, pin types, pins,
variables, transforms, and functions.

Predefined Common Types

INTEGER

NUMBER

STRING

struc BREAKPOINT { NUMBER BP, INC ; }

enum STRESS_MEASURES \
{ PEAK, MAX, MIN, AVERAGE, RMS, WINMAX, WINMIN }

Predefined Units

unit { "across", "across", "generic_potential" } ACROSS

unit { "through", "through", "generic_flow" } THROUGH
Saber® MAST Language Reference Manual 185
Z-2007.03

Chapter 14: Predefined Language Environment
Predefined Pin Types
Predefined Pin Types

pin NEUTRAL across ACROSS through THROUGH

Predefined Pins

NEUTRAL 0

Simulator Variables

Simulator variables provide a means of communication between a model and
the simulator kernel. The name of a simulator variable refers to a matching
variable in the simulator kernel with semantics that depend on the particular
simulator variable.

Simulator Variables with Function Semantics

Simulator variables with function semantics have a single matching variable in
the simulator kernel. Their semantics are those of a function call calling an
impure function (except as noted) that returns the value of the matching
variable in the simulator kernel.

DC_DOMAIN

Description: Indicates whether the model is being executed by a DC
analysis

Type: INTEGER

Semantics: Defined in DC Operating Point Simulation

TIME_DOMAIN

Description: Indicates whether the model is being executed by a time
domain analysis

Type: INTEGER

Semantics: Defined in Time Domain Simulation
186 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 14: Predefined Language Environment
Simulator Variables
FREQ_DOMAIN

Description: Indicates whether the model is being executed by a
frequency domain analysis

Type: INTEGER

Semantics:

TIME

Description: If FREQ_DOMAIN is 1, returns the time at which the
small-signal model has been determined. Otherwise,
returns the current simulation time Tc

Type: NUMBER

Semantics: Defined in DC Operating Point Simulation, Time Domain
Simulation

FREQ

Description: Returns the current simulation frequency

Type: NUMBER

Semantics:

FREQ_MAG

Description: Indicates whether the simulator is determining the
magnitude value

Type: INTEGER

Semantics:

FREQ_PHASE
Saber® MAST Language Reference Manual 187
Z-2007.03

Chapter 14: Predefined Language Environment
Simulator Variables
Simulator Variables with State Semantics

Simulator variables with state semantics have a single matching variable in the
simulator kernel. Their driver is owned by the simulator kernel. Their value is
the value of the matching variable in the simulator kernel.

Description: Indicates whether the simulator is determining the
phase value

Type: INTEGER

Semantics:

STATISTICAL

Description: Indicates whether the simulator is performing a
statistical analysis

Type: INTEGER

Semantics:

Note: The semantics of the STATISTICAL simulator variable
are those of a pure function.

WORST_CASE

Description: Indicates whether the simulator is performing a worst
case statistical analysis

Type: INTEGER

Semantics:

Note: The semantics of the WORST_CASE simulator variable
are those of a pure function.

DC_INIT

Description: Indicates whether the model is being executed as it
enters the DC domain
188 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 14: Predefined Language Environment
Simulator Variables
Type: INTEGER

Semantics: Defined in The DC Initialization Phase and The DC
Event Cycle

DC_START

Description: Indicates whether the model is being executed at the
beginning of a DC analysis

Type: INTEGER

Semantics: Defined in The DC Initialization Phase and The DC
Event Cycle

DC_DONE

Description: Indicates whether the model is being executed at the
end of a DC analysis

Type: INTEGER

Semantics: Defined in The DC Termination Phase

TIME_INIT

Description: Indicates whether the model is being executed as it
enters the time domain

Type: INTEGER

Semantics: Defined in The Time Domain Initialization Phase

TR_START

Description: Indicates whether the model is being executed at the
beginning of a time domain analysis

Type: INTEGER
Saber® MAST Language Reference Manual 189
Z-2007.03

Chapter 14: Predefined Language Environment
Simulator Variables
Simulator Variables with Analog Local Variable Semantics

Simulator variables with semantics of an analog local variable have a matching
variable in the simulator kernel for each instance of any model in the design.
They may be assigned a value in an instance; the corresponding statement
must be decorated with the values or equations attribute. It is an error if the
name of a simulator variable with analog local variable semantics appears in an
expression.

Semantics: Defined in The Time Domain Initialization Phase

TR_DONE

Description: Indicates whether the model is being executed at the
end of a time domain analysis

Type: INTEGER

Semantics: Defined in Time Domain Termination Phase

TIME_STEP_DONE

Description: Indicates whether the model has just completed an
analog solution point

Type: INTEGER

Semantics: Defined in The Time Domain Simulation Cycle

NEXT_TIME

Description: Specifies the time at which the value of each analog
variable in the instance must be determined at the latest

Type: NUMBER

Semantics: Defined in

STEP_SIZE
190 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 14: Predefined Language Environment
Transforms
Transforms

The statements containing the transforms described in this section must be
decorated with the equations attribute.

Description: Specifies the time interval within which the value of each
analog variable in the instance must be determined

Type: NUMBER

Semantics: Defined in

D_BY_DT (waveform)

Parameters: waveform: A simple expression whose scalar
subelements are of type NUMBER

Result type: The type of the expression

Result: The derivative of the waveform with respect to time

DELAY (waveform, T)

Parameters: waveform: A simple expression whose scalar
subelements are of type NUMBER

T: A globally constant expression of a numeric type that
evaluates to a nonnegative value

Result type: The type of the expression

Result: The waveform delayed by T

TRANSFER_FUNCTION (waveform, numerator, denominator)

Parameters: waveform: A simple expression of type NUMBER

numerator: A globally constant one-dimensional array
whose element type is a numeric type
Saber® MAST Language Reference Manual 191
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
Functions

The arguments of the predefined functions are unnamed. Unless noted, the
functions are pure functions.

denominator: A globally constant one-dimensional array
whose element type is a numeric type

Result type: NUMBER

Result: The Laplace transfer function of the waveform. In the
frequency domain:where num is an array with the same

elements as numerator but with a normalized index
range, den is an array with the same elements as
denominator but with a normalized index range, and s is
the Laplace variable

num LEN num() i–[] si⋅

i 0=

LEN num() 1–

∑

den LEN den() i–[] si⋅

i 0=

LEN den() 1–

∑

--- waveform⋅
192 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
Nonmathematical Functions

ADDR (composite_name)

Parameters: composite_name: A name denoting an object of a
composite common type

Result type: INTEGER

Result: A handle for the memory address of the object in the
simulator data structures

Restrictions: The semantics of the value returned by the addr()
function are not specified in this document

The layout of the simulator data structures is not
specified in this document

A model is erroneous if it changes any value in the
simulator data structures through this interface in a
sentence that is not decorated with the parameters
attribute

DESIGN_NAME ()

Result type: STRING

Result: A name given to the root instance by the implementation

INSTANCE ()

Result type: STRING

Result: The hierarchical name of the instance containing the
function call that calls INSTANCE ()

Notes: The result has the following format:
/ [instance_name { / instance_name }]

When called in a function F, the INSTANCE function
returns the hierarchical name of the instance calling F
Saber® MAST Language Reference Manual 193
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
LEN (array_expression [, index_position])

Parameters: array_expression: A simple expression of an array type

index_position: A simple expression of type INTEGER
whose value is between 1 and the dimensionality of the
array expression

Result type: INTEGER

Result: If the index position is present, the length of the index
range indicated by the index position. Otherwise, the
number of elements in the array expression.

LEN (string_expression)

Parameters: string_expression: A simple expression of type STRING

Result type: INTEGER

Result: The length of the string expression. undef if the value of
the string expression equals the value of the literal
undef.

UNION_TYPE (union_name , alternative)

Parameters: union_name: The name of an object of a union type

alternative: A simple name denoting an alternative of the
union object

Result type: INTEGER

Result: 1 if the specified alternative is the current alternative of
the union object, 0 otherwise
194 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
Functions Supporting Event-Driven Simulation

SCHEDULE_EVENT (time, state_name, value)

Parameters: time: A simple expression of type NUMBER

state_name: A name denoting a state. The state
denoted by its longest constant prefix is a driving state

value: A simple expression that is type compatible with
the type of the state object

Description: Adds the transaction “V at time” to the driver of each
scalar subelement of the state denoted by the name,
where V is the corresponding scalar subelement of the
value

Result type: INTEGER array of length 2

Result: The handle associated with the transactions

Restrictions: The statement containing a function call to
SCHEDULE_EVENT must be decorated with the states
attribute.

Note: The SCHEDULE_EVENT function is an impure function.

SCHEDULE_NEXT_TIME (time)

Parameters: time: A simple expression of type NUMBER

Description: Adds the transaction “1 at time” to the driver of the implicit
break state

Result type: INTEGER array of length 2

Result: The handle associated with the transaction

Restrictions: The statement containing a function call to
SCHEDULE_NEXT_TIME must be decorated with the
states attribute.
Saber® MAST Language Reference Manual 195
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
Note: The SCHEDULE_NEXT_TIME function is an impure
function.

HALT_SIMULATION (time)

Parameters: time: A simple expression of type NUMBER

Description: Adds the transaction “1 at time” to the driver of the
implicit halt state

Result type: INTEGER array of length 2

Result: The handle associated with the transaction

Restrictions: The statement containing a function call to
HALT_SIMULATION must be decorated with the states
attribute.

Note: The HALT_SIMULATION function is an impure function.

DESCHEDULE (handle)

Parameters: handle: The handle of a transaction

Description: Deletes the transactions associated with the handle
from the corresponding drivers

Result type: INTEGER

Result: 1 if the handle is invalid, 0 otherwise

Restrictions: The handle must be the result of a function call calling
one of the functions SCHEDULE_EVENT,
SCHEDULE_NEXT_TIME, or HALT_SIMULATION in
the same major declarative region.

The statement containing a function call to
DESCHEDULE must be decorated with the states
attribute.

Note: The DESCHEDULE function is an impure function.
196 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
EVENT_ON (state_name [, last value])

Parameters: state_name: A constant name denoting a state. The
state is an observed state.

lastvalue: A constant name denoting an assigned state
that is type compatible with the type of the object
denoted by the state name.

Description: Monitors the state S denoted by the state name until an
event occurs on S, then assigns the previous value of S
to the state denoted by lastvalue.

Result type: INTEGER

Result: 1 for the duration of Step 2 of the state update algorithm
(see The State Propagation Algorithm) if the state object
was updated in Step 1, 0 otherwise

Restrictions: The statement containing a function call to EVENT_ON
must be decorated with the states attribute.

Note: The EVENT_ON function is an impure function.

THRESHOLD (waveform, reference_waveform [, before [, after]])

Parameters: waveform: A simple expression of type NUMBER

reference_waveform: A simple expression of type
NUMBER

before: A constant name denoting an assigned state of
a numeric type

after: A constant name denoting an assigned state of a
numeric type
Saber® MAST Language Reference Manual 197
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
Description: Monitors the implicit state S associated with the
THRESHOLD function until an event occurs on S, then
assigns the value S->before to the state denoted by
before and the value S->after to the state denoted by
after. The assignment occurs immediately after a
function call calling the THRESHOLD function returns
the value 1.

Result type: INTEGER

Result: 1 for the duration of Step 2 of the state update algorithm
(see The State Propagation Algorithm) if the implicit
state S associated with the THRESHOLD function was
updated in Step 1, 0 otherwise

Restrictions: At least one name denoting an analog variable must
appear in the waveform expression or the reference
waveform expression. Any such name must be a
constant name.

The statement containing a function call to
THRESHOLD must be decorated with the states
attribute.

Note: The THRESHOLD function is an impure function.

DRIVEN (state_name)

Parameters: state_name: A constant name denoting a driving state

Result type: The type of the state object denoted by the state name

Result: The driving value of the state object

Restrictions: The statement containing a function call to DRIVEN
must be decorated with the states, values, or
equations attribute.

Note: The DRIVEN function is an impure function.

LAST_VALUE (state_name)
198 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
Parameters: state_name: A constant name denoting an event-driven
state

Result type: The type of the state object denoted by the state name

Result: The value of the state object denoted by the state name
prior to the last event of the state object. If no event has
occurred on a scalar subelement of the state, then the
corresponding scalar subelement of the value is undef.

Restrictions: The statement containing a function call to
LAST_VALUE must be decorated with the states,
values, or equations attribute.

Note: The LAST_VALUE function is an impure function.

RAMP (state_name [, rise_time [, fall_time]])

Parameters: state_name: A constant name denoting an event-driven
state whose scalar subelements are of a floating point
type

rise_time: A globally constant expression of a numeric
type that evaluates to a nonnegative value. Default: 0

fall_time: A globally constant expression of a numeric
type that evaluates to a nonnegative value. Default:
rise_time

Result type: The type of the state object

Result: A waveform where each scalar subelement W follows
the corresponding scalar subelement S of the state
object. When an event occurs on S, W ramps linearly
from the last value of S to the current value of S.The
duration of the ramp is the value of rise_time if S -
last_value(S) > 0 and the value of fall_time otherwise.

Restrictions: The statement containing a function call to RAMP must
be decorated with the values or equations attribute.

Note: The RAMP function is an impure function.
Saber® MAST Language Reference Manual 199
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
Messages

Message functions write formatted text to the standard error stream. Each
message raises a condition in the simulator that indicates the severity of the
message.

SLEW (state_name [, rising_slope [, falling_slope]])

Parameters: state_name: A constant name denoting an event-driven
state whose scalar subelements are of a floating point
type

rising_slope: A globally constant expression of a
numeric type that evaluates to a positive value. Default:
inf

falling_slope: A globally constant expression of a
numeric type that evaluates to a negative value. Default:
- rising_slope

Result type: The type of the state object

Result: A waveform where each scalar subelement W follows
the corresponding scalar subelement S of the state
object. When an event occurs on S, W ramps linearly
from the last value of S to the current value of S.The
slope of the ramp is the value of rising_slope if S -
last_value(S) > 0 and the value of falling_slope
otherwise.

Restrictions: The statement containing a function call to SLEW must
be decorated with the values or equations attribute.

Note: The SLEW function is an impure function.

MESSAGE (format { , value })

Parameters: format: A simple expression of type STRING

value: A simple expression
200 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
Description: Raises a NOTE condition and writes the values to the
standard error stream under the control of the format
string

Result type: INTEGER

Result: 0

ERROR (format { , value })

Parameters: format: A simple expression of type STRING

value: A simple expression

Description: Raises an ERROR condition and writes the values to the
standard error stream under the control of the format
string, tagged as a TEMPLATE_ERROR

Result type: INTEGER

Result: 0

WARNING (format { , value })

Parameters: format: A simple expression of type STRING

value: A simple expression

Description: Raises a WARNING condition and writes the values to
the standard error stream under the control of the format
string, tagged as a TEMPLATE_WARNING

Result type: INTEGER

Result: 0

SABER_MESSAGE (tag, { , value })

Parameters: tag: A simple expression of type STRING

value: A simple expression
Saber® MAST Language Reference Manual 201
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
Format Strings
The message functions use the format string to control writing the values in
their argument list. They give the following interpretation to the characters in
the format string:
■ A percent (%) character consumes the next value from the argument list.

The value is converted to a textual representation that is legal for its type,
and the textual representation is written literally instead of the percent sign.
If no more values are available in the argument list the percent character is
written literally. It is an error if the type of the value cannot be determined.

■ A backslash (\) character is skipped and the character following the
backslash character, if any, is written literally, with two exceptions:

■ The character “n” following the backslash character ends the line currently
being written and begins a new line of text

■ The character “t” following the backslash character is replaced by a HT
character that is written literally

■ Any other character is written literally.

The end of the format string ends the line currently being written. Any values
remaining in the list of values are ignored.

Example

produces the output

Description: Raises the condition indicated by the tag and writes the
values to the standard error stream under the control of
the message with the specified tag from the Saber
simulator message catalog used as the format string

Result type: INTEGER

Result: 0

struc { number n=5; string s="abc" ; } p=()
message("p=%; its elements are n=% and s=%",

p, p->n, p->s)

p=(n=5,s="abc"); its elements are n=5 and s="abc"
202 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
Mathematical Functions

Mathematical functions return a result of a numeric type. Their arguments must
be simple expressions of a numeric type.
Saber® MAST Language Reference Manual 203
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
Trigonometric Functions

ACOS (x)

Parameters: x: A simple expression of a numeric type

Result type: NUMBER

Result: The principal value of the arc cosine of x in the range [0,
π]

Restrictions: -1 ≤ x ≤ 1

ASIN (x)

Parameters: x: A simple expression of a numeric type

Result type: NUMBER

Result: The principal value of the arc sine of x in the range [-π/

2, π/2]

Restrictions: -1 ≤ x ≤ 1

ATAN (x)

Parameters: x: A simple expression of a numeric type

Result type: NUMBER

Result: The principal value of the arc tangent of x in the range [-
π/2, π/2]

ATAN2 (x, y)

Parameters: x: A simple expression of a numeric type

y: A simple expression of a numeric type

Result type: NUMBER
204 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
Result: The principal value of the arc tangent of y/x in the range
[-π, π], using the sign of x and y to determine the
quadrant of the result

Restrictions: x and y must not be both 0

COS (x)

Parameters: x: A simple expression of a numeric type

Result type: NUMBER

Result: The cosine of x specified in radians

SIN (x)

Parameters: x: A simple expression of a numeric type

Result type: NUMBER

Result: The sine of x specified in radians

TAN (x)

Parameters: x: A simple expression of a numeric type

Result type: NUMBER

Result: The tangent of x specified in radians

Restrictions: |x| ≠ k ⋅ (π/2) where k is any odd integer
Saber® MAST Language Reference Manual 205
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
Hyperbolic and Inverse Hyperbolic Functions

ACOSH (x)

Parameters: x: A simple expression of a numeric type

Result type: NUMBER

Result: The inverse hyperbolic cosine of x

Restrictions: x ≥ 1

ASINH (x)

Parameters: x: A simple expression of a numeric type

Result type: NUMBER

Result: The inverse hyperbolic sine of x

ATANH (x)

Parameters: x: A simple expression of a numeric type

Result type: NUMBER

Result: The inverse hyperbolic tangent of x

Restrictions: -1 ≤ x ≤ 1

COSH (x)

Parameters: x: A simple expression of a numeric type

Result type: NUMBER

Result: The hyperbolic cosine of x

SINH (x)

Parameters: x: A simple expression of a numeric type
206 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
Result type: NUMBER

Result: The hyperbolic sine of x

TANH (x)

Parameters: x: A simple expression of a numeric type

Result type: NUMBER

Result: The hyperbolic tangent of x
Saber® MAST Language Reference Manual 207
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
Logarithmic, Exponential and Related Functions

LN (x)

Parameters: x: A simple expression of a numeric type

Result type: NUMBER

Result: The natural logarithm of x (base e)

Restrictions: x > 0

LOG (x)

Parameters: x: A simple expression of a numeric type

Result type: NUMBER

Result: The decimal logarithm of x (base 10)

Restrictions: x > 0

EXP (x)

Parameters: x: A simple expression of a numeric type

Result type: NUMBER

Result: The exponential function of x

LIMEXP (x)

Parameters: x: A simple expression of a numeric type

Result type: NUMBER

Result: For x < 0:1 / limexp(-x)
For 0 £ x £ 80:exp(x)
For 80 < x £ 88:exp(80)Þ(x-79)
For 88 < x £ 88.7:exp(80)Þ(88-79)Þ(1+1e-6Þ(x-88))
For x > 88.7:exp(80)Þ(88-79)Þ(1+1e-6Þ(88.7-88))
208 Saber® MAST Language Reference Manual
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
Semi-Numerical Functions

SQRT (x)

Parameters: x: A simple expression of a numeric type

Result type: NUMBER

Result: The nonnegative square root of x

Restrictions: x Š 0

ABS (x)

Parameters: x: A simple expression of a numeric type

Result type: The type of x

Result: The absolute value of x

INT (x)

Parameters: x: A simple expression of a numeric type

Result type: INTEGER

Result: The integral part of x as defined in Type Conversions

SIGN (x)

Parameters: x: A simple expression of a numeric type

Result type: INTEGER

Result: -1 if x < 0, 0 if x == 0, +1 if x > 0

MAX (x { , x })

Parameters: x: An arbitrary number of simple expressions of a
numeric type
Saber® MAST Language Reference Manual 209
Z-2007.03

Chapter 14: Predefined Language Environment
Functions
Result type: The supertype implied by the types of the expressions

Result: The largest value of any expression x

MIN (x { , x })

Parameters: x: An arbitrary number of simple expressions of a
numeric type

Result type: The supertype implied by the types of the expressions

Result: The smallest value of any expression x

RANDOM ()

Result type: NUMBER

Result: The next value from a pseudo-random sequence

Notes: The RANDOM function is an impure function

The MAST language does not provide a means to set a
random number seed
210 Saber® MAST Language Reference Manual
Z-2007.03

15
15Syntax Summary

This chapter summarizes the syntax of the MAST language.
Saber® MAST Language Reference Manual 211
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
MAST Syntax

across_aspect ::= [Scalar Pin Types]
across physical_unit_name

actual ::= [Argument Association Lists]
expression

additive_expression ::= [Expressions]
term { additive_operator term }

additive_operator ::= + | - | // [Additive Operators]

aggregate ::= [Aggregates]
 array_aggregate
| structure_aggregate
| union_aggregate

aggregate_association_element ::= [Structure Aggregates]
[simple_name =] expression

aggregate_association_list ::= [Structure Aggregates]
aggregate_association_element { , aggregate_association_element }

alter_specification ::= [Alter Specification]
alter specifier_list eos

analog_attribute ::= [Analog Variable Declarations]
 export
| external

analog_name ::= [Start Value Specification]
 simple_name
| branch_name

analog_variable_declaration ::= [Analog Variable Declarations]
 var_declaration
| ref_declaration
| val_declaration
| branch_variable_declaration

argument_association_element ::= [Argument Association Lists]
212 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
[formal =] actual

argument_association_list ::= [Argument Association Lists]
argument_association_element { , argument_association_element }

argument_list ::= [Argument Lists]
identifier_list

array_aggregate ::= [Array Aggregates]
"[" expression_list "]"

assignment ::= [Loop Statement]
simple_name = expression

assignment_statement ::= [Assignment Statement]
[statement_attribute] [target =] expression eos

basic_character ::= [Character Set]
 graphic_character
| white_space_character
| format_effector

basic_identifier ::= [Basic Identifiers]
letter_or_underline { letter_or_digit_or_underline }

branch_definition ::= [Branch Variable Declarations]
identifier = branch_name

branch_name ::= [Branch Names]
unit_aspect (plus_pin_aspect

[branch_name_separator minus_pin_aspect])

branch_name_separator ::= , | -> [Branch Names]

branch_variable_declaration ::= [Branch Variable Declarations]
{ analog_attribute } branch branch_definition

{ , branch_definition } eos

collapse_specification ::= [Collapse Specification]
[control_section]
 collapse (plus_pin_aspect, minus_pin_aspect) eos
| [control_section] collapse (simple_name, simple_name) eos
Saber® MAST Language Reference Manual 213
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
compilation_unit ::= [Compilation Units]
{ named_library_unit } [root_template]

composite_type_definition ::= [Composite Common Types]
| structure_type_definition
| union_type_definition

compound_declarative_item ::= [Compound Statement]
 type_declaration
| unit_declaration
| variable_declaration
| simulator_variable_declaration
| group_declaration
| control_section_specification

compound_sentence ::= [Compound Statement]
 compound_declarative_item
| statement
| eos

compound_statement ::= [Compound Statement]
[statement_attribute] "{" { compound_sentence } "}" eos

condition ::= [Conditional Expressions]
expression

conditional_expression ::= [Conditional Expressions]
if condition then expression else expression

conditional_sentence ::= [Conditional Statement]
 statement
| control_section_specification

conditional_statement ::= [Conditional Statement]
[statement_attribute] if (condition) { format_effector }

then_part [else_part]

connection_actual_part ::= extended_name [Instantiation Statement]

connection_association_element ::= [Instantiation Statement]
[connection_formal_part :] connection_actual_part

connection_association_list ::= [Instantiation Statement]
214 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
{ connection_association_element }

connection_definition ::= [Template Connections]
 identifier
| decimal_literal

connection_element ::= [Template Connections]
external_connection_definition [: internal_connection_specification]

connection_formal_part ::= extended_name [Instantiation Statement]

connection_list ::= [Template Connections]
connection_element { [,] connection_element }

connection_specification ::= [Template Connections]
 identifier
| decimal_literal

context ::= [Contexts]
{ context_sentence }

context_declarative_item ::= [Contexts]
 function_declaration
| type_declaration
| unit_declaration
| pin_type_declaration
| parameter_declaration
| state_declaration
| ref_declaration
| pin_declaration
| template_definition

context_sentence ::= [Contexts]
 context_declarative_item
| eos

contribution_op ::= += | -= [Contribution Statement]

contribution_statement ::= [Contribution Statement]
[statement_attribute] name contribution_op expression eos

control_section_specification ::= [Control Section Specifications]
 dc_help_specification
Saber® MAST Language Reference Manual 215
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
| noise_source_specification
| collapse_specification
| start_value_specification
| initial_condition_specification
| restart_specification
| device_type_specification
| nonlinearity_specification
| sample_point_specification
| newton_step_specification
| partial_derivative_specification
| small_signal_specification
| stress_measure_specification
| range_set_specification
| unit_range_specification
| variable_range_specification

dc_help_specification ::= [DC_Help Specification]
[control_section]

dc_help (plus_pin_aspect , minus_ pin_aspect) eos

decimal_literal ::= [Integer Literals]
digit { digit }

decimal_name ::= decimal_literal [Decimal Names]

declaration_statement ::= [Declarations]
 function_declaration
| type_declaration
| unit_declaration
| pin_type_declaration
| object_declaration
| group_declaration
| function_definition
| template_definition

declarative_item ::= [Template Bodies]
 declaration_statement
| alter_specification
| control_section_specification

declarator ::= [Object Declarations]
identifier ["[" index_constraint { , index_constraint } "]"]
216 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
[= expression]

declarator_list ::= [Object Declarations]
declarator { , declarator }

default_value ::= literal [Derived Unit Declaration]

derived_unit_declaration ::= [Derived Unit Declaration]
derived_unit_definition identifier [= default_value]

[resolution_indication] eos

derived_unit_definition ::= [Derived Units]
unit unit_mark

design_unit ::= [Design Units]
library_unit

device_type_specification ::= [Device Type Specification]
[control_section] device_type (device_class_expression,

device_subclass_expression) eos

digit ::= one of [Character Set]
0 1 2 3 4 5 6 7 8 9

element_declaration ::= [Structure Types]
variable_declaration

else_part ::= [Conditional Statement]
else { format_effector } statement

enumeration_default_value ::= simple_name [Enumeration Unit Declarations]

enumeration_literal ::= identifier [Enumeration Types]

enumeration_type_definition ::= [Enumeration Types]
enum [identifier] "{" enumeration_literal

{ , enumeration_literal } "}"

enumeration_unit_declaration ::= [Enumeration Unit Declarations]
enumeration_unit_definition identifier = enumeration_default_value

["{" resolution_indication "}"]

enumeration_unit_definition ::= [Enumeration Units]
Saber® MAST Language Reference Manual 217
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
unit state "{" enumeration_literal , string_literal ,
string_literal , string_literal

{ , enumeration_literal , string_literal ,
string_literal , string_literal } "}"

eos ::= format_effector | ; [Sentence Termination]

equality_expression ::= [Expressions]
relational_expression { equality_operator relational_expression }

equality_operator ::= == | ~= [Equality Operators]

equation_statement ::= [Equation Statements]
 contribution_statement
| labeled_equation_statement
| make_statement

executable_statement ::= [Executable Statements]
 assignment_statement
| loop_statement
| exit_statement
| next_statement
| return_statement
| when_statement
| equation_statement

exit_statement ::= [Exit Statement]
exit eos

exponent ::= [Real Literals]
 exponent_mark [+] decimal_literal
| exponent_mark - decimal_literal
| scale_factor

exponent_mark ::= e | d | E | D [Real Literals]

expression ::= [Expressions]
logical_or_expression

expression_list ::= [Array Aggregates]
expression { , expression }

extended_identifier ::= [Extended Identifiers]
218 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
@ " graphic_or_space_character { graphic_or_space_character } "

extended_name ::= [Names]
 name
| decimal_name

extended_type_mark ::= [Function Declarations]
type_mark ["[" index_constraint { , index_constraint } "]"]

extended_type_mark_list ::= [Function Declarations]
 extended_type_mark { , extended_type_mark } [, ...]
| ...

extended_variable_declaration_list ::= [Function Declarations]
 variable_declaration_list [, ...]
| ...

factor ::= [Expressions]
[unary_operator] primary { ** [unary_operator] primary }

file_inclusion ::= [File Inclusion]
< file_name_literal

file_name_literal ::= [File Inclusion]
graphic_character { graphic_character }

formal ::= [Argument Association Lists]
argument_simple_name

format_effector ::= one of [Character Set]
VT CR LF FF

function_argument_list ::= [Function Header]
 argument_list
| variable_declaration_list

function_attribute ::= [Function Header]
 encrypted
| foreign

function_body ::= [Function Body]
function_sentence { function_sentence }
Saber® MAST Language Reference Manual 219
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
function_body_declarative_item ::= [Function Body]
 function_declaration
| type_declaration
| unit_declaration
| variable_declaration
| group_declaration
| function_definition

function_call ::= [Function Calls]
name ([function_argument_association_list])

function_declaration ::= [Function Declarations]
 foreign identifier_list eos
| { function_attribute } type_indication function_declarator_list eos

function_declarator ::= [Function Declarations]
identifier ([extended_variable_declaration_list])

function_declarator_list ::= [Function Declarations]
function_declarator { , function_declarator }

function_definition ::= [Function Definitions]
function_header "{" function_body "}" eos

function_header ::= [Function Header]
function_header_definition { function_header_sentence }

function_header_declarative_item ::= [Function Header]
variable_declaration

function_header_definition ::= [Function Header]
{ function_attribute } function result_indication =

identifier ([function_argument_list]) eos

function_header_sentence ::= []
 function_header_declarative_item
| eos

function_sentence ::= [Function Body]
 function_body_declarative_item
| function_statement
| eos
220 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
function_statement ::= [Function Body]
 assignment_statement
| conditional_statement
| compound_statement
| return_statement
| loop_statement
| exit_statement
| next_statement

generic_statement ::= [Generic Statements]
 conditional_statement
| compound_statement

graphic_character ::= [Character Set]
 lowercase_letter
| uppercase_letter
| digit
| punctuation_character
| special_character

graphic_or_space_character ::= [Extended Identifiers]
graphic_character | white_space_character

group_constituent ::= name [Group Declarations]

group_constituent_list ::= [Group Declarations]
group_constituent { , group_constituent }

group_declaration ::= [Group Declarations]
group "{" group_constituent_list "}" identifier eos

hex_digit ::= digit | a | b | c | d | e | f | A | B | C | D | E | F[Integer Literals]

hexadecimal_literal ::= [Integer Literals]
0 hex_mark hex_digit { hex_digit }

hex_mark ::= x | X [Integer Literals]

identifier ::= [Identifiers]
 basic_identifier
| extended_identifier

identifier_list ::= [Function Declarations]
Saber® MAST Language Reference Manual 221
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
identifier { , identifier }

imported_name ::= [Imported Names]
simple_name (instance_name)

index_constraint ::= [Index Constraints]
 [lower_bound :] upper_bound
| enumeration_type_mark

indexed_name ::= [Indexed Names]
prefix "[" expression { , expression } "]"

initial_condition_specification ::= [Initial Condition Specification]
[control_section]

initial_condition (analog_name, expression) eos

inline_group ::= [Inline Groups]
(group_constituent_list)

instance_name ::= [Instance Names]
prefix . reference_designator

instantiation_statement ::= [Instantiation Statement]
instance_name connection_association_list

[= instance_argument_association_list] eos

integer_literal ::= [Integer Literals]
decimal_literal | octal_literal | hex_literal

iteration_scheme ::= [Loop Statement]
 while (condition)
| for ([initial_assignment] ; [condition] ; [update_assignment])

labeled_equation_statement ::= [Labeled Equation Statement]
[statement_attribute] name : lhs_expression = rhs_expression eos

letter_or_digit_or_underline ::= [Basic Identifiers]
lowercase_letter | uppercase_letter | digit | _

letter_or_underline ::= [Basic Identifiers]
lowercase_letter | uppercase_letter | _

library_unit ::= [Design Units]
222 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
 root_template
| template_definition
| function_definition

literal ::= [Literals]
 numeric_literal
| string_literal
| enumeration_literal
| inf
| undef

logical_and_expression ::= [Expressions]
equality_expression { & equality_expression }

logical_or_expression ::= [Expressions]
logical_and_expression { "|" logical_and_expression }

loop_statement ::= [Loop Statement]
[statement_attribute] iteration_scheme { format_effector } statement

lower_bound ::= [Index Constraints]
expression

lowercase_letter ::= one of [Character Set]
a b c d e f g h i j k l m n o p q r s t u v w x y z
ß à á â ã ä å æ ç è é ê ë ì í î ï ñ ò ó ô õ ö ø ù ú û ü ÿ

make_statement ::= [Make Statement]
[statement_attribute] make lhs_expression = rhs_expression eos

mode ::= input | output | inout [State Declarations]

multiplicative_operator ::= * | / | % [Multiplicative Operators]

name ::= [Names]
 simple_name
| instance_name
| imported _name
| selected_name
| branch_name
| indexed_name
| slice_name
| qualified_name

∂́ ý Ip
Saber® MAST Language Reference Manual 223
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
named_library_unit ::= [Compilation Units]
 template_definition
| function_definition

newton_step_specification ::= [Newton Step Specification]
[control_section] newton_step (independent_set,

increase_expression [, decrease_expression]) eos

next_statement ::= [Next Statement]
next eos

noise_source_specification ::= [Noise Source Specification]
 [control_section] noise_source (source_simple_name,

plus_pin_aspect [, minus_pin_aspect]) eos
| [control_section] noise_source (source_simple_name,

asv_simple_name) eos

nonexecutable_statement ::= [Nonexecutable Statements]
instantiation_statement

nonlinearity_specification ::= [Nonlinearity Specification]
[control_section] pl_set (dependent_set, independent_set

[, limiting_function_name [, expression]]) eos

numeric_literal ::= [Numeric Literals]
integer_literal | real_literal

object_declaration ::= [Object Declarations]
 parameter_declaration
| variable_declaration
| state_declaration
| analog_variable_declaration
| pin_declaration
| simulator_variable_declaration

octal_literal ::= [Integer Literals]
0 octal_mark digit { digit }

octal_mark ::= o | O [Integer Literals]

parameter_attribute ::= [Parameter Declarations]
 export
| external
224 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
| const

parameter_declaration ::= [Parameter Declarations]
{ parameter_attribute } [parameter] type_mark
 declarator_list eos
| { parameter_attribute } parameter unit_name
 declarator_list eos

partial_derivative_specification ::= [Partial Derivative Specification]
[control_section] ss_partial (identifier, expression, wrt_name) eos

physical_unit_declaration ::= [Physical Unit Declarations]
physical_unit_definition identifier eos

physical_unit_definition ::= [Physical Units]
unit "{" string_expression , string_expression , string_expression "}"

pin_aspect ::= [Branch Names]
 pin_name
| (pin_name)
| 0

pin_attribute ::= [Pin Declarations]
 export
| external

pin_declaration ::= [Pin Declarations]
{ pin_attribute } pin_type_mark declarator_list eos

pin_type_declaration ::= [Pin Type Declarations]
 scalar_pin_type_declaration
| structure_pin_type_declaration

pin_type_mark ::= [Pin Declarations]
 pin_type_name
| structure_pin_type_definition
| pin_type_reference

prefix ::= name [Names]

primary ::= [Primaries]
 name
| literal
Saber® MAST Language Reference Manual 225
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
| function_call
| aggregate
| structure_overlay
| conditional_expression
| (expression)

punctuation_character ::= one of [Character Set]
" # % & () * + , - . / : ; < = > @ [] \ _ { } | ~ m

qualified_name ::= [Qualified Names]
prefix .. suffix

range_set_specification ::= [Range Set Specification]
[control_section] range_set (expression) eos

real_literal ::= [Real Literals]
 decimal_literal [. decimal_literal] [exponent]
| . decimal_literal [exponent]

reference_designator ::= [Instance Names]
 identifier
| special_reference_designator

ref_declaration ::= [Ref Declarations]
{ analog_attribute } ref_indication unit_mark declarator_list eos

ref_indication ::= [input] [ref] [Ref Declarations]

relational_expression ::= [Expressions]
additive_expression { relational_operator additive_expression }

relational_operator ::= < | > | <= | >= [Relational Operators]

resolution_indication ::= [Enumeration Unit Declarations]
conflict_resolution : function_declaration

restart_specification ::= [Restart Specification]
[control_section] adjust_on_restart (simple_name

{ , simple_name }) eos

result_indication ::= [Function Header]
 untyped_result_indication
| typed_result_indication
226 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
return_statement ::= [Return Statement]
return eos

root_template ::= [Template Definitions]
template_body

sample_point_specification ::= [Sample Point Specification]
[control_section]

sample_points (independent_set, expression) eos

scalar_pin_type_declaration ::= [Scalar Pin Type Declarations]
pin identifier scalar_pin_type_definition

scalar_pin_type_definition ::= [Scalar Pin Types]
 across_aspect through_aspect
| through_aspect across_aspect

scalar_type_definition ::= [Scalar Common Types]
enumeration_type_definition

scale_factor ::= [Real Literals]
a | f | p | n | u | mu | μ | m | k | me | meg | g | t

selected_name ::= [Selected Names]
prefix -> simple_name

sentence ::= [Template Bodies]
 declarative_item
| statement
| eos

set ::= analog_name | inline_group [Nonlinearity Specification]

simple_name ::= [Simple Names]
identifier

simulator_variable_declaration ::= [Simulator Variable Declarations]
simvar identifier_list eos

slice_name ::= prefix "[" index_constraint "]" [Slice Names]

small_signal_specification ::= [Small-Signal Specification]
[control_section] small_signal (identifier, category_identifier,
Saber® MAST Language Reference Manual 227
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
report_expression, expression [, wrt_name]) eos

special_character ::= one of [Character Set]

` ! $ ' ? ^ ¡ ¢ £ ¤ ¥ ¦ § ¨ © ª « ¬ – ® ¯ ° ± 2 3 ´ ¶ · ¸ 1 º » ¿

special_reference_designator ::= [Special Reference Designators]
digit { letter_or_digit_or_underline }

specifier ::= [Alter Specification]
simple_name = expression

specifier_list ::= [Alter Specification]
specifier { , specifier }

start_value_specification ::= [Start Value Specification]
[control_section] start_value (analog_name, expression) eos

state_attribute ::= [State Declarations]
 external
| foreign

state_declaration ::= [State Declarations]
{ state_attribute } [mode] state unit_mark declarator_list eos

statement ::= [Statements]
 executable_statement
| nonexecutable_statement
| generic_statement

statement_attribute ::= [Statements]
 parameters
| equations
| values
| states
| control_section

stress_measure_specification ::= [Stress Measure Specification]
[control_section] stress_measure (

identifier, category_identifier,
report_expression, stress_expression,
simple_name, rating_expression
[, reference_rating_expression]) eos

/41 /21 /43/43/4
228 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
string_literal ::= " { graphic_or_space_character } "[String Literals]

structure_aggregate ::= [Structure Aggregates]
([aggregate_association_list])

structure_overlay ::= [Structure Overlays]
prefix <- ([aggregate_association_list])

structure_pin_type_declaration ::= [Structure Pin Type Declarations]
pin structure_pin_type_definition eos

structure_pin_type_definition ::= [Structure Pin Types]
struc [identifier] "{" { format_effector }

element_pin_declaration { format_effector }
{ element_pin_declaration { format_effector } } "}"

structure_type_definition ::= [Structure Types]
struc [identifier] "{" { format_effector }

element_declaration { format_effector }
{ element_declaration { format_effector } } "}"

suffix ::= simple_name [Qualified Names]

tag ::= [Derived Units]
 simple_name
| qualified_name

target ::= [Assignment Statement]
 name
| inline_group

template_attribute ::= [Template Header]
 encrypted
| element
| component

template_body ::= [Template Bodies]
{ template_body_sentence }

template_body_sentence ::= sentence [Template Bodies]

template_definition ::= [Template Definitions]
template_header "{" template_body "}" eos
Saber® MAST Language Reference Manual 229
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
template_header ::= [Template Header]
template_header_definition { template_header_sentence }

template_header_declarative_item ::= [Template Header Declarations]
 type_declaration
| unit_declaration
| pin_type_declaration
| parameter_declaration
| state_declaration
| analog_variable_declaration
| pin_declaration

template_header_definition ::= [Template Header]
{ template_attribute } template identifier

[connection_list] [= template_argument_list] eos

template_header_sentence ::= [Template Header Declarations]
 template_header_declarative_item
| eos

term ::= [Expressions]
factor { multiplicative_operator factor }

then_part ::= [Conditional Statement]
[then { format_effector }] statement

through_aspect ::= [Scalar Pin Types]
through physical_unit_name

type_declaration ::= [Type Declarations]
type_definition eos

type_definition ::= [Common Types]
 scalar_type_definition
| composite_type_definition

type_indication ::= [Function Declarations]
 extended_type_mark
| (extended_type_mark_list)

type_mark ::= [Derived Units]
 integer
| number
230 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
| string
| type_definition
| type_reference

type_reference ::= [Derived Units]
 enum enumeration_tag
| struc structure_tag
| union union_tag
| qualified_name

typed_result_indication ::= [Function Header]
 variable_declaration
| (variable_declaration_list)

unary_operator ::= + | - | ~ [Unary Operators]

union_aggregate ::= [Union Aggregates]
(aggregate_association_element)

union_type_definition ::= [Union Types]
union [identifier] "{" { format_effector }

element_declaration { format_effector }
{ element_declaration { format_effector } } "}"

unit_aspect ::= unit_name [Branch Names]

unit_declaration ::= [Unit Declarations]
 physical_unit_declaration
| enumeration_unit_declaration
| derived_unit_declaration

unit_mark ::= [Derived Units]
 unit_name
| type_mark

unit_range_specification ::= [Unit Range Specification]
[control_section] range_for_unit (unit_name,

min_expression, max_expression
[, abs_expression [, rel_expression]]) eos

untyped_result_indication ::= [Function Header]
 identifier
| inline_group
Saber® MAST Language Reference Manual 231
Z-2007.03

Appendix 15: Syntax Summary
MAST Syntax
upper_bound ::= [Index Constraints]
 expression
| *

uppercase_letter ::= one of [Character Set]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

À Á Â Ã Ä Å Æ Ç È É Ê Ë Ì Í Î Ï Ñ Ò Ó Ô Õ Ö Ø Ù Ú Û Ü

val_declaration ::= [Val Declarations]
{ analog_attribute } val unit_mark declarator_list eos

variable_attribute ::= [Variable Declarations]
const

variable_declaration ::= [Variable Declarations]
 [variable_attribute] [variable] type_mark declarator_list eos
| [variable_attribute] variable unit_name declarator_list eos

variable_declaration_list ::= [Function Header]
variable_declaration { , variable_declaration }

variable_range_specification ::= [Variable Range Specification]
[control_section] range_for_variable (variable_set,

min_expression, max_expression
[, abs_expression [, rel_expression]]) eos

var_declaration ::= [Var Declarations]
{ analog_attribute } var_indication unit_mark declarator_list eos

var_indication ::= [output] [var] [Var Declarations]

when_statement ::= [When Statement]
[statement_attribute]

when (expression) { format_effector } statement

white_space_character ::= one of [Character Set]
SP NBSP HT

D– Ý IP
232 Saber® MAST Language Reference Manual
Z-2007.03

16
16Glossary

MAST Glossary

across branch

A branch name whose unit aspect is the across unit of the plus pin or minus
pin of the branch.

across unit

The unit denoted by the across aspect of a scalar pin type definition.

active driver

A driver is active when the current time becomes equal to the time element
of the transaction following the effective transaction.

active state

A state that is a component of a net that has an active driver.

adjustable state

A state whose name appears in an adjust_on_restart specification.

alias

An alternate name for an entity.

alternative

An element of a union type.

analog local variable

A branch across variable or an analog variable of kind val.
Saber® MAST Language Reference Manual 233
Z-2007.03

Appendix 16: Glossary
MAST Glossary
analog net

A collection of analog system variables or pins that are associated by
connection association elements.

analog system variable

A branch through variable or an analog variable of kind var or ref.

ancestor

The parent instance of an instance, its parent instance, the parent instance
of its parent instance, etc., up to the root instance.

apply

A specification applies to an entity if it relates to the entity and has been
elaborated.

argument constant expression

A globally constant expression whose primaries are neither the target of an
assignment statement decorated with the parameters attribute nor the
actual argument of a function call calling the ADDR function in a statement
decorated with the parameters attribute.

argument constant type

A scalar type, or an array type whose element type is an argument constant
type and whose index constraints have index ranges with argument
constant lower bound, if present, and upper bound, or a structure type or
union type whose elements are of an argument constant type. For a relaxed
argument constant type any index range may have an assumed upper
bound.

argument marshalling

See marshalling.

argument profile

The profile of the objects in an argument list.

assigned state

A state whose value is updated by executing an assignment statement or by
an implicit assignment.

assumed

An upper bound of an index range specified by an asterisk (*). Also, an index
range whose upper bound is assumed.
234 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 16: Glossary
MAST Glossary
base name

A unique name of a type, used to establish type compatibility and pin type
compatibility.

base type

The common type of a unit.

binary operator

An operator with two operands.

branch across variable

A branch variable whose branch definition denotes an across branch.

branch through local variable

A branch through variable whose name, or the name of any of its
subelements, appears as the target of an assignment statement or the
name in a contribution statement, but does not appear as a primary in an
expression.

branch through system variable

A branch through variable that is not a branch through local variable.

branch through variable

A branch variable whose branch definition denotes a through branch.

canonical group

A group whose group constituents are objects.

cardinality

The number of types in the profile of an ordered collection of objects or
values.

characteristic expression

An expression used by the analog solver to determine the values of the
analog variables.

clearing a driver

The deletion of all transactions except the transaction defining the current
value of the driver.

common type

A set of values and a set of operations.
Saber® MAST Language Reference Manual 235
Z-2007.03

Appendix 16: Glossary
MAST Glossary
composite type

A type that has elements. Composite common types are array types,
structure types, and union types. Composite pin types are array pin types
and structure pin types.

constant expression

An expression whose value can be determined prior to simulation.

constant name

A name in which each expression that appears in the name is globally
constant.

context

A collection of declarations that define an environment for the compilation of
a design unit.

current alternative

The element of a union type whose value is the value of the union type.

current value

The value element of the effective transaction of a driver.

declared

An identifier or decimal literal that has been associated with an entity by a
declaration is said to be declared.

decorate

The association of an attribute with an entity.

decrease newton step

For the decrease expression of a newton step specification, the value of the
subelement INC of the array element that defines the left end of an interval.
The decrease newton step limits the change of the independent variable
with which it is associated from one iteration to the next if the change is
negative.

default value

The initial value of an element of a structure type.

denote

A property of a name or decimal name. The name or decimal name is said
to denote an entity where the declaration of the entity is visible.
236 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 16: Glossary
MAST Glossary
dependent variable

A scalar subelement of an analog local variable that is a term in an
expression, a transform, or an actual expression in a function call in a
statement decorated with the equations attribute and that depends
nonlinearly on independent variables.

design entity

A portion of a hardware design that performs a well-defined function and
has a well-defined interaction with the rest of the design. Implemented as an
MAST template.

design hierarchy

The complete representation of a design that results from the successive
decomposition of a design entity into components, each bound to a design
entity.

design library

An implementation-dependent container for compiled design units.

design unit

A portion of code that can be independently compiled and inserted into a
design library.

dimensionality

The number of indices of an array type or an array pin type.

directly visible

A declaration is said to be directly visible if the identifier associated with an
entity by the declaration is sufficient to denote the entity.

discrete type

An enumeration type or the predefined type INTEGER.

driver

An ordered sequence of one of more transactions. There is a driver for each
scalar subelement of each driving state in an instance, for each simulator
variable with state semantics, for the implicit break state, for the implicit halt
state, and for the implicit state associated with each function call calling the
THRESHOLD function.
Saber® MAST Language Reference Manual 237
Z-2007.03

Appendix 16: Glossary
MAST Glossary
driving state

A state denoted by the longest constant prefix of the second argument of
function SCHEDULE_EVENT. Its value is updated by the state update
algorithm.

driving value

For a scalar driving state, the value element of the effective transaction of its
driver. For a composite driving state, the composite of the driving values of
the scalar subelements of the state.

effective transaction

The one transaction of a driver whose time element is not greater than the
current simulation time.

effective value

The value of an event-driven state obtained when evaluating a primary
denoting the state in an expression.

elaboration

The process by which a sentence takes effect.

element

A constituent of a composite type.

element pin type

The pin type of an element of an array pin type.

element type

The type of an element of an array type.

entity

An item associated with an identifier or decimal literal by an explicit or
implicit declaration.

event

Updating the value of an event-driven state.

event-driven state

A state that is a driving state, or an observed state, or a formal connection
of a template, or an actual in a connection association element, or decorated
with the foreign attribute.
238 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 16: Glossary
MAST Glossary
explicit characteristic expression

A characteristic expression defined by equation statements.

explicitly declared

An object declared by a declaration statement is said to be explicitly
declared.

external name

The name or decimal name of a template connection element defined by the
connection definition of the template connection element.

foreign function

A function written in a general purpose programming language, such as C
or Fortran. A foreign function must be decorated with the foreign attribute
in its function declaration.

free

An analog net is free if it is associated with either a branch through variable
or an analog system variable of kind var whose name is not the label of a
labeled equation statement.

fully qualified name

A qualified name where the simple name preceding the first delimiter in the
qualified name denotes a design library.

globally constant expression

A constant expression whose value can be determined as part of
elaboration.

globally constant type

A scalar type, or an array type whose element type is a globally constant
type and whose index constraints have index ranges with globally constant
lower bound, if present, and upper bound, or a structure type or union type
whose elements are of a globally constant type.

guard

A statement that makes another statement a guarded statement.

guarded statement

A statement whose execution depends on the value of a condition.
Saber® MAST Language Reference Manual 239
Z-2007.03

Appendix 16: Glossary
MAST Glossary
hidden

A declaration that is not directly visible.

immediately within

A declaration is said to occur immediately within a declarative region if this
region is the innermost declarative region that encloses the declaration.

immediate scope

A portion of a declarative region immediately enclosing a declaration.

implicitly declared

An object declared by a statement other than a declaration statement.

imported object

An object denoted by a name that either is an imported name or has a prefix
that contains a portion that is an imported name.

impure function

A function that may return a different result each time it is called, even if
different function calls have the same values as actual arguments.

increase newton step

For the increase expression of a newton step specification, the value of the
subelement INC of the array element that defines the left end of an interval.
The increase newton step limits the change of the independent variable with
which it is associated from one iteration to the next if the change is positive.

independent variable

A scalar subelement of an analog system variable, a branch variable, or an
analog local variable whose value is defined as an analog system variable
or a branch variable, optionally preceded by a unary plus or a unary minus
operator, or the difference of two analog system variables, branch through
variables, or branch across variables or across branch. names where one
pin aspect denotes the reference pin 0.

index range

The range of an index.

inherited

An implicit decoration of a statement obtained from another statement that
either guards or encloses the statement.
240 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 16: Glossary
MAST Glossary
initial point

A collection of values related to a design, consisting of a time, a value for
each analog system variable in the design, a value and a driver for each
event-driven state in the design, and a value for each assigned state in the
design.

initial value

The value of an initial value expression. It is assigned to the object denoted
by the declarator by the elaboration.

initial value expression

The expression that may be part of a declarator.

internal name

The name or decimal name of a template connection element defined by the
connection specification of the template connection element.

keyword

An identifier that has a special meaning in the language.

label

The name preceding the colon in a labeled equation statement.

left operand

The operand preceding a binary operator.

length

The number of values in an index range.

locally constant expression

A constant expression whose value can be determined as part of
compilation.

locally constant name

A name in which each expression that appears in the name is locally
constant.
Saber® MAST Language Reference Manual 241
Z-2007.03

Appendix 16: Glossary
MAST Glossary
locally constant type

A scalar type, or an array type whose element type is a locally constant type
and whose index constraints have index ranges with locally constant lower
bound, if present, and upper bound, or a structure type or union type whose
elements are of a locally constant type. For a relaxed locally constant type
any index range may have an assumed upper bound.

longest constant prefix

For a constant name, the name itself. Otherwise, the longest prefix of the
name that is a constant name.

major declarative region

A declarative region other than a compound statement.

marshalling

An algorithm to copy values of a common type into an array.

member of a set

Either a group constituent if the set is defined as a group, or the object that
defines the set.

minor declarative region

A compound statement.

minus pin

The pin denoted by the minus pin aspect of a branch name.

name

An identifier associated with an entity by a declaration. For a type or pin
type, a keyword together with an identifier.

named association

An argument association element, connection association element, or
aggregate association element containing an explicit specification of the
corresponding formal argument, formal connection, or element of the
structure type or union type.

name space

see overloading class.
242 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 16: Glossary
MAST Glossary
net

A collection of states that are associated by connection association
elements.

node

The analog net associated with a pin.

nonparameter group

A group that is not a parameter group.

normalized index range

An index range whose lower bound is 1 and whose upper bound is the
length of the index range.

null slice

A slice whose lower bound value exceeds the upper bound value.

numeric type

The predefined types INTEGER and NUMBER.

object

An entity of a given common type or pin type.

observed state

A state containing a subelement whose name appears as the first argument
of function EVENT_ON or that is associated as an actual with a formal that
is an observed state.

overloaded

An identifier or enumeration literal that has more than one possible
meaning.

overloading class

A category of entities within which a name must be unique.

parameter group

A group is a parameter group if the group constituents of the corresponding
canonical group are all of class parameter or variable. A group constituent
of class variable must be declared either in the major declarative region
associated with a function or in a minor declarative region decorated with
the parameters attribute.
Saber® MAST Language Reference Manual 243
Z-2007.03

Appendix 16: Glossary
MAST Glossary
parent instance

The instance containing an instantiation statement is the parent instance of
the instance defined by the instantiation statement.

pin flow expression

An expression defining the amount of flow at a pin. The pin flow expression
of a pin that defines a node is a characteristic expression of the model.

pin type

A property of a pin through which its compatibility with other pins is
established.

plus pin

The pin denoted by the plus pin aspect of a branch name.

positional association

An argument association element, connection association element, or
aggregate association element whose corresponding formal argument,
formal connection, or element of the structure type is determined by the
textual position of the association element in the argument association list,
connection association list, or structure aggregate, respectively.

profile

The types of the objects or values of an ordered collection of objects or
values, in the order defined by the collection.

pure function

A function that always returns the same result when called with the same
values as actual arguments.

range

The set of values representable by a type.

range set

A named collection of ranges.

read

A state is said to be read if it is an observed state or if the name of one of its
subelements appears in an expression or as the first argument of one of the
functions LAST_VALUE, RAMP, or SLEW.
244 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 16: Glossary
MAST Glossary
ref

An analog system variable whose matching equation is defined in another
declarative region.

relate

A specification that associates additional information with an entity relates
to the entity.

reserved word

A keyword that must not be used as the name of an entity.

resolved unit

A unit whose unit declaration includes a resolution indication.

right operand

The operand following a binary operator.

root instance

The instance at the root of a design hierarchy, representing a complete
hardware design.

root template

The template defining the root instance.

scalar type

A type that has no elements. Scalar common types are enumeration types
and the predefined types INTEGER, NUMBER, and STRING. Scalar pin
types are pin types with scalar across and through aspects.

scheduled state

A state containing a subelement that is either a scheduled state or a driving
state or that is associated as an actual with a formal that is a scheduled
state.

scope

A portion of a description over which a declaration is active.

sensitive

A when statement is sensitive to a state S if S appears in a specific way in
the condition of the when statement.

set

An unordered collection of scalar objects.
Saber® MAST Language Reference Manual 245
Z-2007.03

Appendix 16: Glossary
MAST Glossary
simple assignment statement

An assignment statement whose expression is a simple expression.

simple expression

An expression with a profile whose cardinality is one.

simulatable model

The result of elaborating a design hierarchy.

stamp expression

An expression defined by an equation statement or an assignment
statement decorated with the equations attribute. The scalar subelements
of a stamp expression are used to construct the characteristic expressions.

subaggregate

An array aggregate appearing as an expression in an n-dimensional array
aggregate.

subelement

A scalar, an element, or an element of an element.

supertype

A type implied by two compatible common types.

tag

An identifier of an enumeration type definition, structure type definition,
union type definition, or structure pin type definition that together with a
keyword is the name of the corresponding type or pin type.

threshold expression

The difference of the waveform and the reference waveform of a function call
calling the THRESHOLD function.

through branch

A branch name whose unit aspect is the through unit of the plus pin or minus
pin of the branch.

through unit

The unit denoted by the through aspect of a scalar pin type definition.

tolerance range

A 4-tuple of values, consisting of a minimum, a maximum, an absolute
tolerance, and a relative tolerance.
246 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 16: Glossary
MAST Glossary
transaction

An element of a driver, consisting of a time and a value and specifying the
value that the state associated with the driver may attain at some time. A
transaction is written as “value at time”.

type

A characteristic of an object or value through which the compatibility of the
object or value with other objects or values can be established. See also
common type.

unconstrained array type

An array type with an assumed index range.

unit

A scalar common type decorated with attributes specific to the kind of the
unit.

var

An analog system variable whose matching equation is defined in the same
declarative region.

visible

When a declaration defines a possible meaning for an identifier.
Saber® MAST Language Reference Manual 247
Z-2007.03

Appendix 16: Glossary
MAST Glossary
248 Saber® MAST Language Reference Manual
Z-2007.03

17
17External Interfaces

This chapter summarizes MAST external interfaces.

Foreign Function Interface

A foreign function is a function written in a standard programming language
such as C or Fortran. Foreign functions can be called from templates and
MAST functions. Foreign functions can also be specified to be called by the
simulator to apply limiting during the determination of an analog solution point.

This section describes the application program interface (API) for foreign
functions and the protocols of calling such functions.

Foreign Function API

The API for foreign functions is a Fortran API of the form:

where name is the name of the foreign function and the formal arguments have
the following types and meaning:

subroutine name(in,nin,ifl,nifl,out,nout,ofl,nofl,undef,ier)

real*8 in(*) An array through which all arguments of a function call are
passed to the foreign function

integer nin The number of elements passed in array in

integer ifl(*) An array of flags passed to the foreign function

integer nifl The number of elements passed in array ifl
Saber® MAST Language Reference Manual 249
Z-2007.03

Appendix 17: External Interfaces
Foreign Function Interface
The name of the foreign function must match the name used in the function
declaration declaring the foreign function. The use of the arguments is specific
to each protocol.

Any programming language that supports functions that are callable from
Fortran can be used to write a foreign function. As an example, the
corresponding API for the C language is:

where C_name is the C name that corresponds to the Fortran name name, and
int has a 32 bit representation.

Notes
1. On some operating systems the C_name is the same as the name in all

lower case. On other operating systems it is the same as the name in all
upper case. On a third class of operating systems the C_name is the same
as the name in all lower case, with an underscore (_) appended.

2. The name of the foreign function (name or C_name) must be explicitly
exported on some operating systems.

Foreign Functions Called from a Template or a MAST Function

When a foreign function is called from a template or an MAST function, the
values of all actual arguments of the function call are passed to the foreign
function by marshalling them into the formal argument in and setting nin to
the number or array elements needed to hold the values. Additionally, the value

real*8 out(*) An array through which the foreign function returns its results

integer nout(2) The number of elements returned in array out. See

integer ofl(*) An array of flags returned by the foreign function

integer nofl The number of elements returned in array ofl

real*8 undef The value of the primary undef, passed into the function

integer ier A status returned by the foreign function

void C_name(double *in, int *nin, int *ifl, int *nifl,
double *out, int *nout, int *ofl, int *nofl,
double *undef, int *ier);
250 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 17: External Interfaces
Foreign Function Interface
of the formal argument undef is set to the value of the primary undef. When
the foreign function call has completed, the results of the foreign function call
are unmarshalled from the formal argument out into one or more values,
directed by the context in which the foreign function call appears.

This section describes the basic concepts of calling foreign functions and
argument marshalling, that is, the algorithm used to copy values of a common
type into an array. The inverse algorithm is used to unmarshal the result
returned by the foreign function call.

Basic Concepts of Calling Foreign Functions
When calling a foreign function, the argument profile and result profile of the
function call are determined first. The argument profile of the function call is the
profile of the actual arguments of the function call. It is an error if the argument
profile of the function call does not match the argument profile of the foreign
function and the argument profile of the foreign function has been specified and
does not contain an unspecified portion. The result profile of the function call is
determined as follows. If the result profile of the foreign function has been
specified and does not contain an unspecified portion, then the result profile of
the function call is the result profile of the foreign function. Otherwise, the
function call is the expression in an assignment statement, and its result profile
is the profile of the object or group that is the target of the assignment
statement. It is an error if the result profile of the function call does not match
the result profile of the foreign function and the result profile of the foreign
function has been specified and does not contain an unspecified portion.

To call a foreign function, the values of the actual arguments of the function call
are copied in the order in which they appear into consecutive elements of the
formal argument in of the foreign function, starting with the first element of in.
Each value is copied according to its type, as described below. The formal
argument nin is then set to the number of elements of the in array occupied
by the values. Next, if the result profile of the function call includes a type that
has a subelement of an unconstrained array type, then the first element of the
formal argument nout is set to 0. Otherwise, the first element of the formal
argument nout is set to the number of elements expected to be returned by
the foreign function in formal argument out. This number is determined from
the result profile of the function call as described below. Next, the second
element of the formal argument nout is set to the length of the formal
argument out. This length must be greater than or equal to the value of the first
element of the formal argument nout. Finally, the formal argument undef is
set to the value of the primary undef for type number.
Saber® MAST Language Reference Manual 251
Z-2007.03

Appendix 17: External Interfaces
Foreign Function Interface
When a foreign function has been called, it must first determine the number of
elements it will need in the formal argument out to hold all values of the result.
Then, it must set the first element of the formal argument nout to this number
and, if the number is smaller than the second element of the formal argument
nout, end the function call without copying any values to the out array.
Otherwise, the foreign routine must copy the result to be returned to the
template or MAST function into consecutive elements of the formal argument
out using the algorithm described in the remainder of this section, starting with
the first element of out.

If a function call calling a foreign function completes and the value of the first
element of the formal argument nout is larger than the value of the second
element of nout, then the size of the formal argument out is increased such
that the length of out matches or exceeds the value of the first element of the
formal argument nout. The second element of the formal argument nout is
then set to the new length of the formal argument out and the foreign function
is called again. It is an error if the value of the first element of the formal
argument nout is larger than the value of the second element of nout when
the second call calling the foreign function completes.

When a function call calling a foreign function completes, the elements of the
formal argument out are copied to one or more values in the expression in
which the function call appears. Copying is driven by the result profile of the
function call. It is an error if the number of elements to be copied is larger than
the value of the first element of the formal argument nout.

Marshalling a Value of Type INTEGER
Marshalling a value of type INTEGER consists of copying the value to the next
available element in the destination array.

Marshalling a Value of Type REAL
Marshalling a value of type REAL consists of copying the value to the next
available element in the destination array.

Marshalling a Value of Type STRING
Marshalling a value of type STRING consists of copying the value of a string
handle to the next available element in the destination array. A string handle is
a floating point value associated with the string value. A string handle can be
passed to the kernel interface functions defined in Obtaining a Value of Type
STRING to obtain the associated string value. Similarly, the kernel interface
252 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 17: External Interfaces
Foreign Function Interface
functions defined in Defining a Value of Type STRING can be used to obtain a
string handle for a string value.

Marshalling a Value of an Enumeration Type
Marshalling a value of an enumeration type consists of determining the position
of the enumeration literal whose enumeration value matches the value in the
corresponding enumeration type definition, followed by copying the number
indicating the position to the next available element in the destination array. The
position of the first enumeration literal in an enumeration type definition is 1.
The position of a value of an enumeration type that equals the value of the
primary undef is the value itself. It is an error if the position of a value of an
enumeration type cannot be determined.

Marshalling a Value of a Structure Type
Marshalling a value of a structure type consists of copying the values of each
element of the structure type in the order in which the elements appear in the
structure type definition to the next available elements in the destination array.

Marshalling a Value of a Union Type
Marshalling a value of a union type consists of copying the position of the
current alternative in the corresponding union type definition followed by the
value of the current alternative to the next available elements in the destination
array. The position of the first alternative in a union type definition is 1. The
position is the value of the primary undef if there is no current alternative. It is
an error if the position of the current alternative cannot be determined.

Marshalling a Value of an Array Type
Marshalling a value of an array type consists of copying the number of
elements in the array value followed by each element of the array value to the
next available elements in the destination array. For an array type whose
dimensionality is greater than 1, the elements are copied by varying the index
at the last index position first.

Marshalling an undefined value of an array type consists of copying the value of
the primary undef to the next available element of the destination array.

Note
The order of the elements resulting from marshalling a multi-dimensional array
is sometimes called row-major order.
Saber® MAST Language Reference Manual 253
Z-2007.03

Appendix 17: External Interfaces
Kernel Interface
Limiting Functions

Limiting function are foreign functions called by the simulator kernel during the
determination of an analog solution point, to limit the change of the
independent variables of a nonlinearity from one iteration to the next. When a
limiting function is called, the following values are marshalled into the formal
argument in of the foreign function:
■ The values of the elements of the optional expression following the name of

the limiting function in the nonlinearity specification, if present.
■ The values of the members of the independent set at the end of the previous

iteration, in the order in which the members of the set have been specified
in the nonlinearity specification.

■ The proposed values of the members of the independent set at the current
iteration, in the order in which the members of the set have been specified
in the nonlinearity specification.

■ The values of the members of the dependent set at the end of the previous
iteration, in the order in which the members of the set have been specified
in the nonlinearity specification.

Additionally, the value of the formal argument nin is set to the number of
elements in array in, and the values of both the formal argument nofl and the
first element of the formal argument nout are set to the number of members of
the independent set.

The limiting function returns in its formal argument out the values to be taken by
the simulator kernel for the members of the independent set at the current
iteration, in the order in which the members of the set have been specified in
the nonlinearity specification. Additionally, if the value of a member of the
independent set returned in the formal argument out is equal to the proposed
value of this member, then the corresponding element in the formal argument
ofl of the foreign function is set to 0. Otherwise, the corresponding element in
the formal argument ofl is set to 1.

Kernel Interface

The simulator kernel provides an interface consisting of a collection of functions
that can be called by foreign functions to request kernel services. This section
defines these functions.
254 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 17: External Interfaces
Kernel Interface
Obtaining a Value of Type STRING

The functions in this category return the value of type STRING associated with
a string handle. If the string value equals the value of the primary undef, the
functions return a string value of length zero.

Fortran API

where the formal arguments have the following types and meaning:

If the length of the string value is greater than the size of the formal argument
string, then the value is truncated to fit the size of string.

C API

where the result and the formal argument have the following meaning:

Defining a Value of Type STRING

The functions in this category associate a string handle with a value of type
STRING and return the string handle.

subroutine getstr(handle, string, n)

real*8 handle A string handle passed to the subroutine

character*(*) string A character variable to receive the string value
associated with the string handle

integer n The length of the string value

char *cgetstr(double handle);

handle A string handle passed to the function

cgetstr A pointer to the string value associated with the
string handle
Saber® MAST Language Reference Manual 255
Z-2007.03

Appendix 17: External Interfaces
Kernel Interface
Fortran API

where the formal arguments have the following types and meaning:

C API

where the result and the formal argument have the following meaning:

Obtaining the Name of the Current Design

The functions in this category provide access to the name given to the root
instance by the implementation. See also Nonmathematical Functions.

Fortran API

where the result has the following type and meaning:

subroutine setstr(string, n, handle)

character*(*) string A string value passed to the subroutine

integer n The number of characters in the string value

real*8 handle The string handle associated with the string value

double csetstr(const char *string);

string A string value passed to the function

csetstr The string handle associated with the string value

function dsgnnm()

real*8 dsgnnm A string handle associated with the design name
256 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 17: External Interfaces
Kernel Interface
C API

where the result has the following meaning:

Calculation of a Limited Exponential

The function in this category implements an exponential function that limits the
function value to prevent overflow. The semantics of the function are defined in
Logarithmic, Exponential and Related Functions.

Fortran API

where the result and the formal argument have the following types and
meaning:

C API

where the result and the formal argument have the following meaning:

double c_dsgnnm(void);

c_dsgnnm A string handle associated with the design name

function limexp(x)

real*8 x The value for which to calculate the limited
exponential

real*8 limexp The value of the limited exponential function

double c_limexp(double x);

x The value for which to calculate the limited
exponential

c_limexp The value of the limited exponential function
Saber® MAST Language Reference Manual 257
Z-2007.03

Appendix 17: External Interfaces
Kernel Interface
Obtaining the Value of Simulator Variables

The functions in this category allow a foreign routine to obtain the value of the
simulator variables STATISTICAL and WORST_CASE.

Fortran API

where the results have the following types and meaning:

C API

where the results have the following types and meaning:

Obtaining Random Values

The functions in this category provide access to a random number generator
provided by the implementation. They can be called interchangeably with the
RANDOM function defined in Semi-Numerical Functions.

function statsv()

function wcsv()

real*8 statsv The value of the simulator variable statistical

real*8 wcsv The value of the simulator variable worst_case

double c_statsv(void);

double c_wcsv(void);

c_statsv The value of the simulator variable statistical

c_wcsv The value of the simulator variable worst_case
258 Saber® MAST Language Reference Manual
Z-2007.03

Appendix 17: External Interfaces
Special Attributes
Fortran API

where the result has the following type and meaning:

C API

where the result has the following meaning:

Special Attributes

This section describes attributes that may decorate design units but that have
no meaning in the MAST language. Such attributes are used for various
purposes by tools operating on a description.

The Encrypted Attribute

The encrypted attribute may decorate a design unit; a design unit decorated
with this attribute is said to be an encrypted design unit. Encrypted design units
may contain portions of text that have been encrypted and that are therefore
unreadable for human readers. Implementations may treat instances of
encrypted templates differently from instances of templates that are not
encrypted templates in matters that are not related to the meaning of a
description.

The encryption algorithm is not specified by this document.

The Component Attribute

The component attribute may decorate a design entity; a design entity
decorated with this attribute is said to be a component template. The purpose

function envrnd()

real*8 envrnd The next value from a pseudo-random sequence

double c_envrnd(void);

c_envrnd The next value from a pseudo-random sequence
Saber® MAST Language Reference Manual 259
Z-2007.03

Appendix 17: External Interfaces
Special Attributes
of the component attribute is to indicate that the implementation of the design
entity should be hidden from the user. Tools may treat instances of component
templates differently from instances of templates that are not component
templates in matters that are not related to the meaning of a description.
260 Saber® MAST Language Reference Manual
Z-2007.03

Index

Symbols
- 82, 87, 89
% 82, 88
& 81, 83, 84
* 82, 88
** 81, 82, 89
+ 82, 87, 89
/ 82, 88
// 82, 87
< 83, 86
<= 83
== 83, 84, 86
> 83, 86
>= 83, 86
| 81, 83, 84
~ 82, 89
~= 83, 84

A
ABS 209
ACOS 204
ACOSH 206
ACROSS 76
across 28, 77, 133, 181, 186

branch 76, 233
branch name 51
unit 28, 233

active 162
active driver 233
active state 233
additive operators 87
ADDR 193
adjust_on_restart 60, 233
adjustable state 60, 168, 233
aggregate 92
aggregate association element 95, 96, 97
alias 4, 233
alter 55, 180

specification 55, 147
alternative 22, 233
analog

local variable 44, 233
net 109, 115, 116, 117, 145, 146, 164, 234
solution points 164
solver 164
system variable 44, 234
variable declaration 44

ancestor 156, 234
apply 56, 234
argument

association list 49, 156
constant pin type 47, 101
constant type 45, 46, 101, 234
lists 48
marshalling 234
profile 13, 48, 234, 251

array aggregate 18, 101, 102
ASIN 204
ASINH 206
assigned state 43, 234
assignment statement 106, 152
associated 127
association element 49, 156
assumed 24, 25, 234
ATAN 204
ATAN2 204
ATANH 206
attribute 4, 37, 105

B
base name 30, 235
base type 25, 235
basic identifiers 174
binary operator 82, 235
branch 46, 180

across variable 46, 235
name 27, 46, 51, 57, 58, 74
261

Index
C

through local variable 46, 235
through system variable 46, 235
through variable 46, 235
type 27
variable 145
variable declaration 46

break state 162, 166, 169

C
canonical group 52, 235
cardinality 18, 82, 235
cgetstr 255
character set 171
cleared 162
clearing a driver 235
collapse 5, 58

specification 3, 58, 146, 148
comment 180
common type 17, 30, 235
compilation

environment 136, 139, 140
unit 136

component 2, 180, 260
attribute 259

composite
common 20
pin types 28
type 17, 236

compound statement 124, 154, 155, 159
conditional

expression 98, 100
statement 122, 152, 155

conflict_resolution 35, 36, 180
connection 3, 117

association element 118, 148
association list 118, 157
formal part 120, 146

const 40, 41, 99, 108
constant 99

expression 39, 99, 100, 102, 107, 234, 236,
239

name 72, 236
constraint 23, 38, 47, 79, 99, 143
context 135, 139, 140, 236
contribution statement 114
control section

specifications 56, 148
control_section 5, 56, 57, 58, 59, 60, 61, 62, 63,
65, 66, 67, 68, 69, 105, 106, 122, 123, 125,
127, 141, 155, 181
COS 205
COSH 206
csetstr 256
current alternative 23, 236
current value 161, 236

D
D_BY_DT 191
DC

event cycle 167
initialization 165
simulation cycle 166
termination phase 167

DC_DOMAIN 165, 167, 186
DC_DONE 167, 189
dc_help 57, 148

specification 56
DC_INIT 165, 167, 188
DC_START 166, 189
decimal name 72
declaration 33
declarative region 127
declarator 38, 45, 46, 47, 48
declared 33, 236
decorate 2, 9, 37, 105, 236
decrease newton step 65, 236
default initial value 39
default value 21, 95, 236
DELAY 191
delimiter 173
denote 33, 236
dependent variable 152, 237
derived unit 143

declaration 36
DESCHEDULE 196
design

entity 1, 237
hierarchy 1, 237
library 137, 237
unit 135, 237

DESIGN_NAME 193
262

Index
E

device_type 60
dimensionality 23, 29, 237
directly visible 129, 237
discrete type 18, 237
DRIVEN 198
driver 161, 167, 237
driving state 42, 195, 238
driving value 163, 165, 238
dsgnnm 256
dynamic elaboration 159

E
effective transaction 161, 238
effective value 163, 165, 238
elaboration 139, 238
element 2, 17, 181, 238

attribute 2
pin type 29, 47, 238
type 13, 23, 238

else 98, 123, 181
encrypted 2, 8, 10, 181

attribute 259
entity 33, 238
enum 19, 20, 22, 27, 34, 35, 36, 94, 181
enum STRESS_MEASURES 67, 185
enumeration

default value 35, 39
literal 19, 35
type 19, 30, 35, 253
unit 26, 30, 35, 143
value 19

envrnd 259
equality operator 84
equations 105, 107, 108, 109, 114, 122, 123,
152, 164, 181, 190, 191, 198, 199, 200, 237,
246
ERROR 201
event 163, 238
EVENT_ON 42, 197
event-driven 42

engine 161
state 238

executable statements 105
exit 112
EXP 208

expected type 84, 85, 98, 134
explicit 114
explicit characteristic expression 239
explicitly declared 37, 239
exponentiation operator 89
export 2, 4, 40, 44, 45, 46, 47, 73, 128, 129, 181

external 47
expression 81, 106, 114, 115, 116, 117, 139,
164, 235
extended identifiers 175
extends 182
external 4, 40, 41, 42, 43, 44, 45, 47, 48, 49, 50,
108, 118, 120, 121, 155, 156, 158, 181

attribute 157, 158
constant 40
foreign 42
name 3, 239

F
file inclusion 182
for 110, 111, 112, 180
foreign 7, 8, 9, 12, 13, 14, 36, 42, 43, 180, 238,
239
format strings 202
free 239
FREQ 187
FREQ_DOMAIN 187
FREQ_MAG 187
FREQ_PHASE 187
fully qualified name 80, 239
function 7, 8, 10, 13, 131, 180, 239, 249

body 10
call 101, 102, 159
declaration 12
definition 7
header 7

G
generic statements 105
getstr 255
globally

constant pin type 47, 102
constant type 41, 42, 45, 46, 102, 239

group 9, 52, 61, 62, 63, 68, 147, 181
constituent 9
263

Index
H

declaration 52
inline 9

guard 111, 113, 123, 239
guarded statement 105, 108, 111, 112, 113, 117,
123, 124, 239

H
halt state 162, 169
HALT_SIMULATION 162, 196
hidden 130, 240

I
identifiers 174
if 98, 123, 180
immediate scope 128, 240
immediately within 128, 240
implicit declaration 38, 50, 240

of branch variables 51
of imported objects 51

imported
name 51, 73
object 51, 65, 66, 106, 116, 123, 240
objects 140, 141

impure function 9, 240
increase newton step 64, 240
independent variable 15, 59, 61, 63, 151, 240
index range 23, 25, 50, 120, 240
indexed name 18, 27, 78
inf 18, 19, 88, 89, 90, 91, 167, 169, 181, 200
inherited 105, 240
initial

condition specification 59, 149
point 167, 168, 241
value 39, 163, 241
value expression 9, 21, 22, 39, 40, 48, 50, 55,

145, 241
initial_condition 59, 181
inline group 53, 61, 159
inout 42, 43, 119, 120
input 42, 43, 45, 119
INSTANCE 193
instance argument association list 120, 156
instance name 73
instantiation statement 117, 141, 155
INT 209

INTEGER 19
integer 27, 165, 181

literal 176
internal name 3, 241

K
kernel services 254
keyword 180, 241

L
label 116, 241
labeled equation statement 115
LAST_VALUE 43, 198
left operand 82, 241
LEN 194
length 23, 241
lexical element 173
LIMEXP 208, 257
limiting function 15, 149, 254
line continuation 182
literals 91
LN 208
locally

constant 99
constant expression 241
constant name 72, 241
constant pin type 100
constant type 100, 242

LOG 208
logical operators 83
longest constant prefix 72, 242
loop statement 110

M
major declarative region 127, 242
make 116, 181

statement 116
marshalling 242, 250
mathematical functions 203
MAX 209
member 61

of a set 242
MESSAGE 200
MIN 210
264

Index
N

minor declarative region 127, 242
minus pin 75, 242
minus pin aspect 57, 58, 75
mode 42, 43
multiplicative operators 88

N
name 33, 71, 242, 249, 250

space 132, 242
named 49, 95, 118

association 242
net 146, 243
NEUTRAL 48, 75, 186
newton_step 63
next 113, 181
NEXT_TIME 190
node 146, 243
noise_source 57, 148
nonexecutable statements 105
nonlinearity specification 149
nonparameter group 53, 243
normalized index range 23, 243
null slice 79, 243
NUMBER 5, 10, 14, 19, 22, 27, 36, 41, 79, 84,
85, 87, 88, 94, 96, 97, 121, 131, 133, 181, 202
numeric

literals 175
type 18, 24, 30, 243

O
object 37, 243

declaration 145
observed state 42, 197, 243
operators 18, 83
order of compilation 137
ordered type 18, 85
output 42, 43, 44, 45, 120
output variable 152
overload resolution 129, 132
overloaded 20, 132, 243
overloading class 132, 243

P
parameter 40, 41, 53, 100, 105, 108, 109, 122,
123, 140, 141, 181, 193, 234, 243

declaration 40
group 53, 243

parent instance 156, 244
partial derivative specification 65, 150
partially transformed expression 152
physical unit 25, 30, 69, 143

declaration 34
pin 36, 37, 77, 133, 181, 186

declaration 29, 47
flow expression 146, 244
type 17, 27, 244
type compatible 31
type declaration 143

pin type 29, 31, 37, 47, 100, 101, 102
pl_set 61
plus pin 75, 244

aspect 57, 58, 75
positional 49, 95, 118

association 244
predefined

common types 185
physical units 26
pin pypes 186
pins 48, 186
scalar pin types 28
units 185

primaries 90
profile 9, 13, 18, 52, 244
propagation of state values 162
pure function 9, 244

Q
qualified name 80

R
RAMP 43
RANDOM 210
range 18, 244
range_for_unit 69, 181
range_for_variable 68, 181
range_set 69, 151, 244
read 43, 244
265

Index
S

real literal 177
ref 3, 45, 51, 58, 108, 115, 119, 145, 146, 164,
234, 245
relate 55, 245
relational operators 85
relaxed argument

constant 101
constant pin type 47
constant type 40, 42, 45, 101

relaxed globally constant 102
relaxed locally

constant 100
constant pin type 47, 100
constant type 40, 42, 45, 100

reserved word 180, 245
resolution function 15, 35
resolved 15
resolved unit 15, 21, 35, 163, 245
resolved value 15
resource libraries 137
restart specification 60, 149
result 11

indication 9
profile 13, 251

return 113, 181
statement 113

right operand 82, 245
root instance 139, 245
root template 1, 245

S
SABER_MESSAGE 201
sample_points 61, 62
scalar

common types 18
pin type 27, 31, 100
pin type declaration 36
type 17, 245

SCHEDULE_EVENT 42, 162, 195
SCHEDULE_NEXT_TIME 162, 195
scheduled state 42, 245
scope 33, 128, 245
selected name 18, 27, 74
sensitive 114, 245
sentence 181

termination 181

separator 173
set 61, 245
setstr 256
SIGN 209
simple assignment statement 106, 246
simple expression 82, 107, 246
simple names 72
simulatable model 139, 246
simulation cycle 15
simulator

variables 48, 102, 162, 186
variables with analog local variable semantics

190
variables with function semantics 186
variables with state semantics 188

simvar 48, 181
SIN 205
SINH 206
SLEW 43
slice 99, 101, 102

name 18, 27, 79
small_signal 66, 150
special reference designators 179
specification 55
SQRT 209
ss_partial 65
stamp expression 108, 114, 115, 116, 117, 246
start_value 59, 149, 166
state 5, 42, 121, 133, 180

declaration 42
propagation algorithm 163

statement
attribute 108
compound 124, 154, 159
conditional 122, 152, 155
decorated with the control_section attribute 155
decorated with the values attribute 151
elaboration of 151
equation 114
exit 112
generic 122
loop 110
make 116
next 113
return 113
when 113
266

Index
T

states 53, 105, 108, 113, 122, 180, 195, 196,
197, 198, 199
STATISTICAL 102, 188, 258
statsv 258
STEP_SIZE 190
stress_measure 67, 150, 181
STRING 14, 19, 22, 27, 30, 79, 84, 97, 180, 202,
255
string literal 178
struc 10, 14, 21, 22, 27, 29, 34, 37, 62, 64, 77,
85, 96, 165, 180, 202
struc BREAKPOINT 62, 64, 185
structure

aggregate 18, 94, 101, 102
overlay 18, 97
pin type 28, 31, 74, 100, 101, 102, 130
pin type declaration 37, 143
pin type definition 47, 144
type 20, 30, 31, 74, 94, 97, 100, 101, 102,

130, 253
subaggregate 93, 246
subelement 17, 246
supertype 31, 84, 85, 98, 246

T
tag 19, 21, 22, 29, 34, 37, 246
TAN 205
TANH 207
target 106
template 2, 5, 80, 121, 131, 133, 181

body 5, 140
connections 2
definition 1
header 2, 140

then 98, 123, 181
THRESHOLD 161, 162, 164, 197
threshold expression 164, 246
THROUGH 76
through 28, 77, 133, 181, 186

branch 76, 246
branch name 51
unit 28, 246

TIME 187
time domain

initialization phase 168

simulation 168
simulation cycle 169
termination phase 169

TIME_DOMAIN 168, 169, 186
TIME_INIT 168, 189
TIME_STEP_DONE 169, 190
tolerance range 68, 142, 246
TR_DONE 169, 190
TR_START 168, 189
transaction 161, 247
TRANSFER_FUNCTION 191
transformed expression 151, 152
transforms 191
type 17, 18, 23, 30, 31, 37, 38, 100, 102, 247,
253

compatible 30, 50
conversions 98
declaration 34, 142
definition 142

type_mark 27, 38

U
unary operators 89
unassociated

analog system variables of kind var or ref 146
states 146

unconstrained array type 23, 247
undef 18, 19, 20, 23, 25, 39, 79, 83, 84, 85, 86,
87, 88, 89, 90, 91, 99, 149, 181, 199, 251, 253,
255

passed into the function 250
union 22, 27, 34, 97, 181

aggregate 18, 96, 101, 102
type 22, 30, 31, 42, 74, 96, 100, 101, 102,

130, 253
UNION_TYPE 194
unit 17, 22, 25, 27, 35, 36, 41, 46, 77, 131, 133,
181, 185, 247

compatible 30
declaration 34, 143
mark 38
range specification 69, 150
state 26

update elaboration 109, 147
267

Index
V

V
val 45, 46, 57, 107, 108, 131, 145, 152, 153,
154, 181, 233

declaration 45
values 53, 105, 108, 122, 123, 141, 151, 152,
153, 154, 181, 190, 198, 199, 200
var 3, 44, 45, 57, 58, 107, 108, 109, 115, 116,
117, 119, 145, 146, 164, 181, 234, 239, 247

declaration 44
variable 22, 41, 181

declaration 8, 41
range specification 68, 150

visibility 129, 247

rules 33

W
WARNING 201
wcsv 258
when 113, 181

statement 113
while 110, 111, 112, 181
working library 137

WORST_CASE 102, 188, 258
268

	Contents
	Related Documents
	Conventions
	1 Design Entities
	Template Definitions
	Template Header
	Template Connections
	Template Header Declarations

	Template Bodies

	2 Functions
	Function Definitions
	Function Header
	Function Body

	Function Declarations
	Special Purpose Functions
	Resolution Functions
	Limiting Functions

	3 Types and Units
	Common Types
	Scalar Common Types
	Integer
	Number
	String
	Enumeration Types

	Composite Common Types
	Structure Types
	Union Types
	Array Types

	Units
	Physical Units
	Predefined Physical Units

	Enumeration Units
	Derived Units

	Pin Types
	Scalar Pin Types
	Predefined Scalar Pin Types

	Composite Pin Types
	Structure Pin Types
	Array Pin Types

	Type and Unit Compatibility
	Compatibility of Common Types
	Unit Compatibility
	Pin Type Compatibility
	Supertypes

	4 Declarations
	Type Declarations
	Unit Declarations
	Physical Unit Declarations
	Enumeration Unit Declarations
	Derived Unit Declaration

	Pin Type Declarations
	Scalar Pin Type Declarations
	Structure Pin Type Declarations

	Objects
	Object Declarations
	Parameter Declarations
	Variable Declarations
	State Declarations
	Analog Variable Declarations
	Pin Declarations
	Simulator Variable Declarations

	Arguments
	Argument Lists
	Argument Association Lists

	Implicit Declarations
	Implicit Declaration of Branch Variables
	Implicit Declaration of Imported Objects
	Other Implicit Declarations

	Group Declarations
	Inline Groups

	5 Specifications
	Alter Specification
	Control Section Specifications
	DC_Help Specification
	Noise Source Specification
	Collapse Specification
	Start Value Specification
	Initial Condition Specification
	Restart Specification
	Device Type Specification
	Nonlinearity Specification
	Sample Point Specification
	Newton Step Specification
	Partial Derivative Specification
	Small-Signal Specification
	Stress Measure Specification
	Variable Range Specification
	Unit Range Specification
	Range Set Specification

	6 Names
	Names
	Simple Names
	Decimal Names
	Instance Names
	Imported Names
	Selected Names
	Branch Names
	Indexed Names
	Slice Names
	Qualified Names

	7 Expressions
	Expressions
	Operators
	Logical Operators
	Equality Operators
	Relational Operators
	Additive Operators
	Multiplicative Operators
	Unary Operators
	Exponentiation Operator

	Primaries
	Literals
	Function Calls
	Aggregates
	Array Aggregates
	Structure Aggregates
	Union Aggregates

	Structure Overlays
	Conditional Expressions

	Type Conversions
	Constant Expressions
	Locally Constant Expressions
	Argument Constant Expressions
	Globally Constant Expressions

	8 Statements
	Executable Statements
	Assignment Statement
	Loop Statement
	Exit Statement
	Next Statement
	Return Statement
	When Statement
	Equation Statements
	Contribution Statement
	Labeled Equation Statement

	Make Statement

	Nonexecutable Statements
	Instantiation Statement

	Generic Statements
	Conditional Statement
	Compound Statement

	9 Scope and Visibility
	Declarative Regions
	Scope of Declarations
	Visibility
	Overload Resolution
	Overloading Classes
	Overload Resolution

	10 Design Units and Their Compilation
	Design Units
	Contexts
	Compilation Units
	Design Libraries
	Order of Compilation

	11 Elaboration
	Elaboration of a Design Hierarchy
	Elaboration of Declarative Items
	Contexts
	Template Headers
	Template Bodies
	Determination of Tolerance Range

	Type Declarations, Type Definitions, and Index Constraints
	Unit Declarations
	Pin Type Declarations and Pin Type Definitions
	Unit Marks, Unit Names, Type Marks and Pin Type Marks
	Function Calls
	Object Declarations
	Branch Variables
	Pins
	Unassociated Analog System Variables of Kind Var or Ref
	Unassociated States
	Update Elaboration of an Object

	Group Declarations
	Alter Specifications
	Control Section Specifications
	DC_Help Specification
	Noise Source Specification
	Collapse Specification
	Start Value Specification and Initial Condition Specification
	Restart Specification
	Nonlinearity Specification
	Partial Derivative Specification
	Small-Signal Specification
	Stress Measure Specification
	Variable Range Specification
	Unit Range Specification
	Range Set Specification
	Other Control Section Specifications

	Elaboration of Statements
	Statements Decorated with the Values Attribute
	Assignment Statements
	Conditional Statements
	Compound Statements

	Statements Decorated with the Control_section Attribute
	Conditional Statements
	Compound Statements

	Instantiation Statements
	Instance Argument Association Lists, Argument Association Elements
	Connection Association Lists, Connection Association Elements
	Association of Parameters Decorated with the External Attribute
	Association of Other Objects Decorated with the External Attribute

	Dynamic Elaboration
	Function Calls
	Compound Statements
	Inline Groups

	12 Simulation
	The Event-Driven Engine
	Drivers
	Propagation of State Values
	The State Propagation Algorithm

	The Analog Solver
	Analog Solution Points
	Threshold Detection

	DC Operating Point Simulation
	The DC Initialization Phase
	The DC Simulation Cycle
	The DC Termination Phase
	The DC Event Cycle

	Time Domain Simulation
	The Time Domain Initialization Phase
	The Time Domain Simulation Cycle
	Time Domain Termination Phase

	13 Lexical Elements
	Character Set
	Lexical Elements and Separators
	Delimiters
	Identifiers
	Basic Identifiers
	Extended Identifiers

	Numeric Literals
	Integer Literals
	Real Literals

	String Literals
	Special Reference Designators
	Comments
	Examples

	Keywords
	Sentence Termination
	File Inclusion

	14 Predefined Language Environment
	Predefined Common Types
	Predefined Units
	Predefined Pin Types
	Predefined Pins
	Simulator Variables
	Simulator Variables with Function Semantics
	Simulator Variables with State Semantics
	Simulator Variables with Analog Local Variable Semantics

	Transforms
	Functions
	Nonmathematical Functions
	Functions Supporting Event-Driven Simulation
	Messages
	Format Strings

	Mathematical Functions
	Trigonometric Functions
	Hyperbolic and Inverse Hyperbolic Functions
	Logarithmic, Exponential and Related Functions
	Semi-Numerical Functions

	15 Syntax Summary
	MAST Syntax

	16 Glossary
	MAST Glossary

	17 External Interfaces
	Foreign Function Interface
	Foreign Function API
	Foreign Functions Called from a Template or a MAST Function
	Basic Concepts of Calling Foreign Functions
	Marshalling a Value of Type INTEGER
	Marshalling a Value of Type REAL
	Marshalling a Value of Type STRING
	Marshalling a Value of an Enumeration Type
	Marshalling a Value of a Structure Type
	Marshalling a Value of a Union Type
	Marshalling a Value of an Array Type

	Limiting Functions

	Kernel Interface
	Obtaining a Value of Type STRING
	Defining a Value of Type STRING
	Obtaining the Name of the Current Design
	Calculation of a Limited Exponential
	Obtaining the Value of Simulator Variables
	Obtaining Random Values

	Special Attributes
	The Encrypted Attribute
	The Component Attribute

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

