
Saber® Managing Symbols
and Models User Guide
Version Z-2007.03, March 2007

Saber is a registered trademark of Sabremark Limited
partnership and is used under license.

ii Saber® Managing Symbols and Models User Guide

Copyright Notice and Proprietary Information
Copyright © 2007 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise, without
prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Cadabra, CATS, CRITIC, CSim, Design Compiler, DesignPower, DesignWare, EPIC, Formality, HSIM,
HSPICE, iN-Phase, in-Sync, Leda, MAST, ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler,
PrimeTime, SiVL, SNUG, SolvNet, System Compiler, TetraMAX, VCS, Vera, and YIELDirector are registered trademarks
of Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, Astro, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, Columbia, Columbia-CE, Cosmos,
CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE, DC Expert, DC Professional, DC Ultra, Design Analyzer,
Design Vision, DesignerHDL, Direct Silicon Access, Discovery, Encore, Galaxy, HANEX, HDL Compiler, Hercules,
Hierarchical Optimization Technology, HSIMplus, HSPICE-Link, iN-Tandem, i-Virtual Stepper, Jupiter, Jupiter-DP,
JupiterXT, JupiterXT-ASIC, Liberty, Libra-Passport, Library Compiler, Magellan, Mars, Mars-Xtalk, Milkyway,
ModelSource, Module Compiler, Planet, Planet-PL, Polaris, Power Compiler, Raphael, Raphael-NES, Saturn, Scirocco,
Scirocco-i, Star-RCXT, Star-SimXT, Taurus, TSUPREM-4, VCS Express, VCSi, VHDL Compiler, VirSim, and VMC are
trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
Saber is a registered trademark of SabreMark Limited Partnership and is used under license.
All other product or company names may be trademarks of their respective owners.

Printed in the U.S.A.

Saber® Managing Symbols and Models User Guide, Z-2007.03
Z-2007.03

Contents

1. Introduction to Managing Symbols and Models . 1

Important Definitions . 1

Typical Scenario for Symbol and Model Usage . 3

Why Do Symbols and Models Need to Be Managed?. 5

Reasons for Using Other Symbols. 5

Reasons for Using Custom Models . 6

Using Supplied Versus Other Symbols . 6

Availability of Supplied Symbols. 6

Why Keep a Custom Model Library? . 7

2. Structuring Your Custom Model Library . 9

Creating Your Part Directories . 10

Consider Directory Names. 10

Consider Internal Conventions. 10

Limit the Number of Directories . 10

Procedure for Creating Your Part Directories . 11

Modifying Your Search Paths . 11

How the Applications Find Files . 12

Procedure for Modifying Your SABER_DATA_PATH Variable. 13
UNIX Users . 14
Windows NT Users. 15

Adding Models to Your Library Directories. 15

Model Names . 16

Procedure for Adding Models to Your New Library 16

Making Your New Model Available for Schematic Capture Tool 17
Making Symbols Available in Saber Sketch 17

3. Creating and Adding Models to Your Custom Library 19

Modeling the System Elements . 19

Other Sources of Existing Models . 20
iii

Contents
Parameterize a General Model (Characterization). 20

Hierarchical (Macro) Modeling . 21

Translate a SPICE Model to a MAST Model . 22

Graphical Modeling . 22

MAST Modeling . 22

Selecting or Creating a Symbol . 23

Using an Existing Symbol . 23
Using a Supplied Symbol . 23
Using a Symbol from Another Schematic Capture Tool 24

Creating a Custom Symbol . 24

Associating the Symbol with the Model (Mapping) . 24

Saving your New Model in a Retrievable Location. 25

4. Making User Templates Visible for UNIX . 27

How the Applications Find Files. 27

Using Templates Written in MAST . 29

Using Custom Models From Your Capture Tool . 31

Making Symbols Available in Saber Sketch . 31

Using C or FORTRAN Routines Called by Templates 32

How to Make a Single Routine Available to the Saber Simulator. 33

How to Make a Library of Routines Available to the Saber Simulator . . . 34

5. Making User Templates Visible for Windows . 37

How the Applications Find Files. 37

Making Symbols Available in Saber Sketch. 39

Using Templates Written in MAST . 40

Using C or FORTRAN Routines Called by Templates 41

The C Language Header . 42

The FORTRAN Language Header. 42

How to Make a Single Routine Available to the Saber Simulator. 43
One-Step Dynamic Library Linking. 43
One-Step C Language Compiling and Linking 43
One-Step FORTRAN Language Compiling and Linking 44

How to Compile and Link Libraries of Routines . 44
iv

Contents
6. Choosing a Mapping Technique. 47

What is Mapping? . 47

When is Mapping Necessary? . 48

Overview of Mapping Techniques . 49

Overview of Name Matching . 50

Overview of Specially-Recognized Properties . 50

Overview of Mapping Files. 51

Use Unaltered Symbols . 51

Comparison of Mapping Techniques . 52

Other Factors that Can Determine the Mapping Method 52

Examples of Mapping Methods . 53

Symbol with no-default properties in a structure 53
Creating, implementing, and testing the ctrl_1 symbol 56

Symbol with default-valued properties in a structure 57
Creating, implementing, and testing the ctrl_2 symbol. 60

A template containing a ref connection point . 61
Creating, implementing, and testing the symbol 63

A template containing an enumerated parameter 65
Creating, implementing, and testing the symbol 66

A user-created symbol for a digital part . 68
Creating, implementing, and testing the inverter symbol 70

A symbol for a hierarchical design . 71
Creating, implementing, and testing the inverter2 symbol 74

7. Using Name Matching to Map Symbols . 77

When Can Name Matching be Used? . 77

Creating Symbols and Symbol Properties Corresponding to Template Features 78

General Guidelines for Symbol Creation . 78

For Viewlogic users only . 79

Example of Name Mapping . 80

Creating a Symbol and a Template for a Three-Phase Current Source. . 80

Creating, Implementing, and Testing the i3ph Symbol. 82

8. Using Specially-Recognized Properties for Mapping. 87

Overview of Specially-Recognized Properties . 87
v

Contents
List of Specially-Recognized Properties . 88

Property Value Limitations (Mentor Graphics Only). 91

Using SaberPrepend to Avoid Property Value Limitations 92

Using the SaberInclude File to Avoid Property Value Limitations 93

9. Specially-Recognized Properties Reference. 95

Specially-Recognized Properties Descriptions . 95

10. Reserved Properties on Symbols and Ports . 111

Reserved Properties on Symbols and Ports . 111

Saber Sketch Symbols and Ports . 111

Hierarchical Block Symbol — Reserved Properties 111
Symbol . 112
Port. 112

HDL Symbol — Reserved Properties . 112
Symbol . 113
Port. 113

Hierarchical Connector Symbol — Reserved Properties 113
Symbol . 114
Port. 114

On-page Connector Symbol — Reserved Properties 114
Symbol . 114
Port. 115

Off-page Connector Symbol — Reserved Properties 115
Symbol . 115
Port. 115

Global Connector Symbol — Reserved Properties 115
Symbol . 116
Port. 116

Border Annotation Drawing — Reserved Properties 116
Drawing . 116

Graphics Definition — Reserved Properties . 118
Symbol . 118
Port. 119

Other Reserved Properties in Saber Sketch . 119

Saber iQBus Symbols and Ports . 120

Component — Reserved Properties . 120
Symbol . 120
Port. 124
vi

Contents
Shell Definition — Reserved Properties . 124
Symbol . 124
Port. 127

Free Terminal — Reserved Properties . 127
Symbol . 128
Port. 130

Physical Splice — Reserved Properties. 130
Symbol . 131
Port. 132

Physical Wire — Reserved Properties . 132
Wire . 132

Physical Cable — Reserved Properties . 134
Cable . 134

Physical Cable Definition — Reserved Properties 136
Cable . 136

Inline Connector Symbol — Reserved Properties 137
Symbol . 138
Port. 138

Sheet Symbol — Reserved Properties . 138
Symbol . 139
Port. 139

Reference Symbol — Reserved Properties . 139
Symbol . 140
Port. 141

Saber Bundle Symbols and Ports . 141

Bundle Shell — Reserved Properties . 141
Symbol . 141
Port. 143

Bundle Terminal — Reserved Properties . 143
Symbol . 143
Port. 144

Bundle Splice — Reserved Properties . 144
Symbol . 144
Port. 145

Bundle Harness Component — Reserved Properties 145
Symbol . 146
Port. 147

Bundle Inline Component — Reserved Properties 148
Symbol . 148
Port. 149

Bundle Passive — Reserved Properties . 150
Symbol . 150
vii

Contents
Port . 151

Bundle Segment — Reserved Properties . 151
Bundle Segment . 152

Bundle Segment Definition — Reserved Properties 152
Bundle Segment Definition. 153

Parts Databases . 153

Shell Parts Database — Reserved Properties . 153

Wire Parts Database — Reserved Properties . 154

Cable Parts Database — Reserved Properties 155

Passive Parts Database — Reserved Properties 156

11. Using a Mapping File to Map Symbols . 157

Overview of Mapping Files. 157

What Is a Mapping File? . 158

Creating a Mapping File. 158

Structure of a Mapping File . 158

Special Characters Used in the Mapping File . 159

Saving Your Mapping File in a Retrievable Location . 160

Cadence and Viewlogic . 160

Mentor Graphics, single symbols . 161

Mentor Graphics, multiple symbols . 161

Designating that the Netlister Use the Mapping File . 161

Mentor Graphics. 161

Cadence. 162

Viewlogic . 162

Mapping File Examples . 162

Mentor Graphics Symbol Mapping Examples . 164
Mentor Graphics: Mapping the Voltage Source Symbols 164
Mentor Graphics: Mapping the Ground Symbol 167
Mentor Graphics: The Schematic for the ASIC Symbol 169

Cadence Symbol Mapping Examples . 172
Cadence: Mapping the Voltage-Source Symbols. 172
Cadence: Mapping the Ground Symbol . 176
Cadence: The Schematic for the ASIC Symbol 179

Viewlogic Symbol Mapping Examples . 181
Viewlogic: Mapping the Voltage Source Symbols 181
Viewlogic: Mapping the Ground Symbol . 185
Viewlogic: The Schematic for the ASIC Symbol. 188
viii

Contents
12. Mapping File Reference. 191

Standard Mapping Files . 191

Mentor Graphics. 192

Cadence. 192

Viewlogic . 192

User Mapping Files . 193

Structure of a Mapping File . 193

Special Characters Used in the Mapping File . 196

Tables Section . 197

Enums Section . 198

Definitions Section . 199
General Mapping Functions . 201
SPICE to MAST Mapping Functions . 203
Length and Width Mapping Functions . 204
Generic Entries . 207
Specific Symbol Entries . 217
Multiple Generic Entries . 227
Default Generic Mapping . 227

Include and Exclude Sections . 227

Interaction of Mapping, Special Properties, and Defaults 228

Mapping File Considerations for Mentor Graphics Users 230

Single Components in Mentor Graphics . 231

Multiple Component Interface Support in Mentor Graphics 232

13. Using a Mapping File to Convert SPICE Symbols 235

Mapping Functions Used to Convert SPICE Symbols 235

Inverter Example . 236

Transmission Line Example . 244

14. Using Cadence simInfo to Avoid Mapping Files . 251

Definitions . 252

Mapping with simInfo . 252

Example SKILL Script . 252

Updating the Library. 253

Recommendations . 253
ix

Contents
Templates Using the Union Data-Structure . 253

Pre-Defined Properties Recognized by Catos Netlisters 254

componentName . 254

termOrder. 254

termMapping . 255

instParameters . 256

propMapping . 256

Pre-Defined Properties Not Recognized by Catos Netlisters. 256

Specific Examples Using simInfo. 257

Example 1: Simple resistor . 257

Example 2: Resistor, parameter mapping and term ordering 258

Example 3: Simple transistor with terminal mapping 258

Example 4: Transistor with terminal ordering . 259

Example 5: Transistor with programmable terminals and property mapping 259

Example 6: Transistor with terminal/programmable terminals and property
mapping . 260

15. The Template Information System . 261

Template Information System Updates . 261

Automatic Update. 262

Manual Update. 262

Manually Creating Template Information Files . 262

Using the command line script . 263

Using the menu selections . 263

Editing Template Files with the Text Editor . 264

Glossary . 265

Index . 271
x

1
1Introduction to Managing Symbols and Models

If you have reason to create a custom model or symbol, or to maintain or create
a custom library, or must use other symbols (from another vendor, for
example), then this topic will be helpful.

The following topics describe the basics of managing symbols and models in a
custom library:
■ Important Definitions
■ Typical Scenario for Symbol and Model Usage
■ Why Do Symbols and Models Need to Be Managed?
■ Using Supplied Vs. Other Symbols
■ Why Keep a Custom Model Library?

Important Definitions

The following definitions are very useful for the discussions in this topic. It is
helpful to read this small section even if you are familiar with these terms.
Different manufacturers within the EDA industry define terms differently. For a
more complete list of modeling terms refer to the Glossary. Terms used in a
definition, that are also defined, appear in italics.

Template A template is a text file that contains the model description, written
in the MAST language, for use in simulation. A template models a
general class of parts. Parameters must be supplied to model a
specific part. See component.
Saber® Managing Symbols and Models User Guide 1
Z-2007.03

Chapter 1: Introduction to Managing Symbols and Models
Important Definitions
Component 1) A component is a model that has been characterized to
represent a more specific system element. A component usually
corresponds to a commercially-available part. A component usually
passes appropriate parameter values to a more general template.
2) A template instance in a netlist is also referred to as a
component. See template.

Symbol A symbol is the graphic object used in a schematic capture tool to
represent a system element (part). It is used only to define the pin
connections to the other system elements. It does not model the
behavior of a part. However, a symbol can pass properties to a
template. Sometimes referred to as base-symbol or instance-
symbol, the former refers to the symbol as a file, the latter refers to
the symbol as it is placed in a schematic. There can be many
instances of the same base symbol in the same schematic.

Model Model is a loosely defined term. It is predominantly used in the
colloquial sense to mean some representation (mathematical
equations) that approximates the behavior of a real or imagined
system element. Somewhat interchangeable with template, model
is the more general term. Model can also mean 1) either a template
or a component; 2) simply a list of parameters that, when applied
to a particular template, turns it into a component for a particular
part (a parameter list is often the type of model that is supplied by
some of the parts manufacturers).

Part 1) A part consists of all the information needed to describe a
system element. This information includes the model (either
template or component), any underlying parameters, and the
symbol. 2) A part sometimes refers to the physical device.

Property A property is a type of variable that is part of a symbol. Properties
are used to characterize the symbol, often for programs outside of
the graphic editor. Properties of symbols may be passed-on to the
parameters of a model. See attribute.

Attribute Attribute is generally interchangeable with property. Some
schematic capture vendors refer to symbol variables as attributes,
most vendors refer to them as properties. This document refers to
them as properties. See property.
2 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 1: Introduction to Managing Symbols and Models
Typical Scenario for Symbol and Model Usage
Typical Scenario for Symbol and Model Usage

The following figure illustrates the basic steps for analyzing a design using the
simulator.

Parameter A parameter is a variable that is part of a model (template) and is
therefore needed for simulation. A parameter is generally (but not
necessarily) a coefficient of a model equation. Parameter is often
used interchangeably with argument. Parameters are not limited to
numeric values.

Port A port is an input or output connection point of a model or symbol,
but, more often, it refers to symbol connections. See pin.

Pin 1) A pin is the name for a connection point of a template to a netlist.
2) A pin is a generic term for any connection point. See port.

Netlist A netlist is a text file (.sin extension) that is an input to the simulator.
A netlist is a description of a design that lists each element of the
design, its values, and its interconnections with other design
elements. A netlist can be created by hand but is more typically the
output of a program called a netlister, which combines information
from a schematic, the models, and a mapping file (if used).
Saber® Managing Symbols and Models User Guide 3
Z-2007.03

Chapter 1: Introduction to Managing Symbols and Models
Typical Scenario for Symbol and Model Usage
The schematic is typically the source that describes the interconnection
between the design elements. (The interconnections can also be described by
directly writing your own netlist. This method is cumbersome and, in most
cases, is not necessary.) These design elements are represented in the
schematic with graphical objects called symbols. These elements are also
represented in the simulator by models (templates or components), which
describe the behavior of the design elements. There must be a direct
correspondence between a design element’s symbol and its model.

A program called a netlister translates the schematic diagram (along with other
information) into a file called a netlist which describes how all the design

Draw / Modify Schematic

Use Simulation

Evaluate Results

Modify
Design

?

Yes

Next Production Step

No

Symbols used here

Models used here

(Lay-out)

to Analyze Design

Symbol and Model Usage
4 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 1: Introduction to Managing Symbols and Models
Why Do Symbols and Models Need to Be Managed?
elements are connected. This netlist is the circuit description understood by the
simulator.

As just described, a design element’s symbol and its model must have a one-
to-one correspondence. Managing this mapping between symbols and models
is a main topic of this topic.

Why Do Symbols and Models Need to Be Managed?

In many cases symbols and models do not need to be managed. If you are
using only supplied symbols and models, then you do not need to read this
topic. We offer an extremely large and growing library of very high quality
models (components and templates) and all of the symbols necessary for
these models. These symbols are available for creating designs with the Saber
Saber Sketch schematic editor as well as for each of the Frameway
integrations into other manufacturers schematic editor tools. If you have reason
to create a custom model or symbol, or to maintain or create a custom library,
or must use other symbols (from another vendor, for example), then this topic
will be helpful.

Reasons for Using Other Symbols

The following are some reasons for using other symbols:
■ Convention.

Your company prescribes that all symbols must conform to some internal
standard. This is the most common reason for using other symbols. Usually
this convention is in place to maintain compatibility with another EDA tool
(or group of tools) such as layout.

■ Compatibility.
You have a large installed base using a particular type of symbol, and you
need to maintain compatibility with existing symbols.

■ Custom Part.
You must create a custom symbol because there may be no adequate
symbol available to correspond to a custom model you have created.
Saber® Managing Symbols and Models User Guide 5
Z-2007.03

Chapter 1: Introduction to Managing Symbols and Models
Using Supplied Versus Other Symbols
Reasons for Using Custom Models

The following are some reasons for using or creating custom models:
■ New Part.

You need to model a new (or un-characterized) part, one that does not exist
in the supplied libraries.

■ Hierarchy.
You have used hierarchy to create a symbol for a sub-circuit schematic.

Using Supplied Versus Other Symbols

Large portions of this topic are devoted to the various techniques of properly
associating symbols with their models (the mapping task). Using un-altered
symbols is the easiest way to avoid the mapping task. If you use only supplied
symbols, then mapping does not need to be considered. All mapping has
already been done. If you must use other symbols, or wish to modify them, see
Chapter 4: Choosing a Mapping Technique.

Availability of Supplied Symbols

Saber Sketch schematic provides flexibility, power, and superior ease of use.
We also offer three integrations into other manufacturer’s schematic capture
tools. These Frameway integrations are available for Mentor Graphics,
Cadence, and Viewlogic. Frameway integrations allow you to use another
schematic capture tool while still making use of MAST models, the Saber
Simulator, and other tools.

If you purchased Sketch, then you received a large library of symbols. All the
symbols are compatible with the Saber Simulator. These are loaded under the
$SABER_HOME directory when Saber is installed and should be directly
accessible from the Parts Gallery tool in Saber Sketch

If you purchased one of the Frameway integrations, then you also received a
complete set of symbols that are compatible with both the particular schematic
capture tool (Mentor Graphics, Cadence, or Viewlogic) and the simulator.
Using one of these schematic capture tools, you will have the choice of using
symbols originally provided by the tool, symbols provided parts vendors, or
using the symbols provided with the Frameway integration. Using supplied
symbols is the easiest way to avoid the mapping task. These symbol libraries
6 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 1: Introduction to Managing Symbols and Models
Why Keep a Custom Model Library?
are loaded under the $SABER_HOME directory when your Frameway is
installed.

Whether you are using Saber Sketch or one of the Frameway integrations, the
supplied symbols should be directly accessible from your library search tool.
The actual locations of these symbol libraries are as follows:
■ Saber Sketch:

$SABER_HOME/symbol/sketch

■ Frameway integration into the Mentor Graphics environment:
$SABER_HOME/framework/falcon/symbols

■ Frameway integration into the Cadence environment:
$SABER_HOME/framework/artist/symbols

■ Frameway integration into the Viewlogic environment:
$SABER_HOME/framework/viewlogic/symbols

Why Keep a Custom Model Library?

If you are working on a design that requires a very specialized part for which no
model exists, then you will need to create one. You may wish to keep this
model in a library just for that project or you may wish to add it to a larger
company wide library. You may have inherited a custom library that contains
known working models, and you would like to maintain them.

Information in this book will be helpful if you are creating, maintaining, or
adding to a personal project library or your company library. This book
discusses the criteria you may wish to consider before structuring your library,
as well as the steps required to create both a model and the library. If you
decide to create a custom library, please see the following; Structuring Your
Custom Model Library. If you have already created your custom library and
simply wish to add additional models, please see Chapter 3: Creating and
Adding Models to Your Custom Library.
Saber® Managing Symbols and Models User Guide 7
Z-2007.03

Chapter 1: Introduction to Managing Symbols and Models
Why Keep a Custom Model Library?
8 Saber® Managing Symbols and Models User Guide
Z-2007.03

2
2Structuring Your Custom Model Library

This topic discusses how to establish a location for your custom models. In
many cases this will have already been done. If this is the case, then you only
need to know the names of your custom model directories and you can add
your new models to them. If these directories have not been set-up and you
wish to add custom models, then you should read this topic. The basic steps for
establishing a library are as follows:
■ Create directory locations for your parts.
■ Modify your search paths to include these directories.
■ Add your model files to the library directories and make them available to

your schematic capture tool.

Before you create these directories and modify your path, you should read this
entire topic. It is a short topic and lists important considerations that will save
time and frustration.

The remainder of this topic elaborates on each of the above three steps in the
sections listed below. A short procedure for accomplishing each step is
included at the end of each section.

Creating Your Part Directories
Modifying Your Search Paths
Adding Models to Your Library Directories
Saber® Managing Symbols and Models User Guide 9
Z-2007.03

Chapter 2: Structuring Your Custom Model Library
Creating Your Part Directories
Creating Your Part Directories

The first step is to create the directories that will contain your new templates,
components, and symbols. The following sections describe some
considerations to keep in mind when structuring these new directories:

Consider Directory Names
Consider Internal Conventions
Limit the Number of Directories
Procedure for Creating Your Part Directories

Consider Directory Names

When choosing names for your directory structures, you should use names
that will aid in finding or distinguishing among them. Also, remember that your
future needs may grow. You should choose names that will allow for
expansion.

Consider Internal Conventions

Directory structure and naming conventions may already be in-place (formally
or informally) in your company. Paying attention to these company protocols
may aid in finding or distinguishing among these directories in the future.

Limit the Number of Directories

The number of directories you can add to your search path is limited only by
your operating system and how it handles a combination of these search paths.
However, breaking up your library into many smaller libraries (directories)
makes your search path longer and complicates the management task. Also,
storing your libraries in too few directories can make organization difficult to
10 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 2: Structuring Your Custom Model Library
Modifying Your Search Paths
follow. We recommend a maximum of 10 directories. Here is an example of a
simple and workable directory structure for your libraries.

/CustomLibs/Templates
/CustomLibs/TemplatesBeta
/CustomLibs/Symbols
/CustomLibs/SymbolsBeta

Procedure for Creating Your Part Directories

Use your operating system commands to create symbol and template
directories that will store your new models. Enter the following lines at the
command line prompt:

mkdir /CustomLibrary
cd /CustomLibrary
mkdir Symbols
mkdir SymbolsBeta
mkdir Templates
mkdir TemplatesBeta

These instructions make simple assumptions about the names and structure
you have chosen, substitute your own model directory structure for that used in
these instructions.

Modifying Your Search Paths

Once your library directories are in place, you must modify your search paths to
allow the directories to be found.

The following sections describe how Saber applications find data files and
shows how to modify the appropriate variables to include your newly created
directories.

How the Applications Find Files
Procedure for Modifying Your SABER_DATA_PATH Variable
Saber® Managing Symbols and Models User Guide 11
Z-2007.03

Chapter 2: Structuring Your Custom Model Library
Modifying Your Search Paths
How the Applications Find Files

These applications look for files containing data they need in directories along
the data search path, as listed in the following table in the order listed. For
example, the first directory to be searched is the working directory.

If there are multiple files with the same name in the data search path, Saber
applications use the first one encountered. Your models will be found as long
as they are in one of the locations listed above.

However, if you have created a library of custom models that you would like to
be available for general use, the proper search path location for your
directories is as part of the original SABER_DATA_PATH environment variable
(or AI_SCH_PATH in the case of Saber Sketch finding symbols).

1. The working directory is the first location that is checked along the data
search path. For quick-test purposes, it can be convenient to place library
items in the current directory. You should not rely on this technique for long-
term storage of your libraries, as the current directory may change
depending on where the Saber application was invoked.

2. Templates and components are found by the Saber Simulator using the
SABER_DATA_PATH environment variable. The SABER_DATA_PATH
variable is a list of directories separated by a colon, a space, or both. Any
custom libraries intended for use by others at your site should be stored in
a directory that is part of SABER_DATA_PATH. If such a directory does not
exist, you should create one and add its path to this variable.

Saber Sketch Saber Simulator Description

1 . . Working directory where the
application was started.

2 AI_SCH_PATH

(Locates
directories that
contain custom
symbols.)

SABER_DATA_PATH
(Locates directories that
contain custom
templates and
components)

Environment variable that you set
to point to proper location(s).

3 SABER_HOME/config Directory to hold configuration
information specific to a site.

4 Directories and subdirectories in install_home specific to each application
12 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 2: Structuring Your Custom Model Library
Modifying Your Search Paths
Note:

Never point SABER_DATA_PATH to SABER_HOME.

3. Symbols are found by your schematic capture tool using whichever
mechanism is provided with your particular tool (Saber Sketch, Design
Architect, Artist, or ViewDraw).

4. Saber Sketch searches the value of the AI_SCH_PATH environment
variable to search for directories containing symbols. The AI_SCH_PATH
variable is a list of directories separated by a colon, a space, or both. Any
custom symbols intended for use by others at your site should be stored in
a directory that is part of AI_SCH_PATH. If such a directory does not exist,
you should create one and add its path to AI_SCH_PATH. If AI_SCH_PATH
does not exist, you should create it.

5. The $SABER_HOME/config directory holds configuration information
specific to a site. Do not place any libraries in this directory.

6. The last place an application will search are the additional directories that
are appended by the application. These are the homes for supplied data.
For the Saber Simulator these directories are $SABER_HOME/bin, then
$SABER_HOME/template/*, then $SABER_HOME/component/*/*.

7. Although technically possible, we do not recommend adding custom library
directories to $SABER_HOME, or mixing custom templates with the MAST
templates in any of the $SABER_HOME directories. Future upgrades may
destroy the path to your custom libraries if they reside in a directory found
by using $SABER_HOME.

Precompiled files (.sld files) created using the saber -p option are not found by
using the search path shown in Table 2-1. They are found by using the list of
directories contained in your PATH variable. Precompiled (also called
preloaded) model files have priority over all other models.

Procedure for Modifying Your SABER_DATA_PATH Variable

Modify the SABER_DATA_PATH environment variable in your user start-up file
to specify your new directory pathnames. If the variable is not present, then
create it.

If your SABER_DATA_PATH environment variable includes directories that are
provided with this software, you can remove these directories from the list. For
example, directories containing template or component libraries provided with
Saber® Managing Symbols and Models User Guide 13
Z-2007.03

Chapter 2: Structuring Your Custom Model Library
Modifying Your Search Paths
the Saber Simulator should not be included in the SABER_DATA_PATH
environment variable.

Note that you must be careful when you use the wildcard (*) character to
include directories in the SABER_DATA_PATH environment variable. If too
many directories are included in the SABER_DATA_PATH environment
variable, some files may not be found by the Saber Simulator or other
applications.

The following sections provide specific instructions for users of UNIX and
Windows NT:

UNIX Users
Windows NT Users

UNIX Users
In the following examples, substitute your own model directory structure for the
place-holders (template_directory and dir).

Shell &

File

SABER_DATA_PATH Definition

C

.cshrc

If a SABER_DATA_PATH environment variable does not exist in
your .cshrc file, enter the following line anywhere in the file:

setenv SABER_DATA_PATH template_directory

You may include more than one directory by specifying a colon
separated list as follows:

setenv SABER_DATA_PATH dir1:dir2:dir3

Bourne or
Korn

.profile

If a SABER_DATA_PATH environment variable does not exist in
your .profile file, enter the following lines anywhere in the file:

SABER_DATA_PATH= template_directory

export SABER_DATA_PATH

You may include more than one directory by specifying a colon
separated list as follows:

SABER_DATA_PATH=dir1:dir2:dir3

export SABER_DATA_PATH
14 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 2: Structuring Your Custom Model Library
Adding Models to Your Library Directories
To re-initialize your start-up file, log out and log in to your computer. (You do
not need to reboot your system.)

If a SABER_DATA_PATH environment variable already exists in your .cshrc or
.profile file, you can modify it to include the new directory.

Windows NT Users
The SABER_DATA_PATH environment variable can be defined as either a
system or a user variable or both. As a system variable it will be available to all
users. As a user variable it will only effect the environment of the single user,
but it will take precedence over the system variable.

If SABER_DATA_PATH exists, modify it to include the paths to your new
directories. If SABER_DATA_PATH does not exist, create it, using the paths to
your new directories as the value.

To change or add a system SABER_DATA_PATH environment variable you
must have system level permissions, contact your system administrator.

To change a user SABER_DATA_PATH environment variable, click on
SABER_DATA_PATH in the User Environment Variables list. The Variable
field displays SABER_DATA_PATH and the Value field displays a colon-
separated list of paths to directories (the value of SABER_DATA_PATH). You
can edit the Value field directly.

To add a user SABER_DATA_PATH environment variable, type
SABER_DATA_PATH in the Variable field and type the colon separated list of
paths to your new directories in the Value field, as follows:

When you have finished with your modifications, click on the SET button to
save your changes, and the OK button to close the System window.

Adding Models to Your Library Directories

Once your directory structure is in place, you can add models to them as they
are developed. Simply use your operating system commands to add model

Variable SABER_DATA_PATH

Value C:/CustomLibrary/Templates;

C:/CustomLibrary/TemplatesBeta
Saber® Managing Symbols and Models User Guide 15
Z-2007.03

Chapter 2: Structuring Your Custom Model Library
Adding Models to Your Library Directories
files to your library directories as you would any other file or directory. Naming
of these files is the main consideration when adding models.

This section assumes you have a fully working, tested model (symbol and
template), that you simply wish to add to your custom model library. For details
on how to make your symbols and models work together, refer to Chapter 3:
Creating and Adding Models to Your Custom Library.

The following sections provide details of the procedure:

Model Names
Procedure for Adding Models to Your New Library
Making Your New Model Available for Schematic Capture Tool

Model Names

Consider the name you are giving to your new symbol and template (i.e.:
widget.sym and widget.sin). Does another model already exist with the same
name (widget)? If more than one model exists with the same name, only the
first one in the search path will be found. However, by relying on the search
path to make this choice, any future changes to your directories or search
structure could result in finding an unexpected model.

Procedure for Adding Models to Your New Library

Once your directory structure is in place, you can add files to them as you
develop new models.

Change to the directory that currently contains your new model files by entering
the following line at the command line prompt:

cd path_to_directory_containing_new_models

Move these new model files (the example uses symbol and template files
called widget.sym and widget.sin, respectively) to the library directories you
created earlier, by entering the following lines at the command line prompt:

mv widget.sym /CustomLibrary/Symbols/widget.sym

mv widget.sin /CustomLibrary/Templates/widget.sin

These instructions make simple assumptions about the names and structure
you have chosen. Substitute your own model directory structure for that used in
these instructions (/CustomLibrary/Symbols and /CustomLibrary/Templates).
16 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 2: Structuring Your Custom Model Library
Adding Models to Your Library Directories
Making Your New Model Available for Schematic Capture Tool

The previous sections discussed how to: create directory locations for your
parts, modify your search paths to include these directories, and add your
model files to the library directories. Modifying your SABER_DATA_PATH
environment variable allowed the Saber Simulator to find your new templates
(or components).

Now you must make modifications to allow your schematic capture tool to find
your new symbols. Each schematic capture tool has a different mechanism for
allowing symbols to show-up in its symbol browser. Refer to your schematic
capture tool documentation (Saber Sketch, Design Architect, Artist, or
ViewDraw) for details. If you are using the Saber Sketch design editor follow
the instructions in Making Symbols Available in Saber Sketch.

Making Symbols Available in Saber Sketch
To make symbols available in Saber Sketch, two steps must be accomplished.

1. Modify AI_SCH_PATH to point to your new symbol directories.

2. Add the part description to the Parts Gallery.

Saber Sketch finds symbols in the same way the Saber Simulator finds
templates, except that it uses a different environment variable. You modify
AI_SCH_PATH in the same way you modified SABER_DATA_PATH in the
previous section: Procedure for Modifying Your SABER_DATA_PATH
Variable, by following the same instructions but substituting “AI_SCH_PATH”
for “SABER_DATA_PATH”, “SaberSketch” for “Saber Simulator”, and “path to
symbols” for “path to templates.”

To add a part, you open Saber Sketch and click on the Parts Gallery button (on
the tool bar) to open the Parts Gallery window. From the Parts Gallery window,
you select the Parts dropdown menu, then you select the Add menu item to
open the Add Part to Category window. You can browse the Category, Symbol,
and Template fields until you have your part set-up the way you want it, then
click on the Add button.
Saber® Managing Symbols and Models User Guide 17
Z-2007.03

Chapter 2: Structuring Your Custom Model Library
Adding Models to Your Library Directories
18 Saber® Managing Symbols and Models User Guide
Z-2007.03

3
3Creating and Adding Models to Your Custom Library

This section outlines the basic steps for adding a new model to your library. If
you are merely modifying a model (or symbol), then some of these steps may
not be relevant. The third step, associating the symbol with the model, is
helpful if you are using other symbols (from another schematic editor) and wish
to map them to the supplied models. Regardless of the schematic editor you
are using or what circuit element you are creating, if no model exists, then the
following four steps must be accomplished to add a model to your library.

Modeling the System Elements
Selecting or Creating a Symbol
Associating the Symbol with the Model (Mapping)
Saving your New Model in a Retrievable Location

Modeling the System Elements

This guide is devoted to managing models. Other documentation is available
for designing models. This section outlines the various techniques for
developing a new model, lists the strengths and weaknesses of each relative to
the others, and refers you to locations for further study:

Other Sources of Existing Models
Parameterize a General Model (Characterization)
Hierarchical (Macro) Modeling
Translate a SPICE Model to a MAST Model
Graphical Modeling
MAST Modeling
Saber® Managing Symbols and Models User Guide 19
Z-2007.03

Chapter 3: Creating and Adding Models to Your Custom Library
Modeling the System Elements
Other Sources of Existing Models

The easiest and fastest technique for fulfilling a modeling need is to find one
that already exists. It may be exactly what you need, or it may only need slight
modification. Either way, you can save time by simply asking. The following is a
list of some of the common sources for models.
■ Synopsys Systems. Our list of models is always growing. Even if you don’t

find the model you need in the library you purchased, it may be available in
some of the optional libraries, or it may have been created since your
original purchase.

■ Inside your company. Ask your colleagues who have worked in a similar
area or ask your system administrator. The model may already exist on
another file system, network, or site.

■ User Groups. Your colleagues outside of your company may have already
created the model you need. The ASSURE users group offers many of
these models in the public domain. Those that were verifiable at the time of
your release have been supplied on your distribution CD; you can find them
in $SABER_HOME/user_grp/template. For the latest models (available
online) or to submit a model, call your applications engineer.

■ Manufacturer or Vendor of the Part. Many offer at least crude models
(simply a parameter list, see definition of model), if not complete models of
their parts. If they don’t offer one, ask when it will be available. Remember
that we also provide a SPICE to MAST translator (spitos).

■ University. Many universities are creating models for this simulator. They
may have models from past or present projects.

Advantages. This is usually the simplest and quickest way to achieve a working
model.

Disadvantages. It requires a little effort, and you still may not find a suitable
model.

Parameterize a General Model (Characterization)

A simulation model for the symbol in a schematic can be either a component or
a template. A component is a very specific model. A template is a more general
model, which has parameters that can make it more specific (some or all of the
parameters may have default values). If you use a template as your model, it
20 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 3: Creating and Adding Models to Your Custom Library
Modeling the System Elements
may require that you assign values to some of its parameters. Parameter value
assignment, in this case, is usually done on the symbol in the schematic.

Characterization is the process of converting a template (general model) into a
component (specific model). A component usually corresponds to a specific
physical part. Characterization is accomplished by giving values to the
parameters of the template, usually including those with default values.
Parameter value assignment, in this case, is done in a component file that calls
the template and passes parameter values.

Some parts can be characterized more easily than others. For instance, some
parameters can be found in a data book. Other parameters either cannot be
found or are not reliable. Op-amps can usually be characterized from a data
book, but transistors usually require empirical data (from a lab) to characterize
the part accurately.

Advantages. This technique is quick and easy to accomplish if you have the
correct parameter values. The existing template (such as an inductor with a
series resistance) already includes all desired behavior. The resultant model is
of high quality, and simulation runs quickly.

Disadvantages. This technique requires the proper existing template. There
can be a large variation in the effort required to gain the proper parameter
values.

Hierarchical (Macro) Modeling

You can group multiple existing models to create a new model. Your new
model can have its own symbol, but for simulation purposes it is a group of
sub-models. There are two ways this concept is used.

Within a single design, you may wish to group certain parts as a sub-
schematic. Perhaps a group of parts is repeated many times in the design, or
perhaps you just want to group some of the lower level details in order to clarify
the higher level design. This kind of usage is referred to as hierarchical
modeling.

You can also use this technique to model a part by using existing sub-models,
even though those submodels are not part of the circuit. For example, you can
model a transistor using resistors, capacitors, and dependent sources. This
kind of usage is referred to as macro modeling. Macro modeling is also used
(by definition) in SPICE-based simulation. Many of the macro models in MAST
are the result of a conversion from a SPICE model.

Advantages. This technique is a quick and easy way to create a new model.
Saber® Managing Symbols and Models User Guide 21
Z-2007.03

Chapter 3: Creating and Adding Models to Your Custom Library
Modeling the System Elements
Disadvantages. This technique depends on the availability of underlying
models. The resultant model may be inefficient or overly complicated, causing
simulation to run slowly, as compared with an original behavioral model for the
same part.

Translate a SPICE Model to a MAST Model

SPITOS translates from a SPICE model (netlist) to a MAST netlist. SPICE
models exist only as netlists. They are constructed as combinations (macro
models) of a handful of primitives (resistor, capacitor, sources, etc.). When
translating from SPICE to MAST, you have the option of choosing primitives
that exactly match the original SPICE primitives, or you can choose the
improved (corrected) primitives (templates).

Advantages. If a SPICE model is the only one available, this is a quick and
easy way to begin simulating.

Disadvantages. The resultant model may be inefficient or overly complicated,
causing simulation to run slowly. It may also be less accurate than required. A
behavioral MAST model for the same part can run faster and be more
accurate.

Graphical Modeling

Graphical modeling allows you to build a model by adding or modifying
equations on special symbols. This technique results in new models and is
accomplished completely within your schematic editor.

Advantages. Creating the model is easy. There is no need to create a symbol.
There is no need to learn a programming language. Simulation of models runs
quickly.

Disadvantages. This technique is limited to higher abstraction models such as
control systems. Models cannot be parameterized.

MAST Modeling

MAST is a very powerful modeling language. All of the supplied templates are
written in MAST. All of the modeling techniques ultimately result in a MAST
model of some form. This powerful language is provided with your purchase of
the simulator. You can use MAST directly to create new behavioral models
(templates).
22 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 3: Creating and Adding Models to Your Custom Library
Selecting or Creating a Symbol
Advantages. This is the most powerful of the modeling techniques. Any model
that can be conceived can be created.

Disadvantages. Since you will be writing in a modeling language rather than
using an automated modeling system (like Graphical Modeling), MAST
modeling will generally (though not necessarily) take longer.

Selecting or Creating a Symbol

A symbol is a graphic object. If you are using a schematic capture tool to enter
your design, then you need a symbol to represent your model on the
schematic. You can choose from libraries of existing symbols or create any
shape you wish to represent your part. The shape should be useful for quick
and easy identification on the schematic, but otherwise has no meaning. To
work correctly with the simulator, the symbol must also represent the correct
number and type of connections and the correct properties to correlate with its
template. The following sections discuss these procedures:

Using an Existing Symbol
Creating a Custom Symbol

Using an Existing Symbol

A symbol can exist in two places, in a symbol library as a base symbol or in a
schematic as a symbol instance. There can be many instances of the same
base symbol in a single schematic.

It is not necessary to create a new symbol for your part, even if your part uses
a new template. You can choose from among the vast existing libraries of
symbols for an appropriate graphic representation of your part. You can then
copy that symbol to a new file and modify its properties to work with your new
model. Refer to the section on Creating a Custom Symbol.

Using a Supplied Symbol
Supplied symbols come with Saber Sketch as well as with each of the three
Frameway integrations (for Mentor Graphics, Cadence, and Viewlogic).
Regardless of your schematic editing tool, these symbols can be found in the
$SABER_HOME directories loaded from the distribution CD. For more
information refer to Chapter 1: Availability of Supplied Symbols.
Saber® Managing Symbols and Models User Guide 23
Z-2007.03

Chapter 3: Creating and Adding Models to Your Custom Library
Associating the Symbol with the Model (Mapping)
Supplied symbols are already mapped. Therefore, by using these symbols, the
mapping task can usually be avoided.

Using a Symbol from Another Schematic Capture Tool
If you are using a schematic editor from Mentor Graphics, Cadence, or
Viewlogic, then you have the symbols provided with those tools in addition to
the symbols provided with your Frameway integration. For reasons to use
these symbols, refer to Chapter 1: Reasons for Using Other Symbols. If you
need to use other symbols, pay close attention to the section Associating the
Symbol with the Model (Mapping).

Creating a Custom Symbol

If you cannot find an existing symbol to represent your new part, you may want
to create a custom symbol. You use a symbol editor (either Saber Sketch or, if
you are using a Frameway, one from Mentor Graphics, Cadence, or Viewlogic)
to create the graphic. You must also make sure the symbol ports and
properties are compatible with the template. For more information on making
your symbol compatible, you should pay close attention to the section
Associating the Symbol with the Model (Mapping). For instructions on how to
create a symbol, refer to your schematic capture documentation or online help.

Associating the Symbol with the Model (Mapping)

The software includes a program called a netlister. The netlister is a translator
that generates an input file called a netlist by interpreting the relationship
between the properties of each schematic symbol and the parameters of its
associated template. (Netlists are sometimes called .sin files. While all netlists
are .sin files, many .sin files are not netlists. In all cases, .sin files conform to
the MAST language rules.)To accomplish this netlist, there must be a
correlation between the symbols used in the schematic and the corresponding
models in the library. The table below lists the three mapping requirements,
that is, the three areas that must correlate between a symbol and a model.

Symbol Model

Name of the Symbol Name of the Model

Properties of the Symbol Parameters of the Model
24 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 3: Creating and Adding Models to Your Custom Library
Saving your New Model in a Retrievable Location
If you are using unmodified symbols, then these mappings have already been
done for you. If you are using another vendor’s symbols or custom made
symbols, then you must cover these mapping requirements. There are three
methods for accomplishing this mapping task. Each of these methods can be
applied to any or all of the three mapping requirements. That is, you can mix-
and-match the mapping methods between the mapping requirements, as long
as all three of the mapping requirements are met. The three mapping methods
are:
■ Match the Names.
■ Use Specially-Recognized Properties.
■ Use a Mapping File.

For a brief explanation and comparison of these mapping methods, and useful
criteria for choosing among them, see Chapter 4: Choosing a Mapping
Technique.

For detailed information on using each of these techniques see:

Chapter 5: Using Name Matching to Map Symbols
Chapter 6: Using Specially-Recognized Properties for Mapping
Chapter 7: Specially-Recognized Properties Reference
Chapter 8: Using a Mapping File to Map Symbols
Chapter 9: Mapping File Reference

Saving your New Model in a Retrievable Location

Now that you have a new model and corresponding symbol, you must save
them in a location where the tools can find them. Chapter 2: Structuring Your
Custom Model Library discusses how to create these locations. Once you have
a location (library directory or directories) use your operating system to move
(or copy) your model files to the library directory or directories.

Consider the name you are giving to your new symbol and template (such as
widget.sym and widget.sin). Does another model already exist with the same
name (widget)? If more than one model exists with the same name, only the
first one in the search path will be found. However, by relying on the search

Port Names of the Symbol Pin Names of the Model

Symbol Model
Saber® Managing Symbols and Models User Guide 25
Z-2007.03

Chapter 3: Creating and Adding Models to Your Custom Library
Saving your New Model in a Retrievable Location
path to make this choice, any changes to your directories or search structure
could result in finding an unexpected model.
26 Saber® Managing Symbols and Models User Guide
Z-2007.03

4
4Making User Templates Visible for UNIX

This topic describes the following:

How the Applications Find Files
Using Templates Written in MAST
Using Custom Models From Your Capture Tool
Using C or FORTRAN Routines Called by Templates (UNIX)

How the Applications Find Files

To make your own templates (or any other user files) available to the Saber
Simulator or the other applications, you need to do one of the following:
■ Place the files in a directory along the data search path where the

applications will find them. (The data search path is described in this topic.)
■ Use the appropriate environment variable to tell the applications where they

are located as shown in the following table.

The applications look for files containing data they need in directories along the
data search path, as listed in the following table in the order listed.

For example, the first directory to be searched is the working directory.

Data Search Path

Saber Sketch Saber Simulator Description

. . Working directory where the
application was started.
Saber® Managing Symbols and Models User Guide 27
Z-2007.03

Chapter 4: Making User Templates Visible for UNIX
How the Applications Find Files
If there are multiple files with the same name in the data search path, Saber
applications use the first one encountered. Your models will be found as long
as they are in one of the locations listed in the above table. However, if you
have created a library of custom models that you would like to be available for
general use, the proper search path location for your directories is as part of
the original SABER_DATA_PATH environment variable (or AI_SCH_PATH in
the case of Saber Sketch finding symbols).

1. The working directory is the first location that is checked along the data
search path. For quick-test purposes, it can be convenient to place library
items in the current directory. You should not rely on this technique for long-
term storage of your libraries, as the current directory may change
depending on where the Saber application was invoked.

2. Templates and components are found by the Saber Simulator using the
SABER_DATA_PATH environment variable. The SABER_DATA_PATH
variable is a colon-separated list of directories. Any custom libraries
intended for use by others at your site should be stored in a directory that is
part of SABER_DATA_PATH.

If such a directory does not exist, you should create one and add its path to
this variable.

Never point SABER_DATA_PATH to install_home.

Symbols are found by your schematic capture tool using whichever
mechanism is provided with your particular tool (Saber Sketch, Design
Architect, Artist, or ViewDraw).

Saber Sketch searches the value of the AI_SCH_PATH environment
variable to search for directories containing symbols. The AI_SCH_PATH
variable is a colon-separated list of directories. Any custom symbols
intended for use by others at your site should be stored in a directory that is

AI_SCH_PATH
(Locates directories
that contain custom
symbols)

SABER_DATA_PATH
(Locates directories that
contain custom templates
and components)

Environment variable that you set to
point to proper location(s)

install_home/config Directory to hold configuration
information specific to an installation.

Directories and subdirectories in install_home specific to each application

Saber Sketch Saber Simulator Description
28 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 4: Making User Templates Visible for UNIX
Using Templates Written in MAST
part of AI_SCH_PATH. If such a directory does not exist, you should create
one and add its path to AI_SCH_PATH. If AI_SCH_PATH does not exist,
you should create it.

3. The install_home/config directory holds configuration information specific to
an installation. Do not place any libraries in this directory.

4. The last place an application will search are the additional directories that
are appended by the application. These are the homes for the software
supplied data. For the Saber Simulator these directories are saber_home/
bin, then saber_home/template/*, then saber_home/component/*/*.

Precompiled files (.sld files) created using the saber -p option are not found by
using the search path shown in the table titled Data Search Path. They are
found by using the list of directories contained in your path variable. For a
procedure for modifying your path variable, refer to Step 3 in the topic titled
Configuring for the UNIX Environment.

Precompiled (also called preloaded) model files have priority over all other
models.

Using Templates Written in MAST

To use templates written in the MAST modeling language, you need to inform
the software where they are located. The following methods can be used.

Method 1: Place the templates in a directory in the data search path. Once you
have done this, the templates will be found by the applications when they are
needed.

Method 2: Specify the directory containing the templates in an environment
variable called SABER_DATA_PATH in your user start-up file. To add your
own template library to the SABER_DATA_PATH environment variable,
complete the following procedure.

1. Define or modify the SABER_DATA_PATH environment variable
Saber® Managing Symbols and Models User Guide 29
Z-2007.03

Chapter 4: Making User Templates Visible for UNIX
Using Templates Written in MAST
Edit the appropriate file for your shell as shown in the following table:

In this table, template_directory is the full path name to the directory
containing the templates or where dir1, dir2, and dir3 are full path names to
three different directories.

If a SABER_DATA_PATH environment variable already exists in your
.cshrc or .profile file, you can modify it to include the new directory.

Shell &

File

SABER_DATA_PATH Definition

C

.cshrc

If a SABER_DATA_PATH environment variable does not
exist in your .cshrc file, enter the following line
anywhere in the file:

setenv SABER_DATA_PATH "template_directory"

You may include more than one directory by specifying
a colon separated list as follows:

setenv SABER_DATA_PATH "dir1:dir2:dir3"

Bourne

.profile

If a SABER_DATA_PATH environment variable
does not exist in your .profile file, enter the
following lines anywhere in the file:

SABER_DATA_PATH= "template_directory"

export SABER_DATA_PATH

You may include more than one directory by
specifying a colon separated list as follows:

SABER_DATA_PATH="dir1:dir2:dir3"

export SABER_DATA_PATH
30 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 4: Making User Templates Visible for UNIX
Using Custom Models From Your Capture Tool
If your SABER_DATA_PATH environment variable includes directories that
are provided with the software, you should remove these directories from
the list. For example, directories containing template or component libraries
provided with the Saber Simulator should not be included in the
SABER_DATA_PATH environment variable.

Use care when you use the wildcard (*) character to include directories in
the SABER_DATA_PATH environment variable. If too many directories are
included in the SABER_DATA_PATH environment variable, some files may
not be found by the Saber Simulator or the other software applications.

2. Re-initialize your startup file

To re-initialize your startup file, log out and log in to your computer. You do
not need to reboot your system.

Using Custom Models From Your Capture Tool

You must make modifications to allow your schematic capture tool to find your
new symbols. Each schematic capture tool has a different mechanism for
allowing symbols to show-up in its symbol browser. Refer to your schematic
capture tool documentation (Saber Sketch, Design Architect, Artist, or
ViewDraw) for details. If you are using the Saber Sketch design editor use the
following instructions.

Making Symbols Available in Saber Sketch

To make symbols available in Saber Sketch, two steps must be accomplished.

1. Modify AI_SCH_PATH to point to your new symbol directories.

2. Add the part description to the Parts Gallery.

Saber Sketch finds symbols in the same way the Saber Simulator finds
templates, except that it uses a different environment variable. You modify
AI_SCH_PATH in the same way you modified SABER_DATA_PATH.

To add a part, you open Saber Sketch and click on the Parts Gallery button (on
the tool bar) to open the Parts Gallery window. From the Parts Gallery window,
you select the Edit pulldown menu, then you select the New Part menu item to
open the Create New Part window. You can browse the Category and Symbol
fields until you have your part set-up the way you want it, then click on the
Create button.
Saber® Managing Symbols and Models User Guide 31
Z-2007.03

Chapter 4: Making User Templates Visible for UNIX
Using C or FORTRAN Routines Called by Templates
Using C or FORTRAN Routines Called by Templates

It is possible to create MAST templates that call routines written in FORTRAN
or C. Such routines are called foreign routines. A procedure for incorporating
such routines into a template is described in the Guide to Writing MAST
Templates manual, topic titled Foreign Routines in MAST.

To make foreign routines available to the Saber Simulator, you complete the
following procedure.

• Compile each foreign routine

You must use one of the supported compilers listed in one of the tables titled
Compatible SUN Compiler Versions, or Compatible HP-UX Operating
System Compiler Versions, to avoid possible dynamic loading problems
when trying to use a foreign routine.

To compile a FORTRAN routine, use the command for your system as shown
in the following table.

Command to Compile a FORTRAN Foreign Routine

Replace filename with the name of the file you are compiling.

To compile a C routine, complete the following steps:

1. To find out if you need to add an underscore to the end of C routine names
on your system, refer to the table titled Command to Compile a C Foreign
Routine. If a trailing underscore is required, complete the following:

In the file containing the C routine, add an underscore (_) to the end of the
name of the routine in the header line of the routine.

Do not add an underscore to the name of the file or to the name used in the
MAST foreign command in your template to call the routine.

For more detailed information on Foreign Routines, refer to the Saber MAST
Language User Guide, Book 2.

System Command

Solaris f77 -c -PIC -cg89 -dalign \
-ftrap=%none -xlibmil filename.f

HP-UX f77 -c +Z filename.f
32 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 4: Making User Templates Visible for UNIX
Using C or FORTRAN Routines Called by Templates
2. Compile the C routine by using the command for your system shown in the
following table.

Command to Compile a C Foreign Routine

Replace filename with the name of the file you are compiling.

How to Make a Single Routine Available to the Saber Simulator

Once the subroutine has been created and compiled it must be made available
to the Saber Simulator.

1. Make the compiled routine available to the Saber Simulator.

Complete one of the following:

• Place the compiled routine in a directory in the data search path. For
more information on the data search path, refer to the topic titled How
the Applications Find Files.

• Use the procedure described in Step 1 and Step 2 to add the location of
the compiled routine to your SABER_DATA_PATH environment
variable.

2. Invoke the Saber Simulator

Invoke the Saber Simulator by using the saber command and your usual
command options (if any).

In some cases, the Saber Simulator tries to automatically load subroutines
into a simulation upon invocation. This can be the case when subroutines
have been compiled but not linked to a library. If this is the case, the
compiled subroutines will be in a file labeled filename.o, where filename
indicates the original user-assigned subroutine file name. When started

System Command Trailing
Underscore?

Solaris cc -c -K PIC -cg89 \
-dalign -ftrap=%none \

-xlibmil filename.c

yes

HP-UX cc -c +Z filename.c no
Saber® Managing Symbols and Models User Guide 33
Z-2007.03

Chapter 4: Making User Templates Visible for UNIX
Using C or FORTRAN Routines Called by Templates
under these conditions, the Saber Simulator tries to dynamically link the
filename.o files into the simulation by automatically issuing one of the
following UNIX commands:

Multiple subroutine files are indicated by filename.o. Several different
subroutines can be included in this list of file names. The single shared
library file is indicated by filename.so (Sun) and filename.sl (HP).

How to Make a Library of Routines Available to the Saber
Simulator

To make a library of routines available, perform these steps:

1. Compile the subroutines using the appropriate compiler.

Refer to the table titled Command to Compile a FORTRAN Foreign Routine.

2. Link the compiled files together into a single shared library file.

Once the subroutines have been compiled, they can be linked together into
a single shared library file.

To link multiple subroutines together, use one of the following UNIX
commands:

Multiple subroutine files are indicated by file1.o and file2.o ... Several
different subroutines can be included in this list of file names. The single
shared library file is indicated by file.so (Sun) and file.sl (HP).

3. Declare the shared library file as global

System Command

Solaris ld -o filename.so -dy -G filename.o

HP-UX ld -o filename.sl -b filename.o

System Command

Solaris ld -o file.so -dy -G file1.o file2.o ...

HP-UX ld -o file.sl -b file1.o file2.o ...
34 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 4: Making User Templates Visible for UNIX
Using C or FORTRAN Routines Called by Templates
When several subroutines are combined to create a single shared library
file, you will need to specify a SABER_GLOBAL variable at the operating
system level. This variable needs to include the shared library file and make
it available anytime the Saber Simulator is started. The Saber Simulator will
then search the shared library file for any subroutines which are used but
not found by other means.

Create the SABER_GLOBAL variable using the same method you used for
creating the SABER_DATA_PATH variable, which is described in the table
titled Data Search Path. You need to point the SABER_GLOBAL variable to
the shared library file that was created in However, you must omit the .so file
name extension. For example, if you created a file called my_lib_routines.so
with the ld command, you need to set the SABER_GLOBAL variable to
my_lib_routines.

4. Make the shared library file available to the Saber Simulator.

Once you have created a shared library file and referenced it to the
libai_saber.lib file, place the directory containing the shared library file in the
SABER_DATA_PATH path variable, or place the shared library file in a
directory contained in the SABER_DATA_PATH path variable.

5. Re-initialize your startup environment

Reinitialize your start-up file by logging in to the machine (you may need to
log out first).

login login_name
Saber® Managing Symbols and Models User Guide 35
Z-2007.03

Chapter 4: Making User Templates Visible for UNIX
Using C or FORTRAN Routines Called by Templates
36 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 5: Making User Templates Visible for Windows
How the Applications Find Files
5
5Making User Templates Visible for Windows

This topic describes the following:

How Applications Find Files
Making Symbols Available in Saber Sketch
Using Templates Written in MAST

Using C or FORTRAN Routines Called by Templates (Windows)

How the Applications Find Files

To make your own templates (or any other user files) available to the Saber
Simulator or other applications, you need to do one of the following:
■ Place the files in a directory along the data search path where applications

will find them. (The data search path is described in this subsection.)
■ Use the appropriate environment variable to tell the applications where they

are located.

Applications look for files containing data they need in directories along the
data search path, as listed in the following table in the order listed.

For example, the first directory to be searched is the working directory.

Data Search Path

Saber Sketch Saber Simulator Description

1 . . Working directory of the design that
the application is invoked on.
Saber® Managing Symbols and Models User Guide 37
Z-2007.03

Chapter 5: Making User Templates Visible for Windows
How the Applications Find Files
If there are multiple files with the same name in the data search path, Saber
applications use the first one encountered. Your models will be found as long
as they are in one of the locations listed in the Data Search Path table above.

However, if you have created a library of custom models that you would like to
be available for general use, the proper search path location for your
directories is as part of the SABER_DATA_PATH environment variable (or
AI_SCH_PATH in the case of Saber Sketch finding symbols).

1. The working directory is the first location that is checked along the data
search path. For quick-test purposes, it can be convenient to place library
items in the current directory. You should not rely on this technique for long-
term storage of your libraries, as the current directory changes depending
on the location of the design that is being used by the application.

2. Templates and components are found by the Saber Simulator using the
SABER_DATA_PATH environment variable. The SABER_DATA_PATH
variable is a semicolon-separated list of directories. Any custom libraries
intended for use by others at your site should be stored in a directory that is
part of SABER_DATA_PATH. If such a directory does not exist, you should
create one and add its path to this variable.

The subsection titled Using Templates Written in MAST, describes how to
define or modify a SABER_DATA_PATH environment variable. The
AI_SCH_PATH environment variable can be modified in a similar way.

Manually Creating Template Information Files describes how to update
custom templates that do not have the proper permissions for a user. You
must be a site manager with read and write permissions to use this feature.

2 AI_SCH_PATH
(Locates
directories that
contain custom
symbols.)

SABER_DATA_PATH
(Locates directories that
contain custom templates
and components)

Environment variable that you set
to point to proper location(s).

3 saber_home\config Directory to hold configuration
information specific to a site.

4 Directories and subdirectories in saber_home specific to each application

Saber Sketch Saber Simulator Description
38 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 5: Making User Templates Visible for Windows
Making Symbols Available in Saber Sketch
Note:

Never point SABER_DATA_PATH to saber_home.

Saber Sketch searches the value of the AI_SCH_PATH environment
variable to search for directories containing symbols. The AI_SCH_PATH
variable is a semicolon-separated list of directories. Any custom symbols
intended for use by others at your site should be stored in a directory that is
part of AI_SCH_PATH. If such a directory does not exist, you should create
one and add its path to AI_SCH_PATH. If AI_SCH_PATH does not exist,
you should create it.

3. The saber_home\config directory holds configuration information specific to
a site. Do not place any custom libraries in this directory.

4. The last place an application will search are the additional directories that
are appended by the application. These are the homes for specific-supplied
data. For the Saber Simulator these directories are

Do not place any custom libraries in this directory.

Precompiled files (.sld files) created using the saber -p option are found by
using the list of directories contained in your Path variable. They are not
found by using the search path shown in the Data Search Path.

Precompiled (also called preloaded) model files have priority over all other
models. For more information on precompiled files, refer to the topic titled
Predefined MAST Declarations.

To check the Path variable setting, do the following:

a. Navigate to, and start the System program:

Start > Settings > Control Panel > System > Environment tab

b. Look at the System Environment Variable list for the Path variable.

c. Add the appropriate directories to the value.

Making Symbols Available in Saber Sketch

To make symbols available in Saber Sketch, two steps must be accomplished.

1. Modify AI_SCH_PATH to point to your new symbol directories.

saber_home\bin, then saber_home\template*, then
saber_home\component**.
Saber® Managing Symbols and Models User Guide 39
Z-2007.03

Chapter 5: Making User Templates Visible for Windows
Using Templates Written in MAST
2. Add the part description to the Parts Gallery.

Saber Sketch finds symbols in the same way the Saber Simulator finds
templates, except that it uses a different environment variable. You modify
AI_SCH_PATH in the same way you modified SABER_DATA_PATH.

To add a part, you open Saber Sketch and click on the Parts Gallery button (on
the tool bar) to open the Parts Gallery window. From the Parts Gallery window,
you select the Edit pulldown menu, then you select the New Part to open the
Create New Part window. You can browse the Category, Symbol, and
Template fields until you have your part set-up the way you want it, then click
on the Create button.

Using Templates Written in MAST

To use templates written in the MAST modeling language, you need to inform
the software where they are located. This description specifically refers to the
SABER_DATA_PATH variable. The AI_SCH_PATH variable might also need
to be set for custom symbols in Saber Sketch using the same procedure. The
following methods can be used:

Method 1: Place the templates in a directory in the data search path. Once you
have done this, the templates will be found by the applications when they are
needed.

Method 2: Specify the directory containing the templates in an environment
variable called SABER_DATA_PATH. To add your own template library to the
SABER_DATA_PATH environment variable, complete the following procedure.

1. Define or modify the SABER_DATA_PATH environment variable

In this example, dir1, dir2, and dir3 are full pathnames to three different
directories.

To check the SABER_DATA_PATH variable setting, do the following:

• Navigate to, and start the System program:

Start > Settings > Control Panel > System > Environment tab

• Look at the System Environment Variable list for the
SABER_DATA_PATH variable.

SABER_DATA_PATH="dir1;dir2;dir3"
40 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 5: Making User Templates Visible for Windows
Using C or FORTRAN Routines Called by Templates
• If it does not exist, create it and add the appropriate directories to the
value.

If your SABER_DATA_PATH environment variable includes directories that
are provided with the software, you can remove these directories from the
list. For example, directories containing template or component libraries
provided with the Saber Simulator should not be included in the
SABER_DATA_PATH environment variable.

• Use care when you use the wildcard (*) character to include directories
in the SABER_DATA_PATH environment variable. If too many
directories are included in the SABER_DATA_PATH environment
variable, some files may not be found by the Saber Simulator or other
applications.

2. Re-initialize your startup environment

To re-initialize your startup environment, log out and log in to your computer.
You do not need to reboot your system.

Using C or FORTRAN Routines Called by Templates

It is possible to create MAST templates that call routines written in FORTRAN
or C. Such routines are called foreign routines. A procedure for incorporating
such routines into a template is described in the topic titled Foreign Routines in
MAST which can be found in the Saber MAST Language User Guide.

To make foreign routines available to the Saber Simulator on a Windows
system you must do the following:
■ Insert the proper code in the header of each foreign routine
■ Compile the routine on the Windows system
■ Link multiple-compiled files into one file
■ Set up environment variables so that the Saber Simulator can find the linked

files
Saber® Managing Symbols and Models User Guide 41
Z-2007.03

Chapter 5: Making User Templates Visible for Windows
Using C or FORTRAN Routines Called by Templates
The C Language Header

If the C programming language is being used to create foreign routines for use
with MAST and the Saber Simulator, the routine header must appear exactly as
follows (substitute your foreign routine name for CROUTINE):

The __declspec statement is important for Windows since it indicates that the
routine is exported from the Dynamic Link Loader and can be found by the
Saber Simulator. The __stdcall statement is used to indicate that this routine is
called from FORTRAN with the FORTRAN calling conventions.

The CROUTINE string must be entered in upper-case characters.

The FORTRAN Language Header

If the FORTRAN programming language is being used to create foreign
routines for use with MAST and the Saber Simulator, the routine header must
appear exactly as follows (substitute your foreign routine name for
FROUTINE):

The ATTRIBUTES statement is important for Windows since it indicates that
the routine is exported from the Dynamic Link Loader and can be found by the
Saber Simulator.

The FROUTINE string must be entered in upper-case characters.

__declspec(dllexport) void __stdcall CROUTINE(double*
inp,long*

ninp,long* ifl,long* nifl,double* out,long* nout,long*
ofl,

long* nofl,double* aundef,long* ier)

{

}

subroutine
FROUTINE(inp,ninp,ifl,nifl,out,nout,ofl,nofl,aundef,ier)

!MS$ATTRIBUTES DLLEXPORT :: FROUTINE

integer ninp,nifl,nout(2),nofl,ifl(*),ofl(*),ier

real*8 inp(*),out(*),aundef
42 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 5: Making User Templates Visible for Windows
Using C or FORTRAN Routines Called by Templates
How to Make a Single Routine Available to the Saber Simulator

Once the subroutine has been created, it must be compiled to create the
executable Dynamic Link/Load Library (DLL) file and then referenced to the
Saber library. Both operations can be taken care of using the same command.
The compiling and referencing operations are part of the C or FORTRAN
language compilers and can be version-dependent.

One-Step Dynamic Library Linking
In some cases, the Saber Simulator tries to automatically load subroutines into
a simulation upon invocation. This can be the case when subroutines have
been compiled but not linked to a library. If this is the case, the compiled
subroutines will be in a file labeled filename.obj, where filename indicates the
original user-assigned subroutine file name. When started under these
conditions, the Saber Simulator tries to dynamically link the filename.obj files
into the simulation by automatically issuing the following command:

link /DLL /OUT:filename.dll filename.obj
 saber_home\lib\libai_saber.lib
 saber_home\lib\libai_analogy.lib

where saber_home is the software location. In a standard installation this is:

C:\<filename>\SaberDesigner5.2

This dynamic linking process, however, may not work if there are libraries
which need to be included but are not part of libai_saber.lib or libai_analogy.lib.
If this is the case, refer to the following sections titled One-Step C Language
Compiling and Linking and One-Step FORTRAN Language Compiling and
Linking depending on the programming language being used.

One-Step C Language Compiling and Linking
When the C programming language is used to create a subroutine, the
following command must be used:

cl /LD filename.c saber_home\lib\libai_saber.lib

saber_home\lib\libai_analogy.lib

Where saber_home is the software location. In a standard installation this is:

C:\<filename>\SaberDesigner5.2

where the name of the actual subroutine file, without extensions, is substituted
for filename, and filename indicates the original user-assigned subroutine file
Saber® Managing Symbols and Models User Guide 43
Z-2007.03

Chapter 5: Making User Templates Visible for Windows
Using C or FORTRAN Routines Called by Templates
name. The /LD command indicates a DLL file will be created. The resulting DLL
file will be named filename.dll. For example, if the original C file was called
adder.c, the resulting DLL file would be called adder.dll.

One-Step FORTRAN Language Compiling and Linking
When the FORTRAN programming language is used to create a subroutine,
the following command must be used:

fl32 /LD filename.f

saber_home\lib\libai_saber.lib

saber_home\lib\libai_analogy.lib

where saber_home is the software location. In a standard installation this is:

C:\<filename>\SaberDesigner5.2

Where the name of the actual subroutine file, without extensions, is substituted
for filename, and filename indicates the original user-assigned subroutine file
name. The /LD command indicates a DLL file will be created. The resulting DLL
file will be named filename.dll. For example, if the original FORTRAN file was
called adder.f, the resulting DLL file would be called adder.dll. The
%SABER_HOME% string is a path variable, set during the Saber software
installation, which points to the location of the Saber program and its
associated files.

How to Compile and Link Libraries of Routines

There may be situations where it is desirable to link several subroutines into a
single DLL file, and then reference this file to a Saber library as shown in the
following steps:

1. Compile the subroutines using the appropriate compiler.

Compiling subroutines is a language-dependent operation.

You must use one of the supported compilers listed in the topic titled
Compatible Compiler Versions, to avoid possible dynamic loading problems
when trying to use a foreign routine.

2. Link the compiled files together into a single DLL file.
44 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 5: Making User Templates Visible for Windows
Using C or FORTRAN Routines Called by Templates
Once the subroutines have been compiled, they can be linked together into
a single DLL file. To link multiple subroutines together, use the following
command:

where saber_home is the software location. In a standard installation this is:

The /OUT:dllname.dll command assigns a user-specified name to the
resulting DLL file. Multiple subroutine files are indicated by filename1.obj
and filename2.obj. Several different subroutines can be included in this list
of file names.

3. Declare the DLL file as global.

When several subroutines are combined to create a single DLL file, it is
necessary to specify a SABER_GLOBA variable at the operating system
level. This variable will point to the combined DLL file and make it available
anytime the Saber Simulator is started. The Saber Simulator will then
search the combined DLL file for any subroutines which are used but not
found by other means.

Set the SABER_GLOBAL variable as follows:

• Navigate to, and start the System program:
Start > Settings > Control Panel > System > Environment tab

• Set the variable as follows:

link /DLL /OUT:dllname.dllfilename1.obj filename2.obj
saber_home\lib\libai_saber.lib

saber_home\lib\libai_analogy.lib

C:\<filename>\SaberDesigner5.2

Variable: SABER_GLOBAL

Value: dllname
Saber® Managing Symbols and Models User Guide 45
Z-2007.03

Chapter 5: Making User Templates Visible for Windows
Using C or FORTRAN Routines Called by Templates
The Value entry field contains the name of the DLL file assigned in Step
2, but does not contain the .dll extension. More than one DLL file can be
assigned to the Value by using a comma-separated list of file names.
For example:

4. Make the combined DLL file available to the Saber Simulator.

Once a DLL file has been created and referenced to the libai_saber.lib and
libai_analogy.lib files, the directory containing the DLL file must be placed in
the SABER_DATA_PATH path variable, or the DLL file must be placed in a
directory contained in the SABER_DATA_PATH path variable. Use the
following procedures to check and edit the SABER_DATA_PATH variable.

Check or edit the SABER_DATA_PATH variable as follows:

• Navigate to, and start the System program:
Start > Settings > Control Panel > System > Environment tab

• In either the System or User environment variable list box, an entry for
SABER_DATA_PATH may appear. If it does not appear, create it. Enter
the paths to the directories. If there is more than one path, list them and
separate by colons.

5. Re-initialize your startup environment

To re-initialize your startup environment, log out and log in to your computer.
You do not need to reboot your system.

Variable: SABER_GLOBAL

Value: dllname1, dllname2, dllname3
46 Saber® Managing Symbols and Models User Guide
Z-2007.03

6
6Choosing a Mapping Technique

This section outlines the criteria you should consider before choosing a
mapping technique and compares the three techniques. It also contains six
examples using each of the three techniques.

What is Mapping?
When is Mapping Necessary?
Overview of Mapping Techniques
Comparison of Mapping Techniques
Other Factors that Can Determine the Mapping Method
Examples of Mapping Methods

The following sections contain detailed instructions and reference material for
using the three mapping techniques.

Chapter 5: Using Name Matching to Map Symbols
Chapter 6: Using Specially-Recognized Properties for Mapping
Chapter 7: Specially-Recognized Properties Reference
Chapter 8: Using a Mapping File to Map Symbols
Chapter 9: Mapping File Reference
Chapter 10: Using a Mapping File to Convert SPICE Symbols
Chapter 11: Using Cadence simInfo to Avoid Mapping Files

What is Mapping?

The software includes a program called a netlister. The netlister is a translator
that generates an input file called a netlist by interpreting the relationship
between the properties of each schematic symbol and the parameters of its
associated template. To accomplish this netlist, there must be a correlation
between the symbols used in the schematic and their corresponding models.
Saber® Managing Symbols and Models User Guide 47
Z-2007.03

Chapter 6: Choosing a Mapping Technique
When is Mapping Necessary?
This correlation is called mapping. The table below lists the three mapping
requirements, that is, the three areas that must correlate between a symbol
and a model.

If you are using unmodified symbols, then these mappings have already been
done for you. If you are using another vendor’s symbols or custom made
symbols, then you must cover these mapping requirements.

When is Mapping Necessary?

The need for mapping depends on the type of symbols you are using. If your
symbols are required to have additional properties (non-simulation properties),
then you will need to map -- you cannot use unmodified supplied symbols.
Other EDA tools require that additional properties (and possibly other changes)
be added to the symbols. These symbol changes make them incompatible for
simulation, and therefore require mapping (to “map-out” these changes).

If your symbols only need to be compatible with another schematic capture tool
(the Mentor Graphics Design Architect tool, the Cadence Artist tool, or the
Viewlogic ViewDraw tool), then you can still avoid the mapping task by using
symbols (they have already been mapped for this purpose). Four sets of
symbols are provided. Each set is compatible with a different schematic
capture tool (Saber Sketch, Design Architect, Artist, and ViewDraw). Each set
contains a symbol for every model.

If your simulation needs are primarily in the mixed-technology area (electrical/
mechanical/magnetic/hydraulic/etc.), then you are probably using Saber
Sketch as your schematic capture tool with unmodified symbols and, therefore,
do not need to consider mapping.

If your simulation needs are entirely in the electronic area (board or chip level),
then your symbols will likely need to be compatible with other EDA tools (such
as circuit layout and automatic test generation). These other tools usually

Symbol Model

Name of the Symbol Name of the Model

Properties of the Symbol Parameters of the Model

Port Names of the Symbol Pin Names of the Model
48 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Overview of Mapping Techniques
require additional properties to be placed on the symbols. In this case, you will
need to consider mapping techniques.

The following are some possible reasons for using other symbols:
■ Convention

Your company prescribes that all symbols must conform to some internal
standard. This is the most common reason for using other symbols.

■ Compatibility
You have a large installed base using a particular type of symbol, and you
need to maintain compatibility.

■ Custom Part
You must create a custom symbol because there may be no adequate
symbol available to correspond to a custom model you have created.

Overview of Mapping Techniques

There are three methods for accomplishing the mapping task.
■ Match the Names

using symbol names, property names, and port names that exactly match
the corresponding model names, parameter names, and pin names of your
templates

■ Use Specially-Recognized Properties
whose names are recognized by the netlisters for the purpose of performing
some or all of the mapping functions

■ Use a Mapping File
a separate text file, not part of the symbol or template, that is an input to the
netlister for the purpose of performing some or all of the mapping functions

Each of these methods can be applied to any or all of the three mapping
requirements. That is, you can mix-and-match the mapping methods between
the mapping requirements, as long as all three of the mapping requirements
are met.

These mapping methods are further explained in the following sections.

Overview of Name Matching
Overview of Specially-Recognized Properties
Overview of Mapping Files
Use Unaltered Symbols
Saber® Managing Symbols and Models User Guide 49
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Overview of Mapping Techniques
Overview of Name Matching

If you are creating a new symbol or modifying an existing one, you should use
symbol names, property names, and port names that exactly match the
corresponding model names, parameter names, and pin names. In addition to
using corresponding names, you must add a property called primitive. Name
matching is the easiest way to accomplish the mapping task. In many cases
name matching can cover all three mapping requirements. In some cases,
however, using name matching alone cannot complete the mapping task.

If you cannot use name matching to fulfill all three mapping requirements, you
can still use it to fulfill some of the mapping requirements. For instance, by
renaming your symbol file to the name of your model file, you will fulfill the first
mapping requirement. For example, if widget.sym is the present name of your
symbol and gadget.sin is the name of the template to which you would like to
map, then you rename (or copy) widget.sym to gadget.sym.

Advantages

Simple, easy, obvious (as to which symbols correspond with which models).
Best all around, if it will suffice.

Disadvantages

Doesn’t work in all situations.

Detailed Use Instructions

Chapters 5: Using Name Matching to Map Symbols

Overview of Specially-Recognized Properties

Specially-recognized properties are typically used if you are maintaining an
additional symbol library that allows you to modify or add properties to your
symbols.
50 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Overview of Mapping Techniques
Advantages

From the symbol you can see what the simulator will use. (special properties
override mapping file entries).

Disadvantages

Can clutter up the symbol.

Detailed Use Instructions

Chapter 6: Using Specially-Recognized Properties for Mapping
Chapter 7: Specially-Recognized Properties Reference

Overview of Mapping Files

A mapping file is a separate text file, not part of the symbol or template, that is
an input to the netlister. Using a mapping file is the most cumbersome of the
mapping techniques but allows you to fulfill all of the mapping requirements
without modifying the symbol. A mapping file can also address other special
concerns such as global nets.

Advantages

Transparent to the user
Most powerful

Disadvantages

Transparent to the user
Most cumbersome

Detailed Use Instructions

Chapter 8: Using a Mapping File to Map Symbols
Chapter 9: Mapping File Reference

Use Unaltered Symbols

This is not a mapping technique, but rather a method of avoiding the need for
mapping. This is the easiest method for the purpose of simulation. Just use the
symbols provided.
Saber® Managing Symbols and Models User Guide 51
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Comparison of Mapping Techniques
Advantages

Easiest.

Disadvantages

Doesn’t work in all situations.

Comparison of Mapping Techniques

The mapping methods can be compared using a number of criteria. Some of
them are: ease of use, ability to modify symbol characteristics, and mapping
precedence (when mapping techniques overlap). This section ranks and
compares the mapping methods with respect to each of these criteria.

Ease of use

1. Unaltered Symbols

2. Name Matching

3. Special Properties

4. Mapping File

Ability to Modify Symbol Characteristics

1. Mapping File

2. Special Properties

3. Name Matching

Mapping Precedence

1. Special Properties

2. Mapping File

3. Name Matching

Other Factors that Can Determine the Mapping Method

After reading the previous sections, you might think that any mapping method
will serve under any conditions and you simply need to make a choice. In many
cases, any of the techniques will suffice. However, there are some special
situations that can exclude some of the techniques. These factors are listed
below.
52 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
You cannot use Name Matching if:
■ You want to change the number of connection points
■ You use Global connections
■ You want to reduce properties
■ Your template uses:

ref connections
struct
enum
union

You cannot use Specially-Recognized Properties if:
■ Your template uses a ref connection.

Examples of Mapping Methods

The following examples demonstrate the use of the various mapping
techniques to provide custom symbols in special circumstances.

Symbol with no-default properties in a structure
Symbol with default-valued properties in a structure
A template containing a ref connection point
A template containing an enumerated parameter
A user-created symbol for a digital part
A symbol for a hierarchical design

Symbol with no-default properties in a structure

The code below shows the user-created template nl_gain that defines the
behavior of a gain-block used in the analysis of a control system. The following
figure depicts the user-created symbol ctrl_1 that is associated with the
template nl_gain. This template is the base from which the symbol properties
are derived. It has an argument gain, which represents a structure (struc)
containing the parameters k and p. Neither parameter has a default value
assigned in the template.
Saber® Managing Symbols and Models User Guide 53
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
If you want to make the parameters k and p properties of your symbol instead
of the template argument gain, you must explicitly state the relationship
between the gain argument and the properties k and p in a mapping file.

If you map one argument of a template in a mapping file, you must map all
arguments of that template.

file name: nl_gain.sin

#

template nl_gain in out =gain

ref nu in

var nu out

struc {
number k
number p
}gain=()
{

equations {
out=gain->k*(in**gain->p)
}

outin

out =k*in**p

Symbol Name: ctrl_1
Symbol Properties
primitive=nl_gain
k=*value required*
p=*value required*

Label
Label Ttype = normalLabel
Label = “out=k*in**p”

Pin Properties
terminalName = in;
terminal Name = out;

Terminal Properties
direction = input
direction = output
54 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
The mapping file in this example is called ctrl_1.map. As shown in the next
section of code, it contains only a saber definition section that consists of a
generic entry and a specific symbol entry. Both entries are set off by braces.
The name of the symbol appears in the first field of the specific symbol entry of
the saber section. Because this symbol is to be targeted to the simulator netlist
and simulated by the simulator, you map this symbol in the saber section of the
mapping file.

The fourth field of the specific symbol entry is used to construct the gain
argument from the values of the symbol properties p and k with the following
entry:

gain<-"(k=%{k},p=%{p})"

The netlister translates the symbol properties into netlist entries by interpreting
this expression as follows. In the expression
gain<-"(k=%{k},p=%{p})", the two special characters %{ indicate the beginning
of the property name k (or p) and the special character } indicates the end of
the property name k (or p). When a property name is used in this fashion, the
value of the property is substituted in its place.

The characters (k=, p=, and) are literal values. Since the values of the property
names k and p are 1.4 and 2, respectively (see the following figure), the
expression is interpreted as follows:

gain<-"(k=1.4,p=2)"

Since the string (k=1.4,p=2) is placed within quotes on the right side of a left
arrow, its literal value is assigned to the parameter gain as follows:

gain=gain(INST)<-(k=1.4,p=2)

#File name: ctrl_1.map

#

saber
{
#generic entry
: : : : : : : : : : : : : : : : : : : :

{
specific symbol entries
ctrl_1: : :gain<-"(k=%{k},p=%{p})": : : : : : : : : : : : : :
: : : ;
}
}

Saber® Managing Symbols and Models User Guide 55
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
where INST is the instance name

The symbol property primitive is assigned the value nl_gain, which is the
template name. The values for symbol properties k and p are undetermined
and have no default values. The entry *req* indicates that you must provide
values for these properties when you place an instance of the symbol in a
schematic because the template does not initialize these values.

The terminalNames are in and out. Since these pin names match the template
connection points, they need no mapping file entry.

Creating, implementing, and testing the ctrl_1 symbol
The following figure shows a control-system circuit that incorporates the
symbol ctrl_1. Note that the net (node) names in the circuit do not need to
correspond to the names of the symbol connection points.

The following steps outline the procedure for creating, implementing, and
testing the symbol.

1. Create the template nl_gain and place its file named nl_gain.sin in your
project directory. (The netlister searches along the data search path for the
template and mapping files. Your working directory is included on this data
search path. You can add other directories of your own to the data search
path by including them in the SABER_DATA_PATH environment variable.)

2. Using the Analog Artist symbol editor, create the symbol ctrl_1.

Schematic Name: demo_2

U1

source

sign
V1

crtl_1 symbol

out = k*in**p

Property Values for Instance U1
primitive=nl_gain
name = U1
k = 1.4
p = 2

Property Values for Instance V1
primitive=src
name = V1
amplitude = 1.54
frequency = 12.6k
ac_mag = 1
ac_phase = 0
56 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
3. Using a text editor, create the mapping file ctrl_1.map as shown above and
place the file in your working directory.

4. Using the Analog Artist schematic editor, create the schematic demo_2.

5. Add the instance names V1 and U1 to the symbols by selecting the Edit >
Properties > Objects menu item and entering the appropriate value in the
Instance Name field.

6. Use the Saber item on the menu bar to select the Saber Invocation Options
form as follows:

Saber > Saber > Simulator Startup > Options >
Saber Invocation Options

Move the cursor to the Mapping Files field and enter the name of your
mapping file (ctrl_1) and click on OK.

7. Click on OK in the Simulator Startup form to start the netlister. The netlist
(demo_2.sin) that is created can be found in your working directory. It
should appear similar to the netlist shown below.

Symbol with default-valued properties in a structure

The code below shows the user-created template nl_gain2 that defines the
behavior of a gain-block used in the analysis of a control-system. The following
figure depicts the schematic symbol ctrl_2 that is associated with the template
nl_gain2. The template nl_gain2 is the base from which the symbol properties
are derived. It has an argument gain. This argument is represented by a

Instances found in the top level of design demo_2

src.V1 out:source = ac=(1,0),\
tran=(sin=(va=1.54,f=12.6k))

nl_gain.U1 out:sign in:source = gain=(k=1.4,p=2)
Saber® Managing Symbols and Models User Guide 57
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
structure (struc) containing the parameters k and p. Each parameter has a
default value assigned in the template.

If you want to make the parameters k and p the properties of your symbol
instead of the template argument gain, you must explicitly state the relationship
between the gain argument and the properties k and p in a mapping file.

The mapping file in this example is called ctrl_2.map. As shown in the code
below, it contains only a saber definition section that consists of a generic entry

#file name: nl_gain2.sin

element template nl_gain2 in out =gain
ref nu in
var nu out
struc {
number k=1
number p=1
}gain=()

{
equations {
out=gain->k*(in**gain->p)
}

}

outin

out =k*in**p

Symbol Name: ctrl_2
Symbol Properties
primitive=nl_gain2
k=
p=

Label
Label Ttype = normalLabel
Label = “out=k*in**p”

Pin Properties
terminalName = in
terminal Name = out

Terminal Properties
direction = input
direction = output
58 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
and a specific symbol entry. Both entries are set off by braces. The name of the
symbol appears in the first field of the specific symbol entry of the mapping file.
Because this symbol is to be targeted to the simulator netlist and simulated by
the simulator, you map this symbol in the saber section of the mapping file.

The fourth field of the specific symbol entry is used to construct the gain
argument from the values of the symbol properties k and p with the following
entry:

The netlister that translates the symbol properties into netlist entries interprets
this expression in the fourth field as follows. In the first part of the entry, the
expression gain<-"(k=%{k},p=%{p})" contains the special characters %{ that
indicate the beginning of the property name k (or p). It also contains the special
character } that indicates the end of the property name k (or p). When a
property name is used in this fashion, the value of the property is substituted in
its place.

If the values of properties k and p were 1.732 and 1.414, respectively, the
expression would be interpreted as gain<-"(k=1.732,p=1.414)".

However, in the this example, no values for k and p are supplied by the user;
therefore, the netlister uses the default values specified in the template as
described below.

If the first item gain<-"(k=%{k},p=%{p})" in the mapping file expression fails
evaluation because either or both parameter values are not specified, the next
item gain<-"(k=%{k})" in the expression is evaluated. If the parameter k was
assigned a value, it is used while the parameter p is assigned the default value.
If the parameter k was not assigned a value, the parameter p in the third item

#File name: ctrl_2.map

saber
{
#generic entry
: : : : : : : : : : : : : : : : : : : :

{
specific symbol entries
ctrl_2: : : gain<-"(k=%{k},p=%{p})",gain<-"(k=%{k})",gain<-
"(p=%{p})": : : : : : : : : : : : : : : : : ;
}
}

gain<-"(k=%{k},p=%{p})",gain<-"(k=%{k})",gain<-"(p=%{p})"
Saber® Managing Symbols and Models User Guide 59
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
gain<-"(p=%{p})" is evaluated. If no items are left to evaluate, no gain
arguments are passed to the template and default values that are provided by
the template are assigned in the template.

The symbol property primitive is assigned the value nl_gain2, which is the
template name. The symbol connection points (terminalNames) are given the
names in and out. These pin names match the template connection points and,
therefore, need no mapping entry.

Creating, implementing, and testing the ctrl_2 symbol
The following figure shows a control-system circuit that incorporates the
symbol ctrl_2. Note that the net (node) names in the circuit need not
correspond to the names of the symbol connection points.

The following steps outline the procedure for creating, implementing, and
testing the symbol:

1. Create template nl_gain2 and place its file nl_gain2.sin in your working
directory.

2. Using the Analog Artist symbol editor, create the symbol ctrl_2.

3. Using a text editor, create the mapping file ctrl_2.map and place the file in
your working directory.

4. Using the Analog Artist schematic editor, create the schematic demo_3.

5. Add the instance names V1 and U1 to the instances by selecting the Edit >
Properties > Objects menu item and entering the appropriate value in the
Instance Name field.

Schematic Name: demo_3

U1

source

sign
V1

crtl_2 symbol

out = k*in**p

Property Values for Instance U1
primitive=nl_gain2
name = U1
k =
p =

Property Values for Instance V1
primitive=src
name = V1
amplitude = 1.54
frequency = 12.6k
60 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
6. Use the Saber item on the menu bar to select the Saber Invocation Options
form as follows:

Saber > Saber > Simulator Startup > Options > Saber Invocation Options

Move the cursor to the Mapping Files field and enter the name of your
mapping file (ctrl_2) and click on OK.

7. Click on OK in the Simulator Startup form to start the netlister. The netlist
(demo_3.sin) that is created can be found in your working directory. It
should appear similar to the netlist shown below.

A template containing a ref connection point

This example uses the template (cccs) for a current-controlled current source
to demonstrate the mapping of a ref connection point.

The cccs template is available from the simulator template library. It models a
dependent current source for which the current-gain value is specified by the
parameter k. The controlling input is a ref type connection point (ci) that refers
in this example to the current flowing in a resistor. The following is the first line
of this template which includes three connection points ci, p, and m: template
cccs ci p m = k

The figure below shows a user-created symbol representing this template. It is
called ctrl_current and has two connection points p and m. The third connection
point ci, which is the ref connection point, does not appear on the symbol.

Instances found in the top level of design demo_3

nl_gain2.U1 out:sign in:source

src.V1 out:source = ac=(1,0),\
tran=(sin=(va=1.54,f=12.6K))
Saber® Managing Symbols and Models User Guide 61
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
The ref type connection point requires the existence of a var (a type of system
variable that can be accessed by another template) in the template of a resistor
that provides the control current for the current source. The template for a
standard resistor (r.sin) does not use a var, and therefore, cannot be used.
However, you can use the special resistor template rz.sin which does use a
var. The rz.sin template is available from the simulator template library.

The mapping file in this example is called ctrl_current.map. As shown in below,
it contains only a saber definition section that consists of a generic entry and a
specific symbol entry. Both entries are set off by braces. Because this symbol
is to be targeted to the simulator netlist and simulated by the simulator, you
map this symbol in the saber section of the mapping file.

The name of the symbol appears in the first field of the specific symbol entry. A
ref connection requires that the property name, current_control_inst in this
case, be placed in the 18th field of the generic entry of the saber section of the
mapping file. This entry prevents the netlister from using the property

#File name: ctrl_current.map

saber
{
#generic entry
: : : : : : : : : : : : : : : : :
current_control_inst: : :
{
specific symbol entries
ctrl_current: : : : : : : : : : : : : :ci<-
"i(%{current_control_inst})": : : : : : ;
}
}

p

m

Symbol Name: ctrl_current Symbol Properties
primitive=cccs
current_control_inst=*value required*
k=*value required*

Pin Properties
terminalName = p
terminalName = m

Terminal Properties
direction = inputOutput
direction = inputOutput
62 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
current_control_inst as a simulator template parameter; therefore, this property
does not appear in the netlist. The required entry in the 15th field of the specific
symbol entry is ci<-"i(%{current_control_inst})".

In the expression ci<-"i(%{current_control_inst})", the special characters %{
indicate the beginning of the property name current_control_inst and the
special character } indicates the end of that property name. If the value of
property current_control_inst is set to rz.R1, the netlister interprets the previous
expression as ci<-"i(rz.R1)".

The netlister places the literal value i(rz.R1) in the netlist as follows indicating
the literal value is connected to connection point ci: ci:i(rz.R1).

The symbol property primitive is assigned the value cccs, which is the template
name. The values for symbol properties current_control_inst and k are
undetermined and have no default values. Since their values must be provided
on the instance by the user, these properties are assigned the value *value
required*. The pin properties are given the names p and m. Since these pin
names match the template connection points, they need no mapping file entry.

Creating, implementing, and testing the symbol
The figure below shows a simple analog circuit that incorporates the user-
created symbol ctrl_current. Note that the net (node) names in the circuit need
not correspond to the names of the symbol connection points.
Saber® Managing Symbols and Models User Guide 63
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
The following steps outline the procedure for creating, implementing, and
testing the symbol:

1. Using the Analog Artist symbol editor, create the symbol ctrl_current.

2. Using a text editor, create the mapping file ctrl_current.map and place the
file in your working directory.

3. Using the Analog Artist schematic editor, create the schematic demo_4.

4. Add the instance names V1, V2, V3, Q1, R1, and R2 to the instances by
selecting the Edit > Properties > Objects menu item and entering the
appropriate value in the Instance Name field.

5. Use the Saber item on the menu bar to select the Saber Invocation Options
form as follows:

signh

signl

V1

_+
R1 R2

collector

emitter

base

0

V2 V3

Q1

Schematic Name: demo_4

ctrl_current
instance

Property Values for V1
primitive=cccs
name=V1
current_control_inst=RZ.R1
k=1

Property Values for V2
primitive=V
name=V2
dc_value=10

Property Values for V3
primitive=V
name-V3
frequency=12.6k
amplitude=1.54

Property Values for R2
primitive=R
name=R2
rnom=100

Property Values for R1
primitive=RZ
name=R1
rnom=1k

Property Values for Q1
primitive=MPS6521
name=Q1
64 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
Saber > Saber > Simulator Startup > Options > Saber Invocation Options

Move the cursor to the Mapping Files field and enter the name of your
mapping file (ctrl_current) and click OK.

6. Click OK in the Simulator Startup form to start the netlister. The netlist
(demo_4.sin) that is created can be found in your working directory. It
should appear similar to the following netlist.

A template containing an enumerated parameter

This example uses the template sw_1pno for a single-pole single-throw switch
to demonstrate the mapping of an enumerated parameter.

The sw_1pno template is available from the simulator template library. It
models a single-pole, normally-open switch. The figure below shows a user-
created symbol (spst_switch) that represents the template. The first line of the
template with the three connection points pos, p, and m is: template sw_1pno
pos p m = ron, roff, tdbrk, tdmk, rfunc.

Instances found in the top level of design demo_4

v.V2 p:collector m:0 = dc=10

v.V3 p:base m:0 = ac=(1,0), tran = (sin = \
(va=1.54,f=12.6K))

mps6521.Q1 c:collector e:emitter b:base

rz.R1 p:emitter m:0 = rnom=1K

cccs.V1 p:signh m:signl ci:i(rz.R1) = k=1

r.R2 p:signh m:signl = rnom=100
Saber® Managing Symbols and Models User Guide 65
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
The switch position is controlled by the logic state at the pos connection. The
switch position determines the resistance value seen between the electrical
connections p and m. The enumerated parameter rfunc determines whether
the resistance is a continuous or a discontinuous function of time during the
transition interval.

The mapping for this example is provided in the standard mapping file
enum.map because the sw_1pno template is included in the simulator symbol
libraries, which have the mapping provided. If you create your own template
that includes an enumerated parameter, you must provide the mapping for that
template. The enum entry required to map this template parameter (rfunc) is as
follows:

enum {cont,discont} rfunc {sw_1pno}

The netlister interprets this expression as follows. The expression
{cont,discont} rfunc {sw_1pno} informs the netlister that the parameter rfunc of
template sw_1pno can be assigned one of the two values cont or discont. The
special characters { and } in the expression indicate the beginning and end of
literal values, respectively.

Creating, implementing, and testing the symbol
The figure below shows a simple circuit that incorporates the user-created
symbol spst_switch. Note that the net (node) names in the circuit need not
correspond to the names of the connection points of the symbol.

p m

pos

Symbol Name: spst_switch Symbol Properties
primitive = sw_1pno
ron =
roff =
rdbrk =
tdmk =
rfunc =

Pin Properties
terminalName = p
terminalName = m
terminalName = pos

Terminal Properties
direction = inputOutput
direction = inputOutput
direction = inputOutput
66 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
The procedure for creating, implementing, and testing the symbol is outlined in
the following steps:

1. Using the Analog Artist symbol editor, create the symbol spst_switch.

2. Again, you do not need to create a mapping file for this example because
the standard mapping file enum.map provides the necessary mapping for
the sw_1pno template. If, however, you create your own template that
includes an enumerated parameter, you will need to specify the mapping for
that template.

3. Using the Analog Artist schematic editor, create the schematic demo_5.

S1
_+

R1V2V1

statedrv

sw_in sw_out

0

U1

symbol

Schematic Name: demo_5

spst_switch

Property Values for Instance S1
primitive = sw_1pno
name - S1
ron = 1
roff = 100k
rdbrk =
tdmk =
rfunc = discont

Property Values for Instance V1
primitive = v
name = V1
initial = 0
pulse = 5
delay = 0
tr = 1u
tf = 1u
width = 0.5
period = 1

Property Values for Instance R1
primitive = r
name = R1
rnom = 1k

Property Values for Instance V2
primitive = v
name = V2
dc_value = 10

Property Values for Instance U1
primitive = sdr_thr2
name = U1
vpull = 3
tdelay = 1m
Saber® Managing Symbols and Models User Guide 67
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
4. Add the instance names V1, V2, U1, and R1 to the instances by selecting
the Edit > Properties > Objects menu item and entering the appropriate
value in the Instance Name field.

5. Use the Saber item on the menu bar to select the Simulator Startup form as
follows: Saber > Saber. Since you do not need to specify a mapping file, you
do not need to use the Saber Invocation Options form.

6. Click OK in the Simulator Startup form to start the netlister. The netlist
(demo_5.sin) that is created can be found in your working directory. It
should appear similar to the netlist shown below.

A user-created symbol for a digital part

This example uses the digital template (inv_l4.sin) from the simulator template
library to demonstrate the creation of the properties of a digital symbol.

To properly insert Hypermodel analog/digital interfaces, the netlister must have
information on pin type and pin direction. Each of the pins of the inverter
symbol must have the property port_type with the value digital to inform the
netlister of the pin type.

This digital template models a logic-state inverter. The template senses the
logic state at the in pin, inverts it, and, with the appropriate delay and
initialization specifications applied, places the result at the out pin. The
following figure shows the user-created symbol, called inverter, that is
associated with this template.

Instances found in the top level of design demo_5

v.V2 p:sw_in m:0 = dc=10

sw_1pno.S1 pos:@"state" p:sw_in m:sw_out = roff=100K,\
rfunc=discont, ron=1

sdr_thr2.U1 pos:@"state" drvm:0 drvp:drv = vpull=3,\
tdelay=1m

r.R1 p:sw_out m:0 = rnom=1K

v.V1 p:drv m:0 = tran = \
(pulse=(v1=0,v2=5,tr=1u,tf=1u,td=0,pw=0.5,per=1))
68 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
The first line of the template is:

If the value of a parameter is a single identifier (including the underscore
character), the netlister usually considers it to be a nonliteral identifier. A
nonliteral identifier can be a variable which gets evaluated. The property init,
shown in the symbol property list in the figure above, typically takes
enumerated type values _0, _1, _x, and _z that resemble nonliteral identifiers.
To avoid misinterpretation by the netlister, you must specify the possible values
of the property init in the enums section of the mapping file.

The mapping for this example is provided in the standard mapping file
enum.map because the inv_l4 template is included in the simulator symbol
libraries, which have the mapping provided. If you create your own template
that includes an enumerated parameter, you must provide the mapping for that
template. The enum entry required to map this template parameter (init) is:
enum {_0,_1,_x,_z} init {inv_l4}.

The netlister that translates the symbol properties into netlist entries interprets
this expression as follows. The expression enum {_0,_1,_x,_z} init {inv_l4}
informs the netlister that the parameter init of template inv_l4 can be assigned
the values _0, _1, _x, or _z.

The symbol property primitive is assigned the value inv_l4, which is the
template name. The remaining symbol properties assume the default values

template inv_l4 in out = tplh, tphl, tilh, tihl, init

in out

Symbol Name: inverter Symbol Properties
primitive = inv_l4
tplh =
tphl =
tihl =
tilh =
init =

Pin Properties
terminalName = in
terminalName = out

Terminal Properties
direction = input
port_type = digital
direction = output
port_type = digital
Saber® Managing Symbols and Models User Guide 69
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
that are provided by the template. Since these values can be changed by the
user, the properties are not assigned a value. The terminalNames are in and
out. Since these pin names match the template connection points, they need
no mapping file entry.

Creating, implementing, and testing the inverter symbol
The figure below shows a digital circuit that incorporates the symbol inverter.
Note that the net (node) names in the circuit do not need to correspond to the
names of the connection points of the symbol.

The following steps outline the procedure for creating, implementing, and
testing the inverter symbol:

1. Using the Analog Artist symbol editor, create the symbol inverter.

P1

P2

P3 P4 P5U1
U3U2

CLK1

CLK2

inverter instance
Schematic Name: demo_6

Property Values for CLK1
primitive=clock_l4
name=CLK1
td=0
duty=0.5
freq=10k

Property Values for CLK2
primitive=clock_l4
name=CLK2
td=0
duty=0.25
freq=10k

Property Values for U1
primitive=nand2_l4
name=U1
tplh=
tphl=
tihl=
tilh=
init=

Property Values for U2
primitive=inv_l4
name=U2
tplh=25n
tphl=30n
tihl=20n
tilh=23n
init=_0

Property Values for U3
primitive=nand2_l4
name=U3
tplh=
tphl=
tihl=
tilh=
init=
70 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
2. Again, you do not need to create a mapping file for this example because
the standard mapping file enum.map provides the necessary mapping for
the inv_l4 template. If, however, you create your own template that includes
an enumerated parameter, you will need to specify the mapping for that
template.

3. Using the Analog Artist schematic editor, create the schematic demo_6.

4. Add the instance names U1, U2, U3, CLK1, and CLK2 to the instances by
selecting the Edit > Properties > Objects menu item and entering the
appropriate value in the Instance Name field.

5. Use the Saber item on the menu bar to select the Simulator Startup form as
follows: Saber > Saber .

6. Since you do not need to specify a mapping file, you do not need to use the
Saber Invocation Options form.

7. Click on OK in the Simulator Startup form to start the netlister. The resulting
netlist (demo_6.sin) is written in your working directory. It should be similar
to the netlist shown below.

A symbol for a hierarchical design

This example shows how to map the properties of a user-created symbol that
represents both a template and a schematic model.

The symbol shown below is called inverter2. You can use it to represent the
digital template inv_l4. You can also use it to represent the schematic model,
which is called inverter2.

Instances found in the top level of design demo_6

inv_l4.U2 out:p4 in:p3 = tilh=23n, tphl=30n, init=_0,\
tplh=25n, tihl=20n

clock_l4.CLK1 clock:p1 = td=0, freq=10K, duty=0.5

clock_l4.CLK2 clock:p2 = td=0, freq=10K, duty=.25

nand2_l4.U1 in1:p1 in2:p2 out:p3_U1_out

nand2_l4.U3 in1:p4 in2:p2 out:p5
Saber® Managing Symbols and Models User Guide 71
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
The schematic model shown in the next figure consists of two MOS field-effect
transistors.

If an instance of this inverter symbol has the property primitive with the value
inv_l4, the template inv_l4 is used in the analyses, and the schematic model
(inverter2)—if it exists for this symbol—is ignored. If the value of the property
primitive is undefined, the schematic model is used in the analyses.

in out

Symbol Name: inverter2 Symbol Properties
primitive=
tplh=
tphl=
tilh=
tihl=
init=

Pin Properties
terminalName = in
terminalName = out

Terminal Properties
direction = input
port_type = digital
direction = output
port_type = digital

in out
qp1

qn1

vcc

> >

Schematic Name: inverter2

Property Values for qp1
primitive = m+3p
name = qp1
saber_model = (type=_p)

Property Values for qn1
primitive = m_3p
name = qn1
saber_model = (type=_n)
72 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
To use this feature for the inverter2 symbol, add the property primitive to field
16 of the generic entry of the undetermined section as shown below.

If the primitive property of an instance of the symbol inverter2 has a value
specified, the netlister includes the template name as the value of the primitive
property in the netlist. If the value of the primitive property is not specified, the
netlister includes the schematic represented by the symbol in the netlist.

The global_power_pins[<>] entry in the eighth field of the saber section
references the global_power_pins entry in the tables section. This entry
indicates that when a part targeted to the simulator has a pin named VCC, the
net connected to that pin is to be used as power for Hypermodel interfaces.
Also, the pin is not to be written in the netlist because the simulation model for
the part in question has no pin named VCC. Pins named GND are treated
similarly except they designate ground connections for the Hypermodels. For
more information regarding the use of this field, the description of field eight in
the Generic Entries section of Chapter 9: Mapping File Reference.

The following figure shows the symbol inverter2 used twice in a mixed-signal
circuit. A value has not been given to the primitive property of instance U1.
Therefore, this version of the inverter2 symbol represents the schematic model.
The primitive property of instance U2 has been given the value inv_l4.
Therefore, this version of the inverter2 symbol represents the template inv_l4.

#File name= inverter2.map

tables {
global_power_pins[VCC]->unpow,[GND]->ungnd,[*]->null
}
undetermined {
#generic entry
: : : : : : : : : : : : : : :primitive: : : : :
}
saber {
#generic entry
: : : : : : :global_power_pins[<>] : : : : : : : : : :primitive:
: : {
}

Saber® Managing Symbols and Models User Guide 73
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
Creating, implementing, and testing the inverter2 symbol
To create, implement, and test the inverter2 symbol, perform these steps:

1. Using the Analog Artist symbol editor, create the symbol inverter2.

2. Using the Analog Artist schematic editor, create the schematic inverter2.

3. Add the instance names qp1 and qn1 to the instances by selecting the Edit
> Properties > Objects menu item and entering the appropriate value in the
Instance Name field.

used, no values are entered.]

U1 out2U2in
out1

R1 R2Vs

schematic model template inv_l4

inverter2

_+

vcc

Vp

Schematic Name: demo_7

instances

Property Values for U1

[Since inv_l4 template is not

primitive=
name=U1
tplh=
tphl=
tihl=
tilh-
init=

Property Values for U2
primitive=inv_l4
name=U2
tplh=25n
tphl=30n
tihl=20n
tilh=23n
init=

Property Values for Vp
primitive=v
name=Vp
dc_value=5

Property Values for Vs
primitive=v
name=Vs
initial=0
pulse=5
tr=10n
tf=15n

Property Values for R1
primitive=r
name=R1
rnom=10k

Property Values for R2
primitive=r
name=R2
rnom=10k
74 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
4. Using a text editor, create the mapping file inverter2.map and place the file
in your working directory. This mapping file maps the schematic model of
the inverter symbol.

5. Using the Analog Artist schematic editor, create the schematic demo_7.

6. Add the instance names R1, R2, Vp, and Vs to the instances by selecting
the Edit > Properties > Objects menu item and entering the appropriate
value in the Instance Name field.

7. Use the Saber item on the menu bar to select the Saber Invocation Options
form as follows:

Saber > Saber > Simulator Startup > Options > Saber Invocation Options

Move the cursor to the Mapping Files field and enter the name of your
mapping file (inverter2) and click on OK.
Saber® Managing Symbols and Models User Guide 75
Z-2007.03

Chapter 6: Choosing a Mapping Technique
Examples of Mapping Methods
8. Click on OK in the Simulator Startup form to start the netlister. The netlist
(demo_7.sin) that is created can be found in your working directory. It
should appear similar to the netlist shown below.

Intermediate template inverter2

template inverter2 out:out in:in gnd:0 vcc:vcc

{

m_3p.qp1 d:out g:in s:vcc = model=(type=_p)

m_3p.qn1 d:out g:in s:0 = model=(type=_n)

}

Instances found in the top level of design demo_7

ide_d2an.U2_out a:out2 d:out2_U2_out m:0

ide_a2dn.U2_in a:out1 d:out1_U2_in m:0

inverter2.U1 out:out1 in:in gnd:0 vcc:vcc

v.Vp p:vcc m:0 = dc=5

inv_l4.U2 out:out2_U2_out in:out1_u2_in = tphl=30n,\
tilh=23n, tplh=25n, tihl=20n

v.Vs p:in m:0 = tran=(pulse=(v1=0,v2=5,tr=10n,tf=15n))

r.R1 p:out2 m:0 = rnom=10k

r.R2 p:out1 m:0 = rnom=10k
76 Saber® Managing Symbols and Models User Guide
Z-2007.03

7
7Using Name Matching to Map Symbols

This section describes creating symbol properties and giving them values
corresponding to the names of the template, template parameters, and
template pins. If you are creating your own symbol that you would like to
associate with a template, you should follow the guidelines presented in this
section. Topics discussed in this section include:

When Can Name Matching be Used?
Creating Symbols and Symbol Properties Corresponding to Template
Features
Example of Name Mapping

When Can Name Matching be Used?

Making the names associated with your symbol correlate with the names
associated with the template is a technique is most appropriate if you are
creating a new symbol. Although the symbol you want to create can be any
graphical representation that suits you, the symbol properties must be
presented in a prescribed format to enable the Frameway integration software
to translate these properties into entries suitable for a netlist.

In most simple cases, applying the set of rules outlined later in this chapter
ensures direct translation of symbols. However, some symbols possess
properties that require the netlister to have supplemental information to perform
the translation. This supplemental information can be provided by either of the
other two mapping methods. Even if you have decided that additional mapping
is necessary, following the guidelines in this chapter will minimize the need for
special properties or mapping files.
Saber® Managing Symbols and Models User Guide 77
Z-2007.03

Chapter 7: Using Name Matching to Map Symbols
Creating Symbols and Symbol Properties Corresponding to Template Features
The following special situations cannot be handled entirely by name matching:
■ A symbol has several properties that need to be combined into a structure

(struc) format for use by the template.
■ A symbol represents a hierarchical circuit.
■ A template contains special features, such as reference connections,

enumerated parameters, string parameters, or does not contain connection
points.

If you need to create a symbol and any of these situations apply, you will have
to use specially-recognized properties or create your own mapping file. If the
template to be used contains reference connections, then you will need to use
a mapping file. If you create a symbol for a template that does not include these
special situations, then you can map the symbol by using name matching.

Creating Symbols and Symbol Properties Corresponding to Template
Features

You may want to create a new schematic symbol if you have created your own
template and you cannot find a symbol that is appropriate, or you may want to
improve on an existing symbol that is insufficient for a particular template or
was just incorrectly constructed.

The symbol may be any graphical representation of the device, and you can
often avoid the need to create a mapping file if you apply the following general
guidelines for creating symbols (including properties). The Example of Name
Matching shows how these four guidelines are applied to a user-created
symbol.

General Guidelines for Symbol Creation
■ If the symbol is used to represent more than one template, you should add

a property called primitive to the symbol. You should give the primitive
property the name of the template as its value. Note that even if you must
use a mapping file, a symbol with the primitive property requires fewer
mapping entries than one without it.

■ When you place properties on the symbol that represent Saber simulation
parameters, such as tplh and rnom, you should choose property names that
match the template parameters.
78 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 7: Using Name Matching to Map Symbols
Creating Symbols and Symbol Properties Corresponding to Template Features
■ If you want to specify a reference designator for an instance of a symbol,
use whichever mechanism is provided by your particular schematic editor
(Saber Sketch, or one provided by Mentor Graphics, Cadence, or
Viewlogic). The netlister will automatically pick up the name.

■ If you are using a non-Saber template, you must put the port_type=digital
property on digital pins and designate the port direction. If you are using a
Saber template, this is not required.

■ You should choose symbol pin names that match the template pin names.
if this is not possible, use field 6 in a mapping file to match the symbol and
template pin names.

■ If you need to add properties that don’t correspond to template parameters
(such as for PCB layout) you can exclude them from the netlist by using a
mapping file. For Saber templates this is done automatically, and no action
is required.

For Viewlogic users only

Note that when you place attributes on symbols, if you do not define the case of
the attributes (that is, upper, lower, or mixed case) using the Case_ attribute,
the netlister uses the following defaults:
■ If the target simulator is Verilog, the model name defaults to uppercase.
■ If the target simulator is Saber, the model name defaults to lowercase.
■ Pin names default to lowercase.
■ Symbol and instance attributes default to lowercase.
■ You cannot change schematic, net, or pin attributes; therefore, they are

always uppercase.

For information regarding the Case_ attribute, refer to Chapter7: Specially-
Recognized Properties Reference.
Saber® Managing Symbols and Models User Guide 79
Z-2007.03

Chapter 7: Using Name Matching to Map Symbols
Example of Name Mapping
Example of Name Mapping

Creating a Symbol and a Template for a Three-Phase Current
Source

The code below shows a template (written in MAST) called g3ph.sin that
defines the behavior of a three-phase current source. The following figure
shows the schematic symbol representing the three-phase current source
template. Naming the symbol g3ph.sym would be the simplest way to map the
symbol name; however, since the primitive property allows the symbol name to
be different from the template name, for demonstration purposes the name
i3ph is given to the symbol.

#file name: g3ph.sin

template g3ph a b c g = f,iph

electrical a, b, c, g

number f #frequency

number iph #peak amplitude of the generated current

{

val i i0,i120,i240

values {
i0 = iph*sin(2*3.14*f*time)
i120 = iph*sin(2*3.14*f*time+2*3.14*1/3)
i240 = iph*sin(2*3.14*f*time+2*3.14*2/3)
step_size = 1/(f*20) #maximum step size
}

equations{
i(a->g) +=i0
i(b->g) +=i120
i(c->g) +=i240
}

}

80 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 7: Using Name Matching to Map Symbols
Example of Name Mapping
The symbol properties and identifiers are defined in partner software as
follows:

Mentor Graphics

Symbol Identifier: primitive = g3ph

Symbol Properties: f = *req*

iph = *req*

Pin Name: PIN = a

PIN = b

PIN = c

PIN = g

Cadence

Symbol Identifier: primitive = g3ph

Symbol Properties: f = *req*

iph = *req*

Pin Names: terminalName = a ;

direction = inputOutput

terminalName = b ;

direction = inputOutput

terminalName = c ;

direction = inputOutput

terminalName = g ;

direction = inputOutput

a

b

cg

Symbol Name: i3ph
Saber® Managing Symbols and Models User Guide 81
Z-2007.03

Chapter 7: Using Name Matching to Map Symbols
Example of Name Mapping
The g3ph template is the base from which the symbol properties of the current
source are derived. This template contains the parameters f and iph, which
represent the frequency and the peak current for each leg of the current
source, respectively.

The following list outlines the i3ph symbol specifications:
■ The symbol property primitive is assigned the value g3ph, which is the

template name.
■ Because the template does not give initial values to f and iph, they are

specified as required by using the *req* expression.
■ By assigning each pin label property the appropriate pin name (a, b, c, or g),

the symbol connection points match the names of the template connection
points.

■ Viewlogic users only:
Specifying the symbol Block Type to be module allows the symbol to be
considered primitive. With the Block Type specified as module, the netlister
can recognize the prefix attribute and, from its value, determine the template
(g3ph) to use for the symbol.

Creating, Implementing, and Testing the i3ph Symbol

The figure below shows a schematic called demo_1. The following table lists
the values of each of the properties for each symbol instance in demo_1. The
schematic illustrates how an instance of the three-phase current source symbol
can be applied in a network. Note that the net (node) names in the circuit need

Viewlogic

Symbol Identifier: Block Type > module

prefix = g3ph

Symbol Properties: f = *req*

iph = *req*

Pin Names: a pintype = analog

b pintype = analog

c pintype = analog

g pintype = analog
82 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 7: Using Name Matching to Map Symbols
Example of Name Mapping
not match the names of the symbol connection points and that the simulator
reference node must be named 0 (zero). If you use the ground symbol from the
Saber simulator symbol library (or the aiSupport or Cadence analogLib library),
the ground node is automatically named 0.

Mentor Graphics Properties

Instance V1:

primitive=g3ph
inst=V1
f=60
iph=120

Instance R1:

primitive=r
inst=R1
rnom=1k

Instance R2:

primitive=r
inst=R2
rnom=1k

Instance R3:

primitive=r
inst=R3
rnom=1k

Cadence Properties

Instance V1:

primitive=g3ph
name=V1
f=60
iph=120

Instance R1:

primitive=r
name=R1
rnom=1k

Instance R2:

primitive=r
name=R2
rnom=1k

Instance R3:

primitive=r
name=R3
rnom=1k

Viewlogic Attributes/Labels

Instance V1:

prefix=g3ph
label=V1
f=60
iph=120

Instance R1:

prefix=r
label=R1
rnom=1k

Instance R2:

prefix=r
label=R2
rnom=1k

Instance R3:

prefix=r
label=R3
rnom=1k

V1
net1

net2

net3
0

R1 R2 R3

 i3ph symbol

Schematic Name: demo_1
Saber® Managing Symbols and Models User Guide 83
Z-2007.03

Chapter 7: Using Name Matching to Map Symbols
Example of Name Mapping
The following steps outline the procedure for creating, implementing, and
testing the symbol:

1. Create the template g3ph and place its file named g3ph.sin in your working
directory.

2. Using your symbol editor (Design Architect, Analog Artist, or ViewDraw),
create the symbol i3ph shown above.

Viewlogic users only:
Remember to set the Block Type to module by using the Change -> Block -
> Type menu item from the ViewDraw symbol editor menu banner. Also
note that the pintype defaults to analog, so, in this case, it is not necessary
to specify it on the symbol pins.

3. Using the your schematic editor, create the schematic demo_1 as shown in
the figure.

4. Add the instance names to the symbols.

5. Invoke the netlister.

Mentor Graphics and Cadence: Click on the SABER icon. In the Saber
Simulator Startup dialog box, set the Invoke Simulator field to no. Click on
OK in the Saber Simulator Startup dialog box to start the netlister.

Viewlogic: Select the Saber > Saber UI Window item on the ViewDraw
window menu banner to open the Saber Simulation Window. Select the
Saber > Extract Design item on the Saber Simulation Window menu banner.
This selection causes the Extract Design dialog box to appear. Ensure that
the name of the design (demo_1) appears in the Design Name field and
click on Accept to start the netlister.

Since the creation of the symbol did not include exceptions to the general
guidelines, the netlister can generate a netlist for the schematic demo_1
without a mapping file. The result should be similar to that shown below:

Instances found in the top level of design demo_1

r.R3 p:net2 m:0 = rnom=1k

g3ph.V1 c:net3 g:0 a:net1 b:net2 = iph=120, f=60

r.R1 p:net1 m:0 = rnom=1k

r.R2 p:net3 m:0 = rnom=1k
84 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 7: Using Name Matching to Map Symbols
Example of Name Mapping
The instance reference designators that you specified appear in the netlist
following the template name for each symbol as r.R3, g3ph.V1, etc.
Saber® Managing Symbols and Models User Guide 85
Z-2007.03

Chapter 7: Using Name Matching to Map Symbols
Example of Name Mapping
86 Saber® Managing Symbols and Models User Guide
Z-2007.03

8
8Using Specially-Recognized Properties for Mapping

This section describes how to use specially-recognized properties. These
specially-recognized properties provide a means for specifying the properties
of a symbol or instance in such a way that they can be translated into netlist
entries without using a mapping file. If you would like to map other symbols,
and you can add or modify properties on your symbols, you should follow the
guidelines presented in this section. Topics discussed in this section include:

Overview of Specially-Recognized Properties
List of Specially-Recognized Properties
Property Value Limitations (Mentor Graphics Only)

Overview of Specially-Recognized Properties

If you use the specially-recognized properties described here to make an
existing symbol compatible with the Saber Simulator, you do not need to create
a mapping file entry for that symbol provided the template to be used does not
contain reference connections.

A property that is attached to a symbol on a schematic sheet may or may not
require a user-specified value. That is, if the template associated with the
symbol provides a default value for the property, you have the choice whether
or not to provide a value for the property on the instance. If no default value is
specified in the template, you must provide a value. You can scan the template
to determine whether a default value for a particular parameter exists, or you
can refer to the online template description.

When you create a symbol, you must give each property a value. You can
follow the convention of this software or the convention of your other schematic
capture tool (Mentor Graphics, Cadence, or Viewlogic).
Saber® Managing Symbols and Models User Guide 87
Z-2007.03

Chapter 8: Using Specially-Recognized Properties for Mapping
List of Specially-Recognized Properties
The convention of this software requires that you indicate, for each property,
whether a user-specified value is required when the symbol is placed in a
schematic (instance of the symbol). If no default value is specified in the
template associated with the symbol, you give the property on the base-symbol
the value *req*. If a default value is specified in the template, you give the
property on the base-symbol the value *opt*. The Saber Simulator convention
is shown in the following example:

Saber_rnom=*opt*

Saber_dc=*req*

The convention of your other schematic capture tool (Mentor Graphics,
Cadence, or Viewlogic) requires that each property contain a valid value, such
as 1k or 200n, or is left blank. Giving a value indicates that a value is required.
Leaving the field blank indicates that a value is optional.

List of Specially-Recognized Properties

This section lists the special properties with a brief description of each. For a
complete description of any particular property, see Chapter 7: Specially-
Recognized Properties Reference. The properties are grouped into the
following functional areas.

Model and Simulator Specification
Parameter Specification
Pin Specification
Hypermodel Specification
File Inclusion
Partner Simulator (Verilog) Specification
Special Viewlogic-Only Properties

Most of the special properties, except those in the last two categories (Verilog
and Viewlogic), apply to all of the netlisters. The properties in the first five
categories can be used with any of the schematic capture tools. However,
some of the functions from previous categories are repeated in the last
category (Viewlogic). If you are using the ViewDraw editor you should use the
properties from this group whenever possible. Do not use these properties if
you are not using ViewDraw.

The Verilog properties are only valid in the Saber-Verilog simulation
environment, that is, they are supported only by the DVETOS, CATOS, and
VWLTOSV netlisters (supplied netlisters to translate from Mentor Graphics,
Cadence or Viewlogic to Saber-Verilog). You can use these properties in
88 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 8: Using Specially-Recognized Properties for Mapping
List of Specially-Recognized Properties
Design Architect, Analog Artist, or ViewDraw, or you can use a mapping file to
relate them to other properties used in Design Architect, Analog Artist, or
ViewDraw. Values defined in the mapping file for these properties must be in
correct Verilog syntax. The properties are then incorporated into the Verilog
netlist by the Verilog writer.

Model and Simulator Specification
■ Target_Simulator

specifies in which netlist (Saber or partner simulator) to place the symbol.
■ Primitive

specifies the name of the template that the symbol represents, but does not
specify which simulator should be used.

■ SaberTemplate
specifies the name of the template that the symbol represents and specifies
that the Saber Simulator should be used.

Parameter Specification
■ Saber_ParameterName

specifies a single template parameter.
■ SaberParameters

specifies one or more Saber Simulator parameters as the value of a single
property.

■ SaberString_ParameterName
places quotes around a string value when the string value is passed to a
template.

■ SaberEnum_ParameterName
specifies an enumerated parameter.

Pin Specification
■ Port_Type

specifies whether a port (pin) of a symbol is digital or analog. This property
is not required for Saber templates.

■ SaberPin_PinName
specifies the connection of a pin to a net (wire).

■ SaberPinOrder
redefines symbol pin order for the Saber Simulator.
Saber® Managing Symbols and Models User Guide 89
Z-2007.03

Chapter 8: Using Specially-Recognized Properties for Mapping
List of Specially-Recognized Properties
■ PartnerPinOrder
redefines symbol pin order for a partner simulator.

■ SaberRemovePort
prevents a port from appearing in the netlist.

Hypermodel Specification

In order for these properties to function properly, you must point the netlister to
the Hypermodel libraries that the properties specify. If you are invoking the
netlister from a command line, include the -h option. If you are invoking the
netlister from the user interface, select the libraries in the dialog box controlling
netlister settings.
■ SaberTech

specifies the technology of the Hypermodel interface for a specific pin.
■ SaberModel

defines the model parameter of Hypermodel interface for a specific pin.
■ SaberModelName

specifies the name of an existing Hypermodel interface in the Hypermodel
library for a specific pin.

■ SaberModelPowerPin
specifies the power supply for a specific pin.

■ SaberModelGroundPin
specifies the ground for a specific pin.

File Inclusion
■ SaberPrepend

designates one or more names of files containing templates to be included
at the beginning of a netlist.

■ SaberInclude
designates one or more names of files containing templates to be included
at a specified level of hierarchy in a netlist.

■ SaberAppend
designates one or more names of files containing templates to be included
at the end of a netlist.
90 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 8: Using Specially-Recognized Properties for Mapping
Property Value Limitations (Mentor Graphics Only)
Partner Simulator (Verilog) Specifications
■ delay (instance property)

specifies the time delay for the part.
■ delay (net property)

specifies the time delay of the net.
■ drive (instance property)

specifies the drive strength for the part.
■ drive (net property)

specifies the drive strength of the net.
■ type (net property)

causes the net to be declared in the netlist as the type given by the value of
this property.

■ charge (net property)
specifies the charge strength for the net

■ timescale (instance property)
specifies the time scale for the Verilog simulator.

Special Viewlogic-Only Properties
■ Case_

specifies the case (upper or lower) of certain attributes.
■ Mast_Model

specifies the simulation model name for the Saber Simulator.
■ Mast_Pinorder

redefines pin order.
■ Verilog_Model causes the netlister to use the value of the this attribute as

the Verilog model name.
■ Verilog_Pinorder

redefines symbol pin order for the Verilog simulator.
■ Prefix

same as Primitive but for Viewlogic netlisters.

Property Value Limitations (Mentor Graphics Only)

This section applies to Mentor Graphics users only.
Saber® Managing Symbols and Models User Guide 91
Z-2007.03

Chapter 8: Using Specially-Recognized Properties for Mapping
Property Value Limitations (Mentor Graphics Only)
Due to a character limit on the value of Design Architect symbol properties, you
should not use a property (such as Saber_model) on a symbol to specify the
argument definition directly. If you exceed the property value character limit,
the property value will not be included in the Saber Simulator netlist, giving an
incorrect result. If this occurs, you may encounter a message similar to the
following when you run a Saber simulation on a Design Architect schematic:

...: the device model has an undefined value.
/my_library/parts/m1_p

You can use two properties to avoid this situation: SaberPrepend and
SaberInclude. The one difference between the two methods is that the
SaberInclude property provides a way to include files within templates of the
hierarchy of the design, while the SaberPrepend property includes files globally
for the whole design. Also, you can locate the SaberPrepend property directly
on the symbol that needs the value specified in the included file. For more
details on these methods, see:

Using SaberPrepend to Avoid Property Value Limitations
Using the SaberInclude File to Avoid Property Value Limitations

Using SaberPrepend to Avoid Property Value Limitations

This section applies to Mentor Graphics users only.

You can use the SaberPrepend property on a symbol to provide the name of a
file in which you specify the argument definition for the symbol. Then, you use
the name of the argument definition that you declared in the file as the property
value (for example, of Saber_model) on the symbol rather than the argument
definition. Now, when you run a Saber simulation on the schematic, the Saber
Simulator uses the named argument definition from the file, avoiding the
property value character limit.

The following example shows how multiple argument definitions might appear
in a file:

m..model nmos=(type=_n,level=2,kp=2.5e-5 \
tox=7.5e-8,vto=1,cbd=.1p,cbs=.1p,cgso=.1p,cgdo=.1p,\
cgbo=.1p,rd=1,rs=1)

m..model pmos=(type=_p,level=2,kp=1e-5,tox=7.5e-8,vto=1,\
cbd=.1p,cbs=.1p,cgso=.1p,cgdo=.1p,cgbo=.1p,rd=1,rs=1)
92 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 8: Using Specially-Recognized Properties for Mapping
Property Value Limitations (Mentor Graphics Only)
In this example, m..model indicates a structure named model in the m
(MOSFET) template. The first argument definition is named nmos; the second
argument definition is named pmos. The nmos argument definition, for
example, uses the listed specifications from the model structure in the m
template when you specify the nmos definition name. So, if you are using this
file to define an n-type MOSFET, you would specify the name of the file as the
value of the SaberPrepend property and nmos as the value of the
Saber_model property on the instance.

To use the SaberPrepend and Saber_model properties, follow these steps:

1. Create the file name.sin, where name can be any name, and place the file
in a location that is in the data search path. For more information about the
data search path, refer to Chapter 2: Modifying Your Search Paths.
Your current working directory is automatically included in the data search
path. Also, note that the file name must include the .sin extension.

2. Enter the argument definition in the file name.sin.

3. In Design Architect, add the SaberPrepend property on any symbol in the
design and specify its value to be the name of the file that you created
(either name or name.sin).

4. Edit the Saber_model property on the symbol and specify its value to be the
name of the argument definition (definition_name) that you entered in the
file name.sin. Remember, the value of the Saber_model property is the
name of the argument definition in the file, not the name of the file.

If you place multiple instances of the same symbol defined by using the
SaberPrepend and Saber_model properties on a schematic, you need only
place the SaberPrepend property on one instance, which can be at any level of
the hierarchy.

Using the SaberInclude File to Avoid Property Value Limitations

This Section applies to Mentor Graphics users only.

An alternative method of avoiding the character limit on values of Design
Architect symbol properties is to use the SaberInclude property rather than the
SaberPrepend property.

To create and specify a Saber include file, follow these steps:

1. Create the file name.sin, where name can be any name, and place the file
in a location that is in the data search path.
Saber® Managing Symbols and Models User Guide 93
Z-2007.03

Chapter 8: Using Specially-Recognized Properties for Mapping
Property Value Limitations (Mentor Graphics Only)
Your current working directory is automatically included in the data search
path. Also, note that the file name must include the .sin extension.

2. Enter the argument definition in the file name.sin.

3. In Design Architect, select the Saber Include File item from the Parts palette.
This causes the saber symbol to appear.

4. Place the saber symbol on the schematic at the top level of the hierarchy.
The saber symbol includes, among others, the SaberInclude property.

5. Edit the SaberInclude property and specify its value to be the name of the
file that you created (either name or name.sin).

6. Edit the property, on the appropriate schematic symbol, that will be used for
the model parameter of the template. You can use any property, such as
Saber_model. Specify the property value to be the name of the argument
definition that you entered in the file name.sin. Remember, the value of this
property is the name of the argument definition (definition_name) in the file,
not the name of the file.
94 Saber® Managing Symbols and Models User Guide
Z-2007.03

9
9Specially-Recognized Properties Reference

This section describes the unique function of each specially-recognized
property. These property descriptions are organized alphabetically for quick
reference. For listings of special properties organized by functional groups, see
Chapter 6: Using Specially-Recognized Properties for Mapping.

Specially-Recognized Properties Descriptions

Each property description indicates whether the special property is used on the
body or on the pin of a symbol. Each description also indicates whether it can
be used on the instance of that symbol, on the base symbol, or on a net (wire).

Some properties can be used only on the base symbol. When the property
description indicates this, note that you must specify this property before you
place an instance of the symbol on a schematic sheet. Note also that you
cannot override the symbol property with a different value on the instance.

Each property description indicates whether the special property applies to the
Saber Sketch design editor, the Mentor Graphics Design Architect tool, the
Cadence Artist tool, or the Viewlogic ViewDraw tool (most properties apply to
all). Each description also indicates whether the special property applies to the
Saber or the Saber-Verilog simulation environment, or both. The descriptions
also include examples that show you how to use these properties.

Although the names of the specially-recognized properties are described
containing upper and lower case characters, the Frameway integration
software does not distinguish between the two cases in property names (that
is, they are not case sensitive).

This section uses terms common to Mentor Graphics, Cadence and Saber
Sketch design capture tools. For Viewlogic viewers Instance Properties are
Saber® Managing Symbols and Models User Guide 95
Z-2007.03

Chapter 9: Specially-Recognized Properties Reference
Specially-Recognized Properties Descriptions
Instance Attributes, Symbol Properties are Unattached Attributes, and Pin
Properties are Attached Attributes.

Specially
Recognized
Property NAME

Used On Applies To

Body /
Pin

Instance,
Net, Base
Symbol

Schematic
Editors

Simulation
Environment

Case_ Body Instance
or Base

Viewlogic
Only

Saber
or SV

This attribute specifies the case of certain attributes. The format is as follows:

Case_attribute_name

where attribute_name is the name of an attribute on the base symbol or instance of the symbol.
The value of the Case_ attribute must be either upper or lower. For example, if you have the
attribute Verilog_Model specified as follows,

VERILOG_MODEL=MYMODEL

you could specify the corresponding case_ attribute as follows:

CASE_VERILOG_MODEL=LOWER

The netlister would then define the Verilog model name in lowercase (mymodel). If you do not
define attribute cases by using this Case_ attribute, the netlister uses the following defaults:

If the target simulator is Verilog, the model name defaults to uppercase.

If the target simulator is the Saber Simulator, the model name defaults to lowercase.

Pin names default to lowercase.

Symbol and instance attributes default to lowercase.

You cannot change schematic, net, or pin attributes; therefore, they are always uppercase.

charge n/a Net All Saber-Verilog

When you specify this property on a net (wire), it causes the net to be declared in the netlist with
the value of the charge property specifying the charge strength for the net. For example, the
property specification

charge small

results in a (small) entry in the Verilog netlist. The following netlist segment shows the resulting
charge specification for net trir.

wire (strong1,pull0) #(10) strong;

trireg (small) trir;

buf (highz1,strong0) #(2:2:3,3:3:4)
buf1(trir,strong);
96 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 9: Specially-Recognized Properties Reference
Specially-Recognized Properties Descriptions
delay Body Instance or Net All Saber-Verilog

instance property. When you specify this property on an instance of a Verilog part, the instance
is included in the Verilog netlist with the value of the delay property specifying the delay for the
part. For example, the property specification delay 2:2:3,3:3:4

results in the #(2:2:3,3:3:4) entry in the following Verilog netlist segment:

wire (strong1,pull0) #(10) strong;

trireg (small) trir;

buf (highz1,strong0) #(2:2:3,3:3:4)
buf1(trir,strong);

net property. When you specify this property on a net (wire), it causes the net to be declared in
the netlist with the property value specifying the delay of the net. For example, the property
specification

delay 10

results in the #(10) entry in the following Verilog netlist segment:

wire (strong1,pull0) #(10) strong;

trireg (small) trir;

buf (highz1,strong0) #(2:2:3,3:3:4)
buf1(trir,strong);

Specially
Recognized
Property NAME

Used On Applies To

Body /
Pin

Instance,
Net, Base
Symbol

Schematic
Editors

Simulation
Environment
Saber® Managing Symbols and Models User Guide 97
Z-2007.03

Chapter 9: Specially-Recognized Properties Reference
Specially-Recognized Properties Descriptions
drive Body Instance or Net All Saber-Verilog

instance property. When you specify this property on an instance of a Verilog part, the instance
is included in the Verilog netlist with the value of the drive property specifying the drive strength
for the part. For example, the property specification

drive highz1,strong0

results in the (highz1,strong0) entry in the following Verilog netlist segment:

wire (strong1,pull0) #(10) strong;

trireg (small) trir;

buf (highz1,strong0) #(2:2:3,3:3:4)
buf1(trir,strong);

net property. When you specify this property on a net (wire), it causes the net to be declared in
the netlist with the property value specifying the drive strength of the net. For example, the
property specification drive strong1,pull0 results in the (strong1,pull0) entry in the following
Verilog netlist segment:

wire (strong1,pull0) #(10) strong;

trireg (small) trir;

buf (highz1,strong0) #(2:2:3,3:3:4)
buf1(trir,strong);

For more information about Verilog language constructs, refer to the Verilog Reference Manual.

Mast_Model Body Instance or Base Viewlogic Only Saber or SV

This attribute specifies the simulation model name for the Saber Simulator. The value of this
attribute is the name of the Saber Simulator model that corresponds to this symbol. If the
Target_Simulator attribute exists with the value saber, then the netlister uses the value of the
Mast_Model attribute as the Saber Simulator model name. Otherwise, this attribute is ignored.
This property has precedence over the SaberTemplate and the Primitive property, but is only
recognized in the Viewlogic environment. See the Primitive and SaberTemplate property
descriptions.

Specially
Recognized
Property NAME

Used On Applies To

Body /
Pin

Instance,
Net, Base
Symbol

Schematic
Editors

Simulation
Environment
98 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 9: Specially-Recognized Properties Reference
Specially-Recognized Properties Descriptions
Mast_Pinorder Body Base Symbol Viewlogic Only Saber or SV

The value of this attribute has the same format as the Viewlogic pinorder attribute. You specify
pin names with spaces between each name. For example: o1 i1 i2

The pins o1, i1, and i2 must exist on the symbol. This attribute does not redefine pin names, only
pin order.

You use this attribute in conjunction with the Target_Simulator attribute. If the value of the
Target_Simulator attribute is saber, the netlister searches for the Mast_Pinorder attribute to
determine the Saber Simulator pin order. If the netlister finds the Target_Simulator attribute but
not the Mast_Pinorder attribute, it will search for the corresponding MAST pin order file. This file
is stored in the symbol directory and has the name symbol_name.mpo. The format of this file is
the same as the Viewlogic pin order (.pin) file. For more information regarding pin order files,
refer to the Viewlogic Schematic Design User’s Guide.

If you specify the pin order for a symbol in the mapping file, that order overrides the order
specified by the Mast_Pinorder attribute.

Specially
Recognized
Property NAME

Used On Applies To

Body /
Pin

Instance,
Net, Base
Symbol

Schematic
Editors

Simulation
Environment
Saber® Managing Symbols and Models User Guide 99
Z-2007.03

Chapter 9: Specially-Recognized Properties Reference
Specially-Recognized Properties Descriptions
PartnerPinOrder Body Symbol Only All Saber-Verilog

You can use the PartnerPinOrder property when you use a partner simulator to match the order
of the symbol pins with the order of the connection points of the partner model. Place the symbol
pins in the same order as they are defined in the model.

The following example shows the PartnerPinOrder property with a value specified for the Verilog
partner simulator:

PartnerPinOrder=out,I0,I1

The following figure shows this example used on a symbol. The resulting Verilog netlist entry for
the symbol is included.

Specially
Recognized
Property NAME

Used On Applies To

Body /
Pin

Instance,
Net, Base
Symbol

Schematic
Editors

Simulation
Environment

Symbol Property
PartnerPinOrder=out,I0,I1

I0

I1

out

Netlist entry:
nand2
\I1 (node3 , node1 , node2);

Instance Property
Target_Simulator=partner

node1
node3

node2
100 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 9: Specially-Recognized Properties Reference
Specially-Recognized Properties Descriptions
Port_Type Pin Instance or Base All Saber or SV

This property specifies whether a port (pin) of a symbol is a digital or an analog type port. For
symbols targeted to the Saber Simulator, the default value is analog. For symbols targeted to a
partner simulator, the default value is digital. However, both analog and digital are valid property
values. The following shows an example for each port type:

Port_Type=digital Port_Type=analog

As shown in the following figure, a symbol that represents a comparator has both analog and
digital port types. The resulting netlist entry for the comparator symbol is included.

Prefix Body Instance or Base Viewlogic Only Saber or SV

The Prefix property is similar to the Primitive property except that it is only recognized by the
Viewlogic netlisters. If you use the Prefix property (rather than SaberTemplate), then all
properties not used for simulation (such as layout properties) must be excluded from the netlist
using a mapping file. The prefix property specifies the name of the template that the symbol
represents but does not specify which simulator should be used. This property designates the
template as primitive (no hierarchical template below this level). This property has a lower
precedence than the SaberTemplate property. See property descriptions for Primitive,
Mast_Model, and SaberTemplate.

Specially
Recognized
Property NAME

Used On Applies To

Body /
Pin

Instance,
Net, Base
Symbol

Schematic
Editors

Simulation
Environment

Instance Properties
SaberTemplate=comp_l4
Saber_td=20n
Saber_p_offset=1m
Saber_m_offset=2m
Saber_hys=2m
SaberEnum_enable_init=_1

pin3

pin4

Netlist entry:
comp_l4.I5 n1 n2 n3 n4 = enable_init=_1,
m_offset=2m,hys=2m, p_offset=1m, td=20n

Pin Properties (pin3)
Port_Type=digital

Pin Properties (pin4)
Port_Type=digital

pin1

pin2

Pin Properties (pin2)
Port_Type=analog

Pin Properties (pin1)
Port_Type=analog

Symbol Properties
SaberPinOrder=pin1,pin2,pin3,pin4

n3

n4
n1

n2
Saber® Managing Symbols and Models User Guide 101
Z-2007.03

Chapter 9: Specially-Recognized Properties Reference
Specially-Recognized Properties Descriptions
Primitive Body Instance or Base All, except
Viewlogic

Saber or Saber-
Verilog

The Primitive property is recognized by all netlisters except Viewlogic, but is primarily used with
the Saber Sketch schematic designer (or DesignStar). If you use the Primitive property (rather
than SaberTemplate), then all properties not used for simulation (such as layout properties)
must be excluded from the netlist using a mapping file. The Primitive property specifies the
name of the template that the symbol represents but does not specify which simulator should be
used. This property designates the template as primitive (no hierarchical template below this
level). This property has a lower precedence than the SaberTemplate property. See property
descriptions for Prefix, Mast_Model, and SaberTemplate.

SaberAppend Body Instance Only All Saber or SV

You can add the SaberAppend property to a symbol to designate one or more names of files
containing templates to be included at the end of a netlist. You can use this property, for
example, to add additional components to a netlist that do not appear in the schematic of the
design, such as stimulus sources.

The value assigned to a SaberAppend property is a comma-separated list of template file names
(files with an extension .sin). You do not need to include the .sin extension in the property value.

SaberEnum_
Parameter

Body Instance or Base All Saber or SV

You can use this property to specify an enumerated parameter. In the following example, the
property is used to specify the value of a logic state. This example demonstrates how you can
use the SaberEnum_ParameterName property to set the initial logic state of a digital symbol pin.

SaberEnum_enable_init=_1

The previous figure (for the Port_Type property) shows this example used on an instance of a
symbol that represents a comparator. The resulting netlist entry for the symbol is included in the
figure.

A template argument with enumerated values can only be given a value from a list of values
declared in the template. These values are typically character strings such as yes, no, _z, or _1.
Enumerated values use the same syntax as parameters in the MAST language.

Specially
Recognized
Property NAME

Used On Applies To

Body /
Pin

Instance,
Net, Base
Symbol

Schematic
Editors

Simulation
Environment
102 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 9: Specially-Recognized Properties Reference
Specially-Recognized Properties Descriptions
SaberInclude Body Instance or Base All Saber or SV

This property is used when the symbol represents a schematic or sub-schematic, but not a
primitive. If placed on a primitive, this property will be ignored.

The value of this property is a comma separated list of files to be included in the Saber Simulator
netlist. The listed files are included at the top of the template corresponding to the schematic
represented by the symbol to which the property is attached.

If the SaberInclude property is attached to a symbol called Saber, the files are included at the
top of the template corresponding to the schematic containing the Saber symbol, but the Saber
symbol is not referenced in the netlist. Example:

SaberInclude=npnmodel, pnpmodel

SaberModel Pin Instance Only All Saber or SV

This is an instance pin property you use to specify a complete definition of the model parameter
of a Saber Simulator hypermodel interface in MAST syntax for a specific pin. The following is an
example value of the SaberModel property:

model=(type=_3,vcc=4.5,voh=2.5,ioh=0.4m,vol=0.35,\
iol=8m,vcmax=5.5,io=224m,co=10p,reft=27,tr=5n,\
tf=5n,vih=2.7,iih=20u,vil=0.4,iil=0.1m,ci=5p,\
vxh=2.2,vxl=0.9,tdon=6n,tdoff=6n,amax=0.5,\
amin=0.5,vsmax=5.5,vsmin=4.5,dmax=0.5,\
dmin=-0.5,xmin=0.5)

SaberModelName Pin Instance Only All Saber or SV

This is an instance pin property that you use to specify the name of an existing Hypermodel
interface in the hypermodel library for a specific pin. For example, the entry for a 74LS04 part in
the ti2.shm Hypermodel file is as follows:

74LS04:adadadg dadadap::ti74ls_15

The Hypermodel interface name is ti74ls_15, which is the value you would specify for the
SaberModelName property.

Specially
Recognized
Property NAME

Used On Applies To

Body /
Pin

Instance,
Net, Base
Symbol

Schematic
Editors

Simulation
Environment
Saber® Managing Symbols and Models User Guide 103
Z-2007.03

Chapter 9: Specially-Recognized Properties Reference
Specially-Recognized Properties Descriptions
SaberParameters Body Instance or Base All Saber or SV

This property specifies a set of parameters in the MAST syntax used in the template. You use
this property when you want to specify one or more Saber Simulator parameters as the value of
a single property, as shown in the following example:

SaberParameters=tran=(pulse=(0,5,1u,1n,2n,2u,8u))

The properties list can have only one SaberParameters property.

The following figure shows this example used on an instance of the symbol that represents a
pulse voltage source. The resulting netlist entry for the symbol is included.

Specially
Recognized
Property NAME

Used On Applies To

Body /
Pin

Instance,
Net, Base
Symbol

Schematic
Editors

Simulation
Environment

Instance Properties
SaberTemplate=v
SaberParameters=tran=(pulse=(0,5,1u,1n,2n,2u,8u)),\
ac=(mag=1,phase=90)

Netlist entry:
v.I5 node1 node2 =tran=(pulse=(0,5,1u,1n, 2n, 2u, 8u)),\
ac=(mag=1, phase=90)

pos

neg Pin Properties (neg)
Port_Type=analog

Pin Properties (pos)
Port_Type=analog

node1

node2

Symbol Properties
SaberPinOrder=pos,neg

Pin Properties (pos)
Port_Type=analog
104 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 9: Specially-Recognized Properties Reference
Specially-Recognized Properties Descriptions
Saber_ParameterName Body Instance or Base All Saber or SV

This property specifies a single template parameter in the MAST syntax used in the template.
The suffix ParameterName can be the name of any single Saber Simulator template parameter
that is not an enumerated type or a string. The following examples demonstrate how you can
use this property to specify various template parameters.

Saber_td=20n

Saber_p_offset=1m

Saber_len=0.02

Saber_area=6e-5

The first two examples are shown in the figure for the port_type property used on an instance of
the symbol of the comp_l4 template. The following figure shows the last two examples used on
an instance of the symbol that represent the corenl template.

Specially
Recognized
Property NAME

Used On Applies To

Body /
Pin

Instance,
Net, Base
Symbol

Schematic
Editors

Simulation
Environment

Instance Properties
SaberTemplate=corenl
SaberString_matl=3c8
Saber_len=0.02
Saber_area=6e-5
Saber_tempc=25

nonlinear
mag1 mag2

Netlist entry:
corenl.I5 node1 node2 =len=0.02, area=6e-5, matl="3c8", tempc=25

Pin Properties (mag2)
Port_Type=analog

Pin Properties (mag1)
Port_Type=analog

node1 node2

Symbol Properties
SaberPinOrder=mag1,mag2
Saber® Managing Symbols and Models User Guide 105
Z-2007.03

Chapter 9: Specially-Recognized Properties Reference
Specially-Recognized Properties Descriptions
SaberPinOrder Body Base Symbol All Saber or SV

This property is not needed for use with templates in the Template Database.

You can use the SaberPinOrder property to match the order of the symbol pins with the order
of the connection points of the template. Place the symbol pins in the same order as they are
defined in the template.

The following examples show the SaberPinOrder property with values specified:

SaberPinOrder=pin1,pin2,pin3,pin4

SaberPinOrder=mag1,mag2

SaberPinOrder=pos,neg

The previous three figures show each of these examples used on a symbol. The resulting netlist
entry for the symbol is included in each figure.

SaberPin_
PinName

Body Instance or Base All Saber or SV

You can use this property to specify the connection of a pin (PinName) to a net (wire). The net
is the specified value of the property. For example, an instance of a transistor may have a
property SaberPin_s with a value Vee as follows:

SaberPin_s=Vee

The netlister will connect pin s to the net Vee.

SaberPrepend Body Instance Only All Saber or SV

You can add the SaberPrepend property to an instance to designate one or more names of files
containing templates to be included at the beginning of a netlist. When the file names are
included at the beginning of the netlist, the templates contained in the file are available when
referenced by intermediate (hierarchical) templates that appear later in the netlist.

The value assigned to a SaberPrepend property is a comma-separated list of template file
names (files with an extension .sin). You do not need to include the .sin extension in the property
value.

Specially
Recognized
Property NAME

Used On Applies To

Body /
Pin

Instance,
Net, Base
Symbol

Schematic
Editors

Simulation
Environment
106 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 9: Specially-Recognized Properties Reference
Specially-Recognized Properties Descriptions
SaberString_
ParameterName

Body Instance or Base
Symbol

All Saber or Saber-
Verilog

You can use this property to place quotes around a string value when the string value is passed
to a template. For example, a symbol representing the template corenl may have a property
SaberString_matl with a value 3c8 as follows:

SaberString_matl=3c8

Since the template corenl has the parameter matl (core material) which requires a value that is
a string, the netlister will place the value 3c8 between quotes and pass it to the parameter matl
of the template corenl as follows:

matl= "3c8"

The previous figure (for the Saber_ParameterName property) shows this example used in an
instance of the symbol that represents the template corenl. The resulting netlist entry for this
symbol is included in the figure.

SaberTech Pin Instance Only All Saber or SV

You use this property to specify the technology of the Hypermodel interface for a specific pin.
The following is an example value:

ttl

SaberTemplate Body Instance or Base All Saber or SV

This property specifies the name of the template that the symbol represents and specifies that
the Saber Simulator should be used. This property does not necessarily designate the symbol
as a primitive. The SaberTemplate property takes precedence over the Primitive property.

The following examples specify the templates comp_l4, corenl, and v, and are also used in the
previous three figures.

SaberTemplate=comp_l4

SaberTemplate=corenl

SaberTemplate=v

The resulting netlist entry for the symbol is included in each figure.

Specially
Recognized
Property NAME

Used On Applies To

Body /
Pin

Instance,
Net, Base
Symbol

Schematic
Editors

Simulation
Environment
Saber® Managing Symbols and Models User Guide 107
Z-2007.03

Chapter 9: Specially-Recognized Properties Reference
Specially-Recognized Properties Descriptions
Target_
Simulator

Body Instance or Base All Saber-Verilog

This property specifies (to the netlister) in which netlist to place the symbol (the Saber Simulator
netlist or the partner simulator netlist). Valid property values are saber and partner. You assign
the value saber to this property when the symbol is to be simulated by the Saber Simulator; you
assign the value partner when the symbol is to be simulated by a partner simulator. For
example,

Target_Simulator=saber

Target_Simulator=partner

The use of this property is illustrated in the figure for the PartnerPinOrder property.

timescale Body Instance Only All Saber-Verilog

You can attach this property to the top cell of your schematic, with a value such as 1ns/1ns, to
specify the time scale for the Verilog simulator. The verilog.ntf file supplied contains the following
entry near the top of the file:

%(TIMESCALE_DECLARATION)

When the netlister finds the timescale property on the top cell of your schematic, it places an
entry in the netlist defining the value of the timescale property. The entry follows the line
containing the default value from the verilog.ntf file.

Because the last of these entries takes precedence, the Verilog simulator will use the time scale
defined by the timescale property.

Specially
Recognized
Property NAME

Used On Applies To

Body /
Pin

Instance,
Net, Base
Symbol

Schematic
Editors

Simulation
Environment
108 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 9: Specially-Recognized Properties Reference
Specially-Recognized Properties Descriptions
type n/a Net Only All Saber-Verilog

When you specify this property on a net (wire), it causes the net to be declared in the netlist as
the type given by the property value. For example, the property specification

type trireg

results in a trireg entry in the Verilog netlist. The following Verilog netlist segment shows the
resulting type specification for net trir.

wire (strong1,pull0) #(10) strong;

trireg (small) trir;

buf (highz1,strong0) #(2:2:3,3:3:4)
buf1(trir,strong);

For more information about Verilog language constructs, refer to the Verilog Reference Manual.

Verilog_Model Body Instance or Base Viewlogic Only Saber-Verilog

The value of this attribute is the name of the Verilog model that corresponds to this symbol. If
the Target_Simulator attribute exists with the value partner, then the netlister uses the value of
the Verilog_Model attribute as the Verilog model name. Otherwise, this attribute is ignored.

Verilog_
Pinorder

Body Base Symbol Viewlogic Only Saber-Verilog

The value of this attribute has the same format as the Viewlogic pinorder attribute. You specify
pin names with spaces between each name. For example

o1 i1 i2

The pins o1, i1, and i2 must exist on the symbol. This attribute does not redefine pin names, only
pin order.

You use this attribute in conjunction with the Target_Simulator attribute. If the value of the
Target_Simulator attribute is partner, the netlister searches for the Verilog_Pinorder attribute to
determine the Verilog pin order. If the netlister finds the Target_Simulator attribute but not the
Verilog_Pinorder attribute, it will search for the corresponding Verilog pin order file. This file is
stored in the symbol directory and has the name symbol_name.vpo. The format of this file is the
same as the Viewlogic pin order (.pin) file. For more information regarding pin order files, refer
to the Viewlogic Schematic Design User’s Guide.

If you specify the pin order for a symbol in the mapping file, that order overrides the order
specified by the Verilog_Pinorder attribute.

Specially
Recognized
Property NAME

Used On Applies To

Body /
Pin

Instance,
Net, Base
Symbol

Schematic
Editors

Simulation
Environment
Saber® Managing Symbols and Models User Guide 109
Z-2007.03

Chapter 9: Specially-Recognized Properties Reference
Specially-Recognized Properties Descriptions
110 Saber® Managing Symbols and Models User Guide
Z-2007.03

10
10Reserved Properties on Symbols and Ports

Symbols and ports used in the drawing tools Saber Sketch and Saber Bundle
have reserved properties, meaning properties that have specific uses defined
by the application. You should use reserved properties only as they are defined
in the following sections:
■ Saber Sketch Symbols and Ports
■ Saber Bundle Symbols and Ports
■ Parts Databases

Saber Sketch Symbols and Ports

The following properties are reserved for Saber Sketch Symbols and Ports.

Hierarchical Block Symbol — Reserved Properties

The hierarchical block symbol defines a sub-schematic as an instance in
another schematic. The convention is that the name of the symbol and the
name of the sub-schematic are the same. The instance name comes from the
ref property.
Saber® Managing Symbols and Models User Guide 111
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Sketch Symbols and Ports
Symbol
The properties that are reserved and used for hierarchical symbols are:

Other properties may be defined and passed into the sub-schematic based on
the model as desired for modeling.

Port
There are no reserved properties for ports on hierarchical block symbols.

HDL Symbol — Reserved Properties

An HDL (Hardware Description Language) symbol is used to represent a
template written in an HDL such as MAST or VHDL-AMS.

The HDL symbol defines the interface of the HDL model as seen in a
schematic. This includes the ports or connections to the model and the
properties that are arguments (generics in VHDL terminology) used with the
model. The reserved properties define the relationship between the symbol and
model to that of the reference designator for the model. The instance name of
the symbol is primitive.ref.

Name Value Type Value

Editor

View Protected Qualifier Description

schematic name string text value yes none The name of the
schematic which
implements the
behavior/structure of
the symbol.

ref *opt* string text value no none The reference
designator or
instance name of the
symbol.
112 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Sketch Symbols and Ports
Symbol
Symbol The properties that are reserved and used for HDL symbols are:

Other properties may be defined and passed into the HDL model based on the
model arguments.

Port
The reserved properties for ports on HDL symbols define the type of port
(analog digital) of the connection on the model and are used for Hypermodel
insertion decisions. The reserved port properties for HDL symbols are:

Hierarchical Connector Symbol — Reserved Properties

In order for a node in a schematic to be connected to a node in a parent
schematic (besides using a global connection), the node must be attached to a
hierarchical connector. For each hierarchical connector within a schematic
there must be exactly one port of the same name on the symbol which is
associated with this schematic. Saber Sketch will then make a nodal
connection.

Name Value Type Value

Editor

View Protected Qualifier Description

primitive name string text valu
e

yes SABER The name of the
template for SABER.

ref *opt* string text valu
e

no none The reference
designator of the
model. This is
common through for
all HDLs.

Name Value Type Value

Editor

View Protected Qualifier Description

pin_fault *opt* string text value yes none This property is
defined for use by
Testify.
Saber® Managing Symbols and Models User Guide 113
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Sketch Symbols and Ports
Symbol
The properties that are reserved and used for hierarchical connector symbols
are:

Port
There are no reserved properties for ports on hierarchical connector symbols.

On-page Connector Symbol — Reserved Properties

An on-page connector is used to connect to an on-page connector on the same
page. Even though the on-page connector does not affect the nodal
connectivity (connection is made by node name on the wire), on-page
connectors can make schematics easier to read.

Symbol
The properties that are reserved and used for on-page connector symbols are:

Name Value Type Value

Editor

View Protected Qualifier Description

connector hierarc
hical

string text value yes none Indicates that the
connector is a
hierarchical
connector.

name *req* string text value no none The name of the
node that is
connected.

Name Value Type Value

Editor

View Protected Qualifier Description

connector onpage string text value yes none Indicates that the
connector is an on-
page connector.

name *req* string text value no none The name of the
node that is
connected.
114 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Sketch Symbols and Ports
Port
There are no reserved properties for ports On-page connector symbols.

Off-page Connector Symbol — Reserved Properties

An off-page connector connects to an off-page connector on another sheet.
Even though the off-page connector does not really affect the nodal
connectivity (connection is made by node name on the wire), off-page
connectors can make schematics easier to read.

Symbol
The properties that are reserved and used for off-page connector symbols are:

Port
There are no reserved properties for ports on off-page connector symbols.

Global Connector Symbol — Reserved Properties

A global connector is used to connect to a node that exists in a another
schematic. This makes the connection to all nodes of the name in all parent
schematics without regard to the ports on the intervening symbols. This is
typically used for power and ground connections.

Name Value Type Value

Editor

View Protected Qualifier Description

connector offpage string text value yes none Indicates that the
connector is an off-
page connector.

name *req* string text value no none The name of the
node that is
connected.
Saber® Managing Symbols and Models User Guide 115
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Sketch Symbols and Ports
Symbol
The properties that are reserved and used for global connector symbols are:

Port
There are no reserved properties for ports on global connector symbols.

Border Annotation Drawing — Reserved Properties

A border annotation drawing is used to add annotations to the border drawing
frame. The properties on the border annotation drawing fall into two categories.
The first define the type of the drawing and information used by the border
annotation tool. The properties in the second category are defined by the
creator of the symbol and contain whatever information is desired.

Drawing
The properties that are reserved and used for global connector symbols are:

Name Value Type Value

Editor

View Protected Qualifier Description

connector global string text value yes none Indicates that
the connector
is a global
connector.

name *req* string text value no none The name of
the node that is
connected.

Name Value Type Value

Editor

View Protected Qualifier Description

symboltype border_an
notation

string text value yes none Indicates that the
drawing is a
border
annotation.
116 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Sketch Symbols and Ports
annotation_
subregion

header,
line, or
data

string text value yes none The type of the
border
annotation. The
header type is
used with
annotations that
have multiple
lines and
contains only
text. The line type
is used as the
data bearing
containers with
the header. The
data type
contains data and
is used by itself
(such as for a title
block).

annotation_
type

title,
revision,
notes,
included,
associate
d

string text value yes none Defines the type
of the annotation.
The creator can
define other
types. The names
specified must be
used so tools can
find the correct
annotation type.

annotation_
position

opt string text value no none Uses by
annotation tool.

annotation_
direction

opt string text value no none Uses by
annotation tool.

annotation_
order

opt string text value no none Uses by
annotation tool.

Name Value Type Value

Editor

View Protected Qualifier Description
Saber® Managing Symbols and Models User Guide 117
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Sketch Symbols and Ports
Graphics Definition — Reserved Properties

A container for properties common to all graphics items is a symbol named
_graphics_def_.ai_sym. The purpose of having properties on the graphics
definition is to allow the selection and filter mechanisms to select graphics
items.

Properties on graphics items allow you to be able to select graphics items
using the Filter. There are no reserved properties on graphics items in Saber
Sketch (variant only applies to Saber iQBus).

Symbol
The properties that are reserved and used for hierarchical symbols are:

annotation_
region_nam
e

opt string text value no none Uses by
annotation tool.

Issue *opt* string text value no none This is the only
user-defined data
that is currently
reserved. It is the
issue number of
the sheet and
must be present
in the title block
for the release
report of CVS to
include the issue
number.

Name Value Type Value

Editor

View Protected Qualifier Description

variant *opt* list list value no none The variant the
graphics item is part
of.

Name Value Type Value

Editor

View Protected Qualifier Description
118 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Sketch Symbols and Ports
Other properties may be defined as desired.

Port
There are no reserved properties for ports on the graphics definition symbol.

Other Reserved Properties in Saber Sketch

The other properties reserved for either internal use or future expansion are:

Name Value Type Value

Editor

View Protected Qualifier Description

connector referen
ce

string text value yes none A nodal reference
connector.

connector lsplice string text value yes none A logical splice
(solder dot used
internally).

connector *opt* string text value yes none Managed internally.
Indicates
sheet:instanc e.port
of the referenced
port.

conn_shee
t

opt string text value yes none Managed internally.
Indicates the sheet
of the symbol with
the referenced port.

conn_nam
e

opt string text value yes none Managed internally.
Indicates the
instance name of the
symbol with the
referenced port.

conn_pin *opt* string text value yes none Managed internally.
Indicates the name
of the referenced
port.
Saber® Managing Symbols and Models User Guide 119
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
Saber iQBus Symbols and Ports

Saber iQBus elements use the same properties as Saber Sketch elements of
the same type, plus the variant property.

Component — Reserved Properties

A component is a symbol used in Saber iQBus that may be either a hierarchical
or an HDL (leaf) symbol. It is different from a normal symbol in that it has one or
more connector shells defined for it. The inline component is similar to a
component except that it is built into a harness, has two connections, and is
treated like a splice in Saber Bundle. It is used for in-line fusible links and other
such devices. A harness component is a component that built into a harness
and treated as a set of shells in Saber Bundle.

Symbol
The properties that are reserved and used for components are:

conn_nam
epin

opt string text value yes none Managed internally.
Indicates the
name.pin of the
referenced port.

ruler *opt* string text value yes none Indicates the
location in ruler
coordinates of the
referenced port.

Name Value Type Value

Editor

View Protected Qualifier Description

ref *opt* string ref value no none Unique Name of
component

Name Value Type Value

Editor

View Protected Qualifier Description
120 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
symboltype compo
nent
inline_c
ompon
ent

string text value yes none Indicates the
type of
component.

variant *opt* list list value no none List of variants
the component is
part of.

harness *opt* string list value no none The harness the
component is
included in. This
is not normally
used. It is only
used for harness
components or
inline
components.

part_no *opt* string text value no HARNES
S

The part number
of the
component.

part_type *opt* string text value no HARNES
S

The type of the
part for use in
aerospace
reports.

description See
right

string ref ref no HARNES
S

Description of the
component. The
symbol should
have a default
description
defined. The
description will
be replaced by
the description
on the ref list
value attribute if it
exists.

Name Value Type Value

Editor

View Protected Qualifier Description
Saber® Managing Symbols and Models User Guide 121
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
bundle_sy
mbol

opt string text value no BUNDLE The symbol to
use in Saber
Bundle for this
component if it is
a “harness
component”.

bundle_vie
w

opt string text value no BUNDLE The view to use
in Saber Bundle
for this
component if it is
a “harness
component”.

cost *opt* string text value no BUNDLE Cost of the
component.

weight *opt* string text value no BUNDLE Weight of the
component.

catia_pn *opt* string text value no CATIA 3D Part number for
Catia.

proe_pn *opt* string text value no PROE 3D Part number for
Pro/ENGIN EER.

ideas_pn *opt* string text value no IDEAS 3D Part number for
SDRC Ideas.

ug_pn *opt* string text value no UG 3D Part number of
Unigraphics
Harness.

Name Value Type Value

Editor

View Protected Qualifier Description
122 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
Other properties may be defined and passed into the HDL model based on the
model arguments.

shell_* *opt* shell shell shell no HARNES
S

This property
contains
information about
the definition of
the shell on the
component and
the mating shell
selected. The
property value
editor supports
the shell selected
from the shell
parts database in
the symbol
editor. In the
harness drawing
the view displays
the shell part
name and does
not allow editing
of the property.

passives *opt* passive passiv
es

passive no BUNDLE Contains
information about
which passives
are defined fro
this inline
component. It is
not support for
the component or
the harness
component.

primitive name string text value yes SABER The name of the
template for
SABER.

Name Value Type Value

Editor

View Protected Qualifier Description
Saber® Managing Symbols and Models User Guide 123
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
Port
The reserved properties for ports on components fall into two groups. The first
defines the relationship between the port and the connector shell. The second,
for components that have HDL models, defines the type of port (analog, digital)
of the connection on the model and is used for Hypermodel insertion. The
reserved port properties for component are:

Shell Definition — Reserved Properties

The shell definition is a symbol used to define the shell database instance for
the shells on the component connector and the inline connector. These shells
are never edited directly. Their properties can be edited through the Connector
Manager. In addition, the properties also are used to populate the properties of
the bundle shell symbol.

Symbol
The properties that are reserved and used for shell definitions are:

Name Value Type Value

Editor

View Protected Qualifier Description

shell *opt* string text value no none The shell that the
port is associated
with.

cavity *opt* string text value no none The cavity in the shell
that the port is
associated with.

Name Value Type Value

Editor

View Protected Qualifier Description

ref *opt* string ref value no none Unique Name of
shell.

variant *opt* list list value no none List of variants the
shell is part of.
124 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
harness *opt* string list value no none The harness the
shell on the
component or the
shell of the inline is
included in.

mating_har
ness

opt string text value no HARNE
SS

Used on shell for
inline connector
only.

mating_sh
ells

opt list list value no HARNE
SS

The list of shells that
can mate to this
shell.

part_no *opt* string text value no HARNE
SS

The part number of
the shell.

description See
right

string ref ref no HARNE
SS

Description of the
shell. The symbol
should have a
default description
defined. The
description will be
replaced by the
description on the ref
list value attribute if it
exists or the
description from the
parts database.

bundle_sy
mbol

opt string text value no BUNDL
E

The symbol to use in
Saber Bundle for this
shell.

bundle_vie
w

opt string text value no BUNDL
E

The view to use in
Saber Bundle for this
shell.

cost *opt* string text value no BUNDL
E

Cost of the shell.

Name Value Type Value

Editor

View Protected Qualifier Description
Saber® Managing Symbols and Models User Guide 125
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
weight *opt* string text value no BUNDL
E

Weight of the shell.

catia_pn *opt* string text value no CATIA
3D

Part number for
Catia.

proe_pn *opt* string text value no PROE
3D

Part number for Pro/
ENGINEER.

ideas_pn *opt* string text value no IDEAS
3D

Part number for
SDRC Ideas.

ug_pn *opt* string text value no UG 3D Part number for
Unigraphics
Harness.

gender *opt* string text value no HARNE
SS

Gender of this shell.

color *opt* string text value no HARNE
SS

Color of this shell.

cavity_
occupancy

opt string occupa
ncy

occup
ancy

no BUNDL
E

Contains information
about how many
cavities are
occupied.

passives *opt* passiv
e

passiv
e

passiv
e

no BUNDL
E

Contains information
about which
passives are part of
this shell.

Name Value Type Value

Editor

View Protected Qualifier Description
126 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
Port
The reserved properties for ports on shell definitions define the order in which
the cavities are to be filled. The reserved port properties for shell definitions
are:

Free Terminal — Reserved Properties

The free terminal is a symbol used in Saber iQBus to represent the terminal on
the end of a wire that is not part of a connector shell. Two examples are spade
terminals and lug terminals.

Name Value Type Value

Editor

View Protected Qualifier Description

order *opt* string text value no none The order of the
cavity for display in
the Connector
Manager.

passives *opt* passive passive
s

passiv
es

no BUNDL
E

Contains information
about which
passives are part of
this cavity.

terminal_
orientation

opt string text value no HARNE
SS

Defines the
orientation of the
terminal with respect
to the shell. It is used
for inline connector
symbols. It may also
be used for
component shells in
the future. It is
created and
managed by the
Connector Manager.
Saber® Managing Symbols and Models User Guide 127
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
Symbol
The properties that are reserved and used for free terminals are:

Name Value Type Value

Editor

View Protected Qualifier Description

ref *opt* string ref value no none Unique Name of
free terminal

connector termina
l

string text value yes none

connectorty
pe

global string text value yes none If this free terminal
makes a
connection to a
global node then
the connector type
must be global.
Otherwise this
property is not
used.

variant *opt* list list value no none List of variants the
free terminal is
part of.

harness *opt* string list value no none The harness the
free terminal is
part of.

part_no *opt* string text value no HARNE
SS

The part number
of the free
terminal.
128 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
description See
right

string ref ref no HARNE
SS

Description of the
free terminal. The
symbol should
have a default
description
defined. The
description will be
replaced by the
description on the
ref list value
attribute if it exists.

bundle_sym
bol

opt string text value no BUNDL
E

The symbol to use
in Saber Bundle
for this free
terminal.

bundle_view *opt* string text value no BUNDL
E

The view to use in
Saber Bundle for
this free terminal.

cost *opt* string text value no BUNDL
E

Cost of the free
terminal.

weight *opt* string text value no BUNDL
E

Weight of the free
terminal.

passives *opt* passive passive
s

passiv
e

no BUNDL
E

Contains
information about
which passives
are part of this
free terminal.

catia_pn *opt* string text value no CATIA
3D

Part number for
Catia.

proe_pn *opt* string text value no PROE
3D

Part number for
Pro/ENGIN EER.

ideas_pn *opt* string text value no IDEAS
3D

Part number for
SDRC Ideas.

Name Value Type Value

Editor

View Protected Qualifier Description
Saber® Managing Symbols and Models User Guide 129
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
Other properties may be defined and passed into the HDL model based on the
model arguments.

Port
There are no reserved properties for ports on the free terminal.

Physical Splice — Reserved Properties

The physical splice is a symbol used to represent the junctions of two or more
physical wires. The symbol _splice_.ai_sym is used for the physical splice.

ug_pn *opt* string text value no UG 3D Part number for
Unigraphics
Harness.

name *opt* string text value yes none Name of the node
that the free
terminal connects
to. This will name
the node of all
wires connected.
It is generally
used for ground
and power
connections.

primitive name string text value yes SABER The name of the
template for
SABER.

Name Value Type Value

Editor

View Protected Qualifier Description
130 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
Symbol
The properties that are reserved and used for physical splices are:

Name Value Type Value

Editor

View Protected Qualifier Description

ref *opt* string ref value no none Unique Name of
physical splice.

connector splice string text value yes none

variant *opt* list list value no none List of variants the
splice is part of.

harness *opt* string list value no none The harness the
splice is part of.

part_no *opt* string text value no HARNE
SS

The part number
of the splice.

description See
right

string ref ref no HARNE
SS

Description of the
splice. The
symbol should
have a default
description
defined. The
description will be
replaced by the
description on the
ref list value
attribute if it exists.

bundle_sym
bol

opt string text value no BUNDL
E

The symbol to use
in Saber Bundle
for this physical
splice.

bundle_view *opt* string text value no BUNDL
E

The view to use in
Saber Bundle for
this physical
splice.

cost *opt* string text value no BUNDL
E

Cost of the
physical splice.
Saber® Managing Symbols and Models User Guide 131
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
Port
There are no reserved properties for ports on the physical splice.

Physical Wire — Reserved Properties

The physical wire is the cut wire that makes up the harness. It ends on
terminals or splices. It is not a logical wire.

Wire
The properties that are reserved and used for physical wires are:

weight *opt* string text value no BUNDL
E

Weight of the
physical splice.

passives *opt* string text value no BUNDL
E

Contains
information about
which passives
are part of this
splice.

primitive *opt* string text value yes BUNDL
E

The name of the
template for
SABER.

Name Value Type Value

Editor

View Protected Qualifier Description

ref *opt* string ref value no none Unique Name of
physical wire.
Same as wire
name.

variant *opt* list list value no none List of variants the
physical wire is
part of.

Name Value Type Value

Editor

View Protected Qualifier Description
132 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
harness *opt* string list value no none The harness the
physical wire is
part of.

part_no *opt* string wire value no HARNE
SS

The part number
of the physical
wire.

cost *opt* string wire value no BUNDL
E

Cost per unit
length of the
physical wire.

weight *opt* string wire value no BUNDL
E

Weight per unit
length of the
physical wire.

length *opt* string text value no none Length of the wire.

color *opt* string wire value no BUNDL
E

Color of the wire.

wire_type *opt* string wire value no HARNE
SS

SABER

The type of the
wire.

bend_radius *opt* string wire value no HARNE
SS

The bend radius
of the wire.

gauge *opt* string wire value no HARNE
SS

SABER

The gauge of the
wire.

area *opt* string wire value no HARNE
SS

SABER

The area of the
conductor in the
wire.

diameter *opt* string wire value no HARNE
SS

SABER

The diameter of
the wire.

Name Value Type Value

Editor

View Protected Qualifier Description
Saber® Managing Symbols and Models User Guide 133
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
Other properties may be defined and passed into the HDL model based on the
model arguments. If these are to come from the wire parts database then use a
property value editor of wire.

Physical Cable — Reserved Properties

A cable is a combination of one or more physical wires which may or may not
be surrounded by wrapping and/or shielding. It is not a logical or physical wire
and does not terminate on symbols or components.

Cable
The properties that are reserved and used for cables are:

primitive wirep string text value no SABER The name of the
template for
SABER.

Name Value Type Value

Editor

View Protected Qualifier Description

ref *opt* string ref value no none Unique Name of
cable. Same as
cable name.

length *req* string text value no none Length of the
cable.

variant *opt* list list value no none List of variants the
cable is part of.

harness *opt* string list value no none The harness the
cable is part of.

part_no *opt* string wire value no HARNE
SS

The part number
of the cable.

Name Value Type Value

Editor

View Protected Qualifier Description
134 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
Other properties may be defined and passed into the HDL model based on the
model arguments. If these are to come from the cable parts database then use
a property value editor of cable.

cost *opt* string wire value no BUNDL
E

Cost per unit
length of the
cable.

weight *opt* string wire value no BUNDL
E

Weight per unit
length of the
cable.

color *opt* string cable value no BUNDL
E

Color of the cable.

wire_type *opt* string cable value no SABER
HARNE
SS

The type of wire in
the cable.

bend_radius *opt* string cable value no HARNE
SS

The bend radius
of the cable.

primitive wirep string text value no SABER The name of the
template for
SABER.

diameter *opt* string wire value no HARNE
SS

SABER

The diameter of
the wire in the
cable.

area *opt* string wire value no HARNE
SS

SABER

The area of the
conductor of the
wire in the cable.

gauge *opt* string wire value no HARNE
SS

SABER

The gauge of the
wire in the cable.

Name Value Type Value

Editor

View Protected Qualifier Description
Saber® Managing Symbols and Models User Guide 135
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
Physical Cable Definition — Reserved Properties

A container for properties common to all physical cables is a symbol named
_cable_def_.ai_sym. The supported properties on a physical cable definition
are identical to those on the physical cable.

Cable
The properties that are reserved and used for physical cables are:

Name Value Type Value

Editor

View Protected Qualifier Description

ref *opt* string ref value no none Unique Name of
cable. Same as
cable name.

length *req* string text value no none Length of the
cable.

variant *opt* list list value no none List of variants the
cable is part of.

harness *opt* string list value no none The harness the
cable is part of.

part_no *opt* string wire value no HARNE
SS

The part number
of the cable.

cost *opt* string wire value no BUNDL
E

Cost per unit
length of the
cable.

weight *opt* string wire value no BUNDL
E

Weight per unit
length of the
cable.

color *opt* string cable value no BUNDL
E

Color of the cable.

wire_type *opt* string cable value no SABER
HARNE
SS

The type of wire in
the cable.
136 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
Other properties may be defined and passed into the HDL model based on the
model arguments. If these are to come from the cable parts database then use
a property value editor of cable.

Inline Connector Symbol — Reserved Properties

An inline connector is a symbol that associates a pair of cavities in two
connector shell housings with the physical wires that are connected to
terminals in these cavities. Because the inline connector is only used to
represent this association the underlying shell database contains all of the
information that defines the details related to the cavity, terminal, and passive
definitions the only information present on the symbol is related to simulation.

bend_radius *opt* string cable value no HARNE
SS

The bend radius
of the cable.

primitive wirep string text value no SABER The name of the
template for
SABER.

diameter *opt* string wire value no HARNE
SS

SABER

The diameter of
the wire in the
cable.

area *opt* string wire value no HARNE
SS

SABER

The area of the
conductor of the
wire in the cable.

gauge *opt* string wire value no HARNE
SS

SABER

The gauge of the
wire in the cable.

Name Value Type Value

Editor

View Protected Qualifier Description
Saber® Managing Symbols and Models User Guide 137
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
Symbol
The properties that are reserved and used for in-line connectors are:

Other properties may be defined and passed into the HDL model based on the
model arguments. If these are to come from the wire parts database, use a
property value editor of wire.

Port
The reserved properties for ports on in-line connectors define the connector
shell housing that the port represents. The reserved port properties for in-line
connectors are:

Sheet Symbol — Reserved Properties

The sheet symbol is a mechanism to support the representation of a group of
connections to be displayed as a symbol in one sheet and have the
connections to ports and/or splices in another sheet. The port of a sheet

Name Value Type Value

Editor

View Protected Qualifier Description

ref *opt* string ref value no none Unique name of in-
line connector.

primitive name string text value no SABER The name of the
template for SABER
if there in-line
connector is to be
modeled.

Name Value Type Value

Editor

View Protected Qualifier Description

shell name string text value no HARNE
SS

The name of the
shell the cavity is in.

cavity name string text value no HARNE
SS

The name of the
cavity to which the
port is associated.
138 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
symbol is connected to other ports and splices by wires. The sheet symbol port
takes as properties the names of those other ports and splices.

Symbol
The properties that are reserved and used for sheet symbols are:

Port
The reserved properties for ports on sheet symbols define the name of the
object that is connected. The port type that is used defines whether the type of
the port is a port reference or a splice reference. The reserved port properties
for sheet symbols are:

Reference Symbol — Reserved Properties

The reference symbol is used by the shared wire to allow for a physical wire to
be distributed on one or two sheets without being visually connected. The
reference symbol displays information about what the other end of the shared
wire is connected to. The insertion and property setting for reference symbols
is managed as part of the shared wire. The user can control the property
visibility.

Name Value Type Value

Editor

View Protected Qualifier Description

connector sheet string text value yes none

Name Value Type Value

Editor

View Protected Qualifier Description

connection sheet:sym_i
ns tance.port

string text value no HARNE
SS

Reference to the
port on the object
referenced.
Saber® Managing Symbols and Models User Guide 139
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber iQBus Symbols and Ports
Symbol
The properties that are reserved and used for reference symbols are:

Name Value Type Value

Editor

View Protected Qualifier Description

connector reference string text value yes none

connection sheet:sym_in
s tance.port

string text value yes HARNE
SS

The connected
element.

ruler *opt* string text value yes HARNE
SS

The grid location
of the connected
element.

conn_she
et

opt string text value yes HARNE
SS

Managed
internally.
Indicates the
sheet of the
symbol with the
referenced port.

conn_nam
e

opt string text value yes HARNE
SS

Managed
internally.
Indicates the
instance name of
the symbol with
the referenced
port.

conn_pin *opt* string text value yes HARNE
SS

Managed
internally.
Indicates the
name of the
referenced port.

conn_nam
epin

opt string text value yes HARNE
SS

Managed
internally.
Indicates the
name.pin of the
referenced port.
140 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Bundle Symbols and Ports
Port
There are no reserved port properties for reference symbols.

Saber Bundle Symbols and Ports

The following properties are reserved for Saber Bundle Symbols and Ports.

Bundle Shell — Reserved Properties

The bundle shell is a symbol representing a connector shell in the bundle
drawing. The properties on the shell either come from information in the shell
database of the corresponding wiring diagram or can be entered manually. The
default symbol used for the bundle shell is _bundle_shell_.ai_sym.

Symbol
The properties that are reserved and used for bundle shells are:

Name Value Type Value

Editor

View Protected Qualifier Description

ref *opt* string ref value no none Unique Name
of shell.

symboltype shell string text value yes none Identifies type
of symbol.

variant *opt* list list value no none List of variants
the shell is part
of.

mating_har
ness

opt string text value no HARNE
SS

Used on shell
for inline
connector only.

part_no *opt* string text value no HARNE
SS

The part
number of the
shell.
Saber® Managing Symbols and Models User Guide 141
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Bundle Symbols and Ports
description See right string ref ref no HARNE
SS

Description of
the shell. The
symbol should
have a default
description
defined. The
description will
be replaced by
the description
on the ref list
value attribute
if it exists.

cost *opt* string text value no BUNDL
E

Cost of the
shell.

weight *opt* string text value no BUNDL
E

Weight of the
shell.

color *opt* string text value no HARNE
SS

Color of this
shell.

cavity_occ
upancy

opt string occup
ancy

occup
ancy

no BUNDL
E

Contains
information
about how
many cavities
are occupied.

passives *opt* passive passiv
es

passiv
e

no BUNDL
E

Contains
information
about which
passives are
part of this
shell. The
value can only
be set in the
Connector
Manager.

Name Value Type Value

Editor

View Protected Qualifier Description
142 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Bundle Symbols and Ports
Port
There are no reserved port properties for bundle shells.

Bundle Terminal — Reserved Properties

The bundle terminal is a symbol representing a free terminal in the bundle
drawing. The properties on the shell either come from information on the free
terminal of the corresponding wiring diagram or can be entered manually. The
default symbol used for the bundle terminal is _bundle_terminal_.ai_sym.

Symbol
The properties that are reserved and used for free terminals are:

Name Value Type Value

Editor

View Protected Qualifier Description

ref *opt* string ref value no none Unique Name
of free terminal.

symboltyp
e

terminal string text value yes none Identifies type
of symbol

variant *opt* list list value no none List of variants
the free
terminal is part
of.

part_no *opt* string text value no HARNE
SS

The part
number of the
free terminal.

description See right string ref ref no HARNE
SS

Description of
the free
terminal.

cost *opt* string text value no BUNDL
E

Cost of the free
terminal.

weight *opt* string text value no BUNDL
E

Weight of the
free terminal.
Saber® Managing Symbols and Models User Guide 143
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Bundle Symbols and Ports
Port
There are no reserved port properties for bundle terminals.

Bundle Splice — Reserved Properties

The bundle splice is a symbol representing a splice in the bundle drawing. The
properties on the splice either come from information on the splice of the
corresponding wiring diagram or can be entered manually. The default symbol
used for the bundle splice is _bundle_splice_.ai_sym.

Symbol
The properties that are reserved and used for splices are:

passives *opt* passive passiv
es

passiv
e

no BUNDL
E

Contains
information
about which
passives are
part of this free
terminal. The
value can only
be set in the
Connector
Manager.

Name Value Type Value

Editor

View Protected Qualifier Description

ref *opt* string ref value no none Unique Name of
splice.

symboltyp
e

splice string text value yes none Identifies type of
symbol.

variant *opt* list list value no none List of variants
the splice is part
of.

Name Value Type Value

Editor

View Protected Qualifier Description
144 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Bundle Symbols and Ports
Port
There are no reserved port properties for splices.

Bundle Harness Component — Reserved Properties

The bundle harness component is a symbol representing a component built
into a harness. The shells on the component are represented with a bundle

part_no *opt* string text value no HARNE
SS

The part number
of the splice.

description See right string ref ref no HARNE
SS

Description of
the splice. The
symbol should
have a default
description
defined. The
description will
be replaced by
the description
on the ref list
value attribute if
it exists.

cost *opt* string text value no BUNDL
E

Cost of the
splice.

weight *opt* string text value no BUNDL
E

Weight of the
splice.

passives *opt* passiv
e

passiv
es

passi
ve

no BUNDL
E

Contains
information
about which
passives are part
of this splice. The
value can only
be set in the
Connector
Manager.

Name Value Type Value

Editor

View Protected Qualifier Description
Saber® Managing Symbols and Models User Guide 145
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Bundle Symbols and Ports
shell. This symbol is provided so that there can be a graphical representation of
the component in the bundle drawing. The properties on the harness
component either come from information on the component of the
corresponding wiring diagram or can be entered manually. Since all bundle
segments are connected to the related shells, there are not ports on the bundle
harness component. The default symbol used for the bundle harness
component is _bundle_ component_.ai_sym.

Symbol
The properties that are reserved and used for harness components are:

Name Value Type Value

Editor

View Protected Qualifier Description

ref *opt* string ref value no none Unique Name
of harness
component.

symboltyp
e

component string text value yes none Identifies type
of symbol.

variant *opt* list list value no none List of variants
the harness
component is
part of.

part_no *opt* string text value no HARNE
SS

The part
number of the
harness
component.
146 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Bundle Symbols and Ports
Port
There are no ports for harness components.

description See right string ref ref no HARNE
SS

Description of
the harness
component.
The symbol
should have a
default
description
defined. The
description will
be replaced by
the description
on the ref list
value attribute if
it exists.

cost *opt* string text value no BUNDL
E

Cost of the
harness
component.

weight *opt* string text value no BUNDL
E

Weight of the
harness
component

passives *opt* passive passiv
es

passiv
e

no BUNDL
E

Contains
information
about which
passives are
part of this
harness
component.
This value can
only be set in
the Connector
Manager.

Name Value Type Value

Editor

View Protected Qualifier Description
Saber® Managing Symbols and Models User Guide 147
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Bundle Symbols and Ports
Bundle Inline Component — Reserved Properties

The bundle inline component is a symbol representing an inline component in
the bundle drawing. The properties on the inline component either come from
information on the inline component of the corresponding wiring diagram or can
be entered manually. The default symbol used for the bundle inline component
is _bundle_inline_component_.ai_sym.

Symbol
The properties that are reserved and used for inline components are:

Name Value Type Value

Editor

View Protected Qualifier Description

ref *opt* string ref value no none Unique Name of
inline
component.

symboltyp
e

inline_compo
nent

string text value yes none Identifies type of
symbol.

variant *opt* list list value no none List of variants
the inline
component is
part of.

part_no *opt* string text value no HARNE
SS

The part number
of the inline
component.
148 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Bundle Symbols and Ports
Port
There are no reserved port properties for inline components.

description See right string ref ref no HARNE
SS

Description of
the inline
component. The
symbol should
have a default
description
defined. The
description will
be replaced by
the description
on the ref list
value attribute if
it exists.

cost *opt* string text value no BUNDL
E

Cost of the inline
component.

weight *opt* string text value no BUNDL
E

Weight of the
inline
component.

passives *opt* passiv
e

passiv
es

passi
ve

no BUNDL
E

Contains
information
about which
passives are part
of this inline
component. This
value can only
be set in the
Connector
Manager.

Name Value Type Value

Editor

View Protected Qualifier Description
Saber® Managing Symbols and Models User Guide 149
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Bundle Symbols and Ports
Bundle Passive — Reserved Properties

The bundle passive is a symbol representing a passive in the bundle drawing.
The properties either come from the passive elements in the Parts Gallery or
can be entered manually. The default symbol used for the bundle passive is
_bundle_passive_.ai_sym.

Symbol
The properties that are reserved and used for passives are:

Name Value Type Value

Editor

View Protected Qualifier Description

symboltyp
e

passive string text value yes none Identifies type of
symbol.

variant *opt* list list value no none List of variants
the passive is
part of.

part_no *opt* string text value no HARNE
SS

The part number
of the passive.

description See right string ref ref no HARNE
SS

Description of
the passive.

cost *opt* string text value no BUNDL
E

Cost of the
passive if no
length specified
otherwise it is the
cost per unit
length if the
length is
specified.

weight *opt* string text value no BUNDL
E

Weight of the
passive if no
length specified
otherwise it is the
weight per unit
length if the
length is
specified.
150 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Bundle Symbols and Ports
Port
There are no reserved port properties for passives.

Bundle Segment — Reserved Properties

The bundle segment is a collection of wires. The bundle segment properties
define characteristics about the bundle segment.

length *opt* string text value no BUNDL
E

Length of the
passive if the
passive has
extent. If this is
not set or
missing then the
passive is a
lumped item.

type *opt* string text value no BUNDL
E

Type of the
passive. This
identifies the
kind of passive
which can then
be used by other
analysis
programs.

passives *opt* string text value no BUNDL
E

Contains
information
about which
passives are part
of this passive.
This is used to
identify the
passive parts
which are part of
this passive but
not displayed
graphically.

Name Value Type Value

Editor

View Protected Qualifier Description
Saber® Managing Symbols and Models User Guide 151
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Saber Bundle Symbols and Ports
Bundle Segment
The properties that are reserved and used for bundle segments are:

Bundle Segment Definition — Reserved Properties

A container for properties common to all bundle segments is a symbol named
_bundle_segment_def_.ai_sym. The supported properties on a bundle
segment definition are identical to those on the bundle segment.

Name Value Type Value

Editor

View Protected Qualifier Description

length *opt* string text value no BUNDL
E

The length of the
bundle segment.

variant *opt* list list value no none List of variants
the bundle
segment is part
of.

wires *opt* string text value yes BUNDL
E

The value of the
wires property is
defined by the
system and is a
list of the wires in
the bundle
segment.
152 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Parts Databases
Bundle Segment Definition

The properties that are reserved and used for bundle segment definitions are:

Parts Databases

Parts database files allow you to use the parts browser to find custom parts
when drawing a schematic.

Shell Parts Database — Reserved Properties

The shell parts database contains information used to define a specific shell.
The properties contained in the parts database are applied to the properties in
the Shell Definition symbol. The properties in the parts database contain only
the values of the properties so that any display or editing attributes come from
the properties on the symbol. As such the only fields of interest are the Name,
Value, and Description.

Name Value Type Value

Editor

View Protected Qualifier Description

length *opt* string text value no BUNDL
E

The length of the
bundle segment.

variant *opt* list list value no none List of variants
the bundle
segment is part
of.

wires *opt* string text value yes BUNDL
E

The value of the
wires property is
defined by the
system and is a
list of the wires in
the bundle
segment.

Name Value Description

mating_shells *opt* The list of shells that can mate to this shell.
Saber® Managing Symbols and Models User Guide 153
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Parts Databases
Wire Parts Database — Reserved Properties

The wire parts database contains information used to define a wire. The
properties contained in the parts database are applied to the properties on a
physical wire that have a property value editor of wire. The properties in the
parts database contain only the values of the properties so that any display or
editing attributes come from the properties on the wire. As such the only fields
of interest are the Name, Value, and Description.

part_no *opt* The part number of the shell.

description See right Description of the shell.

bundle_symbol *opt* The symbol to use in Saber Bundle for this
shell.

bundle_view *opt* The view to use in Saber Bundle for this
shell.

cost *opt* Cost of the shell.

weight *opt* Weight of the shell.

catia_pn *opt* Part number for Catia.

proe_pn *opt* Part number for Pro/ENGINEER.

ideas_pn *opt* Part number for SDRC Ideas.

ug_pn *opt* Part number for Unigraphics Harness.

gender *opt* Gender of this shell.

color *opt* Color of this shell.

passives *opt* Contains information about which passives
are part of this shell.

Name Value Description

part_no *opt* The part number of the physical wire.

Name Value Description
154 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Parts Databases
Cable Parts Database — Reserved Properties

The cable parts database contains information used to define a cable. The
properties contained in the parts database are applied to the properties on a
physical cable that have a property value editor of cable. The properties in the
parts database contain only the values of the properties so that any display or
editing attributes come from the properties on the cable. As such the only fields
of interest are the Name, Value, and Description.

cost *opt* Cost per unit length of the physical wire.

weight *opt* Weight per unit length of the physical wire.

color *opt* Color of the wire.

length *opt* Length of the wire.

wire_type *opt* The type of the wire.

bend_radius *opt* The bend radius of the wire.

gauge *opt* The gauge of the wire.

area *opt* The area of the conductor in the wire.

diameter *opt* The diameter of the wire.

Name Value Description

part_no *req* The part number of the physical cable.

wire_type *opt The type of wire in the cable.

cost *opt Cost per unit length of the physical cable.

weight *opt Weight per unit length of the physical cable.

length *opt Length of the cable.

color *opt Color of the cable.

Name Value Description
Saber® Managing Symbols and Models User Guide 155
Z-2007.03

Chapter 10: Reserved Properties on Symbols and Ports
Parts Databases
Other properties may be defined and passed into the database based on the
model arguments.

Passive Parts Database — Reserved Properties

The passive parts database contains information used to define a passive. The
properties contained in the parts database are applied to the properties on any
element that uses a passive property value editor. The properties in the parts
database contain only the values of the properties so that the display and/or
editing attributes come from the properties on the element. As such the only
fields of interest are the Name, Value, and Description.

bend_radius *opt The bend radius of the cable.

diameter *opt The diameter of the wire in the cable.

area *opt The area of the conductor of the wire in the
cable.

gauge *opt The gauge of the wire in the cable.

Name Value Description

part_no *opt The part number of the passive.

type *opt Type of the passive.

weight *opt Weight per unit of the passive.

length *opt Length of the passive.

family *opt Passive family.

Name Value Description
156 Saber® Managing Symbols and Models User Guide
Z-2007.03

11
11Using a Mapping File to Map Symbols

This section describes how to create a mapping file. A mapping file contains
entries to define the relationship between the symbol properties of an individual
symbol and the template name, template parameters, pin names, and other
features of the corresponding template. If you do not want to modify your
symbols, you should follow the guidelines presented in this section. Topics
covered in this section include:

Overview of Mapping Files
What Is a Mapping File?
Creating a Mapping File
Mapping File Examples

Overview of Mapping Files

Properties of some symbols have features for which the netlister needs
supplemental information to perform the translation. You can provide this
supplemental information by means of a configuration file called a mapping file.

Some symbols of the simulator libraries and all the symbols of the Mentor
Graphics gen_lib and accuparts_lib, the Cadence sample, basic, and
analogLib, and the Viewlogic viewspice (analog) and builtin libraries require
specific support from standard mapping files provided with the Frameway
integration software.

Symbols that are not obtained from the gen_lib, accuparts_lib, sample, basic,
analogLib, viewspice, builtin or simulator libraries are not supported by the
standard mapping files. In this case, you may need to create your own mapping
file. This section shows how the mapping file was developed for a small subset
Saber® Managing Symbols and Models User Guide 157
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
What Is a Mapping File?
of symbols. These procedures are intended as guidelines for you to create a
similar mapping file for your library.

What Is a Mapping File?

A mapping file is a text file in which data is entered in a specified format. It
typically contains several sections that are set off by braces. Each section
contains specific information about symbol properties that the netlister uses to
translate schematic symbols into a netlist. All sections are optional and may be
left out if not needed. For more specific information about mapping files,
including syntax and individual descriptions of each field, refer to Chapter 9:
Mapping File Reference.

A mapping file is a configuration file that provides information necessary for the
netlister to associate symbols with templates. A mapping file is a simple text
file. Because it is composed of simple text, you can use any text editor that
creates an unformatted text file to create or modify a mapping file.

Creating a Mapping File

Structure of a Mapping File

The mapping file can contain any of the following sections:
■ A tables section
■ An enums section
■ One or more definition sections: saber, partner, and undetermined
■ An include or exclude section

The tables section contains tables that can be referenced from any of the three
definition sections.

You use the enums section to specify properties corresponding to template
parameters that accept enumerated values.

You use the definition sections saber, partner, and undetermined to define the
correspondence between schematic entities and simulator entities. They can
be arranged in any order or omitted if not needed. Each of the definition
sections can contain one or more generic entries. A generic entry can contain
one or more specific symbol entries.
158 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Creating a Mapping File
You use a generic entry to specify mapping information that pertains to an
entire symbol library. You use a specific symbol entry to map features specific
to a symbol. If both a generic and a specific symbol entry in a mapping file exist
for the same feature, the specific symbol entry overrides the generic entry for
that symbol.

The include section is no longer used by the netlister and may be left blank.

The exclude section is used to list symbols that are to be ignored by the
netlister when it creates the netlist. For example, you can exclude one or more
symbols from the netlist to increase the speed of a simulation. Or, you can
exclude symbols from the netlist that have no underlying functional
representation, such as vdd or vcc. The exclude section takes the following
form where symbol_a, symbol_b, and symbol_c are the names of symbols to
be excluded from the netlist.

exclude{symbol_a,symbol_b,symbol_c}

The most noticeable feature of a definition section in a mapping file is the use
of fields. A single entry line in a definition section consists of 21 fields
separated by colons. As the following example illustrates, each field assigns a
specific function to the data it contains. If you do not use a field, leave it blank.

Special Characters Used in the Mapping File

The mapping file entries make use of special characters to control the
translation process.

symbol name : simulation model names : simulator target :
simulator model parameters : parameter-list property : port
names : port types : port direction : port order : port
parameters : net names : net parameters : template directory :
reference designator or instance name : nodes on properties :
primitives : graphical modeling : exclude as parameters: : : ;

%{} To specify the substitution of a property value, you can enclose a property
name between the special character pair %{ and the character }. The
special character pair %{ indicates the beginning of the name of the
enclosed property while the special character } indicates the end of the
name of the enclosed property.

Example: %{freq}
Saber® Managing Symbols and Models User Guide 159
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Saving Your Mapping File in a Retrievable Location
Saving Your Mapping File in a Retrievable Location

The following sections describe how to save your mapping file depending on
the symbol source: Cadence and Viewlogic symbols, or Mentor Graphics single
and multiple symbols.

Cadence and Viewlogic

If you are using Cadence or Viewlogic symbols, you can place the contents of
the mapping file in a file named user.map in the data search path where it will
be read automatically by the netlister. The entries in this mapping file take
precedence over the entries in all other automatically read mapping files at
start-up. Alternatively, you can place the mapping file directly in the data search
path. The standard for naming mapping files is to add the extension .map to the
file name. If you add a different extension to the file name, a warning message
appears when the file is processed.

" " In certain cases, you can enclose a string between the special character
pair " ". The quotes indicate that the enclosed string is to be interpreted
literally, except for places where property values are to be substituted.

If, for example, in the expression "gain=%{gain}", the value of the property
gain enclosed in braces is equal to 5k, the netlister enters gain=5k into the
netlist. In other words, %{gain} is replaced by the value of the property
gain while the expression gain= is taken literally.

Note that if the value of gain is " " or NULL, this mapping will fail.

<- In certain cases, you can place a string within quotes on the right side of
a left arrow <-. This configuration indicates that the value of the string will
be assigned to the parameter name on the left side of the arrow.

Example: gain<-"(h=1.41)"

Otherwise, if there is nothing to the left of the arrow, the netlister places
the value directly into the netlist without an assignment.

<> The character pair <> indicates that the value to be substituted is the
name assigned to the appropriate data base entity such as a pin rather
than the value of a property.

Example: some_pin_dirs[<>]

This entry is specified in the tables section as follows:

some_pin_dirs[dig_in]->in,[dig_out]-> out,[*]->null
160 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Designating that the Netlister Use the Mapping File
Mentor Graphics, single symbols

This topic is covered in Chapter 9: Mapping File Reference.

Mentor Graphics, multiple symbols

This topic is covered in Chapter 9: Mapping File Reference.

Designating that the Netlister Use the Mapping File

This section describes how to designate that the netlister use the mapping file,
depending on the symbol source: Mentor Graphics, Cadence, or Viewlogic.

Mentor Graphics

You specify that your mapping file is to be used by the netlister by entering the
file name in the Symbol Library Mapping File Name(s) field of the Saber
Options dialog box. The entries in this file take precedence over the mapping
files that are read automatically at start-up (except single-symbol mapping
files). You can access the Saber Options dialog box either from the Saber
menu item on the DVE session window menu banner or from the SABER icon
by selecting one of the following menu/palette sequences:
■ Click on the SABER icon.
■ In the Saber Simulator Startup dialog box, ensure that the Invoke Simulator

field is set to yes.

OR
■ Click on the Options button to invoke the Saber Options dialog box.
■ From the Saber item on the menu banner, select:

Saber>Invoke Saber> Saber Simulator>Saber Simulator
Startup>Options>Saber Options

In either case, if you set the Invoke Simulator field to no in the Saber Simulator
Startup dialog box and then click on the Options button, the DVETOS Options
dialog box appears.
Saber® Managing Symbols and Models User Guide 161
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
Cadence

You specify that your mapping file is to be used by the netlister by entering the
file name in the Mapping Files field of the Saber Invocation Options form. The
entries in this file take precedence over the mapping files that are read
automatically at start-up. You can access the Saber Invocation Options form by
selecting the following menu sequence from the Saber item on the menu bar:

Saber>Saber>Simulator Startup>Options>Saber Invocation Options

Viewlogic

You specify that this mapping file is to be used by the netlister by adding the file
name in the Mapping Files field of the Extract Design Options dialog box. To do
so, follow these steps:
■ Select the Saber>Saber UI Window item on the ViewDraw window menu

banner to open the Saber Simulation Window.
■ Select the Saber>Extract Options item on the Saber Simulation Window

menu banner. This causes the Extract Design Options dialog box to appear.
■ To specify the name of your mapping file, click on the Add Mapping File?

button in the Mapping Files field. This causes the Add User Mapping File
dialog box to appear.

■ Move the cursor to the Mapping File field, enter the name of your mapping
file and click on Accept.

■ Click on Accept in the Extract Design Options dialog box to set the options
you specified.

Mapping File Examples

As described previously, the mapping file consists of generic and specific
symbol entries which each consist of 21 fields. Typically, however, you will not
need to use all of the fields in a particular entry. In fact, quite often you will use
only a few fields in a given generic or specific symbol entry. The steps in this
section outline the process by which you would usually map most symbols.
That is, the following steps do not discuss all fields of the mapping file; rather,
they present several of the most commonly used fields. For a specific
description of each field, refer to Chapter 9: Mapping File Reference.
162 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
The dvetos.map, catos.map, and vwltosv.map mapping files contain entries for
many of the commonly used symbols, including those in the examples that
follow. This section describes the method that was used to create some of
these mapping entries. The description begins with the following blank
mapping file. This mapping file contains all relevant sections but no entries.

Looking at one symbol at a time, the entries that map the properties of each
symbol will be added to the blank mapping file. For each symbol, new entries
are shown in bold text to distinguish them from previously-added entries.

The following examples are presented in three sections, one each for Mentor
Graphics users, Cadence users, and Viewlogic users. Each section contains

tables{

}

enums{

}

saber{

#first generic entry

 : {

#specific symbol entries

: ;

}

#second generic entry

 : {

#specific symbol entries

 : ;

}

}

undetermined{

#generic entry

 : {

}

}

Saber® Managing Symbols and Models User Guide 163
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
three examples: a voltage source symbol, a ground symbol, and an ASIC
symbol.

Mentor Graphics Symbol Mapping Examples
Cadence Symbol Mapping Examples
Viewlogic Symbol Mapping Examples

Mentor Graphics Symbol Mapping Examples

This section contains three examples (a voltage source symbol, a ground
symbol, and an ASIC symbol) for use with the Frameway integration into the
Mentor Graphics environment.

Mentor Graphics: Mapping the Voltage Source Symbols
Mentor Graphics: Mapping the Ground Symbol
Mentor Graphics: The Schematic for the ASIC Symbol

Mentor Graphics: Mapping the Voltage Source Symbols
The accuparts_lib symbol library contains the symbol named voltage_source.
This symbol is used for all types of voltage sources. As a result, the symbols for
a DC and a pulse voltage sources could look alike. The instance property
values, however, will differ as illustrated in the figure below. The mapping
entries for this symbol were created for the standard mapping file dvetos.map
as shown in the following procedure. The completed entries are shown at the
end of this procedure in bold text.

To map the voltage source symbols, perform these steps:

1. Specify the name of the library in the first field of the first saber generic entry.

You specify the name of the symbol library in the first field of a saber generic
entry.

+

Instance Properties
inst=V1
instpar=5v

Pin Properties
PIN=NEG
PIN=POS

Instance Properties
inst=V2
instpar=pulse(0 5 10n 10n)

Pin Properties
PIN=NEG
PIN=POS

POS

NEG

+

POS

NEG

- -
164 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
The name accuparts_lib is placed in the first field of the first generic entry in
the saber section.

The voltage source symbol is located in the accuparts_lib library, so
accuparts_lib is placed in this generic entry. All symbols from this library are
mapped by using specific symbol entries in this generic entry.

2. Specify the symbol name.

You use the first field of the specific symbol entry to specify symbol names.

The symbol name voltage_source is placed in the first field of the specific
symbol entry.

3. Specify the Saber Simulator template to be used in the netlist.

You use the second field of the specific symbol entry to specify the name of
the Saber Simulator template to be used in the simulation. The file that
contains the Saber Simulator template for a voltage source is v.sin.

The name (v) of the template is placed in the second field of the specific
symbol entry.

4. Specify the source of the simulator-model (template) parameters.

You use the fourth field of the specific symbol entry to specify the source of
the properties. If more than one source is listed, the sources must be
separated by commas.

The netlister must be informed that the property instpar of the
voltage_source symbol provides the parameters for the v.sin template. The
parameters are given in SPICE format, which is incompatible with the Saber
Simulator format. Therefore, the mapping file function splist is needed to
convert the list of the SPICE source parameters to a format appropriate for
Saber Simulator template parameters.

The following expression is placed in the fourth field of the specific symbol
entry:

<-splist(instpar)

In this expression, the left arrow does not point to a name. Consequently,
the result of the conversion is placed directly into the netlist. As an example,
if the property instpar has the value 10V, the value is converted and placed
in the Saber Simulator netlist as the numeric 10.
Saber® Managing Symbols and Models User Guide 165
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
Note that your version of the dvetos.map file may include a mapping file
function other than splist to map the instpar property of the voltage_source
symbol. If so, either function is valid and you can use either one when you
create your own mapping file.

5. Specify the correspondence between template and symbol connection
points.

The sixth field of the specific symbol entry specifies the source of a pin (port)
name. In this example, the correspondence between the symbol pin names
pos and neg and the connection point names p and m of the Saber
Simulator templates is specified as a table entry in the tables section. This
table entry has the unique name Analogy_spice_pins, which is referenced
by the entry in the sixth field of the specific symbol entry.

The following expression was placed in the sixth field of the specific symbol
entry:

Analogy_spice_pins[<>]

The character pair <> indicates that the names to be used to look up the
translation in the table entry are the names assigned to the pins (pos and
neg).

The following table entry is placed in the tables section:

Analogy_spice_pins[POS]->p,[pos]->p,
[NEG]->m,[neg]->m

The Analogy_spice_pins table entry translates POS to p, pos to p, NEG to
m, and neg to m.

6. Specify the property that defines the reference designator of the symbol.

The 14th field of a specific symbol entry specifies the source of the value of
the reference designator (or instance name). In this example, the value of
the symbol property inst provides the reference designators for the Saber
Simulator netlist for each of the sources V1 and V2.

The property name inst is placed in the 14th field of the specific symbol
entry.
166 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
The entries that are needed to map the voltage_source symbol are added
to the dvetos.map file as indicated in bold text in the following example:

Mentor Graphics: Mapping the Ground Symbol
The symbol named ground is a CLASS G symbol from the accuparts_lib
library. This symbol, shown below, is a device used to name global nets in
Design Architect schematics and has no template associated with it. Net
names and the symbol ground are mapped in the undetermined section, which
is used for schematic entities and nets.

tables{

Analogy_spice_pins[POS]->p,[pos]->p,[NEG]->m, [neg]-
>m

}

enums{

}

saber{

#first generic entry

accuparts_lib::::::::::::::::::::{

#specific symbol entries

voltage_source:v:: <-
splist(instpar)::Analogy_spice_pins[<>]::::::::
inst:::::::;

}

#second generic entry

::::::::::::::::::::{

#specific symbol entries

::::::::::::::::::::;

}

}

undetermined{

#generic entry

:::::::::::::::::::: {

}

}

Saber® Managing Symbols and Models User Guide 167
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
The completed entries in the mapping file for the ground symbol are shown in
bold text at the end of this section.

You can name a library in the first field of the generic entry. However, the first
field of the generic entry of the undetermined section is left empty, which
signifies that this generic entry provides the default generic mapping for the
undetermined section.

Specify the net name of the ground symbol.

The following expression is placed in the 11th field of the generic entry of the
undetermined section to reference an entry in the tables section:

Analogy_nets[global_net]

The following expression is placed in the tables section:

Analogy_nets[ground]->0,[GROUND]->0,[*]->*

The value of the property global_net (created from the global property of
CLASS G symbols, such as the ground symbol) is converted to 0 (zero) by the
Analogy_nets table entry. The expression [*]->* indicates that any name other
than ground or GROUND for the global property of a CLASS G symbol remains
the same.

Instance Properties
Global=ground
CLASS=g
PIN=ground
168 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
All entries required to map the ground symbol are added to the dvetos.map file
as indicated in bold text in the following example:

Mentor Graphics: The Schematic for the ASIC Symbol
The symbol asic (instance U2), shown below, is a hierarchical user-created
symbol. It represents the schematic, also named asic, shown in the next figure.
The schematic is created with symbols obtained from the accuparts_lib and
gen_lib symbol libraries. Mapping file entries for these symbols are developed
for the standard mapping file dvetos.map as shown in the following sections.

tables{

Analogy_nets[ground]->0,[GROUND]->0,[*]->*

Analogy_spice_pins[POS]->p,[pos]->p,[NEG]->m, [neg]-
>m

}

enums{

}

saber{

#first generic entry

accuparts_lib::::::::::::::::::::{

#specific symbol entries

voltage_source:v:: <-splist(instpar)::
Analogy_spice_pins[<>]:::::::: inst:::::::;

}

#second generic entry

::::::::::::::::::::{

#specific symbol entries

::::::::::::::::::::;

}

}

undetermined{

#generic entry

::::::::::Analogy_nets[global_net]:::::::::: {

}

}

Saber® Managing Symbols and Models User Guide 169
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
The completed entries for each symbol are shown in bold text at the end of
each section.

Using Properties to Pass Parameters Through Hierarchy The asic
symbol represents the underlying schematic shown above. In addition to the
inst property specifying the reference designator, the instance U2 of the asic
symbol includes the properties res, l, and w. The res property is used in this
case to specify the value (1k) for the resistors designated R1, R2, R3, and R4
on the underlying schematic. Each of the resistors includes the property instpar
with the value res. When the netlister encounters this non-numeric instpar
property value, it searches up through the hierarchy until it finds a property of
the same name (res) and takes the associated numeric value and passes it to
the res parameter that it creates for the asic template.

The l and w properties are used to specify the value of the area (length*width)
of the transistors designated Q1 and Q2 on the underlying schematic. Each of
the transistors includes the property area with the value {l}*{w}. When the

Instance Properties
inst=U2
res=1k
l=10u
w=5u

Pin Properties
PIN=vp
PIN=in
PIN=out

U2

out

vp

in

asic

U3

U4

Q1

Q2

R2

R1

R3

R4

c_q1

c_q2

b_q2

b_q1inv_out
in

out

vp
170 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
netlister encounters this expression, it searches up through the hierarchy until it
finds the properties named l and w. It takes the associated numeric values and
passes them to l and w in the expression area={l}*{w} through the l and w
parameters of the asic template.

For more information on hierarchical parameter passing, refer to the Analyzing
Designs manual.

To map the asic symbol, you must add the inst property in the 14th field of the
generic entry in the undetermined section of the mapping file as indicated in the
following example by bold text:

tables{

Analogy_nets[ground]->0,[GROUND]->0,[*]->*

Analogy_spice_pins[POS]->p,[pos]->p,[NEG]->m,[neg]->m

}

enums{

}

saber{

#first generic entry

accuparts_lib::::::::::::::::::::{

#specific symbol entries

 voltage_source:v:: <-splist(instpar)::
Analogy_spice_pins[<>]:::::::: inst:::::::;

}

#second generic entry

::::::::::::::::::::{

#specific symbol entries

::::::::::::::::::::;

}

}

undetermined{

#generic entry

::::::::::Analogy_nets[global_net]:::inst::::::: {

}

}

Saber® Managing Symbols and Models User Guide 171
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
Cadence Symbol Mapping Examples

This section contains three examples (a voltage source symbol, a ground
symbol, and an ASIC symbol) for use with the Frameway integration into the
Cadence environment.

Cadence: Mapping the Voltage-Source Symbols
Cadence: Mapping the Ground Symbol
Cadence: The Schematic for the ASIC Symbol

Cadence: Mapping the Voltage-Source Symbols
The analogLib symbol library contains the symbols named vdc and vpulse.
These symbols are used for the voltage sources V1 and V2, respectively, in the
ring oscillator circuit. These symbols are illustrated in Figure 7-5. The mapping
entries for these symbols are created for the standard mapping file catos.map
as shown in the following procedure. The completed entries are shown in bold
text at the end of the procedure.

To map the voltage source symbols, perform these steps:

1. Specify the name of the library in the first field of the first saber generic entry.

You specify the name of the symbol library in the first field of a saber generic
entry.

The name analogLib is placed in the first field of the first generic entry in the
saber section.

+

Instance Properties
name=V1
vdc=5v

Pin Properties
terminalName=MINUS
terminalName=PLUS

Instance Properties
name=V2
v1=0v
v2=5v
tdelay=2ns
tfall=1ns
trise=5ns
per=20n
pw=10n

Pin Properties
terminalName=MINUS
terminalName=PLUS

PLUS

MINUS

+

PLUS

MINUS
172 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
The voltage source symbols are located in the analogLib library, so
analogLib was placed in this generic entry. All symbols from this library are
mapped using specific symbol entries in this generic entry.

2. Specify the symbol names for V1 and V2.

You use the first field of the specific symbol entry to specify symbol names.

The symbol name vdc is placed in the first field of the first specific symbol
entry. The symbol name vpulse is placed in the first field of the second
specific symbol entry.

3. Specify the simulator template to be used in the netlist.

You use the second field of the specific symbol entry to specify the name of
the simulator template to be used in the simulation. The file that contains the
simulator template for a voltage source is v.sin.

The name of the template (v) is placed in the second field of each of the
specific symbol entries (vdc and vpulse).

4. Specify the source of the simulator-model (template) parameters.

You use the fourth field of the specific symbol entries to specify the source
of the properties. If more than one source is listed, the sources must be
separated by commas.

The following expression is placed in the fourth field of the vdc specific
symbol entry:

dc<-id(vdc),ac<-"(%{acm},%{acp})",ac<-"(%{acm},0)"

The mapping function id does not change the value of the property. In the
expression dc<-id(vdc), the left arrow means transfer the value of the vdc
instance property to the dc template parameter. In the expression ac<-
"(%{acm},%{acp})", the left arrow means transfer the value of the acm and
acp properties (ac magnitude and phase, respectively) to the ac template
parameter. In the expression ac<-"(%{acm},0)", the default value 0 for the
acp property is given to the ac template parameter when the acp property is
not specified.
Saber® Managing Symbols and Models User Guide 173
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
The following expression is placed in the fourth field of the vpulse specific
symbol entry:

In this expression, the left arrows point to tran and ac, which means transfer
the values of the specified properties to the tran and ac template
parameters. The first item in this expression, where all of the %{ } entries
have specified values, is used for the mapping.

5. Specify the correspondence between template and symbol connection
points.

The sixth field of the specific symbol entries specifies the source of a pin
(port) name. In this example, the correspondence between the symbol pin
names plus and minus and the connection point names p and m of the
simulator templates is specified as a table entry in the tables section. This
table entry has the unique name artist_pin_def, which is referenced by the
entry in the sixth field of the specific symbol entry.

The following expression is placed in the sixth field of each of the specific
symbol entries:

artist_pin_def[<>]

tran<-"(pulse=(%{v1},%{v2},%{td},%{tr},%{tf},%{pw},
%{per}))",

tran<-"(pulse=(v1=%{v1},v2=%{v2},tr=%{tr},tf=%{tf},
td=%{td},pw=%{pw}))",

tran<-"(pulse=(v1=%{v1},v2=%{v2},tr=%{tr},tf=%{tf},
td=%{td},per=%{per}))",

tran<-"(pulse=(v1=%{v1},v2=%{v2},tr=%{tr},tf=%{tf},
td=%{td}))",

tran<-"(pulse=(v1=%{v1},v2=%{v2},tr=%{tr},tf=%{tf},
per=%{per},pw=%{pw}))",

tran<-"(pulse=(v1=%{v1},v2=%{v2},tr=%{tr},tf=%{tf},
pw=%{pw}))",

tran<-"(pulse=(v1=%{v1},v2=%{v2},tr=%{tr},tf=%{tf},
per=%{per}))",

ac<-"(%{acm},%{acp})",

ac<-"(%{acm},0)"
174 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
The character pair <> indicates that the names to be used to look up the
translation in the table entry are the names assigned to the pins (PLUS and
MINUS).

The following table entry is placed in the tables section:

artist_pin_def[PLUS]->p,[plus]->p,[MINUS]->m,[minus]->m

The artist_pin_def table entry translates PLUS to p and MINUS to m.

The entries that are needed to map the vdc and vpulse symbols are added
to the catos.map file as indicated in bold text in the following example:

tables{

artist_pin_def[PLUS]->p,[plus]->p,[MINUS]->m,
[minus]->m

}

enums{

}

saber{

#first generic entry

analogLib::::::::::::::::::::{

#specific symbol entries

vdc:v:: dc<-id(vdc),ac<-"(%{acm},%{acp})",ac<-
"(%{acm},0)":: artist_pin_def[<>]:::::::::::::::;
Saber® Managing Symbols and Models User Guide 175
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
Cadence: Mapping the Ground Symbol
The symbol named gnd is a symbol from the analogLib library. This symbol is a
device used to name global nets in Analog Artist schematics and has no
template associated with it. Net names and the symbol gnd are mapped in the
undetermined section, which is used for schematic entities and nets.

The completed entries in the mapping file for the ground symbol are shown in
bold text at the end of this section.

vpulse:v::\
tran<-"(pulse=(%{v1},%{v2},%{td},%{tr},%{tf},
%{pw}, %{per}))",\

tran<-"(pulse=(v1=%{v1},v2=%{v2},tr=%{tr},
tf=%{tf},td=%{td},pw=%{pw}))",\

tran<-"(pulse=(v1=%{v1},v2=%{v2},tr=%{tr},
tf=%{tf},td=%{td},per=%{per}))",\

tran<-"(pulse=(v1=%{v1},v2=%{v2},tr=%{tr},
tf=%{tf}, td=%{td}))",\

tran<-"(pulse=(v1=%{v1},v2=%{v2},tr=%{tr},
tf=%{tf},per=%{per},pw=%{pw}))",\

tran<-"(pulse=(v1=%{v1},v2=%{v2},tr=%{tr},
tf=%{tf},pw=%{pw}))",\

tran<-"(pulse=(v1=%{v1},v2=%{v2},tr=%{tr},
tf=%{tf},per=%{per}))",\

ac<-"(%{acm},%{acp})",\
ac<-"(%{acm},0)"::artist_pin_def[<>]:::::::::::;

}

#second generic entry

::::::::::::::::::::{

#specific symbol entries

::::::::::::::::::::;

}

}

undetermined{

#generic entry

 :::::::::::::::::::: {

}

}

176 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
You can name a library in the first field of the generic entry. However, the first
field of the generic entry of the undetermined section is left empty, which
signifies that this generic entry provides the default generic mapping for the
undetermined section.

Specify the net name of the ground symbol.

The following expression is placed in the 11th field of the generic entry of the
undetermined section to reference an entry in the tables section:

artist_default_net_defs[<>]

The following expression is placed in the tables section:

artist_default_net_defs[gnd]->0,[*]->*

The artist_default_net_defs table entry renames the net gnd to 0 (zero). The
expression [*]->* indicates that all other net names remain unchanged.
Saber® Managing Symbols and Models User Guide 177
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
All entries required to map the gnd symbol are added to the catos.map file as
indicated in bold text in the following example:

tables{

artist_default_net_defs[gnd]->0,[*]->*

artist_pin_def[PLUS]->p,[plus]->p,[MINUS]->m,[minus]->m

saber_logic_pin_defs[A]->in1,[B]->in2,[C]->in3,[D]->in4, [Y]-
>out

artist_digital_pins[*]->digital

}

enums{

enum {_0,_1,_x,_z} init {nand2_l4}

}

saber{

#first generic entry

analogLib::::::::::::::::::::{

#specific symbol entries

vdc:v:: \
dc<-id(vdc),\
ac<-"(%{acm},%{acp})",\
ac<-"(%{acm},0)":: \
artist_pin_def[<>]:::::::::::::::;

vpulse:v::\
tran<-"(pulse=(%{v1},%{v2},%{td},%{tr},%{tf},\
%{pw},%{per}))",\

tran<-"(pulse=(v1=%{v1},v2=%{v2},tr=%{tr},tf=%{tf},\
td=%{td},pw=%{pw}))",\

tran<-"(pulse=(v1=%{v1},v2=%{v2},tr=%{tr},tf=%{tf},\
td=%{td},per=%{per}))",\

tran<-"(pulse=(v1=%{v1},v2=%{v2},tr=%{tr},tf=%{tf},\
td=%{td}))",\

tran<-"(pulse=(v1=%{v1},v2=%{v2},tr=%{tr},tf=%{tf},\
per=%{per},pw=%{pw}))",\
178 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
Cadence: The Schematic for the ASIC Symbol
The symbol asic (instance U2) shown below is a hierarchical user-created
symbol. It represents the schematic, also named asic, shown in the next figure.
The schematic is created with symbols obtained from the analogLib and
sample symbol libraries. Mapping file entries for these symbols are developed
for the standard mapping file catos.map, as shown in the following sections.
The completed entries for each symbol are shown in bold text at the end of
each section.

tran<-"(pulse=(v1=%{v1},v2=%{v2},tr=%{tr},tf=%{tf},\
pw=%{pw}))",\

tran<-"(pulse=(v1=%{v1},v2=%{v2},tr=%{tr},tf=%{tf},\
per=%{per}))",\

ac<-"(%{acm},%{acp})",\
ac<-"(%{acm},0)"::artist_pin_def[<>]:::::::::::::::;

}

#second generic entry

sample::::::::::::::::::::{

#specific symbol entries

nand2:nand2_l4::tplh, tphl, tilh, tihl,\
init::saber_logic_pin_defs[<>]: \
artist_digital_pins[<>]::::::::::::::;

}

}

undetermined{

#generic entry

::::::::::artist_default_net_defs[<>]:::::::::: {

}

}

Saber® Managing Symbols and Models User Guide 179
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
Using Properties to Pass Parameters Through Hierarchy The asic
symbol represents the underlying schematic shown above. The instance U2 of
the asic symbol includes the properties res, l, and w. The res property is used
in this case to specify the value (1k) for the resistors designated R1, R2, R3,
and R4 on the underlying schematic. Each of the resistors includes the
property r with the value res. When the netlister encounters this non-numeric r
property value, it searches up through the hierarchy until it finds a property of
the same name (res) and takes the associated numeric value and passes it to
the res parameter that it creates for the asic template.

The l and w properties are used to specify the value of the area (length*width)
of the transistors designated Q1 and Q2 on the underlying schematic. Each of
the transistors includes the property area with the value {l}*{w}. When the
netlister encounters this expression, it searches up through the hierarchy until it
finds the properties named l and w. It takes the associated numeric values and

U2

out

Instance Properties
name=U2
res=1k
l=10u
w=5u

vp

in

asic
Pin Properties
terminalName = vp ;
terminalName = in ;
terminalName = out ;

Terminal Properties
direction = input
direction = input
direction = output

U3

U4

Q1

Q2

R2

R1

R3

R4

c_q1

c_q2

b_q2

b_q1inv_out
in

out

vp
180 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
passes them to l and w in the expression area={l}*{w} through the l and w
parameters of the asic template.

Viewlogic Symbol Mapping Examples

This section contains three examples (a voltage source symbol, a ground
symbol, and an ASIC symbol) for use with the Frameway integration into the
Viewlogic environment.

Viewlogic: Mapping the Voltage Source Symbols
Viewlogic: Mapping the Ground Symbol
Viewlogic: The Schematic for the ASIC Symbol

Viewlogic: Mapping the Voltage Source Symbols
The viewspice (analog) symbol library contains the symbols named dc and
pulse. These symbols are used for the voltage sources V1 and V2,
respectively, in the ring oscillator circuit. These symbols are illustrated below.
The mapping entries for these symbols are created for the standard mapping
file vwltosv.map as shown in the following procedure. The completed entries
are shown in bold text at the end of the procedure.

To map the voltage source symbols, perform these steps:

1. Specify the name of the library in the first field of the saber generic entry.

+

Instance Attribute/Label
label=V1
voltage=5v

Pin Labels
n1
n2

Attached Attributes
pintype=in
pintype=out

Instance Attributes/Label
label=V2
vinitial=0v
vpulsed=5v
tdelay=2ns
tfall=1ns
trise=5ns
tperiod=20ns
tpulwidth=10ns

Pin Labels
n1
n2

Attached Attributes
pintype=in
pintype=in

n1

n2

+

n1

n2
Saber® Managing Symbols and Models User Guide 181
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
You use the first field of the generic entry to specify the name of the library;
however, you can specify any name in this field or leave it empty. This
generic entry contains specific symbol entries for both the viewspice
(analog) and builtin symbol libraries, and the first field of the generic entry is
left empty.

2. Specify the symbol names for V1 and V2.

You use the first field of the specific symbol entry to specify symbol names.

The symbol name dc is placed in the first field of the first specific symbol
entry. The symbol name pulse is placed in the first field of the second
specific symbol entry.

3. Specify the simulator template to be used in the netlist.

You use the second field of the specific symbol entry to specify the name of
the simulator template to be used in the simulation. The file that contains the
simulator template for these voltage sources is spv.sin.

The name of the template (spv) is placed in the second field of each of the
specific symbol entries (dc and pulse).

4. Specify the source of the simulator-model (template) parameters.

You use the fourth field of the specific symbol entries to specify the source
of the attributes. If more than one source is listed, the sources must be
separated by commas.

The following expression is placed in the fourth field of the dc specific
symbol entry:

dc<-spconv(voltage)

The attribute voltage provides the dc voltage value for the dc parameter in
the spv.sin template in SPICE format. The mapping function spconv is an
algorithm that converts a numeric SPICE parameter to a numeric simulator
parameter. The spconv function also relates the attribute voltage to the dc
parameter.
182 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
The following expression is placed in the fourth field of the pulse specific
symbol entry:

In this expression, the left arrows point to tran, which means transfer the
values of the specified attributes to the tran template parameter. The first
item in this expression, where all of the %{ } entries have specified values,
is used for the mapping.

5. Specify the correspondence between template and symbol connection
points.

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)},td=%{spconv(tdelay)},
pw=%{spconv(tpulwidth)},per=%{spconv(tperiod)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)},td=%{spconv(tdelay)},
pw=%{spconv(tpulwidth)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)},td=%{spconv(tdelay)},
per=%{spconv(tperiod)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)},td=%{spconv(tdelay)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)},pw=%{spconv(tpulwidth)},
per=%{spconv(tperiod)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)},pw=%{spconv(tpulwidth)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)}, per=%{spconv(tperiod)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)}))"::spr_pin[<>]:::::::::::::::;
Saber® Managing Symbols and Models User Guide 183
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
The sixth field of the specific symbol entries specifies the source of a pin
(port) name. In this example, the correspondence between the symbol pin
names n1 and n2 and the connection point names p and m of the simulator
templates is specified as a table entry in the tables section. This table entry
has the unique name spr_pin, which is referenced by the entry in the sixth
field of the specific symbol entry.

The following expression is placed in the sixth field of each of the specific
symbol entries:

spr_pin[<>]

The character pair <> indicates that the names to be used to look up the
translation in the table entry are the names assigned to the pins (n1 and n2).

The following table entry is placed in the tables section:

spr_pin[n1]->p,[n2]->m,[*]->*

The spr_pin table entry translates n1 to p and n2 to m. The [*]->* entry
indicates that all other pin names remain unchanged.

The entries that are needed to map the dc and pulse symbols are added to
the vwltosv.map file, as indicated in bold text in the following example:

tables{

spr_pin[n1]->p,[n2]->m,[*]->*

}

enums{

}

saber{

generic entry

::::::::::::::::::::{

specific symbol entries

dc:spv:: dc<-
spconv(voltage)::spr_pin[<>]:::::::::::::::;

pulse:spv::tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)},td=%{spconv(tdelay)},
pw=%{spconv(tpulwidth)},per=%{spconv(tperiod)}))",
184 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
Viewlogic: Mapping the Ground Symbol
The symbol named gnd is a symbol from the viewspice (analog) library. This
symbol is a device used to name global nets in ViewDraw schematics and has
no template associated with it. Net names and the symbol gnd are mapped in
the undetermined section, which is used for schematic entities and nets. The
completed entries in the mapping file for the ground symbol are shown in bold
text at the end of this section.

Specify the net name of the ground symbol.

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)},td=%{spconv(tdelay)},
pw=%{spconv(tpulwidth)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)},td=%{spconv(tdelay)},
per=%{spconv(tperiod)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)},td=%{spconv(tdelay)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)},pw=%{spconv(tpulwidth)},
per=%{spconv(tperiod)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)},pw=%{spconv(tpulwidth)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)}, per=%{spconv(tperiod)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)}))"::spr_pin[<>]:::::::::::::::;

}}

undetermined{

generic entry

:::::::::::::::::::: {

}}
Saber® Managing Symbols and Models User Guide 185
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
The following expression is placed in the 11th field of the generic entry of the
undetermined section to reference an entry in the tables section:

nets[<>]

The following expression is placed in the tables section:

nets[GND]->0,[gnd]->0,[*]->*

The nets table entry renames the net GND (or gnd) to 0 (zero). The expression
[*]->* indicates that all other net names remain unchanged.

All entries required to map the gnd symbol are added to the vwltosv.map file,
as indicated in bold text in the following example:

tables{

nets[GND]->0,[gnd]->0,[*]->*

spr_pin[n1]->p,[n2]->m,[*]->*

}

186 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
enums{

}

saber{

generic entry

::::::::::::::::::::{

specific symbol entries

dc:spv:: dc<-spconv(voltage)::spr_pin[<>]:::::::::::::::;

pulse:spv::tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)},td=%{spconv(tdelay)},
pw=%{spconv(tpulwidth)},per=%{spconv(tperiod)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)},td=%{spconv(tdelay)},
pw=%{spconv(tpulwidth)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)},td=%{spconv(tdelay)},
per=%{spconv(tperiod)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)},td=%{spconv(tdelay)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)},pw=%{spconv(tpulwidth)},
per=%{spconv(tperiod)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)},pw=%{spconv(tpulwidth)}))",

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)}, per=%{spconv(tperiod)}))",
Saber® Managing Symbols and Models User Guide 187
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
Viewlogic: The Schematic for the ASIC Symbol
The symbol asic (instance U2) shown below is a hierarchical user-created
symbol. It represents the schematic, also named asic, shown in the next figure.
The schematic is created with symbols obtained from the viewspice (analog)
and builtin symbol libraries. Mapping file entries for these symbols were
developed for the standard mapping file vwltosv.map as shown in the following
sections. The completed entries for each symbol are shown in bold text at the
end of each section.

tran<-"(pulse=(v1=%{spconv(vinitial)},
v2=%{spconv(vpulsed)},tr=%{spconv(trise)},
tf=%{spconv(tfall)}))"::spr_pin[<>]:::::::::::::::;

}}

undetermined{

generic entry

::::::::::nets[<>]:::::::::: {

}}

U2

out

Instance Attribute/Label
label=U2
res=1k
l=10m
w=5m

vp

in

asic

Pin Labels
vp ;
in ;
out ;

Attached Attributes
pintype = in
pintype = in
pintype = out
188 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
Using Attributes to Pass Parameters Through Hierarchy The asic symbol
represents the underlying schematic shown above. In addition to the label
specifying the reference designator, the instance U2 of the asic symbol
includes the attributes res, l, and w. The res attribute is used in this case to
specify the value (1k) for the resistors designated R1, R2, R3, and R4 on the
underlying schematic. Each of the resistors includes the attribute value with the
value res. When the netlister encounters this non-numeric value attribute value,
it searches up through the hierarchy until it finds an attribute of the same name
(res) and takes the associated numeric value and passes it to the res
parameter that it creates for the asic template.

The l and w attributes are used to specify the value of the area (length*width) of
the transistors designated Q1 and Q2 on the underlying schematic. Each of the
transistors includes the attribute area with the value {l}*{w}. When the netlister
encounters this expression, it searches up through the hierarchy until it finds
the attributes named l and w. It takes the associated numeric values and
passes them to l and w in the expression area={l}*{w} through the l and w
parameters of the asic template.

U3

U4

Q1

Q2

R2

R1

R3

R4

c_q1

c_q2

b_q2

b_q1inv_out
in

out

vp
Saber® Managing Symbols and Models User Guide 189
Z-2007.03

Chapter 11: Using a Mapping File to Map Symbols
Mapping File Examples
190 Saber® Managing Symbols and Models User Guide
Z-2007.03

12
12Mapping File Reference

A mapping file is a text file containing information used by the netlister to
convert other symbols (Cadence, Viewlogic, Mentor Graphics) into netlist
entries recognized by the Saber Simulator or a specific partner simulator. By
using entries in a mapping file, you can associate a symbol with a differently
named simulation model or convert the syntax of a symbol parameter to that
required by the simulator.

Topics discussed in this section include:

Standard Mapping Files
User Mapping Files
Structure of a Mapping File
Special Characters Used in the Mapping File
Tables Section
Enums Section
Definitions Section
Include and Exclude Sections
Interaction of Mapping, Special Properties, and Defaults
Mapping File Considerations for Mentor Graphics Users

Standard Mapping Files

You can create a mapping file yourself, or you can use a standard mapping file.
The standard mapping files support only the standard symbol libraries.
Standard mapping files for each of the Frameway integrations are provided;
they are located in the $SABER_HOME/bin directory where the netlisters can
find them automatically.
Saber® Managing Symbols and Models User Guide 191
Z-2007.03

Chapter 12: Mapping File Reference
Standard Mapping Files
Mentor Graphics

The Frameway integration for Mentor Graphics provides the following standard
mapping files:
■ dvetos.map for use with the DVETOS netlister (Mentor symbols to

simulator)
■ dvetosv.map for use with the DVETOSV netlister (Mentor symbols to Saber/

Verilog simulator)
■ dvetos.map for use with the SNET netlister (Mentor symbols to the Saber

Simulator)
■ analogym.map for use with the Mentor Graphics netlisters

The dvetos.map, and dvetosv.map files support the Mentor Graphics
accuparts_lib and gen_lib symbol libraries. The analogym.map file supports the
supplied symbol libraries for use with the Mentor Graphics netlisters.

Cadence

The Frameway integration for Cadence provides the following standard
mapping files:
■ catos.map for use with the CATOS netlister (Cadence symbols to simulator)
■ analogyc.map for use with the Cadence netlister

The catos.map file supports the Cadence analogLib, sample, and basic symbol
libraries. The analogyc.map file supports the supplied symbol libraries for use
with the Cadence netlister.

Viewlogic

The Frameway integration for Viewlogic provides the following standard
mapping files:
■ vwltos.map for use with the VWLTOSV netlister (Viewlogic symbols to

simulator)
■ vwltosv.map for use with the VWLTOSV netlister (Viewlogic symbols to

Saber/Verilog simulator)
■ analogyv.map for use with the Viewlogic netlister
192 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
User Mapping Files
The vwltos.map and vwltosv.map files support the Viewlogic viewspice
(analog) and builtin symbol libraries. The analogyv.map file supports the
supplied symbol libraries for use with the Viewlogic netlister.

User Mapping Files

In addition to the standard mapping file, you may also want to include a user
mapping file in your system. The user mapping file allows you to map new
symbols, or supplement or replace entries in the standard mapping file(s). If
both the standard and the user mapping files are present, entries in the user
mapping file take precedence over the entries in the standard mapping file(s).

You can specify a user mapping file by using the -m option of the netlister
command on the command line or by using the appropriate simulator start-up
form in your Frameway Integration. The mapping file must be in a directory in
the data search path and have a filename with a .map extension. To assure
that entries in your user mapping file override those in a standard mapping file,
place the user mapping file in your local directory.

Structure of a Mapping File

The mapping file may contain any of the following optional sections:
■ A tables section
■ An enums section
■ One or more definition sections: saber, partner, and undetermined
■ An exclude section

Each section contains specific information about symbol properties that the
netlister uses to translate schematic symbols into a netlist. Any of these
sections may be left out if not needed.
Saber® Managing Symbols and Models User Guide 193
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
A mapping file typically contains several sections that are set-off by a keyword
followed by braces {} enclosing the section. The following example illustrates
this syntax.

The tables section contains tables that can be referenced from any of the three
definition sections. You use such tables to translate property values to new
values. As with all sections, the tables section and its entries are optional.
However, the tables section must appear first if it is used.

tables{
table entries
}

enums{
enum entries
}

saber{
first generic entry{
first set of specific symbol entries
}

second generic entry{
second set of specific symbol entries
}

}

partner{
generic entry{
specific symbol entries
}

}

undetermined{
generic entry{
specific symbol entries
}

}

include{
include entries
}

exclude{
exclude entries
}

194 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
The enums section is reserved to specify properties corresponding to template
parameters that accept enumerated values. Mapping files used for templates in
the Template Database no longer require this field. However, templates not in
the Template Database require mapping files with this field properly configured.

You use the definition sections saber, partner, and undetermined to define the
correspondence between schematic entities and simulator entities (symbols
and models). If a definition section (saber, partner, or undetermined) is present,
the two nested pairs of braces setting off the generic and specific symbol
entries must be present, and a generic entry must be included. For examples,
refer to the standard mapping files.

The include section is no longer used by the netlister and may be left blank.
You can the exclude section to list symbols that are to be ignored by the
netlister when it creates the netlist.

Each of these mapping file sections is discussed in detail in the following
topics:

Special Characters Used in the Mapping File
Tables Section
Enums Section
Definitions Section
Include and Exclude Sections
Saber® Managing Symbols and Models User Guide 195
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
Special Characters Used in the Mapping File

The mapping file entries make use of special characters to control the
translation process.

%{} To specify the substitution of a property value, you can enclose a property
name between the special character pair %{ and the character }. The special
character pair %{ indicates the beginning of the name of the enclosed
property while the special character } indicates the end of the name of the
enclosed property.

Example: %{freq}

You can also enclose a property mapped through a table.

Example: %{decimal_of[percent]}

Finally, you can enclose a property mapped through a mapping function.

Example: %{spconv(res)}

" " In certain cases, you can enclose a string between the special character pair
" ". The quotes indicate that the enclosed string is to be interpreted literally,
except for places where property values are to be substituted. If, for example,
in the expression "gain=%{gain}", the value of the property gain enclosed in
braces is equal to 5k, the netlister enters gain=5k into the netlist. In other
words, %{gain} is replaced by the value of the property gain while the
expression gain= is taken literally. Note that if the value of gain is " " or NULL,
this mapping will fail.

<- In certain cases, you can place a string within quotes on the right side of a left
arrow <-. This configuration indicates that the value of the string will be
assigned to the parameter name on the left side of the arrow.

Example: gain<-"(h=1.41)"

The result of this example appears in the netlist as gain=(h=1.41).

Or, if there is nothing to the left of the arrow, the netlister places the value
directly into the netlist without an assignment.

Example: <-"rnom=1k,tnom=27"

The result of this example appears in the netlist as rnom=1k, tnom=27.
196 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
Tables Section

The tables section begins with the name tables followed by a list enclosed in
braces {} that may be empty or may contain one or more tables. These tables
can be referenced from any of the three definition sections (saber, partner, and
undetermined). The following is an example of a table entry:

edit[*req*]->null, [*opt*]->null, [*]->*

Table entries and references to table entries are case sensitive. Legal entries
between the [] are strings of length 0 or more that do not contain the
characters '[', ']', ' ', '<NEWLINE>', and '<TAB>'. Legal entries after the -> are
strings of length 0 or more that do not contain the characters ',', '{', '}', ' ',
'<NEWLINE>', and '<TAB>'.

The above table, called edit, sets to null (or non-existence) a value equal to
either of the strings *req* or *opt*. If the value is not equal to either of these
strings, its value is unchanged ([*]->*).

The following table called adc_ports assigns port types to the ports of an
analog-to-digital converter symbol:

In this case, the in, gate, and gnd ports are identified as analog ports, and all
other ports on the symbol are identified as digital ports.

You can extend a table entry to more than one line.

An entry in a tables section can map a zero-length string to a value. For
example, you could use the following entry in the tables section of a mapping
file:

add_value []->1k, [*]->*

<> The character pair <> indicates that the value to be substituted is the name
assigned to the appropriate data base entity, such as a pin, rather than to the
value of a property.

Example: some_pin_dirs[<>]

In this example, some_pin_dirs[<>] is specified in the tables section as

some_pin_dirs[dig_in]->in,[dig_out]->out,[*]->null

adc_ports [in]->analog,[gate]->analog,\
[gnd]->analog,[*]->digital
Saber® Managing Symbols and Models User Guide 197
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
This entry maps all zero-length strings to the value 1k. All other values remain
unchanged.

Enums Section

Templates in the Template Database do not require this field in their mapping
files.

You use the enums section to specify properties corresponding to template
parameters that accept enumerated values. Enumerated values are
syntactically equivalent to parameters in the MAST language. Therefore,
special techniques must be adopted for the netlisters to recognize when an
identifier, which is used for an enumerated value, is a literal enumerated value
and when it is a parameter that was passed through hierarchy. For this
purpose, the mapping file enum.map is available for the netlisters to
automatically search for and use. This mapping file specifies for the netlister all
the enumerated values in templates provided. With this mapping file in place,
all enumerated values for these templates should be handled correctly in
hierarchy.

The enums section can contain one or more enum declarations. Each enum
declaration is given in MAST modeling language syntax and followed by a list
of the templates that use that enum parameter. The series of values that the
enum parameter can take and the list of templates using the enum parameter
are both enclosed in braces.

In this example, enum_name is the name of the enumerated parameter,
identifier1 and identifier2 are values of the enumerated parameter, and
template1 and template2 are templates that use this enumerated parameter.

If a template corresponding to a symbol placed on a schematic is included in
the list of templates in an enum declaration and if a value is given to the
enumerated parameter enum_name that is included in the list of values

enums {
enum {identifier1, identifier2, ...} \
enum_name {template1 , template2 , ...}
}

198 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
included in the enum declaration, that value will be passed directly to the
instance of that template.

For example, the symbol for a digital gate may have a property called init. If this
property takes enumerated type values _0, _1, _x, and _z, then the definition of
the property init in the enums section of the mapping file will specify the valid
enumerated type values _0, _1, _x, and _z for the template parameter init. The
entry for a nand2 gate will appear as follows:

The nand2_l4 entry specifies the simulator template that represents the nand2
symbol.

If a value string_xyz has been given to the enumerated parameter enum_name
that does not exist in the list of values in the enum declaration, the schematic
hierarchy is searched for a property named string_xyz. When it is found, its
value is passed down through the hierarchy to the template containing the
instance of that template.

Definitions Section

Definition sections include the saber, partner, and undetermined sections. You
use these sections to map symbol information to the corresponding simulation
model information. These sections can be arranged in any order or omitted if
not needed. The saber definition section provides mapping for simulation
models that are to be simulated by the simulator. The partner definition section
provides mapping for predefined simulation models that are to be simulated by
a partner simulator. You map symbols representing non-primitive cells in the
undetermined definition section.

Each of the definition sections can contain one or more generic entries. A
generic entry can contain one or more specific symbol entries. You use a
generic entry to specify mapping information that pertains to an entire symbol
library. You use a specific symbol entry to map features specific to one symbol.
If both a generic and a specific symbol entry in a mapping file exist for the same
feature, the specific symbol entry overrides the generic entry for that symbol.

enums {
enum {_0,_1,_x,_z} init {nand2_l4}
}

Saber® Managing Symbols and Models User Guide 199
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
The main feature of a definition section in a mapping file is the use of fields. A
single entry line in the generic and specific symbol entries of a definition
section consists of 21 fields separated by colons as follows:

Each field in the list corresponds to an item that can be mapped. If you do not
use a field, leave it blank. If an item is to be mapped, its position in the list must
contain the mapping information for that item. For example, the second field in
a generic entry is the simulation model name. If you want to specify where
simulation model names are to come from when symbols are placed in a
netlist, you must enter the source of the simulation model name in this field of
the generic entry. This source might, for example, be a symbol property that is
common to all symbols, and contains a symbol name. Each field of the generic
and specific symbol entries ar described in more detail in Generic Entries and
Specific Symbol Entries.

A source may be a property name, or it may be derived from a function, table,
or other source or from a combination of sources. The possibilities are listed
below:

A property_name is the name of a symbol property in your Frameway
Integration’s schematic capture tool (Analog Artist, ViewDraw, Design
Architect). For example: nettype.

(1):(2):(3):(4):(5):(6):(7):(8):(9):(10):(11):(12):
(13):(14):(15):(16):(17):(18):(19):(20):(21)

property_name

table_name[property_name]

function_name(property_name)

function_name(table_name[property_name])

new_property_name<- function_name(property_name)

new_property_name<-
function_name(table_name[property_name])

new_property_name<- constructor

<- function_name(property_name)

<- function_name(table_name[property_name])

<- constructor
200 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
A table_name is the name of a table in the tables section of the mapping file. In
the following example, the table called target maps values of a property called
nettype. For example: target[nettype] .

In some cases, the symbol <> can be used in place of a property name. You
can use this symbol to map port (or pin) names, port (or pin) types, port (or pin)
directions, or net names. (See generic and specific symbol entry fields 6, 7, 8,
and 11 in the sections on Generic Entries and specific Symbol Entries.) For
example, if the source shown below appears in field 6 of a generic or specific
symbol entry in a mapping file, the <> symbol indicates that the names to be
used are the actual names assigned to the ports rather than names given as
values of a property: target[<>] .

A function_name is the name of a function used to modify a property value of a
source.

The following sections provide detailed instructions for the definitions section of
a mapping file.

General Mapping Functions
SPICE to MAST Mapping Functions
Length and Width Mapping Functions
Generic Entries
Specific Symbol Entries
Multiple Generic Entries
Default Generic Mapping

General Mapping Functions
The following list describes the available mapping functions:

spconv Converts a numeric SPICE parameter to a numeric simulator
parameter.

For example: spconv(td)

In this example, if the value contained in the property td is 2.5ns,
the netlister converts it to 2.5n.
Saber® Managing Symbols and Models User Guide 201
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
id Returns the value of a symbol property as is. This function is used
with the <- character to copy the value of a property in the
schematic to a parameter in the netlist.

For example: dc<-id(vdc)

In this example, the value of the symbol property called vdc is
assigned to the simulator parameter named dc.

splist Converts a list of SPICE parameters to the corresponding list of
simulator parameters.

For example: splist(spicepar)

In this example, if the value of the property spicepar issin(0 220
60), the result of the function that appears in the simulator netlist is
tran=(sin(0,220,60)).

string Checks to see if a property value is enclosed in quotation marks("
"). If the property value is enclosed in quotation marks, the netlister
places it in the netlist as is (including the quotation marks). If the
property value is not enclosed in quotation marks, the netlister
adds quotation marks when it includes the property value in the
netlist. Note that the netlister automatically makes this mapping in
releases including and subsequent to 5.0.

M Used to extract the correct multiplier M versus m. Since the
simulator converts all characters to lower case characters, it
interprets the multiplier M of a value, which represents “mega,” as
the multiplier m, which the simulator interprets as the multiplier
“milli.” You can use the mapping function M to extract this multiplier
correctly. All other multiplier values passed through this mapping
function remain unchanged.

For example, you could use the mapping function M in the fourth
field of a mapping file entry as follows:

rnom<-M(r)

The character r in this example is the property of an instance in a
schematic. If this property has the value 1.1M, the netlister places
the entry rnom=1.1Meg in the parameter list of the instance of the
template.
202 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
SPICE to MAST Mapping Functions
For an example of how you can use these SPICE to MAST mapping functions,
refer to Chapter 10: Using a Mapping File to Convert SPICE Symbols.

template Allows the construction of legal template names in a constructor in
the second field of a specific symbol mapping entry for a symbol.
This function takes two arguments, a prefix and a component
name. If the component name begins with a numeral, the prefix is
placed in front of the component name. The arguments to the
function can be a string between double quotation marks, a
property name, or a mapping of a property through a table.

For example, the following could be an entry in a mapping file:

power_mos:"%{template("q",comp)}":::::::::::::::::::;

The template q2n6755 is used when the comp property has the
value 2n6755. On the other hand, when the comp property has the
value irf130, the template irf130 is used.

Each invalid character in a component name is translated into an
underscore character, unless it appears between a digit and a
letter. In that case, it is deleted. For example, LT1004-2.5 is
changed to LT1004_2_5, and HI-201HS is changed to HI201HS.

spsource Translates SPICE source parameters to MAST.

spvalues Translates a general SPICE parameter list to MAST.

spresvals Translates a SPICE resistor parameter list to MAST.

spstorage Translates SPICE capacitor or inductor parameters to MAST.

sptran Translates a SPICE transistor or diode parameter list to MAST.

spopttran Translates the parameter list for a transistor or diode that does
not have the model name in it.

sptranmod Extracts the model name from a parameter list for a diode or a
transistor.
Saber® Managing Symbols and Models User Guide 203
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
Length and Width Mapping Functions
You can use the following mapping functions listed below to map length and
width specifications typically specified for MOSFETS and MOS gates, into the
correct simulator format. For example, you may typically specify the length and
width in the form w/l (in microns) as:

20/5

which has to be mapped to

w=20u,l=5u

Similarly, you may typically specify the length and width in the form pw/pl - nw/
nl, where pw, pl, nw, and nl specify the width and length of the p-channel and n-
channel transistors, respectively. For example (again, in microns):

20/5 - 10/5

which has to be mapped to

pw=20u,pl=5u,nw=10u,nl=5u

The following descriptions show how the mapping in the previous examples is
derived. The first two functions (mwid and mlen) combine to produce the result
of the first example (w=20u,l=5u). The remaining four functions combine to
produce the result of the second example (pw=20u,pl=5u,nw=10u,nl=5u). Each
of these mapping functions is of the form:

function_name (string, suffix).

spifpoly If the SPICE parameter list for a capacitor or an inductor has poly
parameters in it, it returns the second argument (typically the
name of the template that implements the poly parameters for the
device); otherwise, it returns the second argument (typically the
name of the template that does not implement the poly
parameters).

mwid Converts string of the form w/l to w and appends suffix.

For example:

w<-mwid ("20/5","u")

results in the following portion of the netlist entry:

w=20u

mlen Converts string of the form w/l to l and appends suffix.
204 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
The previous examples described the purpose of each of these mapping
functions. There are also three basic ways you can use a mapping function as

For example:

l<-mlen ("20/5","u")

results in the following portion of the netlist entry:

l=5u

gpwid Converts string of the form pw/pl - nw/nl to pw and appends suffix.

For example:

pw<-gpwid ("20/5-10/5","u")

results in the following portion of the netlist entry:

pw=20u

gplen Converts string of the form pw/pl - nw/nl to pl and appends suffix.

For example:

pl<-gplen ("20/5-10/5","u")

results in the following portion of the netlist entry:

pl=5u

gnwid Converts string of the form pw/pl - nw/nl to nw and appends suffix.

For example:

nw<-gnwid ("20/5-10/5","u")

results in the following portion of the netlist entry:

nw=10u

gnlen Converts string of the form pw/pl - nw/nl to nl and appends suffix.

For example:

nl<-gnlen ("20/5-10/5","u")

results in the following portion of the netlist entry:

nl=5u
Saber® Managing Symbols and Models User Guide 205
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
outlined in the following list. In each case, the value of the spicepar property is
sin(0 220 60):

1. splist(spicepar) in the mapping file results in the following netlist entry:

spicepar=tran=(sin(0,220,60))

because without an assignment, the property being translated (spicepar) is
used as the parameter in the netlist.

2. tran<-splist(spicepar) in the mapping file results in the following netlist entry:

tran=tran=(sin(0,220,60))

3. <-splist(spicepar) in the mapping file results in the following netlist entry:

tran=(sin(0,220,60))

A new_property_name is the template parameter name that corresponds to a
symbol property. In list item 2, the tran parameter corresponds to the property
spicepar. You can specify a new_property_name with any of the mapping
functions described above or with the constructor described below.

If the source defined to the right of the arrow (<-) contains a template or module
parameter or if it contains a list of parameters in the same order in which they
are required by the template or module, the new_property_name is optional.
When you omit the new_property_name, the netlister places the parameters
directly into the appropriate netlist entry, as shown in list item 3 above.

You can use a constructor to map simulation model names, simulation model
parameters, simulation model pin parameters, simulation model net
parameters, and simulation model nodes defined in properties into a specific
format required by a simulator. These various simulation model parameters
defined in properties are mapped in the generic and specific symbol entry fields
2, 4, 10, 12, and 15, respectively. These items are described in Generic Entries
and Specific Symbol Entries.

For example, a set of timing parameters for a symbol may need to appear in
the following form in a netlist:

timing = <10NS>, <10NS>

The two parameter values for the timing parameter may be defined in two
separate properties in the schematic capture system. For example, they might
be defined in two properties called rise and fall with values of 10N. They can be
combined into the correct format by using a constructor in the mapping file as
follows:

timing <- "<%{rise}S>, <%{fall}S>"
206 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
In this example, timing is a new_property_name. The two properties (sources),
rise and fall, are each enclosed in braces ({}) and preceded by a percent (%)
sign. The strings "<", "S>, <" and "S>" are added in the appropriate places, and
the entire sequence is enclosed in quotes. Any sequence of sources (each
enclosed in braces and preceded by a % sign) and strings can be used in a
constructor. The entire sequence must be enclosed in quotes.

A source used in a constructor can be any of the following:

Generic Entries
Each of the definition sections can contain one or more generic entries. A
generic entry can contain one or more specific symbol entries. You use a
generic entry to specify mapping information that pertains to an entire symbol
library. You use a specific symbol entry to map features specific to a symbol. If
both a generic and a specific symbol entry in a mapping file exist for the same
feature, the specific symbol entry overrides the generic entry for that symbol.

For example, in the saber section, you can specify a generic entry for symbol
library A that provides mapping common to all symbols in that library. Following
this generic entry, you can include specific symbol entries to provide mapping
specific to each symbol in library A. Then, you can specify a second generic
entry for symbol library B that provides mapping common to all symbols in that
library. Following this generic entry, you can include specific symbol entries to
provide mapping specific to each symbol in library B.

The three optional definition sections (saber, partner, and undetermined) all
begin with the definition section name followed by a section enclosed in braces
({}) containing generic and specific symbol entries. Within a definition section, a
generic entry is listed first followed by specific symbol entries enclosed in
braces. When a definition section is included in a mapping file, the definition
section name, at least one generic entry, and the nested pair of braces that set
off the generic and specific symbol entries for that definition section must be
included. Specific symbol entries are optional.

:

property_name

table_name[property_name]

function_name(property_name)

function_name(table_name[property_name])
Saber® Managing Symbols and Models User Guide 207
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
A generic entry in a definition section is made up of twenty-one different fields
terminated by colons, as shown below.

Each of the fields is optional. However, when you leave a field blank, its
terminating colon must still be included. The following outlines what type of
information is contained in each field in a generic entry:

A generic entry is terminated by the left brace indicating the beginning of the
specific symbol entries. Each specific symbol entry is terminated by a
semicolon.

You can specify most values for most fields as a comma-separated list of
sources. If a field requires a single source and if a list of sources is given, the
netlister checks each source in the list by starting at the left until it finds the
information it needs. A few fields can be specified only by using a property
name. When this restriction applies, it is noted in the description of that field.

Each field, in the following list, includes examples. These examples may be
from all three Frameway integrations or from just one or two. However, unless
otherwise stated, each field description applies to all Frameway integrations (all
mapping files). The following list describes the fields that you can include in a
generic entry:

1. The name of the symbol library.

A symbol’s library name must match the entry in this field. If you want to map
several symbols having the same name but located in different libraries,
leave this field blank.

Each netlister has special requirements for the use of this field:

• Sketch

(1):(2):(3):(4):(5):(6):(7):(8):(9):(10):(11):(12):
(13):(14):(15):(16):(17):(18):(19):(20):(21)

symbol library name : simulation model names : simulator
target : simulator model parameters : parameter-list
property : port names : port types : port direction : port
order : port parameters : net names : net parameters :
template directory : reference designator or instance name
: nodes on properties : primitives : graphical modeling :
exclude as parameters: : :
208 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
Because symbols do not have libraries in Sketch, this field should
always be empty.

• Cadence

The library name in the mapping file is the same as the library
containing the symbol. For example, all supplied symbols are in
SaberLib.

SaberLib:::::::::::::::::

• Mentor Graphics

The library name is the name of the leaf directory containing the symbol.
For example, the leaf directory electric has the syntax

electric:::::::::::::::::

• Viewlogic

Because the library name in Viewlogic is a part of the symbol name, for
example SBR_ELECTRIC:r, the library name should always be empty.

2. List of possible sources of the simulation model names (template, model,
module, primitive, etc.). When the generic entry is in the saber section, the
netlister searches along the data search path for the templates specified by
this field. The netlister uses the value of the first mapping source it finds as
the name of a template.

• Cadence Example

In this example, the netlister first searches for the palComponentName
property and uses its value as the name of the simulation model for the
corresponding symbol. If it does not find the palComponentName
property, it then searches for the sabermodel property and uses its
value as the name of the simulation model. If this entry is in the saber
section, the netlister uses the first property value in this list that matches
the name of a template. That is, if the palComponentName property
value is not the same as any simulator templates, the netlister will then
search for the sabermodel property to find a value that matches a
simulator template. You can use a constructor in the definition of a
source for this field.

:palComponentName,sabermodel:::::::::::::::::::
Saber® Managing Symbols and Models User Guide 209
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
3. The target simulator for a primitive symbol. This entry determines whether
a primitive symbol will appear in a simulator netlist or a partner simulator
netlist. If you specify this field in any one of the definition sections, you must
specify it in all three (saber, partner, and undetermined).

• Viewlogic Example

In this example, the netlister uses the attribute nettype to determine the
target simulator from a table called cv_target. The entry in the tables
section is as follows:

If the attribute nettype contains the value analog, the target simulator for
the symbol will be the simulator. Otherwise, the target simulator will be
the partner simulator.

You can also use the Target_Simulator attribute (property) to designate
the target simulator for a primitive cell. If you use the Target_Simulator
attribute (property), a mapping file entry is not necessary. For
information regarding specially-recognized properties to avoid
mapping, refer to Chapter 6: Using Specially-Recognized Properties for
Mapping.

4. The source of the properties of the symbol to be retained and passed on to
the simulator.

• Example

In this example from a partner definition section, the properties delay
and drive are extracted as characteristics for a part in the partner
simulator netlist. You can use a constructor in the definition of a source
for this field. .

5. A list of properties containing composite parameter lists of primitive symbols
for the simulator. The composite parameter list is a list of property names,
separated by commas, to be passed through as parameters to the primitive
symbols.

::cv_target[nettype]::::::::::::::::::

cv_target[analog]->saber,[*]->partner

:::delay,drive:::::::::::::::::
210 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
• Example:

In this example, if any symbol has the property named parameters
attached, which can be a comma-separated list of parameters, the
netlister uses its value to determine which parameters to extract for
each symbol that has this property attached. You can use this method
to specify which parameters to extract rather than listing the parameters
directly in field 4.

The use of this field for the undetermined section and hierarchical
parameter passing was made obsolete by the superior hierarchical
parameter passing techniques provided in Release 3.1-1.4 and later of
the Integration Toolkit from which the netlisters were constructed.

6. The source of a port (or pin) name.

• Cadence Example:

In this example, the assigned port names (indicated by [<>]) are
mapped to new names using a table called artist_pin_def. The entry in
the tables section is shown below:

In this example, ports named PLUS are renamed p, ports named
MINUS are renamed m, and so forth. The item [*]->* at the end of the
table entry maps all other port names to their current names.

You can use the <> symbol in this field to indicate that the port names
to be used are the actual names assigned to the ports rather than given
as values of a property. For more information about this symbol, see
Special Characters Used in the Mapping File.

7. The source of the port (or pin) type of the symbol. The named source
contains information about whether the ports of the symbol are analog or
digital ports.

::::parameters::::::::::::::::

:::::artist_pin_def[<>]:::::::::::::::

artist_pin_def[PLUS]->p,[MINUS]->m,[P+]->pp,
[P]->pm,[S+]->sp,[S-]->sm,[G]->g,[D]->d,[S]->s,
[B]->b,[NC-]->vm,[NC+]->vp,[IN+]->p1,[OUT+]->p2,
[IN-]->m1,[OUT-]->m2,[*]->*
Saber® Managing Symbols and Models User Guide 211
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
• Example 1:

In this example, the ports on all symbols in the library are digital when
used in conjunction with the table digital_ports defined below:

This table indicates all ports are digital. Since all ports for partner
simulators default to digital, this mapping would not be useful in the
partner section. However, since all ports for the simulator default to
analog, you can use this mapping in the saber section to specify that all
ports in a digital library for the simulator are digital.

You can also use this field to specify the type of pin that a graphical
model will have (electrical, mechanical, control, etc.).

• Example 2:

The pin_type property on the pins of the graphical modeling symbols is
used for this purpose. The following are some examples of values that
you can specify for the pin_type property:

8. Used for the following three purposes:

a. Provides the pin direction if not specified on the schematic:

::::::digital_ports[<>]:::::::::::::::

digital_ports[*]->digital

::::::pin_type:::::::::::::::

input nu control system input connection point, no units
(nu)

output nu control system output connection point, no units
(nu)

electrical electrical connection point

state nu event-driven analog connection point, no units
(nu)
212 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
The named source (property) contains information required by the
partner simulator defining the direction of the port (or pin). In this
example, the source of the port (or pin) direction is the value of the
property pintype.

• Example

b. Designates special pins such as power pins and how they are to be
used in Hypermodel interface insertion:

The power and ground connection points of the Hypermodel interfaces
inserted at other pins of the symbol will be connected to the nets to
which these pins are connected. The pin directions to designate power
and ground pins corresponding to template or module connection points
are pow, gnd, unpow, and ungnd (the netlister does not insert
Hypermodel interfaces for pins designated as power or ground pins).
Valid values for Hypermodel interface ports are in (input), out (output),
bi (bidirectional), pow (power), gnd (ground), unpow (power pin to be
excluded from netlist), ungnd (ground pin to be excluded from netlist),
and ignore (pin to be excluded from the netlist).

You can also use an entry in the pins section of a Hypermodel interface
(.shm) file to designate power and ground pins.

c. Causes the netlister to ignore pins when they are not part of the
simulation model

This designation is done by using a table to assign the pin-direction
ignore, unpow, or ungnd to pins that are to be excluded from the netlist.
As you can see from the previous discussion, the unpow and ungnd
direction designations serve a dual purpose. You can use this
designation when pins occur on a symbol for which there are no
connection points on a corresponding simulator template or Verilog
module. When the pin direction of a pin is set to ignore, the netlister
does not insert a Hypermodel interface at that pin, and the pin does not
appear in the netlist.

9. The name of the property that contains the port (or pin) order. The value of
the named property is a list of pin names, separated by commas, in the
order required by the simulator. The source for this entry must be a property
name. It cannot be derived indirectly, by using a table entry.

:::::::pintype:::::::::::::
Saber® Managing Symbols and Models User Guide 213
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
 Example:

In this example, the pinorder property value is a list specifying the port (or
pin) order. For example, the value of this property may appear as follows:

Y,A,B

10. The sources of port properties to be retained and passed on to the
simulator.

• Example:

None (not used by the simulator or Verilog simulator).

11. The source of the names of nets. This field is used only in the undetermined
section. Typically, this field is mapped by using a “default” generic entry
since the global net names changed are not normally specific to a library.

• Mentor Graphics Example:

In this example, the assigned net names are mapped to new names
using a table called Analogy_nets. The entry in the tables section is as
follows:

If a net is named GND, gnd, ground, or GROUND, the netlister changes
its name to 0. Otherwise, the net name remains the same.

• Cadence Example:

In this example, the assigned net names (indicated by [<>]) are mapped
to new names using a table called artist_net_defs. The entry in the
tables section is as follows:

::::::::pinorder::::::::::::

::::::::::Analogy_nets[global_net]::::::::::

Analogy_nets[GND]->0,[gnd]->0,[ground]->0, [GROUND]-
>0,[*]->*

::::::::::artist_net_defs[<>]::::::::::

artist_net_defs[gnd!]->0,[*]->*
214 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
If a net is named gnd!, the netlister changes its name to 0. Otherwise,
the net name remains the same.

• Viewlogic Example:

In this example, the assigned net names (indicated by [<>]) are mapped
to new names using a table called nets. The entry in the tables section
is as follows:

If a net is named GND or gnd, the netlister changes its name to 0.
Otherwise, the net name remains the same.

12. The source of net properties to be retained and passed on to the simulator.
This field is used only in the undetermined section.

Example:

In this example, the net properties type, charge, delay, and drive are to be
passed on to the simulator. Net properties exist only on non-primitive
symbols. The simulator does not use net properties. You can use a
constructor in the definition of a source for this field.

13. The path to the directory containing the template to be used.

Example: None.

14. The source of the instance name. This can be a single property name or a
constructor containing strings or properties to specify the source of a
reference designator.

• Example 1:

In this example, the netlister determines the instance name (or
reference designator) for each symbol from the inst property.

::::::::::nets[<>]::::::::::

nets[GND]->0,[gnd]->0,[*]->*

:::::::::::type,charge,delay,drive:::::::::

:::::::::::::inst:::::::
Saber® Managing Symbols and Models User Guide 215
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
• Example 2:

In this example, the netlister determines the instance name (or
reference designator) for each symbol from one of the following
combinations in the order given: the ref and des properties, the ref
property, or the des property. Note that this field is not typically used by
the CATOS netlister (Cadence).

15. The source of nodes defined in properties.

• Example:

None (see the example for field 15 in Specific Symbol Entries).

16. One or more properties that cause the netlister to treat the corresponding
non-primitive symbol as primitive. You use this field only in the
undetermined section because it is valid only for non-primitive symbols.

• Example:

In this example, the netlister treats all symbols that have the primitive
property attached as primitive. That is, if an instance of a hierarchical
symbol has the primitive property attached, the netlister maps it directly
to a corresponding model in the simulator. The lower-level symbols in
the hierarchy are ignored.

17. Names a property that the graphical modeling feature uses. You use this
field only in the saber section.

• Example:

In this example, graphical modeling determines what type of graphical
model to create based on the value of the model_generator property.

18. A list of properties that the simulator is NOT to treat as parameters. In the
saber section, this field is valid only for symbols that use the primitive
property (prefix attribute, in Viewlogic) to specify the simulation model
name, such as symbols in the supplied symbol libraries.

:::::::::::::"%{ref},%{des}",ref,des:::::::

:::::::::::::::primitive:::::

::::::::::::::::model_generator::::
216 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
In these examples, the simulator recognizes that the
current_control_instance and inductor_to_couple_1 properties are not to be
treated as simulator template parameters. This field is NOT valid in the
partner section.

In the undetermined section, this field should contain a comma-separated
list of the parameter names you kept from being added to the hierarchical
cell listed in field 1.

• Cadence and Mentor Graphics Example:

• Viewlogic Example:

19. Reserved for future use.

20. Reserved for future use.

21. Reserved for future use.

For examples of mapping symbols from your Frameway integration symbol
libraries, refer to Chapter 8: Using a Mapping File to Map Symbols.

Specific Symbol Entries
In addition to generic entries, a definition section (saber, partner, or
undetermined) may contain one or more specific symbol entries within generic
entries. Following the definition section name, generic and specific symbol
entries are enclosed in braces {} . Within a definition section, a generic entry is
listed first followed by specific symbol entries enclosed in braces.

You use specific symbol entries to override symbol properties that are not
mapped (or mapped differently) by the corresponding generic entry. A specific
symbol entry might be used to designate, for example, that the simulation
model name is different from the symbol name, or to supply information needed
in simulation or netlisting that is not on the symbol. If both a generic and a
specific symbol entry in a mapping file refer to the same symbol property, the
specific symbol entry overrides the generic entry.

primitive::::::::::::: :::
current_control_instance,inductor_to_couple_1:::

:prefix::::::::::::: :::
current_control_instance,inductor_to_couple_1:::
Saber® Managing Symbols and Models User Guide 217
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
A specific symbol entry in a definition section is made up of twenty-one fields
terminated by colons. The entry itself is terminated by a semicolon. Each of the
fields is optional. However, when you leave a field blank, its terminating colon
must still be included. The following list outlines what type of information is
contained in each field in the specific symbol entry:

Note that a generic entry is terminated by the left brace indicating the beginning
of the specific symbol entries. Each specific symbol entry is terminated by a
semicolon.

Most of the fields can be specified as a comma-separated list of sources. If a
field requires a single source and a list of sources is given, the netlister checks
each source in the list starting at the left until it finds the information it needs. A
few fields can be specified only by using a property name. A few other fields
can be specified only by using the actual value of the item. When either of
these restrictions applies, the restriction is noted in the description of that field.

The following list describes the fields that you can include in a specific symbol
entry:

1. The name of the symbol to which the entry applies.

• Example:

In this example, res is the name of a symbol in the symbol library
indicated by the first field of the generic entry. Since colons are used to
delimit items, if you want to include the alias of the library that contains
the symbol, you must use double quotes around the item.

• Example:

symbol name : simulation model names : simulator target :
simulator model parameters : parameter-list property : port
names : port types : port direction : port order : port
parameters : net names : net parameters : template directory
: reference designator or instance name : nodes on
properties : primitives : graphical modeling : exclude as
parameters: : : ;

res::::::::::::::::::::;

"analog:res"::::::::::::::::::::;
218 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
It is important to use the library alias in the first field of each specific
symbol entry if there is any chance that you may have symbols of the
same name in different libraries. This ensures the netlister uses the
correct mapping for each symbol.

2. A comma-separated list of possible simulation model names to use for this
symbol. This field names the element (template, model, module, primitive,
etc.) representing the symbol to include in the netlist.

• Example:

When the generic entry that contains this specific symbol entry is in the
saber section, the netlister searches along the data search path for the
templates specified by this field. The netlister uses the value of the first
mapping source it finds as the name of a template. In this case, the
netlister searches for the template my_r first. If found, the netlister uses
it in the netlist for the symbol named res. If the netlister does not find the
template my_r, it searches for the template r and uses it in the netlist for
the symbol named res. You can use a constructor in the definition of a
source for this field.

3. The target simulator for a primitive symbol. This entry determines whether
a primitive symbol will appear in a simulator netlist or a partner simulator
netlist. However, if you place the mapping for a symbol to be included in the
partner netlist in the partner section, for example, you do not need to use
this field; the symbol will automatically be targeted to the partner simulator.
The same is true for the saber section.

• Example:

4. Sources of properties to be considered as individual properties of this
symbol. If more than one source is listed, the sources must be separated by
commas.

• Example (Cadence):

res:my_r,r:::::::::::::::::::;

and2:and2_l4:partner::::::::::::::::::

res:r::rnom<-spconv(r),tnom<-id(tc1)::::::::: ::::::::;
Saber® Managing Symbols and Models User Guide 219
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
In Analog Artist, the symbol res is a resistor with its value specified in
SPICE format in a property called r. A second property called tc1 that
gives the operating temperature for the resistor is also of interest to the
simulator.

If this resistor is to be simulated by the simulator, the value of the
property r of the resistor must be converted to a form the simulator
recognizes. For example, a resistor with a value in SPICE format of
1kohm, must be given the value 1k in simulator format. In addition, the
simulator expects to find the resistor value in a simulator parameter
called rnom.

The mapping of the resistor value is done in two steps. First, the spconv
function converts the SPICE value specified in the property r to a
simulator value. Second, this value is assigned to the simulator
template parameter rnom in the simulator netlist.

The tc1 property is mapped simply by assigning its value to the
simulator template parameter tnom in the simulator netlist by using the
id mapping function.

• Example (Mentor Graphics):

In Design Architect, the symbol resistor is a resistor with its value
specified in SPICE format in a property called instpar.

If this resistor is to be simulated by the simulator, the value of the
property instpar of the resistor must be converted to a form the simulator
recognizes. For example, a resistor with a value in SPICE format of
1kohm, must be given the value 1k in simulator format. In addition, the
simulator expects to find the resistor value in a simulator parameter
called rnom.

The mapping of the resistor value is done in two steps. First, the spconv
function converts the SPICE value specified in the property instpar to a
simulator value. Second, this value is assigned to the simulator
template parameter rnom in the simulator netlist.

• Example (Viewlogic):

resistor:r::rnom<-
spconv(instpar):::::::::::::::::;

"analog:res":spr::
rnom<-spconv(value):::::::::::::::::;
220 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
In ViewDraw, the symbol res is a resistor with its value specified in
SPICE format in an attribute named value.

If this resistor is to be simulated by the simulator, the value of the
attribute value of the resistor must be converted to a form the simulator
recognizes. For example, a resistor with a value in SPICE format of
1kohm, must be given the value 1k in simulator format. In addition, the
simulator expects to find the resistor value in a simulator parameter
called rnom.

The mapping of the resistor value is done in two steps. First, the spconv
function converts the SPICE value specified in the attribute value to a
simulator value. Second, the netlister assigns this value to the simulator
template parameter rnom in the simulator netlist.

5. A list of properties containing composite parameter lists of primitive symbols
for the simulator. The composite parameter list is a list of property names,
separated by commas, to be passed through as parameters to the primitive
symbols. This entry overrides the same field of the generic entry for this
symbol.

Example:

In this example, if the generic_capacitor symbol has the property named
parameters attached, which can be a comma-separated list of parameters,
the netlister uses its value to determine which parameters to extract for that
symbol. If the generic_resistor symbol has only the parameters property
attached, the netlister uses its value to determine which parameters to
extract for the generic_resistor symbol. However, if the generic_resistor
symbol has only the resistance_parameters property or both the parameters
and the resistance_parameters properties attached, the netlister uses the
value of the resistance_parameters property to determine which parameters
to extract for the generic_resistor symbol. You can use this method to
specify which parameters to extract rather than listing the parameters
directly in field 4.

saber {
::::parameters:::::::::::::::: {
generic_resistor::::resistance_parameters:::::::::\
:::::::

generic_capacitor::::::::::::::::::::
}
}

Saber® Managing Symbols and Models User Guide 221
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
The use of this field for the undetermined section and hierarchical
parameter passing was made obsolete by the superior hierarchical
parameter passing techniques provided in Release 3.1-1.4 (and later) of the
Integration Toolkit from which the netlisters were constructed.

6. The source of a port (or pin) name.

• Cadence and Viewlogic Example:

In this example, the pin names for the symbol inv are obtained from a
table entry called saber_inv_pin_defs shown below. The table entry
converts each port (or pin) name on the symbol to a corresponding
name for the simulator netlist.

If the pin is named A, the netlister changes its name to in, and if the pin
is named Y, its name is changed to out. All other names are unchanged
as indicated by [*]->*.

• Mentor Graphics Example:

In this example, the pin names for the symbol inv are obtained from a
table entry called Analogy_logic_2pin_defs shown below. The table
entry converts each port (or pin) name on the symbol to a corresponding
name for the simulator netlist.

If the pin is named io, the netlister changes its name to in, if the pin is
named EN, its name is changed to enable, etc. All other names are
unchanged as indicated by [*]->*.

• Mentor Graphics, Cadence, and Viewlogic:

inv:inv_l4::::saber_inv_pin_defs[<>]:::::::::::::::;

saber_inv_pin_defs[A]->in,[Y]->out,[*]->*

inv:inv_l4::::Analogy_logic_2pin_defs[<>]::::::::::::::
:;

Analogy_logic_2pin_defs[i0]->in,[I0]->in,[EN]-
>enable,[en]->enable,[*]->*
222 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
You can use the <> symbol in this field to indicate that the port names
to be used are the actual names assigned to the ports rather than those
names given as values of a property. .

7. The source of the port (or pin) type of a symbol. This entry indicates whether
the ports of a symbol are analog or digital. This field is not required for
supplied templates or templates in the Template Database.

• Example:

An analog-to-digital converter contains both analog and digital ports.
Therefore, it is not possible to designate a port type for the entire
symbol. In this example, each port is individually designated analog or
digital. The following table entry is referenced:

This table entry designates the ports in, gate, and gnd as analog
signals; all other ports are specified as digital.

You can use the <> symbol in this field to indicate that the port names
to be used are the actual names assigned to the ports rather than given
as values of a property.

8. Used for the following three purposes:

a. Provides the pin direction if not specified on the schematic.

The named source (property) contains information required by the
partner simulator defining the direction of the port (or pin). In this
example, the source of the port (or pin) direction is the value of the
property pintype.

Example:

b. Designates special pins such as power pins and how they are to be
used in Hypermodel interface insertion.

saadc::::::adc_ports[<>]::::::::::::::;

adc_ports[in]->analog,[gate]->analog, [gnd]-
>analog,[*]->digital

dff:::::::pintype:::::::::::::
Saber® Managing Symbols and Models User Guide 223
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
The power and ground connection points of the Hypermodel interfaces
inserted at other pins of the symbol will be connected to the nets to
which these pins are connected. The pin directions to designate power
and ground pins corresponding to template or module connection points
are pow, gnd, unpow, and ungnd (the netlister does not insert
Hypermodel interfaces for pins designated as power or ground pins).
Valid values for Hypermodel interface ports are in (input), out (output),
bi (bidirectional), pow (power), gnd (ground), unpow (power pin to be
excluded from netlist), ungnd (ground pin to be excluded from netlist),
and ignore (pin to be excluded from the netlist).

You can also use an entry in the pins section of a Hypermodel interface
(.shm) file to designate power and ground pins.

c. Causes the netlister to ignore pins when they are not part of the
simulation model.

This is done by using a table to assign the pin-direction ignore, unpow,
or ungnd to pins that are to be excluded from the netlist. As you can see
from the previous discussion, the unpow and ungnd direction
designations serve a dual purpose. You can use this designation when
pins occur on a symbol for which there are no connection points on a
corresponding simulator template or Verilog module. When the pin
direction of a pin is set to ignore, the netlister does not insert a
Hypermodel interface at that pin, and the pin does not appear in the
netlist.

9. The source of the port (or pin) order. This source provides a list of ports by
name, separated by commas. If you use a property rather than a comma-
separated list, the value of the property must be a comma-separated list of
ports.

• Mentor Graphics Example:

In this example, the order is given for the ports out, i0, and i1 of the and2
gate.

• Cadence Example:

In this example, the order is given for the ports Y, A, and B of the and2
gate.

and2:and2_l4:::::::out,i0,i1::::::::::::;

and2:and2_l4:::::::Y,A,B::::::::::::;
224 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
• Viewlogic Example:

In this example, the order is given for the ports Y, A0, and A1 of the and2
gate.

10. The source of port properties to be retained and passed on to the simulator.

• Example:

None (not used by the simulator or Verilog simulator).

11. The source of the names of the nets contained in a non-primitive symbol.
This field is used only in the undetermined section.

• Example:

None. There is typically no need to map a net name in a specific
schematic.

12. The source of net properties to be retained and passed on to the simulator.
This field is used only in the undetermined section.

• Example:

In this example, the net properties type, charge, delay, and drive are to
be passed on to the simulator. Net properties exist only on non-primitive
symbols; therefore, you must specify them in the undetermined
definition section of the mapping file. The simulator does not use net
properties.

13. The path to the template directory.

• Example: None.

14. The source of the instance name. This field can be a single property name
or a constructor containing strings or properties to specify the source of a
reference designator.

• Example 1:

"builtin:and2":and2_l4:::::::Y,A0,A1::::::::::::;

my_sym:::::::::::type,charge,delay,drive:::::::::

and2:::::::::::::inst:::::::
Saber® Managing Symbols and Models User Guide 225
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
In this example, the netlister determines the instance name (or
reference designator) for the and2 symbol from the inst property.

• Example 2:

In this example, the netlister determines the instance name (or
reference designator) for the and2 symbol from one of the following
combinations in the order given: the ref and des attributes, the ref
attribute, or the des attribute. This field is not typically used by the
CATOS netlister (Cadence).

15. The source of nodes defined in properties. This field is used only in the
saber section.

• Example:

In this example, the bulk or substrate node for the npn transistor is found
in a property called bn. The value of this property is connected to the
connection point s in the simulator netlist.

16. Field 16 is not available as a Specific Symbol Entry. It must be left blank.

17. Names a property that the graphical modeling feature uses. You use this
field only in the saber section.

• Example:

In this example, graphical modeling determines what type of graphical
model to create based on the value of the model_generator property.

18. See the description of Field 18 in Generic Entries.

19. Reserved for future use.

20. Reserved for future use.

21. Reserved for future use.

For examples of mapping symbols from your Frameway integration symbol
libraries, refer to Chapter 8: Using a Mapping File to Map Symbols.

and2:::::::::::::"%{ref},%{des}",ref,des:::::::;

npn:q:::::::::::::s<-id(bn)::::::;

my_other_part::::::::::::::::model_generator::::
226 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Structure of a Mapping File
Multiple Generic Entries
You use a generic entry for each symbol library that you are mapping. This
way, you can provide general mapping information pertaining to a specific
symbol library in the appropriate generic entry and provide symbol-specific
mapping information, as necessary, for each symbol in the library by using
specific symbol entries.

The mapping files have the capability to distinguish symbols by symbol library.
The netlisters keep track of the symbol library containing a given symbol and
use it to locate the proper generic mapping and the specific symbol mapping
within the generic mapping. For example, the catos.map file contains the
following mappings for the cap symbol of the analogLib library and the and2
symbol of the sample library:

The multiple-generic entry feature of the mapping file also allows you to specify
different mappings for symbols of the same name that are contained in different
symbol libraries.

Default Generic Mapping
If you have certain symbols that are not located in specific libraries, you can
place the generic mappings for these symbols in a default mapping where the
symbol library name (field 1) of the generic entry is left blank.

Include and Exclude Sections

The include section is no longer used by the netlister and may be left blank.

saber {
Generic entry.
analogLib:::::::::::::::::::: {
Specific symbol entries
cap:c::c<-id(c)::artist_pin_def[<>]:::::::::::::::;
}

Generic entry.
sample:::::::::::::::::::: {
Specific symbol entries
and2:and2_l4::::saber_logic_pin_defs[<>]:
artist_digital_pins[<>]::::::::::::::;
}

}

Saber® Managing Symbols and Models User Guide 227
Z-2007.03

Chapter 12: Mapping File Reference
Interaction of Mapping, Special Properties, and Defaults
You use the exclude section to list symbols that are to be ignored by the
netlister when it creates the netlist. For example, you can exclude one or more
symbols from the netlist to increase the speed of a simulation. Or, you can
exclude symbols from the netlist that have no underlying functional
representation, such as vdd or vcc. The exclude section takes the following
form where symbol_a, symbol_b, and symbol_c are the names of symbols to
be excluded from the netlist.

Interaction of Mapping, Special Properties, and Defaults

When more than one source of an item of information that is to be included in a
netlist is available, the netlister chooses the source it uses, in order of
precedence, from the sources listed below. The reference in parentheses ()
indicates the number of the field in a generic or specific symbol mapping file
entry that corresponds to the parameter. A source in a specific symbol entry
overrides a source in a generic entry. Specially-recognized properties, such as
the SaberTemplate property and the Target_Simulator property are described
in Chapter 6: Using Specially-Recognized Properties for Mapping.

Simulation Model Name

The sources of the simulation model name in order of precedence are as
follows:

1. The SaberTemplate property.

2. As designated in a mapping file entry (field 2).

3. The cell name

Target Simulator for Primitive Symbol

The sources of the target simulator for a primitive symbol in order of
precedence are as follows:

1. If the primitive symbol has a SaberTemplate, SaberParameters, or
Saber_ParameterName property, then the simulator.

2. As designated by the Target_Simulator property. If a specific symbol entry
is in only one section of the mapping file (saber or partner), then the
corresponding simulator

exclude{
symbol_a,symbol_b,symbol_c
}

228 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Interaction of Mapping, Special Properties, and Defaults
3. If a specific symbol entry is in both sections of the mapping file (saber and
partner), then as designated in a mapping file entry (field 3).

4. If a template is found for the part, then the simulator.

5. If the primitive symbol has analog ports, then the simulator.

6. The partner simulator.

Note that the -ae command line option causes the netlister to assume that
templates will be provided so it does not search for them. When you use this
option, it places symbols not specifically assigned to the Verilog netlist, either
by a mapping file or by the Target_Simulator property, into the simulator netlist
rather than the Verilog simulator netlist.

You can use this command line option with the SaberPrepend property to allow
the inclusion of templates at the beginning of the netlist so that they can be
referenced later in the netlist.

Port or Pin Name

The sources of the port (or pin) name in order of precedence are:

1. As designated in a mapping file entry (field 6).

2. The existing symbol port name.

Port or Pin Type

The sources of the port (or pin) type in order of precedence are:

1. The template (for MAST models).

2. As designated by the Port_Type property.

3. As designated in a mapping file entry (field 7).If the target simulator is the
simulator, then analog

4. If the target simulator is the partner simulator, then digital.

5. As implied by the location of the mapping entry (i.e. saber section versus
partner section).

Port or Pin Direction

The sources of the port (or pin) direction for Hypermodel interface insertion
versus pin declaration, in order of precedence:

1. As designated in a Hypermodel library file.

2. As designated in a mapping file entry (field 8).

3. As designated by the direction of the port symbol.
Saber® Managing Symbols and Models User Guide 229
Z-2007.03

Chapter 12: Mapping File Reference
Mapping File Considerations for Mentor Graphics Users
Port Ordering

The sources of port ordering, in order of precedence:

1. As designated by the SaberPinOrder or PartnerPinOrder properties.

2. As designated in a mapping file entry (field 9).

3. The existing port order.

Net Names

The sources of net names, in order of precedence:

1. As designated in a mapping file entry (field 11).

2. The existing net name.

Other Properties

If either of the following properties is present, it will be used in addition to the
individual symbol properties designated in the mapping file (field 4):
■ Parameters
■ Saber_ParameterName
■ These two properties are described in Chapter 6: Using Specially-

Recognized Properties for Mapping.

Mapping File Considerations for Mentor Graphics Users

Mentor Graphics users can place mapping files directly into the component
libraries; they are then read automatically by the netlister. Because Mentor
Graphics also uses the concept of a mapping file in their Library Management
System, the.map file extension can cause problems, so the.smp extension
must be used. This section explains how this works.

If you have created your own component libraries with components having
component interfaces named differently from the components themselves, and
if you subsequently use symbols registered to these interfaces in a design,
then the following discussion about.smp mapping files does not apply. To map
such symbols, you must use your own mapping file such as user.map.

The following topics discuss these considerations for single and multiple
component use:

1. Single Components in Mentor Graphics

2. Multiple Component Interface Support in Mentor Graphics
230 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Mapping File Considerations for Mentor Graphics Users
Single Components in Mentor Graphics

You can place the mapping file for an entire directory of Mentor Graphics
components in that directory. The file must have the same name as the
directory, and have the.smp extension. This file contains only a saber section,
generic entry, and must have field one (the library name) left blank. For
example, the directory $SABER_MGC8_SYMBOLS/sbr_electric_lib contains a
file named sbr_electric_lib.smp with contents:

This _generic_ mapping is applied to every component which comes from the
$SABER_MGC8_SYMBOLS/sbr_electric_lib directory.

To get the equivalent of a _specific_ mapping entry for a single symbol in this
library, place a mapping file into the Mentor Graphics component directory in
which the symbol is located, where it will be read automatically by the netlister.
This mapping file must have the same name as the component, with the
extension.smp (not.map). Presence of this file requires that the directory-
generic file described above also be present. For example, in previous

saber {
Generic entry
:
:::::pin_type:::::::
inst,ref
:::model_generator:
current_control_instance,
current_control_instance_1,
current_control_instance_2,
current_control_instance_3,
current_control_instance_4,
current_control_instance_5,
inductor_to_couple_1,inductor_to_couple_2,inst,
ref,model
:::

}

Saber® Managing Symbols and Models User Guide 231
Z-2007.03

Chapter 12: Mapping File Reference
Mapping File Considerations for Mentor Graphics Users
releases, the component directory $SABER_MGC8_SYMBOLS/
sbr_electric_lib/v_pulse had a file named v_pulse.smp with contents:

This file has no generic entry specified, but contains only an unnamed specific
mapping file entry (meaning that field one is blank).

Note that, beginning with Release 5.0, this file is no longer shipped because
use of the Template Database makes the file unnecessary.

Multiple Component Interface Support in Mentor Graphics

Starting with Release 4.3, multiple interfaces and symbols of components are
supported. This has applications if mapping (via mapping files) is desired for

saber
{
{
:
v::
tran<-"(pulse=(v1=%{initial},v2=%{pulse},
tr=%{tr},tf=%{tf},td=%{delay},pw=%{width},
per=%{period}))",

tran<-"(pulse=(v1=%{initial},v2=%{pulse},
tr=%{tr},tf=%{tf},td=%{delay},pw=%{width}))",

tran<-"(pulse=(v1=%{initial},v2=%{pulse},
tr=%{tr},tf=%{tf},td=%{delay},per=%{period}))",

tran<-"(pulse=(v1=%{initial},v2=%{pulse},
tr=%{tr},tf=%{tf},td=%{delay}))",

tran<-"(pulse=(v1=%{initial},v2=%{pulse},
tr=%{tr},tf=%{tf},pw=%{width},per=%{period}))",

tran<-"(pulse=(v1=%{initial},v2=%{pulse},
tr=%{tr},tf=%{tf},pw=%{width}))",

tran<-"(pulse=(v1=%{initial},v2=%{pulse},
tr=%{tr},tf=%{tf},per=%{period}))",

tran<-"(pulse=(v1=%{initial},v2=%{pulse},
tr=%{tr},tf=%{tf}))",

ac<-"(mag=%{ac_mag},phase=%{ac_phase})",
ac<-"(mag=%{ac_mag},phase=0)",
ns<-"(nv=%{white_noise},nf=%{flicker_noise})",
ns<-"(nf=%{flicker_noise})",
ns<-"(nv=%{white_noise})":::::::::::::::::;
}

}

232 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 12: Mapping File Reference
Mapping File Considerations for Mentor Graphics Users
components which have multiple interfaces. The resulting
component_name+interface_name is matched against field one in a specific
mapping file entry.

For example, the $MGC_APLIB/opamp_5pin contains 3 part interfaces:
MG_STD, ANSI, and OLD. Prior to Release 4.3 the mapping file would have an
entry as follows:

“opamp_5pin"::::: etc.

Now the following three entries are required:

"opamp_5pin:MG_STD"::::: etc.
"opamp_5pin:ANSI"::::: etc.
"opamp_5pin:OLD"::::: etc.

Since the new component_name:interface_name contains an embedded ":"
character, note the necessity of using "" characters around the field one value.

For each primitive instance, the component_name is used in field one (no
interface name is needed). For example, all symbols in
$SABER_MGC8_SYMBOLS libraries have interface names the same as the
component names, so these components do not need the
component_name:interface_name format. Whenever the interface name of the
instance symbol is different from the component name, the
component_name:interface_name format must be used in field one.

As another example, assume a component called /homes/my_home/
my_designs/transistor contains the following symbol names, interface names,
and port definitions:

Symbol Name Interface Name Ports

npn BJT C, B, E

pnp BJT C, B, E

nmos MOS D, G, S, B

pmos MOS D, G, S, B

njfet JFET D, G, S

pjfet JFET D, G, S
Saber® Managing Symbols and Models User Guide 233
Z-2007.03

Chapter 12: Mapping File Reference
Mapping File Considerations for Mentor Graphics Users
In this case, to map the symbol "pnp" would require a specific mapping file
entry that appear as follows:

"transistor:BJT"::::: etc.

This mapping would also apply to the "npn" symbol, since it belongs to the
same interface as symbol "pnp".

Note that it is the Interface Name, not the Symbol Name, that gets used in the
mapping.
234 Saber® Managing Symbols and Models User Guide
Z-2007.03

13
13Using a Mapping File to Convert SPICE Symbols

The following sections contain a list of the mapping functions available for
converting SPICE symbols, and two examples demonstrating the use of these
mapping functions. These examples assume you are using the Frameway
integration into the Mentor Graphics environment (therefore the references to
the accuparts_lib). However, all of these mapping functions are also available
with the other Frameway integrations and Sketch.

Mapping Functions Used to Convert SPICE Symbols
Inverter Example
Transmission Line Example

Mapping Functions Used to Convert SPICE Symbols

The netlisters include a set of mapping functions that you can use in a mapping
file to convert schematic properties in SPICE syntax to simulation parameters
in the syntax of the MAST analog hardware description language. These
mapping functions are:
■ spsource

translates SPICE source parameters to MAST
■ spvalues

translates a general SPICE parameter list to MAST
■ spresvals

translates a SPICE resistor parameter list to MAST
■ spstorage

translates SPICE capacitor or inductor parameters to MAST
Saber® Managing Symbols and Models User Guide 235
Z-2007.03

Chapter 13: Using a Mapping File to Convert SPICE Symbols
Inverter Example
■ sptran
translates a SPICE transistor or diode parameter list to MAST

■ spopttran
translates the parameter list for a transistor or diode that does not have the
model name in it

■ sptranmod
extracts the model name from a parameter list for a diode or a transistor

■ spifpoly
If the SPICE parameter list for a capacitor or an inductor has poly
parameters in it, it returns the second argument (typically the name of the
template that implements the poly parameters for the device). Otherwise, it
returns the third argument (typically the name of the template that does not
implement the poly parameters).

Inverter Example

This section uses an obsolete file, mentos8.map, as the basis for the example.
The example is for illustration purposes only.

The first example demonstrates the use of spstorage, spifpoly, and spopttran in
a transistor level model for the inverter that appears in the following figure. The
mapping functions do not translate the model cards from a SPICE deck, as
these are not stored in the schematic. You should use the SPITOS program to
translate the SPICE model cards into MAST syntax.
236 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 13: Using a Mapping File to Convert SPICE Symbols
Inverter Example
In the following example, the model cards have been translated and placed in a
file named ringmods.sin. This first example makes use of the following portion
Saber® Managing Symbols and Models User Guide 237
Z-2007.03

Chapter 13: Using a Mapping File to Convert SPICE Symbols
Inverter Example
of mentos8.map to choose the proper templates and convert the simulation
parameters for the npn_4t, capacitor, and mosfet symbols of accuparts_lib.

When you select the Report > Object menu item in the schematic editor with
the capacitor symbol selected, the following abstracted list of properties is
reported:

tables {
Analogy_spice_pins[POS]->p,[pos]->p,
[NEG]->m,[neg]->m,
[P1]->pp,[p1]->pp,
[N1]->pm,[n1]->pm,
[P2]->sp,[p2]->sp,
[N2]->sm,[n2]->sm,
[*]->*

Analogy_bjt_4pins[sub]->s,[SUB]->s,[*]->*
}

saber {
#Generic entry
accuparts_lib:comp::::::::::::inst::::::: {
#Specific cell entries
npn_4t:q::model,<-spopttran(instpar,"bjt")\
::Analogy_bjt_4pins[<>]:::::::::::::::;

capacitor:"%{spifpoly(instpar,"spcp","spc")}",c\
::<-spstorage(instpar,"capacitor")\
::Analogy_spice_pins[<>]:::::::::::::::;

mosfet:m::model,<-spopttran(instpar,"mosfet")
:::::::::::::::::; #ports match

}

}

Instance Name Location Version

I$15 $MGC_APLIB/capacitor/capacitor (8.75, -2.50) 1

Property Name Value Type Location Switches

T$530 INST C1 string (8.44,-2.13) -Variable
Initially on
Symbol, Value
Modified
238 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 13: Using a Mapping File to Convert SPICE Symbols
Inverter Example
The template for this instance of the capacitor symbol is selected by the
"%{spifpoly(instpar,"spcp","spc")}" entry in the second field of the specific
symbol mapping entry. The spifpoly function determines if there are poly
parameters on the instpar property of the symbol instance. Since there is, the
spcp template is chosen, since its name was given as the second argument to
the spifpoly mapping function. Furthermore, the <-
spstorage(instpar,"capacitor") entry in the fourth field of the specific symbol
mapping entry causes the instpar property value:

POLY 1e-12 0 0

to be translated to the parameter list:

pc=[1e-12,0,0]

in the netlist for the simulator. The second argument, "capacitor" of the
spstorage mapping function informs the function as to what type of device the
function is being used for, so that the property parameter name (pc) can be
chosen. The two legal values for the second argument of the spstorage
mapping function are capacitor and inductor.

The remaining devices in the schematic are transistors that are all mapped in a
similar fashion. When you select Report > Object on some mosfet and npn_4t
symbols in the schematic, the following abstracted list of properties is reported.

T$543 INSTPAR POLY
1e-12 0 0

string (8.44,-2.31) -Variable
Initially on
Symbol, Value
Modified

Instance Name Location Version

I$6 $MGC_APLIB/mosfet/mosfet (3.00,3.50) 1

Property Name Value Type Location Switches

T$771 SaberPrepe
nd

ringmode string (2.25,3.31) -Not Visible

Property Name Value Type Location Switches
Saber® Managing Symbols and Models User Guide 239
Z-2007.03

Chapter 13: Using a Mapping File to Convert SPICE Symbols
Inverter Example
T$201 INST M1 string (3.29,3.76) -Variable
Initially on
Symbol, Value
Modified,
Attribute
Modified

T$204 INSTPAR l=1e-06
w=3.33e-05
as=0 ad=0
ps=0 pd=0

string (3.29,4.14) -Variable
Initially on
Symbol, Value
Modified

T$205 MODEL penh string (3.29,3.95) -Variable
Initially on
Symbol, Value
Modified,
Attribute
Modified

Instance Name Location Version

I$4 $MGC_APLIB/mosfet/mosfet (3.00,2.50) 1

Property Name Value Type Location Switches

T$125 INST M2 string (3.29,2.24) -Variable
Initially on
Symbol, Value
Modified

T$128 INSTPAR l=1e-06
w=5e-06
as=0 ad=0
ps=0 pd=0

string (3.29,1.86) -Variable
Initially on
Symbol, Value
Modified

T$129 MODEL nenh string (3.29,2.05) -Variable
Initially on
Symbol, Value
Modified

Property Name Value Type Location Switches
240 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 13: Using a Mapping File to Convert SPICE Symbols
Inverter Example
The model entry in the fourth field of the specific symbol entries for the
transistors specifies that model is a parameter for the template, and that the
value of the model property is to be taken as the value of the model parameter.
Since the value of the model parameter is an identifier, the netlister recognizes
that it must get the actual model values elsewhere and make external
declarations:

external q..model npnbjt

external m..model nenh, penh

for the models npnbjt, nenh, and penh set in the schematic. The SaberPrepend
property with value ringmods causes the netlister to add the line:

<ringmods.sin

at the top of the netlist to include the model definitions:

Instance Name Location Version

I$1 $MGC_APLIB/npn_4t/npn_4t (6.50,-1.00) 1

Property Name Value Type Location Switches

T$63 MODEL npnbjt string (6.69,-2.44) -Variable

T$12 INST Q1 string (6.69,-2.15) -Variable Initially
on Symbol,
Value Modified

T$30 INSTPAR ic 1.5 6 string (6.69,-1.63) -Variable Initially
on Symbol,
Value Modified

q..model npnbjt = (type=_n,is=4.8e-18,bf=100,nf=1,
ikf=0.00096,br=8,nr=1,ikr=0.02,rb=200,re=15,rc=150,
cje=1.5e-14,mje=0.5,tf=2e-11,xtf=100,vtf=3,itf=0.04,
tr=4e-10,cjc=2e-14,mjc=0.5,cjs=8e-14,mjs=0.5)
Saber® Managing Symbols and Models User Guide 241
Z-2007.03

Chapter 13: Using a Mapping File to Convert SPICE Symbols
Inverter Example
that were converted with SPITOS.

The <-spopttran(instpar,"bjt") entry in the fourth field of the specific symbol
entry for the npn_4t transistor specifies that the optional parameters for a bjt
are to be converted from the instpar property and placed at the end of the
netlist entry for the transistor. Similarly, the same actions are performed for the
<-spopttran(instpar,"mosfet") entry for the mosfet. The four legal values for the
second argument of the spopttran mapping function are bjt, diode, jfet, and
mosfet.

m..model nenh = (type=_n,level=2,vto=0.626634,
kp=5.28837e-05,gamma=0.287822,phi=0.880849,
cgso=2.89e-10,cgdo=2.89e-10,rsh=68,cj=0.000345,
mj=0.916,cjsw=1.74e-10,mjsw=0.195,tox=2.25e-08,
nsub=9.31807e+16,nss=3e+10,nfs=0.01,tpg=1,xj=9e-07,
ld=0,uo=511.152,ucrit=200,uexp=0.0161578,vmax=57064.,
neff=0.261026,delta=3.02002)

m..model penh = (type=_p,level=2,vto=-0.617486,
kp=1.93032e-05,gamma=0.527415,phi=0.85,cgso=3.35e-10,
cgdo=3.35e-10,rsh=154,cj=0.000421,mj=0.3285,
cjsw=2.23e-10,mjsw=0.307,tox=2.25e-08,
nsub=8.55587e+14,nss=3e+10,nfs=1e+11,tpg=-1,
xj=5.03159e-09,ld=6e-08,uo=33.9632,ucrit=98755.5,
uexp=0.141605,vmax=6786.31,neff=12.182,delta=6.01138)
242 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 13: Using a Mapping File to Convert SPICE Symbols
Inverter Example
When a symbol for this inv schematic is made and instantiated eleven times,
along with a vdd source, the following netlist results:

##

Netlist for design ring

Created by the Netlister Toolkit 3.2-2.2

Created on Fri Jun 24 16:00:56 1994.

##

<ringmods.sin

##

Intermediate template inv

##

template inv out:out in:in ground:0 vdd:vdd

{

external q..model npnbjt

external m..model nenh, penh

q.Q1 c:vdd e:out s:0 b:n2 = model=npnbjt, ic=[1.5,6]

q.Q2 c:out e:0 s:0 b:n3 = model=npnbjt, ic=[.4]

m.M2 d:n2 g:in s:0 b:0 = model=nenh, l=1e-06,w=5e-06,as=0,
ad=0,ps=0,pd=0

m.M3 d:out g:in s:n3 b:0 = model=nenh, l=1e-06,w=2e-05,
as=0,ad=0,ps=0,pd=0

m.M4 d:n3 g:n2 s:0 b:0 = model=nenh, l=1e-06,w=5e-06,as=0,
ad=0,ps=0,pd=0

m.M1 d:n2 g:in s:vdd b:vdd = model=penh, l=1e-06,
w=3.33e-05,as=0,ad=0,ps=0,pd=0

spcp.C1 p:out m:0 = pc=[1e-12,0,0]

}

Saber® Managing Symbols and Models User Guide 243
Z-2007.03

Chapter 13: Using a Mapping File to Convert SPICE Symbols
Transmission Line Example
You can use the following simulator commands to simulate this ring oscillator.

Transmission Line Example

This section uses an obsolete file, mentos8.map, as the basis for the example.
The example is for illustration purposes only.

This example demonstrates the use of spresvals, spsource, and spvalues in a
transmission line inverter that appears in the following two figures.

##

Instances found in the top level of design ring#

##

inv.inv1 out:osc in:osc_inv ground:0 vdd:vdd

inv.inv2 out:n2 in:osc ground:0 vdd:vdd

inv.inv3 out:n3 in:n2 ground:0 vdd:vdd

inv.inv10 out:n10 in:n9 ground:0 vdd:vdd

inv.inv11 out:osc_inv in:n10 ground:0 vdd:vdd

inv.inv4 out:n4 in:n3 ground:0 vdd:vdd

inv.inv5 out:n5 in:n4 ground:0 vdd:vdd

v.vdd p:vdd m:0 = dc=6

inv.inv6 out:n6 in:n5 ground:0 vdd:vdd

inv.inv7 out:n7 in:n6 ground:0 vdd:vdd

inv.inv8 out:n8 in:n7 ground:0 vdd:vdd

inv.inv9 out:n9 in:n8 ground:0 vdd:vdd

sigset vdd 6 osc_inv 3 (ip newip, defaultip zero)

tr(tstep 2n, tend 40n, trip newip, mon 10)
244 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 13: Using a Mapping File to Convert SPICE Symbols
Transmission Line Example
Saber® Managing Symbols and Models User Guide 245
Z-2007.03

Chapter 13: Using a Mapping File to Convert SPICE Symbols
Transmission Line Example
This example makes use of the following portion of mentos8.map to choose the
proper templates and convert the simulation parameters for the
voltage_source, resistor, and transmission_line symbols of accuparts_lib:

The value of the instpar property on the voltage_source symbol in the
schematic above can be seen to have the value:

pulse(0 1 0 0.1n)

This value is translated into the proper MAST analog hardware description
language syntax for the simulator by the mapping function spsource in the
specific symbol entry for the voltage_source symbol in the mapping file. The <-
spsource(instpar) entry in the fourth field of the specific symbol mapping
causes the instpar property value: instpar

pulse(0 1 0 0.1n)

to be translated to the parameter list:

tables {
Analogy_spice_pins[POS]->p,[pos]->p,
[NEG]->m,[neg]->m,
[P1]->pp,[p1]->pp,
[N1]->pm,[n1]->pm,
[P2]->sp,[p2]->sp,
[N2]->sm,[n2]->sm,
[*]->*

Analogy_spt[N1]->p1,[n1]->p1,
[N2]->p2,[n2]->p2,
[N3]->m1,[n3]->m1,
[N4]->m2,[n4]->m2

}

saber {
#Generic entry
accuparts_lib:comp::::::::::::inst::::::: {
#Specific cell entries
resistor:r::<-spresvals(instpar)::
Analogy_spice_pins[<>]:::::::::::::::;

transmission_line:spt::<-spvalues(instpar)
::Analogy_spt[<>]:::::::::::::::;

voltage_source:v::<-spsource(instpar)
::Analogy_spice_pins[<>]:::::::::::::::;

}
}

246 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 13: Using a Mapping File to Convert SPICE Symbols
Transmission Line Example
tran=(pulse=(0,1,0,0.1n))

in the netlist for the simulator.

The value of the instpar property on the resistor symbol in the schematic can
be seen to have the value:

50 TC=.015,-.003

This value is translated into the proper MAST analog hardware description
language syntax for the simulator by the mapping function spresvals in the
specific symbol entry for the resistor symbol in the mapping file. The <-
spresvals(instpar) entry in the fourth field of the specific symbol mapping
causes the instpar property value:

50 TC=.015,-.003

to be translated to the parameter list:

50,TC=[.015,-.003]

in the netlist for the simulator.

The value of the instpar property on the transmission_line symbol in the
schematic can be seen to have the value:

Z0=50 TD=1.5ns

This value is translated into the proper MAST analog hardware description
language syntax for the simulator by the mapping function spvalues in the
specific symbol entry for the transmission_line symbol in the mapping file. The
<-spvalues(instpar) entry in the fourth field of the specific symbol mapping
causes the instpar property value:

Z0=50 TD=1.5ns

to be translated to the parameter list:

Z0=50,TD=1.5n

in the netlist for the simulator.
Saber® Managing Symbols and Models User Guide 247
Z-2007.03

Chapter 13: Using a Mapping File to Convert SPICE Symbols
Transmission Line Example
When the schematics are netlisted with the mentos8 netlister, the following
netlist results:

This transmission line inverter can be simulated with the following commands
for the simulator:

##

Netlist for design transline

Created by the Netlister Toolkit 3.3c-2.6

Created on Thu Jun 30 13:54:50 1994.

##

##

Intermediate template tline

##

template tline n1:n1 n2:n2 n3:n3 n4:n4 ground:0

{

spt.t1 p1:n1 p2:n2 m1:n3 m2:n4 = Z0=50,TD=1.5n

spt.t2 p1:n2 p2:0 m1:n4 m2:0 = Z0=100,TD=1n

}

##

Instances found in the top level of design transline

##

v.v1 p:vpulse m:0 = tran=(pulse=(0,1,0,0.1n))

r.r1 p:vpulse m:t1p1pin = 50,TC=[.015,-.003]

r.r2 p:t2m2pin m:0 = 50,tc=[.015,-.003]

tline.x1 n1:t1p1pin n2:0 n3:0 n4:t2m2pin ground:0

dc

tr(tstep 0.1n, tend 40n
248 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 13: Using a Mapping File to Convert SPICE Symbols
Transmission Line Example
The sptranmod and sptran mapping functions are used together when the
entire transistor parameter list is stored in one property such as the instpar
property. Consider an instpar property on a mosfet with value:

mod1 l=10u w=5u ad=2p as=2p

In such a situation, the entry in the fourth field would be:

model<-sptranmod(instpar), \
<-sptran(instpar,"mosfet")

Because the model name is an identifier that will have to be declared, it is
extracted separately with the first expression:

model<-sptranmod(instpar)

which is used to extract only the model name to produce the parameter:

model=mod1

and cause model mod1 to be declared:

external m..model mod1

when the instance is below the top level of the circuit hierarchy. The full
parameter list is provided by the mapping:

<-sptran(instpar,"mosfet")

This produces the rest of the parameter list for the mosfet as follows:

model=mod1,l=10u,w=5u,ad=2p,as=2p

Notice that the model parameter gets listed twice. Although this may seem
unusual, it does not affect processing by the simulator in any adverse way.
Saber® Managing Symbols and Models User Guide 249
Z-2007.03

Chapter 13: Using a Mapping File to Convert SPICE Symbols
Transmission Line Example
250 Saber® Managing Symbols and Models User Guide
Z-2007.03

14
14Using Cadence simInfo to Avoid Mapping Files

This section describes how to use the simInfo section of the CDF with the
Frameway Integration for Cadence. Using simInfo can greatly reduce the need
for Mapping Files. An example SKILL script is introduced, showing how to
create cells that do not need to be mapped. A method is described for updating
the standard Cadence library analogLib with a Saber sub-section. Information
about the pre-defined simInfo properties is provided, listing both those that are
recognized and those that are not recognized. The topics covered in detail
include:

Definitions
Mapping with simInfo
Pre-Defined Properties Recognized by Catos Netlisters
Pre-Defined Properties Not Recognized by Catos Netlisters
Specific Examples Using simInfo
Saber® Managing Symbols and Models User Guide 251
Z-2007.03

Chapter 14: Using Cadence simInfo to Avoid Mapping Files
Definitions
Definitions

Mapping with simInfo

The catos family of netlisters (as of release 4.0-2.8) have been enhanced to
make use of the simInfo section of the CDF. If a Saber sub-section of the
simInfo section exists for a primitive-level component, then the netlister will
read it. This feature reduces the need for mapping files.

Example SKILL Script

An example of how to use the simInfo section is supplied on-line at
$SABER_HOME/user_grp/cds_sim_info. This directory contains an example
SKILL script in the file SaberSimInfo.il. The script can be used to update the
standard Cadence library analogLib with a Saber sub-section of the simInfo
section of a CDF. This script allows the symbols in Cadence's analogLib to be
mapped to MAST templates by using simInfo instead of mapping files. The

CDF In the Cadence paradigm, the Component Description Format (CDF)
assigns attributes, properties, and parameters to components or
libraries of components. When a CDF is attached to a library, all cells
(components) in the library inherit the description. When a CDF is
attached to a cell, the CDF stores information specific to that cell.

cell A cell is a database object that forms a fundamental design unit. A
component of a design. A collection of different aspects of the
component’s implementations, such as schematic, behavioral, or
symbol representations.

simInfo The simInfo (Simulation Information) is one section of the CDF.
SimInfo allows for parameter and terminal specification for a given
simulator. The simInfo section does not define the actual cell
parameters and terminals but does define which cell parameters and
terminals will be netlisted for the specified simulator.

SKILL A programming language developed by Cadence to interface tools to
the Design Framework II environment. SKILL provides database
access, user interface functions, and graphics editing.
252 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 14: Using Cadence simInfo to Avoid Mapping Files
Mapping with simInfo
script also serves as an example of how to create additional cells that do not
need to be mapped. A small sample of this script follows:

Updating the Library

To install the SimInfo mappings, you open the CIW (Cadence’s Command
Interpreter Window) with analogLib in your library search path. Then, in the
CIW, you type

load “SaberSimInfo.il”

This command will create a user CDF with a simInfo section. The simInfo
section contains all the information necessary to map the analogLib symbols to
their corresponding MAST templates.

Recommendations

If you follow the instructions in the previous section, then only the Cadence
symbols (analogLib) will be mapped by using simInfo. The supplied symbols
will retain their mapping by using the standard mapping files provided
(transparently and automatically). This is the mapping arrangement we
recommend. If you wish to add additional symbols, we recommend using
simInfo.

Templates Using the Union Data-Structure

Templates that make use of union data-structures cannot be mapped in the
CDF. Some of the supplied templates use this data-structure. Therefore, we

libID = dmOpenLib("analogLib")

/******** diode -> d ********/

cdfID = cdfGetBaseCellCDF(dmFindCell(libID "diode"))

cdfID->simInfo->Saber = '(nil

 componentName d

 termOrder (PLUS MINUS)

 instParameters (model area vd)

 propMapping (nil ic vd)
Saber® Managing Symbols and Models User Guide 253
Z-2007.03

Chapter 14: Using Cadence simInfo to Avoid Mapping Files
Pre-Defined Properties Recognized by Catos Netlisters
recommend using the standard mapping files to map between supplied
symbols and templates.

If you wish to use simInfo to map all of your symbols, including supplied
symbols, then you must replace any templates that use unions with templates
that do not. Therefore, some new MAST templates are supplied to map the
voltage and current sources and the resistor and capacitor. These templates
can be found in $SABER_HOME/user_grp/cds_sim_info. You should make
sure these templates are in your SABER_DATA_PATH. These templates can
also serve as examples of how to write templates without unions.

Supplied symbols that use these new templates are included in the library:

$SABER_HOME/user_grp/cds_sim_info/NoMapSources

Pre-Defined Properties Recognized by Catos Netlisters

This section describes the pre-defined properties that are recognized by catos
netlisters.

componentName

componentName is the type of component you are creating. The value of this
property should correspond to the name of the MAST template that the symbol
represents. The value of the MAST template property is used to set the
template name for the symbol. If this property does not exist in the Saber sub-
section of the CDF, then the template name will be determined as before.
componentName partially replaces mapping file field number 2.
■ Example: componentName r
■ Example: componentName q

termOrder

termOrder is a list of terminals that define the net order. The nets are
considered to be those nets connecting the terminals in the order given in this
list. The value of this property should be a space-separated list of symbol
terminal names in the same order as the connection point names on the
corresponding template. If this property is used, the termMapping property
should not be used. termOrder partially replaces mapping file field number 9.
254 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 14: Using Cadence simInfo to Avoid Mapping Files
Pre-Defined Properties Recognized by Catos Netlisters
Programmable nodes may also be used to define the net order. To do this, a
property is defined in the CDF for the terminal and given a value of one of the
following
■ A terminal name on the same cell. The programmable terminal will be

connected to the same net as the terminal that is named as the property
value.

■ The net name the terminal is to be connected to.

If the specified property does not exist on the cell, then the following error
message will be displayed in the Simulation Window

Error, there is no property or terminal named
“property_name” on instance “instance_name” as specified
by the termOrder property “value_of_termOrder_property”

Reading of the schematic database continues so that any other errors may be
found. No netlist is written.
■ Example:

termOrder (PLUS MINUS)
■ Example (programmable node set to a net; bn=gnda!):

termOrder (C B E progn(bn))
■ Example (programmable node set to terminal C on the symbol; bn=C):

termOrder (C B E progn(bn))

termMapping

termMapping is used when the MAST template has different names for its
connection points than the symbol has for its terminals, and the termOrder
property is not used. The value of this property is a space-separated list using
the following format:

nil SymbolTermName1 MASTTemplateTermName1 SymbolTermName2
MASTTemplateTermName2 etc.

In this example, SymbolTermName# is a name of a terminal on the symbol,
and MASTTemplateTermName# is a name of the corresponding connection
point in the MAST template. If this property is used, the termOrder property
Saber® Managing Symbols and Models User Guide 255
Z-2007.03

Chapter 14: Using Cadence simInfo to Avoid Mapping Files
Pre-Defined Properties Not Recognized by Catos Netlisters
should not be used. Do not use this property if programmable nodes are
needed. termMapping partially replaces mapping file field number 6.
■ Example: termMapping (nil PLUS p MINUS m)
■ Example: termMapping (nil C c B b E e)

instParameters

instParameters is a list of parameters that are to be included with this cell in the
netlist. The value of this property should be a space separated list of symbol
parameters to be written into the netlist for the cell. If a symbol parameter name
does not match the template parameter name, then the propMapping property
must also be used (see below for an explanation of the propMapping property).
instParameters partially replaces mapping file field number 4. Do not mix the
use of instParameters and mapping.
■ Example: instParameters (r)
■ Example: instParameters (model length width)

propMapping

propMapping allows for entering different CDF parameter names in place of the
names recognized by Analog Artist. The value of this property must use the
following format:

nil MASTTemplateParamName1 CDFParamName1
MASTTemplateParamName2 CDFParamName2 etc.

In this example, MASTTemplateParamName# is a name of a parameter for the
template, and CDFParamName# is the corresponding name of the CDF
parameter on the symbol. propMapping partially replaces mapping file field
number 4.
■ Example: propMapping (nil rnom r)
■ Example: propMapping (nil l length w width)

Pre-Defined Properties Not Recognized by Catos Netlisters

The following pre-defined properties are not recognized by catos netlisters:
256 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 14: Using Cadence simInfo to Avoid Mapping Files
Specific Examples Using simInfo
■ otherParameters
■ macroArguments
■ deviceTerminals
■ permuteRule
■ namePrefix
■ current
■ netlistProcedure
■ modelArguments

Specific Examples Using simInfo

The following examples show specific instances that use the simInfo->Saber
properties.

Example 1: Simple resistor

p m

Symbol: resistor

R1

Instance Properties:
rnom = 10K

simInfo->Saber Properties
componentName = r
instParameters = (rnom)

Netlist Entry
r.R1 p:neta m:netb = rnom=10K

neta netb
Saber® Managing Symbols and Models User Guide 257
Z-2007.03

Chapter 14: Using Cadence simInfo to Avoid Mapping Files
Specific Examples Using simInfo
Example 2: Resistor, parameter mapping and term ordering

Example 3: Simple transistor with terminal mapping

PLUS MINUS

Symbol: resistor

R1

Instance Properties:
res = 10K

simInfo->Saber Properties
componentName = r
termOrder = (PLUS MINUS)
instParameters = (res area)
propMapping = (nil rnom res)Netlist Entry

r.R1 neta netb = rnom=10K

neta netb

B

Symbol: transistor

Instance Properties:
model = my_model1

simInfo->Saber Properties
componentName = q_3p
termMapping = (nil e E b B c C)
instParameters = (model)Netlist Entry

q_3p.Q1 e:netc b:neta e:netb = model=my_model1

E

Q1

C

neta
netb

netc
258 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 14: Using Cadence simInfo to Avoid Mapping Files
Specific Examples Using simInfo
Example 4: Transistor with terminal ordering

Example 5: Transistor with programmable terminals and
property mapping

B

Symbol: transistor

Instance Properties:
model = my_model1

simInfo->Saber Properties
componentName = q_3p
termOrder = (E B C)
instParameters = (model area)

Netlist Entry
q_3p.Q1 netc neta netb

E

Q1

C

neta
netb

netc

=model=my_model1, area=10m

area = 10m

B

Symbol: transistor

Instance Properties:
model = my_model1

simInfo->Saber Properties
componentName = q
termOrder = (E B C prog(bn))
instParameters = (model a)

Netlist Entry
q.Q1 netc neta netb netc

E

Q1

C

neta
netb

netc

= model=my_model1, area=10m

a = 10m

propMapping = (nil area a)
bn = E
Saber® Managing Symbols and Models User Guide 259
Z-2007.03

Chapter 14: Using Cadence simInfo to Avoid Mapping Files
Specific Examples Using simInfo
Example 6: Transistor with terminal/programmable terminals
and property mapping

B

Symbol: transistor

Instance Properties:
model = my_model1

simInfo->Saber Properties
componentName = q
termOrder = (E B C prog(bn))
instParameters = (model a)

Netlist Entry
q.Q1 netc neta netb netd

E

Q1

C

neta
netb

netc

bn = netd

= model=my_model1, area=10m

a = 10m
propMapping = (nil area a)
260 Saber® Managing Symbols and Models User Guide
Z-2007.03

15
15The Template Information System

The Template Information System generates files containing information that
can be derived from a template’s source code without performing simulations.
These files, called template information files, have an .ai_tdb extension and
reside in the same directory as the template file. The Template Information
System creates one template information file for each user-created MAST
template file having an .sin extension.

The topics discussed in detail in this section are:

Template Information System Updates
Manually Creating Template Information Files
Editing Template Files with the Text Editor

Template Information System Updates

The Template Information System normally updates automatically, but in some
cases the system must be updated manually. The following sections describe
how the differences between automatic and manual updating.
Saber® Managing Symbols and Models User Guide 261
Z-2007.03

Chapter 15: The Template Information System
Manually Creating Template Information Files
Automatic Update

In most cases, the Template Information System automatically updates or
creates template information files without requiring input from the user. These
updates occur
■ if the .ai_tdb file for a user-created template does not exist.
■ if the .ai_tdb file exists but its time stamp is earlier than the time stamp of the

associated user-created template file.
■ whenever the tools making use of this information—such as the netlister,

Saber Sketch, Monte Carlo, or Vary—need to access a template’s .ai_tdb
file.

If you move templates between directories, you can delete their associated
.ai_tdb files in order to force the Template Information System to generate new
.ai_tdb files to make sure that they are up-to-date.

Manual Update

The only cases when you need to manually employ the Template Information
System to update .ai_tdb files are
■ if you are the site manager with read and write permissions for the user-

created template, and you have been requested, by a user without the
proper permissions, to perform an update.

■ when you would like to update more than one template information file at a
time.

■ when you would like to use the Template Information System as a MAST
syntax checker on user-created templates prior to netlisting circuits using
these templates.

Manually Creating Template Information Files

If you would like to manually create a template information file for a template
you have the option of using a script from a command line or by using menu
selections from a Saber application.
262 Saber® Managing Symbols and Models User Guide
Z-2007.03

Chapter 15: The Template Information System
Manually Creating Template Information Files
Using the command line script

A command-line script has been added to make it easy to update the template
database files without invoking an interactive application. The usage of the
script is:

ai_mk_tdb [-help] [-gui] [-sdp] file/dir...

For more information on this command invoke:

ai_mk_tdb -help

Using the menu selections

To use menu selections to create template information files, perform these
steps:

1. From either Saber Sketch or Saber Guide, select the Edit>Update Template
Information... menu choice in the pulldown menu bar to invoke the Generate
Template Information dialog box.

From the Frameway for Viewlogic, the Frameway for Mentor Graphics, or
the Frameway for Cadence, select the Saber > Netlist > Update Template
Information menu choice in the pulldown menu bar to invoke the Generate
Template Information dialog box.

2. Double click on the + next to the directory listed in the Process listbox.

Templates in the SABER_DATA_PATH are listed below their directory
location.

3. Determine which templates information files you want to update.

• Update template information files by leaving them in the Process listbox.

For this operation to be successful, you must be able to write to the files.

• To leave template information files unmodified, click the <-- button to
place them into the Don’t Process listbox.

4. Click OK.

While the template information files are being updated, the Generating
Template Information dialog box gives status on the update.

If the update succeeds, you are ready to proceed with your analysis.
Saber® Managing Symbols and Models User Guide 263
Z-2007.03

Chapter 15: The Template Information System
Editing Template Files with the Text Editor
If any templates have MAST syntax errors in them, a list of these templates
will be included in the Generating Template Information dialog box. To edit
these templates

a. Click on the template in the Errors listbox that you want to edit.

b. Click Fix to invoke the text editor.

c. Editing Template Files with the Text Editor gives instructions on editing
these template files.

Editing Template Files with the Text Editor

When you attempt to generate a template information file, either from the menu
pulldown bar or by invoking the Saber Sketch Property Editor on a template’s
symbol, Saber’s MAST parser is run on the template in order to detect syntax
errors.

If there are errors, you may edit the template file using the Template
Information System text editor.

The text editor contains two main windows:
■ The Transcript window displays a record of the transcript of the attempt to

compile the template.
■ The Editor window displays the editable text of the template.

Errors in the MAST syntax of a template file do not necessarily indicate that the
template will cause errors if included in a netlist. For example, the MAST parser
might return errors if the file does not contain a complete template, or if your
SABER_DATA_PATH is set up incorrectly.
264 Saber® Managing Symbols and Models User Guide
Z-2007.03

GlossaryGL

AHDL
Analog Hardware Description Language. A term for a modeling language that
is capable of representing both the structural and behavioral properties of a
design. Structural refers to design connectivity (netlist information). Behavioral
refers to the mathematical equations that underlie each model. An AHDL (such
as MAST) commonly features hierarchical circuit descriptions and parameter
passing. Advanced implementations include modeling mechanisms that
process analog and digital signals, as well as nonelectrical phenomena.

Analog Model
An analog model is one in which all variables change in a piece-wise
continuous manner.

Argument
An Argument is a coefficient of a model equation, usually provided as a
template variable. Argument is often used interchangeably with parameter.
Arguments are limited to numeric values. See parameter.

Attribute
Attribute is generally interchangeable with property. Some schematic capture
vendors refer to symbol variables as attributes, but most vendors refer to them
as properties. This document refers to them as properties. See property.

Characterization
Characterization is the process of converting a template (general model) into a
component (specific model). A component usually corresponds to a specific
physical part. Characterization is accomplished by giving values to the
parameters of the template, usually including those with default values.

Circuit
A circuit is a group of models that connect to each other and function together
to provide a known output for a given input. Somewhat synonymous with
design, circuit generally (though not necessarily) refers more to those with
exclusively electrical models. See design.
Saber® Managing Symbols and Models User Guide 265
Z-2007.03

Glossary
Component
1) A component is a model that has been characterized to represent a more
specific system element. A component usually corresponds to a commercially-
available part. A component usually passes appropriate parameter values to a
more general template. 2) A template instance in a netlist is also referred to as
a component. See template.

Component Library
The component library is a collection of component templates that may be
purchased as a simulator option.

Connection Point
The connection point is a channel for dynamic communication between a
model and its environment. In a MAST template, it is a pin, a state, a var, or a
ref.

Design (noun)
A design is a group of models that connect to each other and function together
to provide a known output for a given input. Somewhat synonymous with
circuit, design is the more general term. See circuit.

Digital Model
A digital model is described by algorithms that execute asynchronously.

Digital Simulation
In digital simulation, the models respond to scheduled events at their inputs,
and their outputs assume only a finite number of values from a predefined set
of discrete states. These discrete states are usually referred to as logic levels.

Element (general)
Element is a very generic term for any symbol or model in a system, or for a
block that requires a symbol or model.

Encrypted Template
An encrypted template is one in which some of the text has been transformed
into random characters so that the contents are not human-readable. This
transformation is done for one or more of the following reasons:
■ To allow separate authorization of optional products
■ To ensure library integrity
■ To honor third-party agreements to protect proprietary information
266 Saber® Managing Symbols and Models User Guide
Z-2007.03

Glossary
External Declaration
An external declaration is the declaration of a reference to a variable or pin that
has been declared in an instance closer to the root of the current system model
hierarchy.

HDL
Hardware Description Language. See AHDL.

Hypermodel Template
A hypermodel template describes the interface between connection points of
different kinds. For example, between a digital pin and an analog pin. Instances
of Hypermodel templates do not represent physical parts in the design.

Include File
A file whose content replaces the calling instruction (include instruction) in the
code of another file.

Input
Input is a synonym for a ref declared in the template header that is directly
wired to a var.

Instance
See symbol instance or template instance.

Interface Template
A special kind of template that acts as a “translator” when connected between
models that have different types of connection points (for example, electrical
and mechanical). One interface template is required for each connection point
(pin) tied to a connection point of another signal type. A hypermodel template is
a special kind of interface template that is restricted to the electrical domain.
See hypermodel.

Mapping
Mapping is the process of associating a symbol with a model (component or
template). There are three mapping techniques: name matching, specially
recognized properties, and mapping files.

Mapping File
A mapping file is a text file containing information that tells the netlister how to
map (correlate) a symbol to its model. Using a mapping file is just one way (of
three) to map a symbol.

MAST
MAST is the name of the modeling language. It is one implementation of an
AHDL. MAST is capable of representing both the structural and behavioral
properties of a design. Structural refers to design connectivity (netlist
Saber® Managing Symbols and Models User Guide 267
Z-2007.03

Glossary
information). Behavioral refers to the mathematical equations that underlie
each model. MAST features hierarchical circuit descriptions, parameter
passing, and modeling mechanisms that process analog and digital signals, as
well as nonelectrical phenomena. See AHDL.

Model
Model is a loosely defined term. It is predominantly used in the colloquial sense
to mean some representation (mathematical equations) that approximates the
behavior of a real or imagined system element. Somewhat interchangeable
with template, model is the more general term. Model can also mean 1) either a
template or a component; 2) simply a list of parameters that, when applied to a
particular template, turn it into a component for a particular part (a parameter
list is often the type of model that is supplied by some of the parts
manufacturers).

Model Definition
A model definition is a set of parameters, under one name, used to
characterize a template so that it performs as a component.

Model File
 A model file is a text file containing one or more model definitions.

Net
The point (in a schematic) where two or more symbols connect (by wires). Net
and node are sometimes used interchangeably. See Node.

Netlist
A netlist is a text file (.sin extension) that is an input to the simulator. A netlist is
a description of a design that lists each element of the design, its values, and
its interconnections with other design elements. A netlist can be created by
hand but is more typically the output of a program called a netlister, which
combines information from a schematic, the models, and a mapping file (if
used).

Netlist Entry (netlist statement)
See template instance.

Node
The point (in a netlist) where two or more models connect. Node and net are
sometimes used interchangeably. See Net.
268 Saber® Managing Symbols and Models User Guide
Z-2007.03

Glossary
Parameter
A parameter is a variable that is part of a model (template) and, therefore,
needed for simulation. A parameter is generally (but not necessarily) a
coefficient of a model equation. Parameter is often used interchangeably with
argument. Parameters are not limited to numeric values. See argument.

Part
1) A part consists of all the information needed to describe a system element.
This information includes the symbol, the model (either template or
component), and any underlying parameters. 2) A part sometimes refers to the
physical device.

Pin
1) A pin is the name for an interface of a template to a netlist. 2) A generic term
for any connection point. See port.

Port
An input or output connection point of a model or symbol, but more often used
to refer to symbol connections. See pin.

Property
A property is a type of variable that is part of a symbol. Properties are used to
characterize the symbol, often for programs outside of the graphic editor.
Properties of symbols may be passed-on to the parameters of a model. See
attribute.

ref
A ref (also called reference connection) is a system variable that is a type of
connection point between templates. The connection point (ref) in one template
reads the value of a var in another template without the need of a wire
connection (as in a dependent source).

Reference Connection
See ref.

Symbol
A symbol is the graphic object used in a schematic capture tool to represent a
system element (part). It is used only to define the connections to the other
system elements. It does not model the behavior of a part. However, a symbol
can pass properties to a template. A symbol can exist as a stored file
(sometimes called base symbol) or as one or more instances in a schematic.
See symbol instance.
Saber® Managing Symbols and Models User Guide 269
Z-2007.03

Glossary
Symbol Instance
A symbol instance is the occurrence (instance) of a symbol in a schematic. The
instance will include the name of the symbol as well as a reference designator
(also called instance designator) that distinguishes it from other instances of
the same symbol in that schematic. See symbol.

Template
A template is a text file that contains the model description, written in the MAST
language, for use in simulation. A template models a general class of parts.
Parameters must be supplied to model a specific part. A template can exist as
a stored file (sometimes called base template) or as one or more instances in a
netlist. See template instance.

Template Instance
A template instance is a reference to a template in a netlist. Each instance has
the form template_name.reference_designator connections = arguments,
where template_name is the name of the template, reference_designator is a
name that distinguishes this instance from all other instances of the same
template in the netlist, connections is a list of pins, states, and system variables
at the connection points of the template, and arguments is a list of the
arguments for this instance. See template.

var
A var is a system variable that must have a template equation describing how
the simulator is to solve for the var. See ref.
270 Saber® Managing Symbols and Models User Guide
Z-2007.03

Index

A
Adding Models to Your Library Directories 15
Associating the Symbol with the Model (Mapping)

24

B
Border Annotation Drawing — Reserved Properties

116
Bundle Harness Component — Reserved

Properties 145
Bundle Inline Component — Reserved Properties

148
Bundle Passive — Reserved Properties 150
Bundle Segment 152
Bundle Segment — Reserved Properties 151
Bundle Segment Definition 153
Bundle Segment Definition — Reserved Properties

152
Bundle Shell — Reserved Properties 141
Bundle Splice — Reserved Properties 144
Bundle Terminal — Reserved Properties 143

C
Cable 134, 136
Cable Parts Database — Reserved Properties 155
Comparison of Mapping Techniques 52
Component — Reserved Properties 120
Creating a Mapping File 158
Creating Symbols and Symbol Properties

Corresponding to Template Features 78
Creating Your Part Directories 10

D
Definitions 252
Drawing 116

E
Editing Template Files with the Text Editor 264
Example of Name Mapping 80
Examples of Mapping Methods 53

F
Free Terminal — Reserved Properties 127

G
Global Connector Symbol — Reserved Properties

115
Graphics Definition — Reserved Properties 118

H
HDL Symbol — Reserved Properties 112
Hierarchical Block Symbol — Reserved Properties

111
Hierarchical Connector Symbol — Reserved

Properties 113
How the Applications Find Files 27
How to Compile and Link Libraries of Routines 44
How to Make a Library of Routines Available to the

Saber Simulator 34
How to Make a Single Routine Available to the

Saber Simulator 33, 43

I
Important Definitions 1
Inline Connector Symbol — Reserved Properties

137
Interaction of Mapping, Special Properties, and

Defaults 228
Inverter Example 236
iQBus Symbols and Ports 120

L
List of Specially-Recognized Properties 88
271

Index
M

M
Making Symbols Available in Saber Sketch 31
Making Symbols Available in SaberSketch 39
Manually Creating Template Information Files 262
Mapping File Considerations for Mentor Graphics

Users 230
Mapping File Examples 162
Mapping Functions Used to Convert SPICE

Symbols 235
Mapping with simInfo 252
Modeling the System Elements 19
Modifying Your Search Paths 11

O
Off-page Connector Symbol — Reserved

Properties 115
One-Step C Language Compiling and Linking 43
One-Step Dynamic Library Linking 43
One-Step FORTRAN Language Compiling and

Linking 44
On-page Connector Symbol — Reserved

Properties 114
Other Factors that Can Determine the Mapping

Method 52
Other Reserved Properties in SaberSketch 119
Overview of Mapping Files 157
Overview of Mapping Techniques 49
Overview of Specially-Recognized Properties 87

P
Parts Databases 153
Passive Parts Database — Reserved Properties

156
Physical Cable — Reserved Properties 134
Physical Cable Definition — Reserved Properties

136
Physical Splice — Reserved Properties 130
Physical Wire — Reserved Properties 132
Port 112, 113, 114, 115, 116, 119, 124, 127,

130, 132, 138, 139, 141, 143, 144, 145,
147, 149, 151

Pre-Defined Properties Not Recognized by Catos
Netlisters 256

Pre-Defined Properties Recognized by Catos
Netlisters 254

Property Value Limitations (Mentor Graphics Only)
91

R
Reference Symbol — Reserved Properties 139
Reserved Properties on Symbols and Ports 111

S
SaberBundle Symbols and Ports 141
SaberSketch Symbols and Ports 111
Saving your New Model in a Retrievable Location

25
Selecting or Creating a Symbol 23
Sheet Symbol — Reserved Properties 138
Shell Definition — Reserved Properties 124
Shell Parts Database — Reserved Properties 153
Specially-Recognized Properties Descriptions 95
Specific Examples Using simInfo 257
Standard Mapping Files 191
Structure of a Mapping File 193
Symbol 112, 113, 114, 115, 116, 118, 120, 124,

128, 131, 138, 139, 140, 141, 143, 144,
146, 148, 150

T
Template Information System Updates 261
The C Language Header 42
The FORTRAN Language Header 42
Transmission Line Example 244
Typical Scenario for Symbol and Model Usage 3

U
User Mapping Files 193
Using C or FORTRAN Routines Called by

Templates 32, 41
Using Custom Models From Your Capture Tool 31
Using Supplied Vs. Other Symbols 6
Using Templates Written in MAST 29, 40

W
What Is a Mapping File? 158
What is Mapping? 47
When Can Name Matching be Used? 77
272

Index
W

When is Mapping Necessary? 48
Why Do Symbols and Models Need to Be

Managed? 5
Why Keep a Custom Model Library? 7

Wire 132

Wire Parts Database — Reserved Properties 154
273

Index
W

274

	Contents
	1 Introduction to Managing Symbols and Models
	Important Definitions
	Typical Scenario for Symbol and Model Usage
	Why Do Symbols and Models Need to Be Managed?
	Reasons for Using Other Symbols
	Reasons for Using Custom Models

	Using Supplied Versus Other Symbols
	Availability of Supplied Symbols

	Why Keep a Custom Model Library?

	2 Structuring Your Custom Model Library
	Creating Your Part Directories
	Consider Directory Names
	Consider Internal Conventions
	Limit the Number of Directories
	Procedure for Creating Your Part Directories

	Modifying Your Search Paths
	How the Applications Find Files
	Procedure for Modifying Your SABER_DATA_PATH Variable
	UNIX Users
	Windows NT Users

	Adding Models to Your Library Directories
	Model Names
	Procedure for Adding Models to Your New Library
	Making Your New Model Available for Schematic Capture Tool
	Making Symbols Available in Saber Sketch

	3 Creating and Adding Models to Your Custom Library
	Modeling the System Elements
	Other Sources of Existing Models
	Parameterize a General Model (Characterization)
	Hierarchical (Macro) Modeling
	Translate a SPICE Model to a MAST Model
	Graphical Modeling
	MAST Modeling

	Selecting or Creating a Symbol
	Using an Existing Symbol
	Using a Supplied Symbol
	Using a Symbol from Another Schematic Capture Tool

	Creating a Custom Symbol

	Associating the Symbol with the Model (Mapping)
	Saving your New Model in a Retrievable Location

	4 Making User Templates Visible for UNIX
	How the Applications Find Files
	Using Templates Written in MAST
	Using Custom Models From Your Capture Tool
	Making Symbols Available in Saber Sketch

	Using C or FORTRAN Routines Called by Templates
	How to Make a Single Routine Available to the Saber Simulator
	How to Make a Library of Routines Available to the Saber Simulator

	5 Making User Templates Visible for Windows
	How the Applications Find Files
	Making Symbols Available in Saber Sketch
	Using Templates Written in MAST
	Using C or FORTRAN Routines Called by Templates
	The C Language Header
	The FORTRAN Language Header
	How to Make a Single Routine Available to the Saber Simulator
	One-Step Dynamic Library Linking
	One-Step C Language Compiling and Linking
	One-Step FORTRAN Language Compiling and Linking

	How to Compile and Link Libraries of Routines

	6 Choosing a Mapping Technique
	What is Mapping?
	When is Mapping Necessary?
	Overview of Mapping Techniques
	Overview of Name Matching
	Overview of Specially-Recognized Properties
	Overview of Mapping Files
	Use Unaltered Symbols

	Comparison of Mapping Techniques
	Other Factors that Can Determine the Mapping Method
	Examples of Mapping Methods
	Symbol with no-default properties in a structure
	Creating, implementing, and testing the ctrl_1 symbol

	Symbol with default-valued properties in a structure
	Creating, implementing, and testing the ctrl_2 symbol

	A template containing a ref connection point
	Creating, implementing, and testing the symbol

	A template containing an enumerated parameter
	Creating, implementing, and testing the symbol

	A user-created symbol for a digital part
	Creating, implementing, and testing the inverter symbol

	A symbol for a hierarchical design
	Creating, implementing, and testing the inverter2 symbol

	7 Using Name Matching to Map Symbols
	When Can Name Matching be Used?
	Creating Symbols and Symbol Properties Corresponding to Template Features
	General Guidelines for Symbol Creation
	For Viewlogic users only

	Example of Name Mapping
	Creating a Symbol and a Template for a Three-Phase Current Source
	Creating, Implementing, and Testing the i3ph Symbol

	8 Using Specially-Recognized Properties for Mapping
	Overview of Specially-Recognized Properties
	List of Specially-Recognized Properties
	Property Value Limitations (Mentor Graphics Only)
	Using SaberPrepend to Avoid Property Value Limitations
	Using the SaberInclude File to Avoid Property Value Limitations

	9 Specially-Recognized Properties Reference
	Specially-Recognized Properties Descriptions

	10 Reserved Properties on Symbols and Ports
	Saber Sketch Symbols and Ports
	Hierarchical Block Symbol - Reserved Properties
	Symbol
	Port

	HDL Symbol - Reserved Properties
	Symbol
	Port

	Hierarchical Connector Symbol - Reserved Properties
	Symbol
	Port

	On-page Connector Symbol - Reserved Properties
	Symbol
	Port

	Off-page Connector Symbol - Reserved Properties
	Symbol
	Port

	Global Connector Symbol - Reserved Properties
	Symbol
	Port

	Border Annotation Drawing - Reserved Properties
	Drawing

	Graphics Definition - Reserved Properties
	Symbol
	Port

	Other Reserved Properties in Saber Sketch

	Saber iQBus Symbols and Ports
	Component - Reserved Properties
	Symbol
	Port

	Shell Definition - Reserved Properties
	Symbol
	Port

	Free Terminal - Reserved Properties
	Symbol
	Port

	Physical Splice - Reserved Properties
	Symbol
	Port

	Physical Wire - Reserved Properties
	Wire

	Physical Cable - Reserved Properties
	Cable

	Physical Cable Definition - Reserved Properties
	Cable

	Inline Connector Symbol - Reserved Properties
	Symbol
	Port

	Sheet Symbol - Reserved Properties
	Symbol
	Port

	Reference Symbol - Reserved Properties
	Symbol
	Port

	Saber Bundle Symbols and Ports
	Bundle Shell - Reserved Properties
	Symbol
	Port

	Bundle Terminal - Reserved Properties
	Symbol
	Port

	Bundle Splice - Reserved Properties
	Symbol
	Port

	Bundle Harness Component - Reserved Properties
	Symbol
	Port

	Bundle Inline Component - Reserved Properties
	Symbol
	Port

	Bundle Passive - Reserved Properties
	Symbol
	Port

	Bundle Segment - Reserved Properties
	Bundle Segment

	Bundle Segment Definition - Reserved Properties
	Bundle Segment Definition

	Parts Databases
	Shell Parts Database - Reserved Properties
	Wire Parts Database - Reserved Properties
	Cable Parts Database - Reserved Properties
	Passive Parts Database - Reserved Properties

	11 Using a Mapping File to Map Symbols
	Overview of Mapping Files
	What Is a Mapping File?
	Creating a Mapping File
	Structure of a Mapping File
	Special Characters Used in the Mapping File

	Saving Your Mapping File in a Retrievable Location
	Cadence and Viewlogic
	Mentor Graphics, single symbols
	Mentor Graphics, multiple symbols

	Designating that the Netlister Use the Mapping File
	Mentor Graphics
	Cadence
	Viewlogic

	Mapping File Examples
	Mentor Graphics Symbol Mapping Examples
	Mentor Graphics: Mapping the Voltage Source Symbols
	Mentor Graphics: Mapping the Ground Symbol
	Mentor Graphics: The Schematic for the ASIC Symbol

	Cadence Symbol Mapping Examples
	Cadence: Mapping the Voltage-Source Symbols
	Cadence: Mapping the Ground Symbol
	Cadence: The Schematic for the ASIC Symbol

	Viewlogic Symbol Mapping Examples
	Viewlogic: Mapping the Voltage Source Symbols
	Viewlogic: Mapping the Ground Symbol
	Viewlogic: The Schematic for the ASIC Symbol

	12 Mapping File Reference
	Standard Mapping Files
	Mentor Graphics
	Cadence
	Viewlogic

	User Mapping Files
	Structure of a Mapping File
	Special Characters Used in the Mapping File
	Tables Section
	Enums Section
	Definitions Section
	General Mapping Functions
	SPICE to MAST Mapping Functions
	Length and Width Mapping Functions
	Generic Entries
	Specific Symbol Entries
	Multiple Generic Entries
	Default Generic Mapping

	Include and Exclude Sections

	Interaction of Mapping, Special Properties, and Defaults
	Mapping File Considerations for Mentor Graphics Users
	Single Components in Mentor Graphics
	Multiple Component Interface Support in Mentor Graphics

	13 Using a Mapping File to Convert SPICE Symbols
	Mapping Functions Used to Convert SPICE Symbols
	Inverter Example
	Transmission Line Example

	14 Using Cadence simInfo to Avoid Mapping Files
	Definitions
	Mapping with simInfo
	Example SKILL Script
	Updating the Library
	Recommendations
	Templates Using the Union Data-Structure

	Pre-Defined Properties Recognized by Catos Netlisters
	componentName
	termOrder
	termMapping
	instParameters
	propMapping

	Pre-Defined Properties Not Recognized by Catos Netlisters
	Specific Examples Using simInfo
	Example 1: Simple resistor
	Example 2: Resistor, parameter mapping and term ordering
	Example 3: Simple transistor with terminal mapping
	Example 4: Transistor with terminal ordering
	Example 5: Transistor with programmable terminals and property mapping
	Example 6: Transistor with terminal/programmable terminals and property mapping

	15 The Template Information System
	Template Information System Updates
	Automatic Update
	Manual Update

	Manually Creating Template Information Files
	Using the command line script
	Using the menu selections

	Editing Template Files with the Text Editor

	Glossary GL
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	U
	W

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

