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Abstract - The small-signal modeling technique 
based on the extended describing function concept is 
applied to LCC resonant converters. The analytical 
model developed includes both frequency control and 
phase-shift control. The small-signal equivalent circuit 
models are also derived and implemented in PSPICE. 
The models are in good agreement with the measure- 
ment data. 

1. INTRODUCTION 
An LCC resonant converter (Fig. 1) shares the 

advantages of other resonant converters, including 
natural commutation desirable for BJT, GTO and SCR 
devices when the switching frequency is lower than the 
resonant frequency, and zero voltage switching suitable 
for MOSFETs when the switching frequency is higher 
than the resonant frequency. These characteristics 
make the LCC resonant converter a potential candidate 
for high power or high frequency application. 

Besides the above features, the LCC resonant con- 
verter offers additional merits when compared with 
series resonant converters (SRCs) and parallel 
resonant converters (PRCs) [ l ,  21. First, the series 
capacitor, C,, makes the equivalent tank capacitance 
smaller; this results in an increase of the characteristic 
impedance of the resonant tank, and is helpful to limit 
the circulating current. Secondly, the voltage conver- 
sion characteristics allow the converter to operate in a 
wide load range (from full load to no load), where PRCs 
may lose regulation at full-load end and SRCs may lose 
regulation at light load end. This is because the LCC 
resonant converter behaves more like a PRC under 
light load, and an SRC under full load. Therefore, the 
circulating energy at light load is minimized. Thirdly, the 
LCC converter has an inherent short circuit protection. 
Since the third order resonant tank increases the 

complexity of the circuit, it is difficult to apply the 
traditional sample-data modeling method [5 ,  7, 81 to 
LCC resonant converters. There has been no attempt 
in the literature addressing the small-signal modeling of 
the LCC resonant converter. 
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Circuit diagram of an LCC resonant converter. Fig. 1 

A recently developed small-signal modeling approach 
based on the extended describing function concept 
[9-111 is applied to the LCC resonant converter. The 
continuous-time model is derived in a closed form, and 
the equivalent circuit model is also obtained. The 
models include both frequency control and duty-cycle 
control (commonly referred to as phase-shift control). 
The conceptual diagram of the small-signal model is 
shown in Fig. 2. 

stand for small-signal perturbation 
of the line voltage and the output current, respectively; 
fsN and d correspond to frequency control and duty- 
cycle control. The output variables include the per- 
turbed average line current, i8, and the perturbed output 
voltage, Co. With the model, it is easy to obtain the 
commonly used small-signal transfer functions, such as 
control-to-output transfer function, line-to-output trans- 
fer function, input impedance, and output impedance. 

In Fig. 2, CO and 
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Fig. 2 The conceptual diagram of the smali-signal model of 

resonsnt converters. The control Input could be 
rwltchlng frequency or duty-ratio. 

In Section II, an analytical small-signal model and an 
circuit model of LCC resonant converter are derived. 
Section Ill provides the experimental verification of 
these models. Section IV states the conclusions. 

II. SMALL-SIGNAL MODELING OF LCC RESONANT 
CONVERTER 

In this section, the systematic small-signal modeling 
procedure proposed in [lo] is applied to LCC resonant 
converters. The step-by-step derivation of the small- 
signal models is illustrated. 

A. Nonlinear State Equatlon 
The circuit diagram of an LCC resonant converter is 

shown in Fig. 1. The active switch network generates a 
quasi-square wave voltage, v u ,  applied to the resonant 
tank. Under continuous tank current mode, the state 
equations of the power stage can be obtained, where 
the nonlinear terms are in bold face: 

d i  . 
dt 

L - + 1 rr + v,  + v p  = vAs 

U1 

dVP C -+sgn(v ) i  = i  dt P Lr 

=I ~ ~ I - r ' ~ i ,  ( I d )  

The output variables are the output voltage, v,, and the 

averaged input current, i,, of the power stage: 

v, = rlciL,+ (1 -;)vcJ+ rlcio, 

where 
f C  = rc I (  R .  (1h) 

In this circuit, the output voltage is regulated either by 
modulating the switching frequency, U,, or by controlling 
the duty cycle, d ,  while maintaining a constant switching 
frequency. The operating point is determined by 
{ V I ,  io,  R, U,, d I. 

B. Harmonic Approximation 
The typical waveforms of the state variables are 

shown in Fig. 3. It is logical to make the assumption that 
the tank waveforms, i ( t ) ,  v,(i), and v,(t), be approxi- 
mated by fundamental harmonics, and the output filter 
variables be approximated by the dc components. By 
making this assumption, 

i = i , ( t )s ino, t  + i , ( t ) coso , t  (h) 
(26 1 
(2c 1 

v, = v, ,( t)sino,t  + v,,(t)coso,t 

vp  - v,,(l)sino,t +v,(t)coso,t. 
Notice that the envelope terms { i , , i c , v , , ,  V , ~ , V , , V , }  are 

slowly time varying, so the dynamic behavior of these 
terms can be investigated. The derivatives of i(t), v , ( t ) ,  
and v,,(i) are found to be: 

AS 1% 
1 I 
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vcr 1- 
Typical waveforms of the state varlables of an LCC 
resonant converter. 
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Fig. 3 
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dr 

%=( $ - w , v , , ) s i n o , l + (  %+a ,v , , ) coso , t  ( 3 b )  

2 = (2 - q v F )  sin w,t + (2 + q v P , ) c o s  o,r ( 3 c )  

C .  Extended Describing Function 
By employing the extended describing function con- 

cept (101, the nonlinear terms in Eq. (1) can be approx- 
imated either by the fundamental harmonic terms or by 
the dc terms, to give: 

(4a ) v,(f) = j J d ,  v,) sin w,f 

+f&~,, vFp iL> cos w,f 

I vp I= f&,t V p . )  

sgn(vp)iL,=f2(v,, VF,iL)sino,i 

(46 1 
(4c 1 

i, =J@,i , ) .  ( 4 4  
These U(* e ) }  are called extended describing func- 

tions (EDFs). They are functions of the operating 
conditions and the harmonic coefficients of the state 
variables. The EDF terms can be calculated by making 
Fourier expansions of the nonlinear terms, to yield: 

4 
f , (d ,v , )  =-sin( A ;ci)v, (4e 1 

A,, = dvk + vk  
is the peak voltage of the parallel resonant capacitor. 

D. Harmonic Balance 
With the small-signal modulation frequency lower than 

the switching frequency 11 01, by substituting Eqs. (2-4) 
into Eq. (l), and by equating the coefficients of dc, sine, 
and cosine terms respectively, we obtain: 

L( 
+ qi, ) + r,i, + v,, + vF = 0 

c,( - w,v,,) = i, 

c,( %+ co,v,,) = i, 

cp( ~ - " v p c ) + n a , v p , = l ,  4 'Lf . 

r r  dvc ,  1 - 1  . 
r', f dt R 'f- Lf+ Io 

Equation (5) is a modulation equation. It is a nonlinear 
large-signal model of the LCC resonant converter 
power stage. It is important that the inputs of Eq. (5), 
{v, ,w,.d,i ,} ,  are slow varying with respect to the 
switching frequency, so the modulation equation can be 
readily perturbed and linearized at certain operating 
points. 

The corresponding output equations are: 

v, = r f  (i Lf + i o )  + ( 1 - ;)vc, 

i8 = - is  n sin( ; d ) .  
2 

E. Steady-State Solution: 
Under steady-state conditions, the new state variables 

of the modulation equation do not change with time. 
Upper case letters are used below to denote the 
steady-state values. For a given operating point 
{V, ,D,S2, , fo ,R},  if we let the derivatives in Eq. (5) be 
zeros, and set the dc bias of the external current source 
I, to zero, then the steady-state solution can be 
obtained by solving Eq. (5) (Appendix A). 

The steady-state solution provides the results of the dc 
analysis of LCC resonant converters. For example, 
when the circuit has no loss, the voltage conversion 
ratio is given by: 
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Fig. 4 Voltage conversion ratlo of an LCC resonant conver- 
ter based on the steady-state solutlon of moduiatlon 
equation. 

vo ‘CJ M(R,, D ,  R )  =- = - 
v, v, 

QC,R sin(DW2) 
. ( 6 )  - - 

~ / ( i  -R;LC,~+(R,R,(C, +c,)(i - Q , L C ~ ) ) ~  
A result similar to Eq. (6) can be found in [2]. The 
voltage conversion ratio is the function of the switching 
frequency, the duty ratio, and the load. It is shown in 
Fig. 4 for the duty ratio equal to one (D = l),  where 

F. Perturbation and Linearization 

the operating point, 
By perturbing the large-signal model (Eq. (5)) around 

v , = V I + Q I  d = D + d  

io = 0 + io w, = R, + U,, 
and by making linearization under the small-signal 
assumption, we obtain the following model: 

L = -ra[, + ZLfc  - CIS - 9,, + k,V̂ , + Edd + EJm (7a) 

(7b ) 

d [  
dt 
d[  
dt 

L __f = -rs/c - ZLfs - qSc - 9, + EJW 

dV^cJ-r’c( Q c J + [ o )  
dt rc l L J - T  

where the input variables are {c8,d, fsN,L0},  standing for 

perturbed line voltage, duty-ratio, normalized switching 
frequency, and load current, respectively. The output 
part of the small-signal model is given by: 

[ , = - s i n  f (; - D  ) i s + J d d  , (7J 1 

This is a unified power-stage model with standard form 
as shown in Fig. 2. The model is time-continuous with 
parameters defined in Appendix B. 

G. Equivalent Circuit Model 
Since the small-signal model can be expressed by a 

linear state equation, the equivalent circuit model can 
be found from Eq. (7) by using the network synthesis, as 
shown in Fig. 5. 
The circuit model has two parts: resonant tank part 

and output filter part. The output filter part is the 
realization of Eqs. (79, 7hj. Comparing with the circuit 
in Fig. 1, it is easy to see the rectified tank voltage, I v p  I, 
is replaced by the controlled voltage sources 
{kv, t kvPc I. 
The resonant tank part has a loop 

( 0 -  1 -+ 2 -+ 3 -+4 -+ 5 -16  -+ 0 )  

which is the realization of Eq. (7a) according to Kir- 
choff’s voltage law (KVL). Equations (7c) and (7e) 
corresponds to Kirchoff’s current law (KCL) of the node 
5 and node 6, respectively. Notice the following con- 
trolled sources are defined to simplify the drawing: 

VI in  = k,V̂ , + E,d 

jpa = gIcQ, - 2k I Lr + J,J, 

(8a 1 

(8b ) 

(8c) 

i:, = G S Q S C  i- J J m  

It is similar to synthesize the other part of the resonant 
tank from Eqs. (7b), (7d), and (71) according KVL and 
KCL, where 
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Fig. 5 Small-algnal equivalent circuit model of LCC resonant 

converterr. 

J L  = GI$, + Js3W ( 8 4  
jF = g&* - 2kCfL,+ JF3W * (8e 1 

In the complete small-signal circuit, the resonant tank 
and output filter talk to each other by controlled sources. 
The resistor r, represent the conduction loss of the 
resonant tank. The resistors paralleled to the capacitor 
C,, are not physically in the circuit, they are the small- 
signal resistances which will cause damping to output 
filter. 

This circuit model can be easily implemented in 
PSPICE (Appendix C). 

111. EXPERIMENTAL VERIFICATION 
A high-frequency full-bridge LCC resonant converter 

was built and measured to verify the small-signal mod- 
els derived in Section II. The circuit parameters were: 

L = 3 6 . 3 w  

C, = 0.93nF 
C, = 1.19p.F 
F, = 1,lSMHz 

C, = 1.23nF 

L, = 37.1p.H 
r, = 0.97352 

Z, = 26252. 
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Fig. 6 Frequency-to-Output Transfer Functions. The switch- 
ing frequency is the control variable. The duty-ratio is 
not modulated. 

The frequency-control transfer functions are shown in 
Fig. 6, where the model predictions match the mea- 
surement data very well up to the switching frequency. 
This verification supports the conclusion in [lo] that the 
harmonic balance of this modeling approach allows the 
modulation frequency to sweep up to one-half of the 
output ripple frequency. Figure 6 also shows that the 
small-signal models are valid for low Q (heavy load) 
operating condition, and the switching frequency can be 
very close to the resonant frequency. 

The duty-ratio-control transfer functions are shown in 
Fig.7. These transfer functions have low-frequency 
dynamics and high-frequency dynamics [6]. The low- 
frequency dynamics are contributed by the output filter 
which is heavily damped by the output impedance of the 
resonant tank. The output filter poles are usually Well 
separated. The high-frequency dynamics are the result 
of the interaction of the switching frequency and the 
resonant frequency; usually, a double-pole is observed 
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Flg. 7 Duty-Ratlo-to-Output Transfer Functlons. The duty- 
ratlo Is the control variable. The swltchlng frequency Is 
not modulated. 

at the beat frequency, which is roughly the difference 
between of the switching frequency and the resonant 
frequency. The high-frequency dynamics are correctly 
predicted by the models. Results also show that the 
damping of the high frequency double-pole is deter- 
mined by the loss of resonant tank, but not by the load 
resistance. It is important to point out that the location 
of the high-frequency double-pole is heavily affected by 
the operating point and the design of the power stage. 
This issue will be further addressed in another paper. 

The line-to-output transfer function is shown in Fig. 8. 
Besides the good match between the model predictions 
and the measurement data, the dynamic pattern of 
audio susceptibility is quite similar to the control-to- 
output transfer functions. 

0 0 maauramnt  

D-0.70 FdFO=l.13 Op.0.41 
.loo - - -200 

0.1 0.3 1 3 10 30 100 300 600 
Freqwncy (KM) 

Flg. 8 Audio Susceptibility. 
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Fig. 9 Output-impedance. 

The predicted and measured output impedance is 
shown in Fig. 9. The magnitude at the low-frequency 
end is determined by the load resistance and the output 
resistance of the resonant tank, while the magnitude at 
the high-frequency end is determined by the esr of the 
output capacitor. 

IV. CONCLUSION 
In this paper, the LCC resonant converter is modeled 

using the extended describing function technique. The 
continuous-time small-signal model is derived in an 
analytical form, which includes both frequency control 
and phase-shift control. The equivalent circuit model is 
also synthesized to facilitate the analysis using popular 
circuit analysis programs such as PSPICE. The models 
are accurate up to the switching frequency (half of the 
output ripple frequency) and not restricted to high Q 
operating conditions. The experimental results show 
that the model predictions agree well with the mea- 
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surement data. The high-frequency dynamics of LCC 
resonant converters around the beat-frequency can be 
accurately modeled. The models can be employed in 
the control loop design of LCC resonant converters. 
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APPENDIX A 
STEADY STATE SOLUTION OF THE MODULATION 

EQUATION 

where 

a = 1 - Q%C, - R,r,QfC,C, 

APPENDIX B 
PARAMETERS OF THE SMALL-SIGNAL MODEL 

Ed = 2Va COS( 5 D) 
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APPENDIX C 
PSPICE CODES OF CIRCUIT MODEL 

‘Small-Signal Circuit Model of LCC 
‘The CKT parameters: 

L=36.3uH. Cs=l.23nF, Cp=0.93nF, 
Lf=37.luH, Cf=1.19uF, rc4.973 Ohm 

‘Operating point: 

The Injected Signals 
Vg 20 0 ac 0 
Rxl 20 0 l k  
Vkn 30 0 ac 1 
Rx2 30 0 l k  
Is 0 17 ac 0 

Sample Input Current --- v(40) 
Flin 0 40 Vpis 0.637 
Rlin 40 0 1 

’ Dx1.0, F~lF0=0.97, Qp=0.33, Vg=81.N 

The Upper Part of Resonant Tank (SINE) 

EKv 2 1 20 0 1.27 
VPis 2 3 dc 0 
Ls 3 4 36.3uH 
rss 4 5 78.5 
HZLs 6 5 VPic 254 
Css 6 7 1.23nF 
Gsl 7 6 13 12 0.0086 
GJSS 7 6 30 0 -0.531 
Cps 7 0 0.93nF 
Rgps 7 0 130 
Gsc 0 7 0 13 0.0029 
F2ks 7 0 VPio 0.538 
GJps 0 7 30 0 -0.317 

ES 1 0 30 0 -78.9 

The Lower Part of Resonant Tank (COSINE) 

VPic 9 8 dc 0 
Lc 10 9 36.3uH 
rsc 11 10 78.5 
HZLc 12 11 VPis 254 
Csc 13 12 1.23nF 
Gs2 13 12 6 7 0.0086 
GJsc 13 12 30 0 -0.311 
Cpc 0 13 0.93nF 
Rgpc 0 13 596 

F2kc 0 13 VPio -1.15 
GJpc 13 0 30 0 -0.148 

The Ouput Low Pass Filter 
Ekc 14 0 0 13 -0.577 
Eks 15 14 7 0 0.269 
Vpio 15 16 DC 0 
Lf 16 17 37.luH 
rc 17 18 0.973 
Cf 18 0 1.19uF 
R 17 0 87.4 
.ac dec 20 lKHz l.Oe6Hz 
.print ac vdb(17)vp(17) 
.probe 
.END 

EC 0 8 30 0 -135 

G g a  13 0 7 0 -0.0101 
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