### Preliminary - LD9102 High Accuracy Constant Current Off-Line High Brightness LED Driver #### **Features** - ,, High accuracy constant current - ,, Constant frequency or constant off-time operation - ,, Works with high side current sensing - Buck switch mode controller - " Internal 350V linear regulator (can be extended using external zener diodes) - ,, Internal 2% Voltage Reference - High PWM dimming ratio - ,, Programmable MOSFET current limit - ,, Programmable slope compensation - Output short circuit protection - ,, Output over voltage protection - ,, Enable & PWM dimming - .. Soft start - +0.2A/-0.4A GATE drive - " Synchronization capability - Typical gain 1±1% (Current Monitor) - Max. V<sub>SENSE</sub> 500mV (Current Monitor) - Max. quiescent current 50µA (Current Monitor) #### **Applications** - ,, TFT flat panel backlighting - " AC/DC LED lamp - " LED traffic light - ,, T5, T8 LED line bar - " MR-16 lamp - Signage or decorative LED lamp ## Package Pin Out Ordering Information | 1 | LOAD | N.C. | 20 | |----|--------------|-------|----| | 2 | IN | OUT | 19 | | 3 | VIN | FDBK | 18 | | 4 | VCC | IREF | 17 | | 5 | LD91<br>GATE | COMP | 16 | | 6 | GND | PWMD | 15 | | 7 | ISEN | OVP | 14 | | 8 | SC | FAULT | 13 | | 9 | ROSC | REF | 12 | | 10 | SYNC | CLIM | 11 | The LD9102 is a current mode control LED driver IC embedded with high side current monitor. It has been designed for the purpose of controlling single buck switch mode PWM converters at a fixed frequency or fixed off-time mode. **General Description** The high side current monitor is built to transfers a high side current measurement voltage to its ground referenced output with an accurate voltage gain of one. This monitor function features with a very wide input voltage range, high accuracy of transfer ratio, and low power consumption. A peak current control scheme is used by the controller (with programmable slope compensation). It includes an internal trans-conductance amplifier to modify the output current in closed loop. This allows high output current accuracy. For high power applications, the IC also comprises a 0.2A source and 0.4A sink GATE driver. There is an internal 9 to 350V linear regulator which powers the IC. This makes it no longer necessary to separate power supply for the IC. The LD9102 provides a TTL compatible, PWM dimming input that can accept an external control signal with a duty ratio of 0-100% and a frequency of up to a few kilohertz The IC has the function of a FAULT output which, can be used to disconnect LEDs in the circumstance that there is a fault condition it will use an external disconnect FET. The LD9102 based LED driver ideally suited to RGB backlight applications with DC inputs. The LD9102 based LED lamp drivers can reach efficiency of more than 90%. | | | Packing | g Options | |----------|------------|-------------|-----------------| | Part No. | Package | Tube(TU) | Tape & Reel(TR) | | LD9102 | SOP20 (G3) | LD9102G3-TU | LD9102G3-TR | Package material default is "Green" package. ## Product Marking For SOP20 (G3) LD8888 VV YYWW-AB SSSSS Line 1: "LD" is a fixed character 8888: product name VV: Voltage Line 2: YYWW: year and week no. A: package material code B: the brevity code of assembly house Line 3: SSSSS: lot no. ### **Absolute Maximum Ratings** | Parameter | Maximum | Unit | | | | |----------------------------------------------------------------------------|--------------|------|--|--|--| | V <sub>IN</sub> , V <sub>LOAD</sub> to GND | -0.5~ +350 | V | | | | | VCC to GND | -0.3~ +13.5 | V | | | | | PWMD, GATE, I <sub>SEN</sub> , all other pins to GND | -0.3~VCC+0.3 | V | | | | | V <sub>OUT</sub> to GND (Current Monitor) | -0.5~ +10.0 | V | | | | | V <sub>SENSE</sub> = V <sub>IN</sub> - V <sub>LOAD</sub> (Current Monitor) | -0.3~ +5.0 | V | | | | | I <sub>LOAD</sub> (Current Monitor) | -10.0~ +10.0 | mA | | | | | Continuous Power Dissipation (T <sub>A</sub> = +25°C) | | | | | | | 20-Pin SOIC, de-rate 10.0mW/°C above +25°C | 1000 | mW | | | | | Junction to ambient thermal impedance | 82 | °C/W | | | | | Operating ambient temperature range | -40~ +85 | °C | | | | | Junction temperature | +125 | °C | | | | | Storage temperature range | -65~ +150 | °C | | | | The values beyond the boundaries of absolute maximum rating may cause the damage to the device. Functional operation in this context is not implied. Continuous use of the device at the absolute rating level might influence device reliability. All voltages have their reference to device ground. #### **Electrical Characteristics** VIN=24V, T<sub>A</sub>=25°C unless specified, otherwise minimum and maximum values are guaranteed by production testing requirements. | arameter Symbol Condition | | Min. | Тур. | Max. | Unit | | | | |--------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------|-------|------|-------|----|--|--| | Input | | | | | | | | | | Input DC supply voltage range | V <sub>INDC</sub> | DC input voltage | 9*1 | _ | 350 | V | | | | Shut-down mode supply current | I <sub>INSD</sub> | PWMD connected to GND, V <sub>INDC</sub> = 24V | | 1.0 | 1.5 | mA | | | | Internal Regulator | | | | | | | | | | Internally regulated voltage | VCC | V <sub>INDC</sub> = 9~350V, IDD(ext) = 0, PWMD= GND | 7.25 | 7.75 | 8.25 | V | | | | VCC under voltage lockout threshold | UVLO | VCC rising | | 6.90 | 7.20 | V | | | | VCC under voltage lockout hysteresis | ΔUVLO | - | _ | 500 | _ | mV | | | | Steady state external voltage that can be applied at the VCC pin <sup>*2</sup> | VCC(ext) | - | | - | 12 | V | | | | Reference | | | | | | | | | | REF pin voltage | $V_{REF}$ | REF bypassed with a 0.1µF capacitor to GND;<br>I <sub>REF</sub> = 0; VCC = 7.75V; PWMD = GND | 1.225 | 1.25 | 1.275 | V | | | | Line regulation of reference voltage | V <sub>REFLINE</sub> | REF bypassed with a 0.1µF capacitor to GND;<br>I <sub>REF</sub> = 0; VCC = 7.25 – 12V; PWMD = GND | 0 | _ | 20 | mV | | | | Load regulation of reference voltage | V <sub>REFLOAD</sub> | REF bypassed with a 0.1µF capacitor to GND;<br>I <sub>REF</sub> = 0-500µ; PWMD = GND | 0 | _ | 20 | mV | | | | PWM Dimming | | | | | | | | | | PWMD input low voltage | $V_{\text{PWMD(Io)}}$ | VCC = 7.25V – 12V | - | - | 0.80 | V | | | | PWMD input high voltage | $V_{\text{PWMD(hi)}}$ | VCC = 7.25V – 12V | 2.0 | - | - | V | | | | PWMD pull-down resistance R <sub>PW</sub> | | V <sub>PWMD</sub> = 5.0V | 50 | 100 | 150 | ΚΩ | | | | Over Voltage Protection | | | | | | | | | | IC shut down voltage | V <sub>OVP</sub> | VCC = 7.25 – 12V ; OVP rising | 1.215 | 1.25 | 1.285 | V | | | Notes: <sup>1.</sup> See application section for minimum input voltage 2. Parameters are not guaranteed to be within specifications if the external VCC voltage is greater than VCC(ext) or if VCC < 7.25V. **Electrical Characteristics (Continued)**V<sub>IN</sub>=24V, T<sub>A</sub>=25°C unless specified, otherwise minimum and maximum values are guaranteed by production testing requirements. | Parameter Symbol Condition | | Min. | Typ. | Max. | Unit | | |----------------------------------------------|-------------------------|------------------------------------------------------------------------------------------|----------|------|------|-------| | GATE | | | | • | | | | GATE short circuit current | I <sub>SOURCE</sub> | V <sub>GATE</sub> = 0V; VCC = 7.75V | 0.2 | _ | _ | Α | | GATE sinking current | I <sub>SINK</sub> | V <sub>GATE</sub> = 7.75V ; VCC = 7.75V | 0.4 | _ | _ | Α | | GATE output rise time | T <sub>RISE</sub> | $C_{GATE} = 1nF$ ; $VCC = 7.75V$ | _ | 50 | 100 | ns | | GATE output fall time | T <sub>FALL</sub> | C <sub>GATE</sub> = 1nF; VCC = 7.75V | _ | 25 | 100 | ns | | Current Sense | FALL | OGATE TITE, VOO 7.70V | | | 100 | 110 | | Leading edge blanking | T <sub>BLANK</sub> | _ | 100 | _ | 500 | ns | | Delay to output of COMP comparator | T <sub>DELAY1</sub> | COMP = VCC; CLIM = REF; V <sub>ISEN</sub> = 0 to 600mV | - | _ | 300 | ns | | Delay to output of CLIMIT comparator | | step<br>COMP = VCC; CLIM = 300mV; V <sub>ISEN</sub> = 0 to | _ | _ | 300 | ns | | Comparator offset voltage | T <sub>DELAY2</sub> | 400mV step | -20 | _ | 20 | mV | | | V <sub>OFFSET</sub> | | -20 | | 20 | IIIV | | Oscillator | £ | D 0001/0 | 00 | 400 | 440 | | | | f <sub>OSC1</sub> | $R_{OSC} = 909K\Omega$ | 88 | 100 | 112 | | | Oscillator frequency | f <sub>OSC2</sub> | $R_{OSC} = 261K\Omega$ | 308 | 350 | 392 | KHz | | | f <sub>OSC3</sub> | $R_{OSC} = 2M\Omega$ | 40 | 45 | 50 | | | Maximum duty cycle | D <sub>MAX</sub> | - | - | 90 | - | % | | Sync output current | I <sub>OUTSYNC</sub> | - | _ | 10 | 20 | μΑ | | Sync input current | I <sub>INSYNC</sub> | VSYNC < 0.1V | 0 | _ | 200 | μΑ | | Output Short Circuit | | | | | | | | Propagation time for short circuit detection | T <sub>OFF</sub> | I <sub>REF</sub> = 200mV ; FDBK = 450mV;<br>FAULT goes from high to low | _ | _ | 500 | ns | | Fault output rise time | T <sub>RISE,FAULT</sub> | 1nF capacitor at FAULT pin | _ | - | 300 | ns | | Fault output fall time | T <sub>FALL,FAULT</sub> | 1nF capacitor at FAULT pin | _ | - | 200 | ns | | Amplifier gain at IREF pin | G <sub>FAULT</sub> | I <sub>REF</sub> = 200mV | 1.8 | 2 | 2.2 | _ | | Soft Start | | | • | | | | | Current into CLIM pin when pulled low | I <sub>CLIM</sub> | FAULT is low; 6.25KΩ between REF and CLIM | _ | _ | 250 | μΑ | | Slope Compensation | | | | | | | | Current sourced out of SC pin | I <sub>SLOPE</sub> | - | 0 | _ | 100 | μΑ | | Internal current mirror ratio | G <sub>SLOPE</sub> | $I_{SLOPE}$ = 50μA ; $RC_{SENENSE}$ = 1KΩ | 1.8 | 2 | 2.2 | _ | | Current Monitor | | | | | | | | Supply voltage range | V <sub>IN</sub> | _ | 9.0 | _ | 350 | V | | Quiescent supply current | IQ | V <sub>IN</sub> = 9~350V, V <sub>SENSE</sub> = 0mV | _ | _ | 100 | μA | | Output Resistance | R <sub>OUT</sub> | - | _ | 3.6 | _ | ΚΩ | | | 1.001 | V <sub>SENSE</sub> =0mV | 0 | _ | 15 | 1 (32 | | | | V <sub>SENSE</sub> = 100mV | 79 | _ | 121 | | | Output Voltage | $V_{OUT}$ | $V_{\text{SENSE}} = 200 \text{mV}$ | 177 | _ | 223 | mV | | | | $V_{\text{SENSE}} = 500 \text{mV}$ | 470 | _ | 530 | | | | | V <sub>SENSE</sub> = 500mV<br>V <sub>SENSE</sub> step 5mV to 500mV, V <sub>IN</sub> =24V | 470 | 2.0 | TBD | | | Output rise time | t <sub>RISE</sub> | V <sub>SENSE</sub> step 500mV to 0mV, V <sub>IN</sub> =24V | _<br> _ | 2.0 | TBD | μS | | Output fall time | 4 | • | _ | | | | | Output fall time | t <sub>FALL</sub> | V <sub>SENSE</sub> step 500mV to 0mV, V <sub>IN</sub> =24V | | 2.0 | TBD | μS | **Pin Description** | Pin # | Name | Description | |-------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | 1 | LOAD | This pin is the negative side of current monitor. | | 2 | IN | This pin is the positive side of current monitor. | | 3 | VIN | This pin is the input of a 350V high voltage regulator. | | 4 | VCC | This is a power supply pin for all internal circuits. It must be bypassed with a low ESR capacitor to GND (at least 0.1uF). | | 5 | GATE | This pin is the output GATE driver for an external N-channel power MOSFET. | | 6 | GND | Ground return for all circuits. This pin must be connected to the return path from the input. | | 7 | ISEN | This pin is used to sense the drain current of the external power FET. It includes a built-in 100ns (min) blanking time. | | 8 | SC | Slope compensation for current sense. A resistor between SC and GND will program the slope compensation. In case of constant off-time mode of operation, slope compensation is unnecessary and the pin can be left open. | | 9 | ROSC | This pin sets the frequency or the off-time of the power circuit. A resistor between ROSC and GND will program the circuit in constant frequency mode. A resistor between ROSC and GATE will program the circuit in a constant off-time mode. | | 10 | SYNC | This I/O pin may be connected to the SYNC pin of other LD9102 circuits and will cause the oscillators to lock to the highest frequency oscillator. | | 11 | CLIM | This pin provides a programmable input current limit for the converter. The current limit can be set by using a resistor divider from the REF pin. Soft start can also be provided using this pin. | | 12 | REF | This pin provides 2% accurate reference voltage. It must be bypassed with at least a 10nF - 0.22µF capacitor to GND. | | 13 | FAULT | This pin is pulled to ground when there is an output short circuit condition or output over voltage condition. This pin can be used to drive an external MOSFET in the case of boost converters to disconnect the load from the source. | | 14 | OVP | This pin provides the over voltage protection for the converter. When the voltage at this pin exceeds 1.25V, the GATE output of the LD9102 is turned off and FAULT goes low. The IC will turn on when the power is recycled. | | 15 | PWMD | When this pin is pulled to GND (or left open), switching of the LD9102 is disabled. When an external TTL high level is applied to it, switching will resume. | | 16 | COMP | Stable Closed loop control can be accomplished by connecting a compensation network between COMP and GND. | | 17 | IREF | The voltage at this pin sets the output current level. The current reference can be set using a resistor divider from the REF pin. | | 18 | FDBK | This pin provides output current feedback to the controller by using a current sense resistor. | | 19 | OUT | This pin usually is connected to FDBK for providing current output feedback. There is a typical output resistance 3.6KΩ from this pin to the ground. | | 20 | N.C. | No contact pin | #### **Functional Block Diagram** #### **Typical Application Circuit** # Package Outline SOP-20: | Symbols | Dimensions in Millimeters | | | Dimensions in Inches | | | |---------|---------------------------|--------|---------|----------------------|--------|---------| | Symbols | Minimum | Normal | Maximum | Minimum | Normal | Maximum | | Α | 2.36 | 2.49 | 2.64 | 0.093 | 0.098 | 0.104 | | A1 | 0.10 | - | 0.30 | 0.004 | - | 0.012 | | В | 0.33 | 0.41 | 0.51 | 0.013 | 0.016 | 0.020 | | С | - | 0.51 | - | - | 0.020 | - | | D | 12.60 | 12.80 | 12.90 | 0.496 | 0.504 | 0.508 | | E | 7.39 | 7.49 | 7.59 | 0.291 | 0.295 | 0.299 | | F | - | 1.27 | - | - | 0.050 | - | | G | - | - | 0.10 | - | - | 0.004 | | Н | 10.01 | 10.31 | 10.64 | 0.394 | 0.406 | 0.419 | | L | 0.38 | 0.81 | 1.27 | 0.015 | 0.032 | 0.050 | | Θ° | 0° | - | 8° | 0° | - | 8° |