实例:

试设计一变压器参数如下:

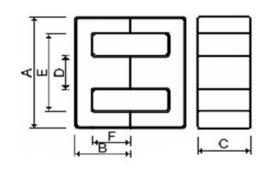
输出电压 $V_{out} = 43V$ ,输出电流320mA,频率64KHz,MOS管耐压600V输入交流 $85V \sim 265V$ 

## 效率就80%吧

而对于全电压输入的 $85V \sim 265V(AC)$ 交流输入电源,整流后的直流电压约为  $100V \sim 374V(DC)$ 。

那么对于 600V 的 MOS 而言,保留 20%电压裕量,耐压可以用到 480V。最大电压应力出现在最大输入电压处,所以当最大输入直流电压为 374V 时,

 $V_t$ 的取值为480-374=106V。最大工作占空比出现在最低输入电压处为:


$$D_{\text{max}} = \frac{V_f}{V_{in \min} + V_f} = \frac{106}{100 + 106} = 0.514$$

以此类推

对于 MOS 耐压比较低的情况,比如用 600V 的 MOS 的时候,占空比适当再取小一点,可以减轻 MOS 的耐压的压力

选择计算最大占空比 0.45

但是,不管是哪个计算出来的结果,变压器的气隙都是要加的!





| 磁芯型号 TYP | Dimensions(mm)尺寸 |      |   |   |   |   |  |  |  |  |
|----------|------------------|------|---|---|---|---|--|--|--|--|
|          | A                | Emin | D | С | В | F |  |  |  |  |

| 磁芯型号<br>TYP | 材质<br>Material | Aw     | 有效参数 Effective Parameters |                   |       |                 |     |  |
|-------------|----------------|--------|---------------------------|-------------------|-------|-----------------|-----|--|
|             |                |        | $\Sigma$ L/A              | Ae                | Le    | Ve              | 重 量 |  |
|             |                |        | $(\mathrm{mm}^{-1})$      | $(\mathrm{mm}^2)$ | (mm)  | $(\text{mm}^3)$ | (g) |  |
| EE25/20     | PC40           | 78. 73 | 1. 20                     | 40. 32            | 49. 4 | 2025            | 11  |  |

对于 DCM 模式而言, $I_{p1}=0$ ,对于 CCM 模式而言,有两个未知数, $I_{p1}$ 、 $I_{p2}$ 。那么该怎么办呢?这里有个经验性的选择了。一般选择 $I_{p2}=2\sim 3\times I_{p1}$ ,不要让 $I_{p2}$ 与 $I_{p1}$ 过于接近。那样电流的斜率不够,容易产生振荡。

计算出 $I_{p2}$ 与 $I_{p1}$ 后,我们就可以算出变压器初级电感量的值了。

根据:

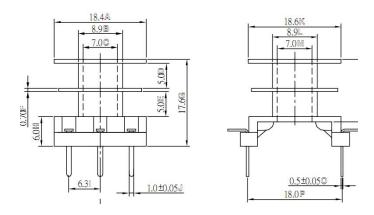
$$\frac{V_{in \, \text{min}}}{L_p} T_{on \, \text{max}} = I_{p2} - I_{p1}$$
,可以得到
$$L_p = \frac{V_{in \, \text{min}} \times D_{\text{max}}}{f_s \left(I_{p2} - I_{p1}\right)} = \frac{100 \times 0.45}{64 \left(0.76 - I_{p1}\right)} = 0.925 \, mH$$
式中:

$$L_P$$
 - - 初级电感量( $mH$ )  
 $f_s$  - - 开关频率( $KHz$ )

$$I_{p1} + I_{p2} = \frac{2 \times P_{out}}{V_{in \min} \times \eta \times D_{\max}} = \frac{2 \times 14}{100 \times 0.8 \times 0.45} = 0.78 \text{ (A)}$$

计算初级匝数 $N_p$ 

$$N_p = \frac{L_p \times I_p \times 10^4}{\Delta B \times A_e} = \frac{925 \times 0.78}{0.2 \times 40.32} = 89$$


计算次级匝数N。

$$N_S = \frac{(V_{out} + V_D) \times N_p}{V_f} = \frac{(43+1) \times 89}{106} = 37$$

 $N_s$  ——次级匝数

 $V_{out}$ --次级某绕组输出电压(V)

 $V_D$  ---输出整流二极管压降 (V)



上图为骨架尺寸

$$C_1 = C_2 = 5mm, D = \frac{18.4 - 8.9}{2} = 4.75mm$$

绕组线径的选取,

知道了圈数和骨架尺寸,可算出在骨架绕线空间一定的圈数能绕下的最大带绝缘的线径,要查表算出裸线直径。

先计算网子形骨架容纳导线面积 $A_{cm}$ 

王字形骨架

$$A_{cu1} = C_1 \times D = 5 \times 4.75 = 23.75$$
  
 $A_{cu2} = C_2 \times D = 5 \times 4.75 = 23.75$ 

1. 初级允许最大带绝缘线径 $d_{jl}$ 

王字形骨架

$$d_{j1} = \sqrt{\frac{0.9 \times A_{cu1}}{N_p}} = \sqrt{\frac{0.9 \times 23.75}{89}} = 0.49mm$$

选裸线 0.45mm, 带绝缘直径 0.49mm

次级允许最大带绝缘线径dia

王字形骨架

$$d_{j2} = \sqrt{\frac{0.9 \times A_{cu2}}{N_s}} = \sqrt{\frac{0.9 \times 23.75}{37}} = 0.577 \text{mm}$$

选 0.53mm 线径, 带绝缘线径 0.58mm

可以选比计算出来的线径小,不可选比计算出来的线径大,否则肯定绕不下。

要注意高频下的趋肤效应, 趋肤深度△可以按照

$$\Delta = \frac{75}{\sqrt{f_s}} = \frac{75}{\sqrt{64000}} = 0.3(mm)$$

$$f_s - \mp 5$$
新率(*Hz*)

也就是说,单根导线的直径不要大于两倍趋肤深度。如果单根导线不够满足电流密度的要求。那么就用多线并绕或采用丝包束线或 litz 线。

本例单根导线的直径不大于两倍趋肤深度不需用利兹线。

计算绕组平均匝长

$$l_{cu1} = l_{cu2} = 0.1 \left[ (4 \times 8.9) + 2\pi \times \left( \frac{18.4 - 8.9}{4} \right) \right]$$
  
= 5.05 - -cm

计算各绕组阻值

$$R_1$$
= 0.01( $N_p \times l_{cu1} \times r_1$ ) = 0.01(89 × 5.05 × 0.123) = 0.55 – (Ω)  $R_2$ = 0.01( $N_s \times l_{cu2} \times r_2$ ) = 0.01(37 × 5.05 × 0.089) = 0.166 – (Ω)  $r_1$  — — 初级绕组导线每米重量Ω/ $m$   $r_2$  — — 次级绕组导线每米重量Ω/ $m$  0.45mm导线 $r$  = 0.123Ω/ $m$  0.53 $mm$ 导线 $r$  = 0.089Ω/ $m$ 

计算各绕组异线重量

$$G_1 = 0.01 (N_P \times I_{cu1} \times g_1) = 0.01 (89 \times 5.05 \times 1.44) = 6.47 - (g)$$

$$G_2 = 0.01(N_s \times l_{cu2} \times g_2) = 0.01(37 \times 5.05 \times 2) = 3.73 - (g)$$

 $g_1$  --- 初级绕组导线每米重量g/m

 $g_2$  --- 次级绕组导线每米重量g/m

- 0.45mm导线g = 1.44g/m
- 0.53mm导线g = 2.00g/m
- 2. 计算各绕组铜耗(略)
- 3. -----
- 4. 核算变压器温升(略)