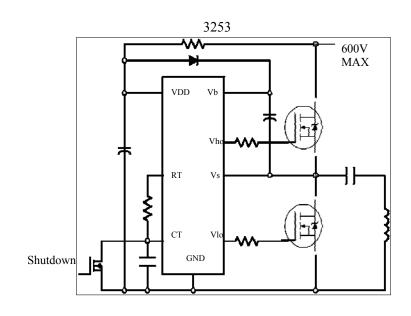
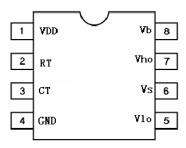
高压半桥驱动器


概述

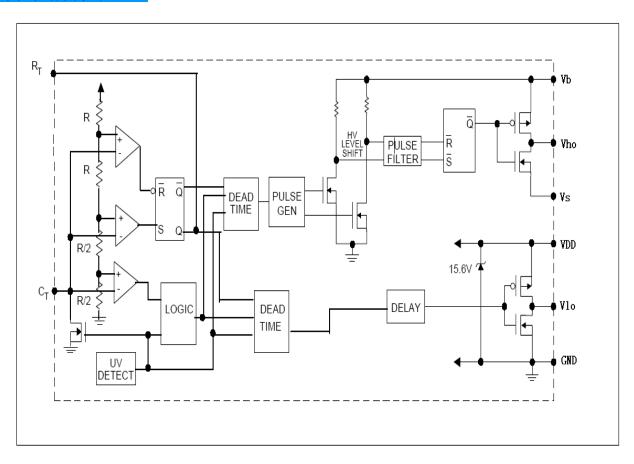
3253是一种高压、高速功率MOSFET和IGBT栅极驱动器,内部集成了高压半桥驱动电路和一个前置振荡器,形成一款多功能,更加安全一用的功率驱动芯片。如图2所示就是芯片的结构框图,管脚CT具有保护关断功能,可以用一个的电压信号使驱动器停止输出。此外,输出脉冲的宽度保持一直,一旦VDD上电超过开启阈值,驱动器就能以更加稳定的频率振荡。同时,通过降低栅极驱动的di/dt的峰值,增加欠压闭锁阈值的迟滞电压道1V,从而使电路的抗噪声性能有答复提高。

特性

- 1、内部集成600V高压半桥驱动器
- 2、VDD到GND之间有15.6V钳位齐纳管
- 3、超低启动电流
- 4、内部死区时间控制,并且有低温度特性
- 5、CT管脚实现保护关断功能
- 6、增加欠压保护的迟滞电压(1V)
- 7、启动阶段Vlo和Vho输出脉冲宽度恒定
- 8、更低的栅极驱动峰值(di/dt)以提高 抗干扰能力
- 9、低压输出端信号逻辑和RT端相同
- 10、绿色无铅产品


典型应用

1


高压半桥驱动器

管脚分布

管脚名称	描述			
VDD	芯片电源电压			
Vin	输入信号			
RT	工作频率设定端			
CT	预热时间控制以及关断模式控制端			
GND	芯片地			
Vb	高电压输出端的上限电平			
Vho	高电压端输出信号			
Vs	高电压输出端的下限电平			
Vlo	低压输出驱动信号			

内部结构框图

高压半桥驱动器

绝对最大值范围

绝对最大值范围是指各种工作、储藏等操作中的最大限定值,如果超出这个限定就会对芯片产生伤害。其中所有的电压值都是相对于GND端的绝对值电压, 所有电流都是正向流进负载的电流。

Symbol	Definition	Min.	Max.	Units	
Vb	高压输出端的供电电压		-0.3	625	
Vs	高压输出端的悬浮地电压		Vb—25	VB + 0.3	
Vho	高压输出端的驱动信号		Vs—0.3	VB + 0.3	V
Vlo	低压输出驱动信号		-0.3	VDD + 0.3	
VRT	RT 端的电压		-0.3	VDD + 0.3	
VCT	CT 端电压		-0.3	VDD + 0.3	
IDD	电源端的供电电流		_	25	
IRT	RT 端的电流		-5	5	mA
dVs/dt	Vs端的电压变化率		-50	50	V/ns
DE	最大功耗 @ TA ≤ +25°C	(8 Lead DIP)	_	1.0	
PD		(8 Lead SOIC)	_	0.625	W
Dalia	芯片内部于外接环境之间的热阻抗	(8 Lead DIP)	_	125	
RthJA		(8 Lead SOIC)	_	200	°C/W
TJ	工作结温		-55	150	
TS	储藏温度		-55	150	°C
TL	焊接温度 (烙铁直接接触, 10秒)		_	300	_

电气参数

V_{BIAS} (V_{CC}, V_{BS}) = 12V, CL = 1000 pF, CT = 1 nF, 温度= 25℃。其中 VIN、VTH、 IIN、 VO 和 IO 等信号时相对于GND端的信号。而VO和IO还各自对应了 HO或者 LO两个高低输出。

Low Voltage Supply Characteristics						
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
V_{DDUV} +	电源欠压保护正向阈值电压	8.1	9.0	9.9		
V _{DDUV} -	电源欠压保护反向阈值电压	7.2	8.0	8.8	V	
VDDUVH	电源欠压保护迟滞电压	0.5	1.0	1.5		
IQDDUV	上电时超低功耗静态电流		75	150		$V_{\text{DD}} \leq V_{\text{DDUV}}$
IQDD	静态工作电流	—	500	950	μΑ	
VCLAMP	电源电压钳位	14.4	15.6	16.8	V	$I_{DD} = 5mA$

高压半桥驱动器

电气参数

(Continued)

V_{BIAS} (V_{DD}, V_{BS}) = 12V, CL = 1000 pF, CT = 1 nF, 温度= 25°C。其中 VIN、VTH、 IIN、 VO 和 IO 等信号时相对于GND端的信号。而VO和IO还各自对应了 Vho或者 Vlo两个高低输出。

Floating	Supply Characteristics					
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
Iqbsuv	上电时高压驱动级的超低功耗电流	_	0	10		V _{DD} ≤ V _{DDUV} -
Iqbs	静态时高压驱动级的电流	_	30	50	μΑ	
V _{BSMIN}	保证功能正常的情况下,Vbs需要的最低电 压	_	4.0	5.0	V	$V_{DD}=V_{DDUV+}+0.1V$
Ilk	高压驱动级的漏电流	_	_	50	μА	Vb = Vs = 600V
Oscillato	r I/O Characteristics					
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
Fosc	振荡器频率	19.4	20	20.6	kHz	RT = 36.9kW
1 030	7次初前2000年	94	100	106	KIIZ	RT = 7.43kW
D	RT 端信号的占空比	48	50	52	%	Fo < 100kHz
ICT	CT端电流	_	0.001	1.0	uA	
ICTUV	在欠压模式下CT端下拉电流	0.30	0.70	1.2	mA	VDD = 7V
VCT+	CT端正向阈值电压	_	8.0	_		
VCT-	CT端反向阈值电压	_	4.0	_	V	
VCTSD	CT 端关断模式判定电压	1.8	2.1	2.4		
VRT+	高电平RT输出电压, VDD—VRT	_	10 100	50 300		$IRT = 100 \mu A$ $IRT = 1 mA$
VRT-	低电平RT输出电压	_	10 100	50 300		IRT = 100µA IRT = 1mA
VRTUV	欠压模式下RT端输出电压	_	0	100		V _{DD} ≤V _{DD} uv-
VRTSD	在关断模式下RT输出电压, VCC - VRT	_	10	50	mV	$I_{RT} = 100 \mu A$ $V_{CT} = 0V$
VKISD	在大例侯八下KI側山屯压,VCC-VKI	_	10	300		$I_{RT} = 1 \text{ mA}$ $V_{CT} = 0 \text{ V}$
Gate Dri	iver Output Characteristics					
Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
VOH	高电平输出电压, VBIAS –Vo	_	0	100		Io = OA
VOL	低电平输出电压, VO	_	0	100		Io = OA
VOLUV	,	_	0	100	mV	Io=OA VDD≤VDDuv-
Tr	输出信号上升时间	_	80	150		
Tf	输出信号下降时间	_	45	100	nsec	
Tsd	Shutdown信号的传输延时	_	660	 	11366	
Td	死区时间	0.75	1.20	1.65	μsec	

高压半桥驱动器

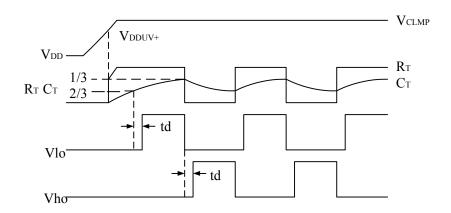


图1. Input/Output Timing Diagram

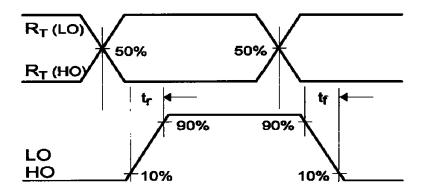


图2. Switching Time Waveform Definitions

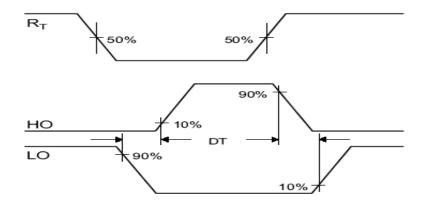
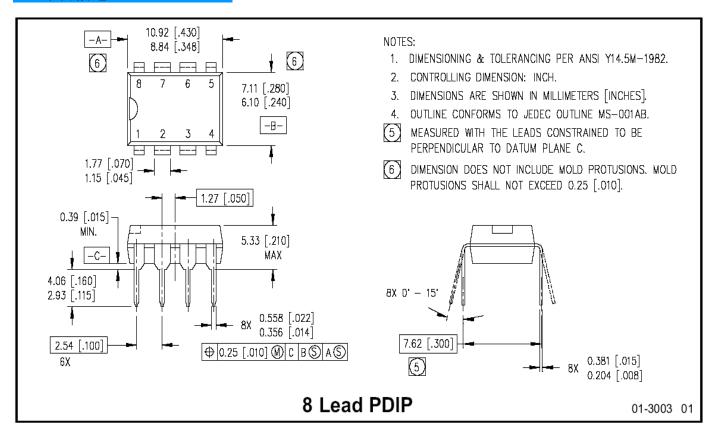
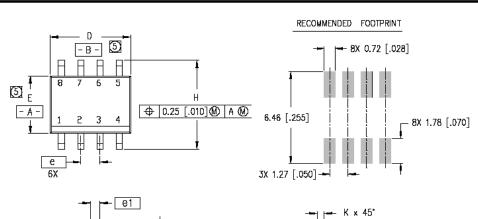
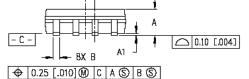


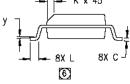

图3. Deadtime Waveform Definitions

高压半桥驱动器


推荐使用的外部器件参数


Symbol	Component	Min.	Max.	Units
RT	Timing resistor value	10	_	kΩ
CT	CT pin capacitor value	330	_	pF


高压半桥驱动器


封装信息

DIM	INCHES		MILLIMETERS	
DIM	MIN	MAX	MIN	MAX
A	.0532	.0688	1.35	1.75
A1	.0040	.0098	0.10	0.25
В	.014	.018	0.36	0.46
С	.0075	.0098	0.19	0.25
D	.189	.196	4.80	4.98
Е	.150	.157	3.81	3.99
е	.050 BASIC		1.27 BASIC	
e1	.025 B	ASIC	0.635 BASIC	
Н	.2284	.2440	5.80	6.20
К	.011	.019	0.28	0.48
L	.016	.050	0.41	1.27
У	0.	8.	û.	8.

NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA.
- DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS.
 MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.006].
- 6 DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO A SUBSTRATE.

8 Lead SOIC

01-0021 08