
Saber® MAST Language
User Guide
Version B-2008.09, September 2008

Saber is a registered trademark of Sabremark Limited
partnership and is used under license.

ii Saber® MAST Language User Guide

Copyright Notice and Proprietary Information
Copyright © 2008 Synopsys, Inc. All rights reserved. This software and documentation contain confidential and proprietary
information that is the property of Synopsys, Inc. The software and documentation are furnished under a license agreement and
may be used or copied only in accordance with the terms of the license agreement. No part of the software and documentation may
be reproduced, transmitted, or translated, in any form or by any means, electronic, mechanical, manual, optical, or otherwise,
without prior written permission of Synopsys, Inc., or as expressly provided by the license agreement.

Right to Copy Documentation
The license agreement with Synopsys permits licensee to make copies of the documentation for its internal use only.
Each copy shall include all copyrights, trademarks, service marks, and proprietary rights notices, if any. Licensee must
assign sequential numbers to all copies. These copies shall contain the following legend on the cover page:

“This document is duplicated with the permission of Synopsys, Inc., for the exclusive use of
__ and its employees. This is copy number __________.”

Destination Control Statement
All technical data contained in this publication is subject to the export control laws of the United States of America.
Disclosure to nationals of other countries contrary to United States law is prohibited. It is the reader’s responsibility to
determine the applicable regulations and to comply with them.

Disclaimer
SYNOPSYS, INC., AND ITS LICENSORS MAKE NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH
REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Registered Trademarks (®)
Synopsys, AMPS, Cadabra, CATS, CRITIC, Design Compiler, DesignWare, Formality, HSPICE, iN-Phase, Leda, MAST,
ModelTools, NanoSim, OpenVera, PathMill, Photolynx, Physical Compiler, PrimeTime, SiVL, SNUG, SolvNet,
TetraMAX, VCS, Vera, and YIELDirector are registered trademarks of Synopsys, Inc.

Trademarks (™)
AFGen, Apollo, Astro, Astro-Rail, Astro-Xtalk, Aurora, AvanWaves, Columbia,Columbia-CE, Cosmos,
CosmosEnterprise, CosmosLE, CosmosScope, CosmosSE, CSim, DC Expert, DC Professional, DC Ultra, Design
Analyzer, DesignPower, Design Vision, DesignerHDL, Direct Silicon Access, Discovery, Encore, EPIC, Galaxy, HANEX,
HDL Compiler, Hercules, Hierarchical Optimization Technology, HSIM, HSIMplus , HSPICE-Link, in-Sync, iN-Tandem,
i-Virtual Stepper, Jupiter, Jupiter-DP, JupiterXT, JupiterXT-ASIC, Liberty, Libra-Passport,Library Compiler, Magellan,
Mars, Mars-Rail, Milkyway, ModelSource, Module Compiler, Planet, Planet-PL, Polaris, Power Compiler, Raphael,
Raphael-NES,Saturn, Scirocco, Scirocco-i, Star-RCXT, Star-SimXT, System Compiler, Taurus, TSUPREM-4, VCS
Express, VCSi, VHDL Compiler, VirSim, and VMC are trademarks of Synopsys, Inc.

Service Marks (SM)
MAP-in, SVP Café, and TAP-in are service marks of Synopsys, Inc.

SystemC is a trademark of the Open SystemC Initiative and is used under license.
ARM and AMBA are registered trademarks of ARM Limited.
Saber is a registered trademark of SabreMark Limited Partnership and is used under license.
All other product or company names may be trademarks of their respective owners.

B-2008.09

Contents

1. Fundamental Modeling Concepts . 1

Guide to Writing MAST Templates. 1

General Modeling Process Overview. 2

Simulation Concepts . 2

Simulation of Continuous Analog Systems . 3
Electrical Network . 3
Continuous Analog Systems - Hydraulic Network 4

Simulation of Event-Driven Systems . 6

Simulation of Data Flow Systems . 7

General Modeling Concepts . 9

Behavioral Level of Modeling Abstraction . 9

MAST Modeling Modularity and Hierarchy. 11
The Saber Netlist Overview . 12
MAST Modeling Modularity and Hierarchy Summary 16

Modeling Objectives. 16

2. MAST Overview . 19

MAST Template Description . 19

MAST Template File. 19

Template Header . 20

MAST Declarations . 21

MAST Connection Points . 21

MAST Template Body . 21

MAST Parameters . 22

MAST Template Equations. 23

MAST Sections - Optional but Recommended . 23
Variable Types in MAST Sections . 25

MAST System Variables . 26

Branch . 26
Explicit Declaration. 27
Implicit Declaration . 28

Creating a MAST System Variable. 28
iii

Contents
Case 1 . 28
Case 2 . 29
Case 3 . 29
Case 4 . 30

MAST Reference Node . 30

Model Implementation Using the MAST Language . 32

Determine Characteristic Equations . 32

MAST Equation Modifications . 32

Pre-Simulation Calculations and Error Checking 34

Equation Implementation . 34

Post-Simulation Calculation . 34

MAST Model Verification and Testing . 35

Walkthrough of a Simple MAST Template . 35

Line 1: Template Header . 36

Lines 2 and 3: Connection Points. 36

Line 4: Argument Declaration. 37

Line 5: Opening Brace . 37

Line 6 - Un-Structured: Branch Through Variable 37

Line 6 - Structured: Equation Section . 37

Line 7 - Un-Structured: Branch Across Variable 37

Line 7 - Structured: Characteristic Equation . 38

Line 8 - Un-Structured: Characteristic Equation 38

Line 8 - Structured: Closing Brace . 38

Line 9: Closing Brace . 39

General MAST Conventions . 39

3. Basic Modeling. 41

MAST Modeling Examples - Electrical Elements. 41

MAST Modeling Concepts using Electrical Elements 42

Modeling a Constant Current Source. 43

Concepts Introduced Using this Example . 44

Characteristic Equation For a Constant Current Source 44

Starting the isource MAST Template . 45

Template Header . 47
isource Netlist Example . 48
isource - MAST Header Declarations. 49

Template Body . 51
iv

Contents
Equations Section . 51

Syntax Guidelines for isource Template . 53

Modeling a Linear Resistor with MAST . 54

Characteristic Equation for a Linear Resistor. 54

Selecting Names for a MAST Linear Resistor Template 55

Template Header and Header Declarations . 56

Equations Section . 57

Modeling a Linear Capacitor with MAST . 58

Selecting Names for a MAST Linear Capacitor Template 58

Template Header and Header Declarations . 59

Characteristic Equation for a Linear Capacitor . 60

Equations Section . 61

Modeling a Constant Voltage Source with MAST . 62

Constant Voltage Source Topics . 63

Characteristic Equation for a Constant Voltage Source 63

Equations Section and Local Declarations. 64

Modeling a Linear Inductor with MAST . 66

Linear Inductor Topics . 67

Characteristic Equation for a Linear Inductor. 67

Equation Section . 68

Header and Header Declarations. 69

Solving for Across Variables at a System Node. 70

4. Using System Variables Between Models . 73

Introduction to MAST ref Connection Points . 73

Modeling a Current-Controlled Voltage Source with MAST 73

Characteristic Equation for a Current-Controlled Voltage Source 74

Equations Section and Local Declarations. 75

Header and Header Declarations. 75

Using a CCVS Template . 77

Modeling Mutual Inductance with MAST . 78

Characteristic Equations for Modeling Mutual Inductance 79

Setting up the Equations Section . 80

Header and Header Declarations. 81

Using the Mutual Inductance (mutind) MAST Template. 82
v

Contents
5. Modeling Hierarchical Systems . 83

Introduction to Modeling Hierarchical Systems . 83

Simulation Efficiency of Hierarchical Systems . 84

Preserving Hierarchy - MAST Template with Netlist . 85

rlc1 Template Topics. 86

Template Header . 86

Header Declarations . 87

Netlist Section . 88

Flattened Hierarchy - MAST Template with Equations. 89

rlc2 Template Topics. 91

Header and Header Declarations. 91

Equations Section . 92

Template Body with Local Declarations . 92

Mixed Hierarchy - MAST Template with Netlist and Equations 92

Introduction to MAST Element Templates . 93

Properties of MAST Element Templates . 94

Using MAST Element Templates . 94

Modular vs. Non-Modular MAST System Descriptions 95

Modular (hierarchical) MAST System Descriptions - Summary. 95

Non-Modular (flat) MAST System Descriptions - Summary. 96

6. Variables and Arguments . 97

Introduction to MAST Variables and Arguments . 97

Modeling Extractable Capacitor Voltage and Charge with MAST 98

Header and Header Declarations. 100

Values Section . 100

Equations Section . 102

Local Declarations . 103

Control Section. 103
Initial Conditions . 104

Modeling Multiple-Mode Voltage Source with MAST . 104

Constant DC Supply Output. 107
Template Header and Header Declarations 107

Time-Dependent, Exponential Output . 108
Characteristic Equation . 108
Header Declaration Using a Structure Type Parameter 109
vi

Contents
Initializing a Structure - Method 1 Using vsource_1. 111
Initializing a Structure - Method 2 Using vsource_1. 111
Summary of Structure Initializers . 112
Template Body . 112

Frequency-Dependent, AC Output. 121
Small-Signal Structure Type Parameter . 122
Small-Signal simvar Variables . 122
Small-Signal Conditional Statements . 124

Modeling a Linear Transformer with MAST . 125

Header and Header Declarations. 127

Netlist Section . 127

Local Declarations . 128

Parameters Section . 128

Error Reporting . 130

Template Equation . 132

Modeling a Temperature-Dependent Resistor with MAST. 133

Header and Header Declarations. 135
External Variable for Temperature . 136

Temperature Dependence of the Resistance Value. 137

Equations Section . 137

Parameters Section and Local Declarations . 139
Error Checking and Message. 139

Altering an External Parameter . 140

Export a Variable . 141
Example . 143

Modeling an Idealized Op Amp with MAST . 144

Current Contribution for Each Pin . 145

Three-Pin Topology . 146

Characteristic Equations . 146

Header and Header Declarations. 147

Local Declaration of Local Parameters . 147

Parameter Section . 149

Equations Section . 150

7. Modeling Digital Systems . 153

Digital Terminology. 154

Connection Points . 154

Time . 155
vii

Contents
Values . 155

Events . 157

Scheduling With the when Statement . 157

Event Queue . 158
A Typical Event Queue . 158

Initializing Connection Points - Digital MAST Modeling 160

Initializing Internal Variables - Digital MAST Modeling. 160

Modeling an AND Gate - MAST Template . 161

MAST AND Gate Model Logic States . 163

Header Declarations . 163

Local Declarations . 163

The when Statement in the MAST AND Gate Template 164

Initializing the AND Gate MAST Template . 166

MAST Template Conflict Resolution - the driven Function. 166
Defining Conflict Resolution in a MAST Template 168

A Netlist Example - MAST AND Gate Template. 169

Initialization and Internal Events - MAST clock Template 172

Header Declarations . 174

Local Declarations . 175

When Statements. 176
Initialization. 177

8. Modeling Mixed Analog-Digital Systems. 179

Modeling a Voltage Comparator with MAST . 179

comparator Gate Topics . 181

Header Declarations . 181

Local Declarations . 181

When Statements . 182

DC Initialization . 184
Initialization Example . 185

Modeling A Digitally-Controlled, Ideal Switch with MAST 186

Header Declarations . 188

Local Declarations . 188

When Statement . 189

Template Equation . 190

The schedule_next_time Function . 190

DC Initialization . 191

Netlist Example for the Ideal Switch. 192
viii

Contents
Using Interface Models in Mixed Analog-Digital Simulation. 193

A MAST Analog-to-Digital (a2d) Interface Model 194
Header Declarations. 196
Local Declarations . 196
When Statements. 196
Template Equations . 197

A MAST Digital-to-Analog (d2a) Interface Model 198
Header Declarations. 200
Local Declarations . 200
When Statement. 200
Template Equation . 202

Analog-to-Digital and Digital-to-Analog Summary 203

MAST Interface Models and Foreign Simulators . 203

9. Control System Modeling . 207

Connection Points for Control System MAST Templates. 208

Creating Basic Control System MAST Templates . 209

Simple DC Source . 210

Full-Featured Source - MAST multisrc Template 211

Two-input Summer - MAST sum2 Template. 215
Example . 216

Multiplier - MAST mply Template . 217

S-Domain Modeling Using the MAST d_by_dt Operator 218

Differentiator. 219

Integrator . 221

Two-Pole Transfer Function . 224

Combining Elements - MAST pid Template . 227

Ideal Delay . 229

MAST Control System Example Results . 230

Small Signal AC Analysis Results . 232

Step Load Transient Analysis Results . 233

10. Predefined MAST Declarations. 235

Saber Simulator Include Files . 235

SPICE-Compatible Pre-Loaded Templates . 236

Setting Up Your Own MAST Include Files . 237

Adding Your Own Include File . 237
ix

Contents
Creating Your Own Include Files . 238

Saving Your Include File Set . 239

MAST Template Extraction Groups . 240

11. Modeling Piecewise-Defined Behavior . 241

Nonlinear Elements . 241

Modeling a Simple Voltage Limiter with MAST . 242

Characteristic Equations . 244

Header and Header Declarations. 244

Values and Equations Sections . 245

Requirements For If Expressions. 246

Purpose of Newton Steps . 247

Control Section—Newton Steps. 249

Newton Step Example . 250

Modeling a Voltage Divider with MAST . 251

Header Declarations . 255

Parameters Section - MAST vdiv Template . 256

Newton Step Parameters . 257

Equation and Values Sections . 260

12. Modeling Nonlinear Devices . 263

Modeling an Ideal Diode with MAST . 263

diode Template Topics . 266

Characteristic Equation . 266

Header Declarations . 267

Modeling Temperature . 267

Newton Steps. 268
Newton Steps Example - MAST diode Template 269

Template Equation . 270

Initial Conditions. 270

Starting Value . 270

Small-Signal Parameters . 271
Small-Signal Parameters Report . 271
Small-Signal Parameter Statements . 272

Ebers-Moll MAST Model for the Bipolar Transistor . 274

Basic Model Equations. 281
x

Contents
Preparing to Write the MAST bjt Template . 282

Header Declarations . 283
Transistor Type . 284
Collector Resistance . 285
Initial Conditions . 285

Local Parameters . 287
Temperature . 288
Junction Capacitance . 288
Newton Steps Declaration - MAST bjt Template 288
Local Node - MAST bjt Template . 289
Intermediate Current and Charge Variables. 289
Defining Groups For Extraction - MAST bjt Template. 290

Thermal Voltage . 291

Junction Capacitance. 291

Intermediate Calculations . 292
Fundamental Quantities - MAST bjt Template 292
Currents . 293
Charges . 294

Control Section. 296
Collapse Node . 296
Newton Steps . 297
Initial Conditions in Control Section . 297
Starting Value. 298
Small-Signal Parameters . 298

Equations Section . 299

13. Modeling Nonlinearities . 301

Simulation Techniques for Evaluating Nonlinearities . 301

Simulation Linearization Techniques . 302

Taking the Slope (Method 1) . 302

Piecewise linear approximation (Method 2) . 303

Piecewise Linear Evaluation (Method 3) . 304

Comparison and Summary of Linearization Techniques 305

Modeling a Voltage Squarer - MAST vsqr Template . 306

vsqr Template Topics . 306

Template Header . 307

Values Section . 307

Equations Section . 308

Control Section. 308

Understanding Sample Points . 310
xi

Contents
Considerations for Selecting Sample Points. 310

Specifying Sample Points. 313
Sample Point Statement Syntax. 314
Sample Point Values . 314

Density of Sample Points . 315

Default Sample Points . 316

14. MAST Functions. 317

Using a MAST Function Instead of a Foreign Routine. 317

Modeling the Bipolar Transistor Using MAST Functions 318

Guidelines for Splitting a MAST Template into Separate Functions. 319

The bjtm Template Architecture Using MAST Functions 319

The bjtm Template . 321

Function Call Overview - bjtm MAST Template . 323

bjtm_arg Declaration Template . 326

Local Parameters Function bjtm_pars . 327
Function Header. 328
Header Declaration . 329
Function Body . 330

Calculated Values Function bjtm_values . 330
Function Header. 333
Header Declaration . 333

Function Body . 333

15. Foreign Routines in MAST . 337

Introduction . 337

Using a FORTRAN Function in a MAST Template . 338

Writing the FORTRAN Routine . 339

Declaring and Calling the Routine From a Template 341

Modeling the Bipolar Transistor Using Foreign Routines 342

Splitting Functionality Between a MAST Template and a Foreign Function 342

Modifying the BJT Template to Use a Foreign Routine 344

General Foreign Function Call Syntax . 347

Calling the Foreign Routines . 348

Implementing a MAST Foreign Routine in C . 349

Defining Template Arguments . 350
xii

Contents
First Call—Setting Up Return Parameters . 352

Second and Third Calls—Performing Calculations 353

Complete BJT C Routine . 356

16. Time-Domain Modeling . 361

Using the MAST delay Function in an Ideal Delay Line 361

Ideal Delay Line (dline) MAST Template . 363

Delayed Sine Wave Transient Analysis . 364

Delayed Sine Wave AC Analysis . 365

MAST dline Template Summary . 366

Expanding the Multiple-Output Voltage Source . 367

Overview . 367

The vsource_2 MAST Template. 369

Header Declarations . 371

Union Type Parameters . 372
Sine Wave Output (sin) Declaration . 373
Exponential Wave Output (exp) Declaration. 374
Step Function Output (step) Declaration . 375
Initial Values . 376
Netlist Example . 377

Local Declarations . 378

Equations Section . 378

Determining Union Elements . 379

Assigning Internal Values . 380

Performing Calculations (Defining Signals) . 381
Sine Wave Output . 383
Exponential Waveform Output . 384
Step Function Output . 385
No tran Output . 386

Netlist Examples . 388

17. Modeling Noise . 389

Introduction . 389

Adding Noise to a Resistor MAST Template . 390

Header Declarations . 392

Local Declarations . 392

Expression for Noise . 393

Control Section. 393
xiii

Contents
Adding Noise to a Voltage Source MAST Template. 394

Adding Noise to the MAST diode Template . 395

18. Statistical Modeling . 397

Introduction . 397

Varying Values in a Simple Voltage Divider . 398

Probability Density Functions (PDFs) . 400

Intrinsic Probability Density Functions . 401

Uniform Probability Density Function . 402

Normal Probability Density Function . 404

Piecewise Linear Probability Density Function . 407
1. Creating a Piecewise Linear Prototype PDF 408
2. Correspondence Between Actual Values and Prototype PDF Values 410
3. Using a Piecewise Linear Prototype PDF in a Netlist. 411

Cumulative Density Functions (CDFs). 413

Intrinsic Piecewise Linear Cumulative Density Function 415
1. Creating a Piecewise Linear Prototype CDF 415
2. Correspondence Between Actual Values and Prototype CDF Values 417
3. Using a Piecewise Linear Prototype CDF in a Netlist 418

Correlating Distributions. 420

Modifying Uniform and Normal Default Distributions . 421

Modifying a Uniform Prototype Distribution . 422
1. Modifying a Uniform Prototype PDF Using Initializers 422
2. Modifying a Uniform Prototype PDF in a Template 425

Modifying a Normal Prototype Distribution. 425
1. Modifying a Normal Prototype PDF using Initializers 426
2. Modifying a Normal Prototype PDF in a Template 428

Parameterized PDF and CDF Specifications. 428

The random MAST Function . 430

Use of the statistical MAST Simvar Variable . 430

Worst-Case Statistical MAST Modeling . 431

19. Adding Stress Measures to a MAST Template . 433

Add stress_measure Statements to Template . 433

Determine if Specified Variables are Accessible . 436
xiv

Contents
Add Stress Ratings . 436

Add Thermal Resistances (Optional). 439

Add a Way to Disable Stress (Optional). 441

Add a Way to Specify Device Type and Class (Optional). 443

MAST Example Including Stress Statements . 445

A. Unstructured Modeling Approach — Examples . 455

Constant Current Source . 455

Branch Declarations. 455

Template Equation . 456

Linear Resistor MAST Template . 457

Branch Declarations. 457

Template Equation . 457

Linear Capacitor MAST Template . 458

Template Equation . 459

Constant Voltage Source MAST Template . 460

Branch Declarations. 461

Template equation . 461

Linear Inductor MAST Template . 462

Characteristic Equations . 462

Setting Up the Template Equation . 463

Current-Controlled Voltage Source MAST Template . 464

Characteristic Equation . 464

Template Equation and Local Declarations . 465

Mutual Inductance MAST Template . 466

Setting Up the Template Equations . 466

Flattened Hierarchy MAST Template . 468

Template Equations . 469

Template Body - Local Declarations. 469

Mixed Hierarchy MAST Template. 470

MAST capacitor_1 Template . 471

Local Declarations - Assignment Statements . 472

Local Declarations - Declaring a val. 473

Template Equation . 474
xv

Contents
Multiple-Output Voltage Source . 475

Template Body . 476

Linear Transformer. 477

Temperature-Dependent Resistor . 478

Simple Idealized Op Amp . 479

Unstructured MAST clock Template. 480

Modeling a Simple Voltage Limiter. 482

Local Declarations . 483

Template Equations . 483

Modeling a Voltage Divider . 484

Modeling an Ideal Diode . 485

Ebers-Moll Model for a BJT . 486

Digitally-Controlled, Ideal Switch . 491

Digital-to-Analog (d2a) Interface Model . 492

Integrator (intgr) . 492

Using MAST Functions - Unstructured bjtm Template 494

Ideal Delay Line - Unstructured dline Template . 496

Multiple-Output Voltage Source - Unstructured vsource_2 Template 497

B. Making User Templates Visible for Unix and NT. 501

Making User Templates Visible for Unix. 501

How the Applications Find Files. 501

Using Templates Written in MAST . 503

Using Custom Models From Your Capture Tool . 505

Making Symbols Available in Saber Sketch . 505

Using C or FORTRAN Routines Called by Templates 506

How to Make a Single Routine Available to the Saber Simulator. 507

Making a Library of Routines Available to the Saber Simulator 508

Making User Templates Visible for NT. 509

Making Symbols Available in Saber Sketch. 512

Using Templates Written in MAST . 512

Using C or FORTRAN Routines Called by Templates 514
xvi

Contents
The C Language Header . 514

The FORTRAN Language Header. 514

How to Make a Single Routine Available to the Saber Simulator. 515
One-Step Dynamic Library Linking. 515
One-Step C Language Compiling and Linking 516
One-Step FORTRAN Language Compiling and Linking 516

How to Compile and Link Libraries of Routines . 517

Index . 519
xvii

Contents
xviii

Preface

What You Need to Know to Use This Manual

This manual is for Saber users who are familiar with netlists and plan to write
their own models for simulation. It is largely tutorial in its approach and
assumes no prior experience with the MAST modeling language. It does
assume that you know how to use a MAST template with the Saber simulator.
Some programming experience would be helpful, though not absolutely
necessary.

This manual also assumes that you are familiar with the following:
■ How to view the contents of a file.
■ How to use a text editor to create a file or edit the contents of a file.
■ How to delete files.
■ How to create or delete a directory.
■ How to list the contents of a directory.
■ How to move from one directory to another.

If you are not familiar with these procedures, consult the user’s guide for your
operating system.

What This Manual is About

This manual shows how to use the MAST modeling language by presenting a
small number of concepts at a time, with each presentation based on a
modeling example.

It has two objectives:
■ To describe some general purpose modeling techniques.
■ To show how to use the MAST language to implement simple models of

systems or subsystems for use by the Saber simulator.

The models described in the beginning chapters are kept simple. As the model
complexity increases with succeeding chapters, every effort has been made to
Saber® MAST Language User Guide xix
B-2008.09

What This Manual is About
keep the conceptual “jumps” manageable. Most examples start by listing the
template of the model and describing the characteristic equations.

Because the MAST language has the features and capabilities of an Analog
Hardware Description Language (AHDL), it is suited for the diverse and
complex modeling requirements of simulation in general. This manual is not
meant to serve as a textbook on modeling—it is intended to be a survey (by
example) of MAST capabilities. Therefore, achieving full MAST expertise
requires time and practice in addition to reading this manual. Fortunately, for
immediate use, you need only learn the portions that apply to your own
simulation, which is not so difficult.

This manual explains not only what, but why. The MAST Language Reference
Manual also explains what, but in greater detail—it provides more detailed
information on topics that are introduced in this manual.

Basic Versus Advanced Modeling

This manual presents a sequence of graduated examples that demonstrate
how to incorporate many commonly-used features of the MAST modeling
language. These example templates are presented in order of increasing
complexity to introduce advanced features. They have been selected to
provide the following:
■ An easy starting point (the first two examples are models for a current

source and a resistor)
■ Simplified models
■ Balanced length—short enough to read and scan, but long enough to

demonstrate significant features and capabilities
■ Moderate differences from one example to the next
■ Modularity of chapters, to minimize having to read “cover-to-cover”

Note:

Most of the templates used as examples are simplified versions of
templates that already exist in the Saber libraries. Be aware that, for
simplicity, these example templates do not include the error-checking
features contained in the library templates.
xx Saber® MAST Language User Guide
B-2008.09

 :
What This Manual is About
Schematic Entry Versus Netlist

As stated above, one objective of this manual is to show how to implement a
mathematical model in the MAST modeling language—how to write a template.
Some of the constructs and requirements for doing this are based on using a
template in a netlist (which is a textual description of your design provided as
input to the simulator). Consequently, explanations sometimes refer to topics
and procedures that are related to a netlist.

If you are using a schematic entry program, information in this manual
regarding netlists still applies to writing a MAST template. This is because a
schematic entry program still produces a Saber netlist—this type of program is
basically an interface that lets you avoid having to edit a netlist directly. In
general, such information is not extremely detailed and is easily applied to
using a schematic entry program.

For example, specifying a template in a netlist is effectively the same as
placing a symbol in a Saber Sketch schematic and specifying its properties,
from which a netlist is created. There is no difference in simulation.
Saber® MAST Language User Guide xxi
B-2008.09

What This Manual is About
xxii Saber® MAST Language User Guide
B-2008.09

1
1Fundamental Modeling Concepts

This chapter presents an overview of the MAST modeling processes, and
explores essential topics in computer simulation and modeling.

Guide to Writing MAST Templates

MAST is a description language for use by modelers as a way to describe the
behavior and structure of hardware in mathematical terms. Hardware can
range from discrete devices to complete system designs. Among the types of
devices that can be modeled are electronic devices such as resistors and
mechanical devices such as hydraulic valves. A design can be a combination
of more than one functional block to comprise a complete system.

Designers can create their own MAST models or rely on a comprehensive
library of pre-existing MAST models.

Once a device or design has been described with MAST, the behavior of the
model can be simulated with the Saber simulator.

MAST provides two different styles for creating models: structured and
unstructured.

The structured approach divides the model into sections. Each section contains
specific model functionality. This modeling style is recommended for
complicated models. Most models fall into this category.

The unstructured modeling style is beneficial for use with simple models and
can be created with less lines of code. Although the term “unstructured” implies
a lack of model structure, this is not the case. The model’s structure is made
simpler by eliminating the need to partition different model functionality into
specific model sections.
Saber® MAST Language User Guide 1
B-2008.09

Chapter 1: Fundamental Modeling Concepts
General Modeling Process Overview
The following topics describe general modeling and simulation concepts:

General Modeling Process Overview
Simulation Concepts
General Modeling Concepts

General Modeling Process Overview

The process of replacing a system with a simplified model and then
investigating its properties by controlled experiments is called simulation. In
order to obtain meaningful simulation results, the model must accurately
represent the original system within the constraints of those experiments.
Beyond that, the model and the original system may exhibit completely
different behavior. This means that a system can be represented by a variety of
different models, each having a specific purpose and a set of related
limitations.

In computer simulation, the model typically consists of a mathematical
description of the system properties, and each controlled experiment is an
analysis of a particular type. For example, a transient analysis is typically used
to investigate the response of the system to a time-dependent excitation. To
yield meaningful simulation results for all types of excitation, the system model
must include accurate descriptions (such as nonlinearities and time constants)
of the system's dynamic properties. On the other hand, a linear approximation
of the system (if it exists) can be sufficiently accurate for feasibility studies.
Most simulators also use a linearized model for small-signal AC analysis to
determine the frequency response of the system. They generate such a model
by linearizing a more accurate nonlinear model about the operating point of the
system.

Among the different modeling languages, the MAST modeling language can
represent a model in terms of linear or nonlinear algebraic or integro-differential
equations. The Saber simulator can then use these models to perform
simulation analyses. The interaction of the MAST language and the Saber
simulator provides a powerful method of investigating systems containing a
wide variety of models.

Simulation Concepts

To create a model for computer simulation, you must understand a few basic
concepts about computer simulation, especially how a simulator operates and
2 Saber® MAST Language User Guide
B-2008.09

Chapter 1: Fundamental Modeling Concepts
Simulation Concepts
how it uses a model in a system. These concepts are universal and therefore
independent of the Saber simulator. Other concepts apply only to the Saber
simulator, which is unique in that it supports continuous analog, event-driven
(including digital), and data flow (control system) models.

Simulation of Continuous Analog Systems

When simulating continuous analog systems, a simulator repeatedly solves a
set of simultaneous nonlinear differential equations. These equations represent
the system being simulated—they are the model of the system. The system
model consists of ordinary differential equations if it can be represented by
lumped elements.

In electrical systems, examples of such elements are resistors, capacitors, or
transistors. The elements are connected at the nodes of the system. There is a
voltage and a current associated with each node in the system. The voltage is
measured at the node with respect to the reference node; the current flows
through each element connected to the node.

Electrical Network
For example, consider the following simple network, which consists of a current
source, a resistor, a diode, and a capacitor. The text to the right of the diagram
is known as a netlist—it specifies the models to be used in the system and how
they are connected to each other. A netlist is usually provided as an input file to
a simulator.

Io

1 R 2

C

0

D

i.in 0 1 = Io

r.12 1 2 = R

c.2 2 0 = C

d.2 2 0 = Is

Sample network and its netlist
Saber® MAST Language User Guide 3
B-2008.09

Chapter 1: Fundamental Modeling Concepts
Simulation Concepts
The following equations represent resistor current, capacitor current, and diode
current in this circuit:

R: IR = V/R
C: IC = d/dt(CV)

D: ID = IS(e -1)

Using these equations, it is straightforward to apply Kirchhoff’s Current Law
(KCL) to nodes 1 and 2 (i.e., the sum of all currents entering a node equals the
sum of all currents leaving that node):

i(1): (v(1)-v(2))/R - I0 = 0

i(2): -(v(1)-v(2))/R + d(v(2)*c)/dt + IS*(e - 1) = 0

where v(1) and v(2) are the voltages at nodes 1 and 2, with respect to the
reference node. IS is the diode saturation current and Vt is the thermal voltage.
These equations describe the behavior of the network completely. That is, they
are a complete mathematical model of the circuit shown in the previous
diagram.

Although it is possible to describe this system directly using the above
equations, it is preferable to provide a model for each system element, together
with a netlist describing their interconnections.

That way, the simulator obtains the equations from these models and sets
them up according to how the netlist describes their interconnections. It then
solves the equations for the unknowns, which are the system variables v(1)
and v(2)—the voltages at nodes 1 and 2 with respect to the reference node (“0”
in this netlist). It may do so repeatedly, in order to determine the system
variables as a function of time or frequency.

Continuous Analog Systems - Hydraulic Network
Now consider the simple hydraulic system in the following figure. It consists of
a pump delivering a constant water flow through a pipe into a reservoir. A valve
protects the reservoir from excess pressure.

V/Vt

V(2)/Vt
4 Saber® MAST Language User Guide
B-2008.09

Chapter 1: Fundamental Modeling Concepts
Simulation Concepts
Assuming that the valve opens gradually with exponential behavior and that no
water spills at the ends (1 and 2) of the pipe, the equations describing the
dynamics of the system are:

flow(1): (p(1)-p(2))/pipe_res - pump_flow = 0

flow(2): -(p(1)-p(2))/pipe_res + d(p(2)*rsvr_cap)/dt + vlv_lkg*(e - 1)
= 0

where p(1) and p(2) are the pressures at the two ends of the pipe, and P0 is a
reference pressure. You can see that Equations 6 and 7 are mathematically
equivalent to Equations 4 and 5 of the electrical network. In the hydraulic
system, the pressures p(1) and p(2) are the system variables for which the
simulator has to solve.

The similarities between these two examples illustrates that the fundamental
concepts used in continuous analog simulation are not restricted to electrical
networks—they apply equally to a variety of other types of physical systems,
including hydraulic, mechanical, and magnetic.

Each discipline has its own type of system variables, but there is no
requirement for a system model to be purely electrical or purely hydraulic. The
simulator simply determines the system variables (which can be any
combination of voltages, pressures, torques, or system variables of other
disciplines) by solving the simultaneous nonlinear differential equations
describing the system.

It is important to note that, despite analogous similarities between disciplines,
the Saber simulator does not require a non-electrical, continuous analog model
to be written in terms of equivalent electrical elements.

1

2
pump

pipe

reservoir

valve

p(2)/P0
Saber® MAST Language User Guide 5
B-2008.09

Chapter 1: Fundamental Modeling Concepts
Simulation Concepts
For example, it can simulate a model of the system shown in the previous
figure directly—there is no need to convert flow to current, pressure to voltage,
pump to current source, etc.

Simulation of Event-Driven Systems

The simulation of a continuous analog system described by differential
equations yields accurate waveforms for the system variables, provided that
the system model is accurate. In many applications, a rough approximation of
the waveforms may be sufficient. A typical example is the timing simulation of a
digital system, where the waveform for the transition from one logic level to
another is much less important than the time when the transition occurs.

Consider the simple inverter chain shown in the following figure. In a timing
simulation, the logic levels at nodes a, b, c, and d are of interest, as well as how
a change at node a propagates through the chain, given a particular delay t for
each inverter.

Using binary logic, assume that the system's initial state is LOW, HIGH, LOW,
HIGH for nodes a, b, c, and d respectively. A transition to HIGH at node a
causes node b to go LOW after the inverter delay of t. After another delay of t, c
will go HIGH, because its input changed. Finally, after the third delay of t, d will
go LOW, and the system will have settled.

Because the state of the system responds to a change in input only at multiples
of t, there is no need to simulate the complete system between the changes;
and even then only the parts that change require attention.

Systems like the chain of inverters are called event-driven. During a simulation,
each part of the system (here each inverter) simply monitors its inputs; it is
otherwise inactive. A part becomes active only when there is an event, such as
a transition, on one of its inputs. It then processes the event, which may involve
scheduling another event (a transition) on one of its outputs, either at the same

1 2 3
a b c d

Chain of inverters
6 Saber® MAST Language User Guide
B-2008.09

Chapter 1: Fundamental Modeling Concepts
Simulation Concepts
time or in the future. Once the event is processed, the system part becomes
inactive again and continues monitoring its inputs.

Consider the following chain of events:

1. For the inverter chain in the previous figure, the pulse source schedules the
level of node a to change to high at a certain time.

2. Inverter 1 is monitoring this node and becomes active when the event time
arrives. This inverter recognizes that node a went HIGH, and schedules
node b to go LOW after a delay of t.

3. Inverter 1 then becomes inactive, and returns to monitoring node a.

4. After the delay time has elapsed, inverter 2 becomes active to process the
event at its input, node b. Because node b went LOW, inverter 2 schedules
node c to go HIGH after a delay of t and then becomes inactive.

5. Finally, inverter 3 becomes active and schedules its output to go LOW after
another delay period. The system settles after node d goes LOW, because
node d is not monitored.

Event-driven systems differ from continuous analog systems in several
respects:
■ They are always time-based, whereas continuous analog systems can be

simulated in either the time or frequency domain.
■ Models of event-driven systems (Strictly event-driven models—excepting

Hypermodel analog/digital interface templates) must have clear distinctions
between inputs and outputs. That is, the models always have a direction.
Although such distinctions are possible in continuous analog models, none
are required.

■ Event-driven models, by nature, are discontinuous in time.
■ An event-driven simulator is basically an event manager that activates

selected parts of the system sequentially, in order to process events at their
inputs. In contrast, a simulator for continuous analog systems is a solver of
simultaneous differential equations.

Simulation of Data Flow Systems

A third kind of system, the data flow system, has some characteristics of both
the continuous analog system and the event-driven system.
Saber® MAST Language User Guide 7
B-2008.09

Chapter 1: Fundamental Modeling Concepts
Simulation Concepts
Data flow systems have the following characteristics:
■ They can be simulated in either the time or frequency domain.
■ Models of data flow systems distinguish clearly between inputs and outputs.

That is, the models always have a direction.
■ Data flow models, by nature, are continuous.
■ Data flow models do not require conservation of through and across

quantities (such as current and voltage)
■ A data flow simulation involves the solution of simultaneous differential

equations. However, because through and across quantities are not
conserved, data flow simulation presents the system of equations in a
different form than do continuous analog systems.

The following diagram shows a data flow representation for the circuit shown in
the topic titled "Electrical Network".

The resulting differential equations for the network and the data flow are
identical. Only the manner in which they are presented is different. It is difficult
to make a one-to-one correspondence between the functional blocks in the
data flow representation and the related circuit diagram. It is even more difficult
to derive the data flow schematic given the circuit diagram. If the current source
were changed to a voltage source, the data-flow schematic would change
completely. It is apparent that the continuous analog approach presented in the
topic titled "Electrical Network" is a more natural way to describe the electrical

+

–

+

+ v2

= R ir • (e v2/vt -1) ∫v2 = 1/C dt•

Data flow representation of electrical schematic

I0

v1

Vr id ls ic

ic
8 Saber® MAST Language User Guide
B-2008.09

Chapter 1: Fundamental Modeling Concepts
General Modeling Concepts
system application. However, there are many systems where the data flow
approach is more natural (e.g., describing control systems using data-flow
schematic diagrams).

The diagram shown in the topic titled "Behavioral Level of Modeling
Abstraction" represents a schematic for a system that uses models written with
data flow constructs.

General Modeling Concepts

A model of a system is “good” only if it accomplishes the specific purposes for
the person using the model. Some keys to good modeling are to create models
that:
■ Accurately reproduce the effects of interest
■ Do not waste time with effects that are not of interest
■ Provide flexibility to allow the modeler to change his or her mind about the

effects that are of interest

A good model answers a suitable number of the “right” questions. A modeling
system that just solves differential equations does not answer enough of the
right questions. A good modeling system must be able to manipulate input
quantities to form the right differential equations, solve the differential
equations, and manipulate the results.

Behavioral Level of Modeling Abstraction

In general, most models are behavioral models. With VHDL, a model could
describe a design structure (structural description). Although at some level of a
design hierarchy, the behavior of each structural piece must be defined. All
MAST models are behavioral.

A behavioral model is one that describes an observed behavior with an
appropriate set of equations and coefficients. These characteristics are shared
by all mathematical models—the distinction between different models in a
system lies in the levels of detail that they model.
Saber® MAST Language User Guide 9
B-2008.09

Chapter 1: Fundamental Modeling Concepts
General Modeling Concepts
For example, you can model a bipolar transistor as a switch, with an off and on
resistance. The resistance model lets you observe current and voltage effects
at the external pins of the transistor. If you need more accuracy, it is available
in the Gummel-Poon model. The Gummel-Poon model lets you observe more
accurate current and voltage effects at the pins, as well as letting you observe
internal voltages, charges, and currents.

If you need still more accuracy, you can use a finite-element device model.
This type of model lets you observe even more accurate current and voltage
effects at the pins and more accurate internal voltages, charges, and currents.
In addition, you can observe internal three-dimensional electric field
distributions and temperature gradients. All of these models describe behavior
with equations. You could go to lower levels still with quantum mechanical
descriptions of the transistor materials. There appears to be no real limit. In
practice, however, there are always approximations and simplifications that you
must make, regardless of the depth of detail.

What is the appropriate level of abstraction to use? That depends on two
things:
■ What questions are to be answered using this model?
■ What information is available to fit the real device to the model?

For example, if you are trying to optimize the emitter efficiency of a bipolar
transistor design, then the finite-element model might be appropriate. If,
however, you are trying to verify the functionality of a large logic block on a
digital integrated circuit implemented with bipolar transistors, then the finite-
element model is clearly excessive. At most, you would use the Gummel-Poon
model, and you might even find the switch model to be sufficient. A good model
doesn't take the time to provide information that isn't required. That is, it is not

+

²–

1 τ

k

+ 1 s

1 τ + 2 s

• 1s

Control system schematic using data flow models
10 Saber® MAST Language User Guide
B-2008.09

Chapter 1: Fundamental Modeling Concepts
General Modeling Concepts
appropriate to worry about three-dimensional electric field distributions when
the goal is to verify logic design.

A behavioral description includes the algebraic and differential equations
needed to describe the physical system, as well as values for the equation
coefficients (also called model parameters). An accurate model requires both
accurate equations and accurate parameters. For example, if you want to
model a bipolar transistor and all you have is a power supply and an ohmmeter
to measure its characteristics, it is better to use a resistor model than a finite-
element model. Simulation results based on a well-characterized resistor
model will be more accurate than results based on a poorly-characterized
finite-element model, even though the finite-element model is capable of more
accurate results.

Finally, a model implemented with a high level of behavioral abstraction is not
necessarily less accurate than one implemented with a lower level of
abstraction. For example, a complicated integrated circuit, such as an analog-
to-digital converter, uses hundreds or thousands of transistors to implement a
very well-defined input-to-output functionality. If you use one of these devices
in your design, you typically would not care about internal node voltages and
currents, but only about the external ones. The external behavior can be
implemented much more efficiently, without losing accuracy, by a “behavioral”
model that considers only external behavior. Integrated circuit designers, in
fact, increase internal complexity to make external functionality even simpler
and more ideal, making external modeling even more attractive, as compared
to internal modeling.

MAST Modeling Modularity and Hierarchy

A “good” model not only implements the appropriate level of abstraction. It is
constructed so that it can easily be replaced with a model of either higher or
lower abstraction. You can achieve this flexibility by using modularity and
hierarchy. Central to the notion of modularity is the concept of the netlist.

Many physical systems can be described as a network of connected
components. This applies to electrical systems, but it applies equally to many
other systems as well. The following examples illustrate this concept.
Saber® MAST Language User Guide 11
B-2008.09

Chapter 1: Fundamental Modeling Concepts
General Modeling Concepts
In all such systems, the elements can be considered to have through and
across variables, where the through variable is the quantity conserved at a
given connection (or node). Generally, the across variable is the driving force
and the through variable is the driven force.

For example, in electrical networks, voltage is the driving force and current flow
results. In a hydraulic network, pressure is the driving force and fluid flow
results. In a thermal network, temperature is the driving force and heat flow
results. A mechanical network, on the other hand, uses force as the driving
force that is the through variable (position is the across variable). However,
regardless of whether it is the driving or driven force, the through variable must
sum to zero at each node. Consequently, models operating in such systems
are often called conservation models.

Because of the convenience of describing conservation models with through
and across variables, the MAST language provides special constructs to make
implementing such models easier (see the topic titled "MAST System
Variables".

The Saber Netlist Overview
The following figure shows a network and its corresponding netlist—a list that
represents a network of models functioning as a system.

Io

1 R 2

C

0

D
1

2

pump

pipe

reservoir

valve
12 Saber® MAST Language User Guide
B-2008.09

Chapter 1: Fundamental Modeling Concepts
General Modeling Concepts
This list is provided as an input file to the simulator. There is a one-to-one
correspondence between the elements in the network and the entries (lines) in
the netlist.

A netlist entry consists of the following parts:
■ the name of the model
■ a period (.)
■ the name of the instance of that model (this name is often called a reference

designator)
■ the names of the nodes to which this model instance is connected
■ an equals sign (=) (Not necessary in a netlist entry where user-specified

parameter values are omitted.)
■ values for the model parameters

The objective of this manual is to illustrate how to create MAST models for use
in netlists. Refer to the Analyzing Designs manual, the “Saber Netlister
Command Reference” appendix for more information on creating netlists from
Saber.

Note:

If you use a schematic capture/entry program such as Saber Sketch,
generally, you will not be aware of netlists. However, all such schematic
programs create netlists, because nearly all simulators use some kind of
netlist to describe the system.

The template is a text file containing the MAST description of the model of a
system element (although it can also contain the description of an entire

Io

1 R 2

C

0

D

i.in p:0 m:1 = Io

r.12 p:1 m:2 = rnom = R

c.2 p:2 m:0 = C

d.2 p:2 m:0 = Is

Sample network and its netlist
Saber® MAST Language User Guide 13
B-2008.09

Chapter 1: Fundamental Modeling Concepts
General Modeling Concepts
system or of several system elements). It is the basic unit of modularity—there
is a MAST template that describes each element in every netlist. Each netlist
entry has a corresponding template with which it is associated. Conversely,
any given template can be used in any number of netlist entries; each such use
of a template in a netlist entry is called an instance of that template.

Because it is a unit of modularity, a template can also be composed of further
netlist entries, which introduces the concept of hierarchy. If you are familiar with
SPICE, you should realize that, although a MAST template is similar to a
subcircuit (.SUBCKT), a template can also be extended to contain algebraic
and differential equations directly—a profound distinction.

Consider, for example, the string of resistors shown in the following diagram.
This circuit can be represented with the netlist shown below, consisting of five
entries. Four of the entries (r.1, r.2, r.3, r.4) are instances of the r template and
one entry (v.1) is an instance of the v template.

Alternatively, the following diagram shows the same circuit with the first two
resistors combined into an instance of a template named two_r. The second

v.1 p:A m:0 = dc = 5

r.1 p:A m:B = rnom = 10

r.2 p:B m:C = rnom = 20

r.3 p:C m:D = rnom = 30

r.4 p:E m:0 = rnom = 40

+

-

B C D

v.1 5V

A

0

r.1 r.2 r.3 r.4

10 20 30 40

Example 1: String of Resistors
14 Saber® MAST Language User Guide
B-2008.09

Chapter 1: Fundamental Modeling Concepts
General Modeling Concepts
pair of resistors combined into another instance of the two_r template. This is
an example of hierarchy.

The following two_r template provides a model of two resistors in series:

The first line of this template lists two arguments (ra, rb) by which you can
specify the resistance for each of the series resistors; thus, the two_r template
can replace two resistor instances in series. The circuit in Example 2 uses two
instances of the two_r template, as shown in the following netlist:

Simulation results for the implementation of Example 2 would be identical to
those for the implementation of Example 1. This example actually shows three
levels of hierarchy, since the resistor is implemented with a template, r.

 template two_r a b = ra, rb

number ra, rb

{

r.ra p:a m:middle = rnom = ra

r.rb p:middle m:b = rnom = rb

}

v.2 p:A m:0 = dc = 5

two_r.1 a:A b:C = ra=10, rb=20

two_r.2 a:C b:0 = ra=30, rb=40

+

-v.2 5V

A

0

two_r.1 two_r.2

ra=10

C

rb=20 ra=30 rb=40

Example 2: Using hierarchy to create resistor pairs
Saber® MAST Language User Guide 15
B-2008.09

Chapter 1: Fundamental Modeling Concepts
General Modeling Concepts
In addition to simplifying implementation, hierarchy can provide increased
computational efficiency. The numerical methods used by the Saber simulator
to solve systems of equations can take advantage of extra information in the
specification of a hierarchical design. The internal matrix representation of the
system of equations preserves and exploits the hierarchy. The efficiency
benefits can be substantial, especially in large, highly-repetitive systems.

By contrast, some simulators do allow the hierarchical specification of a netlist,
but then they “flatten” the netlist before simulation. This means that the internal
matrix representation of the set of differential equations is the same as if the
design were entered in a one-level netlist with no hierarchy.

MAST Modeling Modularity and Hierarchy Summary
The use of modularity and hierarchy are good modeling practices. Just as in
writing software, it breaks a large problem into small, easily-identifiable pieces.
The use of modularity and hierarchy has several advantages:
■ Ease of reuse in other designs
■ Ease of replacing one model with another of different behavioral abstraction
■ Ease of debugging when there is a problem
■ Ease of top-down design
■ Ease of partitioning design tasks

Modeling Objectives

The objective of modeling is to answer specific questions—a good modeling
system must do more than just implement systems of equations. It must be
able to convert inputs into appropriate forms, solve the resulting equations, and
manipulate the results to produce the information required.

The implementation of the model must include the mathematical description of
the system. However, it should also include any additional information that the
model writer may happen to possess. For example, the writer of a diode model
(such as the model shown in the topic titled "Electrical Network" may know that
the vt model parameter should never be negative. (The model is invalid if vt is
negative.) The model writer could then include parameter-checking in the
model, to prevent a user-specified negative value from being used.

In the example of the reservoir model shown in the topic titled "Continuous
Analog Systems - Hydraulic Network", you may not know the exact meaning of
“reservoir_capacity.” The writer of this model can require a user to provide the
16 Saber® MAST Language User Guide
B-2008.09

Chapter 1: Fundamental Modeling Concepts
General Modeling Concepts
reservoir’s cross-sectional area, fluid density, and gravitational acceleration.
Once the model has this data, it can calculate the resulting reservoir capacity
automatically.

A user of a model may wish to use simulation results to perform further
calculations. For example, a user of the reservoir model may be interested in
finding out how high the level in the reservoir gets when subjected to the
conditions shown with the reservoir model. The user may not know (or even
care) that the height can be calculated only after the pressure is determined. In
a good modeling system, the modeler can design the model to provide the
information for calculating the height from the system solution (pressure).

In another example, a user may wish to calculate the power dissipated in the
resistor in the diode model. The power dissipation does not have to be
calculated explicitly in order to solve the system of equations. However, it is
quite reasonable for a user to request its calculation. In a good modeling
system, the modeler can include the power dissipation calculation in the
resistor model to be provided upon the user's request.

A modeling system answers questions by performing the following functions:
■ Before simulation—check for errors and convert parameters.
■ During simulation—apply suitable algorithms to the design (such as solving

equations repetitively or by processing events).
■ After simulation—manipulate simulation results for additional information

that is not directly available from the simulation.
Saber® MAST Language User Guide 17
B-2008.09

Chapter 1: Fundamental Modeling Concepts
General Modeling Concepts
18 Saber® MAST Language User Guide
B-2008.09

2
2MAST Overview

The following topics describe some of the specific constructs used to write
models in the MAST modeling language:
■ MAST Template Description
■ Model Implementation Using the MAST Language
■ Walkthrough of a Simple MAST Template
■ General MAST Conventions

MAST Template Description

The basic unit of modularity for a MAST implementation of a model is the
template. A template is the mathematical description of a subsystem and is
contained in a "MAST Template File". The characteristic equations
implemented in a template can be any combination of linear or non-linear
algebraic or differential equations. No integral expressions are allowed;
however, by differentiating both sides of an integral equation, you can convert it
into a differential equation.

MAST Template File

A template is a MAST model contained in a text file that generally has the same
name as the template, plus the extension .sin. This enables the Saber
simulator to find the file upon invocation. Although the distinction is subtle,
there is a difference between a template and the file in which it resides. That is,
the template is the contents and the file is the container. Unless otherwise
indicated, the term template refers to a model and the term template file to refer
to the file containing the template.

For more information on using a template file, see the MAST Reference
Manual.
Saber® MAST Language User Guide 19
B-2008.09

Chapter 2: MAST Overview
MAST Template Description
Note:

The template files for all example templates in this manual are provided in
the following directories:

saber_home/example/MASTtemplates/structured or
saber_home/example/MASTtemplates/unstructured

Template Header

The first line of a template is known as the header, which appears in the
following general form:

where template is a reserved word that identifies the contents of this file as a
template, templatename is the “official” name of the template for use in a circuit
description (i.e., a netlist), connectionpoints are the names of connections to
the template, and arguments are the names of user-specifiable parameters.
The actual names given to templatename, connectionpoints, and arguments
are all selected by the writer of the template using MAST identifier and string
rules.

In the following two_r template:

■ two_r is the templatename
■ a, b are the connectionpoints
■ ra, rb are the arguments

template templatename connectionpoints = arguments

template two_r a b = ra, rb

number ra, rb

{

r.ra p:a m:middle = rnom = ra

r.rb p:middle m:b = rnom = rb

}

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/two_r.sin
20 Saber® MAST Language User Guide
B-2008.09

Chapter 2: MAST Overview
MAST Template Description
MAST Declarations

Most variables within a template must be explicitly identified so that they can be
recognized by the simulator—this is called declaring a variable. Variables
include the template name, arguments, connection points, and other variables
described in subsequent chapters.

MAST Connection Points

There are several different kinds of models that the Saber simulator uses:
■ Simulation of Continuous Analog Systems (physical systems)
■ Simulation of Event-Driven Systems (such as digital)
■ Simulation of Data Flow Systems (control)

Typically, each category of model has its own type of connection point (event-
driven uses states, for example), which communicates the characteristics of
that type of model to the rest of the system. Note that it is possible to combine
model types within a template, thus a template can have different types of
connection points (digital and analog, for example).

Note:

The terms “pins” and “connection points” are often used interchangeably. In
the MAST language, pins are a specific type of connection point (i.e., not all
connection points are pins). Refer to the MAST Reference Manual for more
information on connection points.

MAST Template Body

The template body is a mandatory partition in all example templates; the body
must be explicitly begun with an opening brace ({) and ended with a closing
brace (}). It is recommended to place each brace on its own separate line as
shown in the following example. The body contains all template statements,
Saber® MAST Language User Guide 21
B-2008.09

Chapter 2: MAST Overview
MAST Template Description
sections, and declarations, except for the header and header declarations that
precede it.

MAST Parameters

For a model of a physical system, coefficients of the characteristic equation are
called the parameters of the model. Parameters for models of other types of
systems provide similar functions—they fill in information that the model
requires for a specific simulation (which may or may not appear in a
characteristic equation). An argument (such as ra or rb) is a parameter whose
value can be specified by a user in a netlist. Other parameters are local—the
template uses them as it does arguments, but their values are not specified in a
netlist.

Each parameter in a template (and thus each argument) must be declared as a
particular type. The simplest parameter type is a number, which can assume
the value of either an integer or a real number. Other parameter types
introduced in later chapters are strings, structures, arrays, and unions.

template two_r a b = ra, rb

number ra, rb

{ # Template body starts here

r.ra p:a m:middle = rnom = ra

r.rb p:middle m:b = rnom = rb

} # Template body ends here

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/two_r.sin

template two_r a b = ra, rb

number ra, rb # Parameters of type number

{

r.ra a middle = ra

r.rb middle b = rb

}

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/two_r.sin
22 Saber® MAST Language User Guide
B-2008.09

Chapter 2: MAST Overview
MAST Template Description
MAST Template Equations

Template equations are the characteristic equations of the model, as
implemented in a template. Some templates may require additional
modifications to get the equations into a usable form, as described in the topic
titled "MAST Equation Modifications".

MAST Sections - Optional but Recommended

The template body may be further partitioned into various sections that contain
statements providing specific functionality.

With the exception of the control section, declaring sections within the template
body is optional—it is most often done for clarity within large, complicated
templates. The use of sections is recommended with most models. Using
sections in a model is called the “structured” modeling approach. Sections help
document the template by identifying segments where specific tasks are
isolated.
Saber® MAST Language User Guide 23
B-2008.09

Chapter 2: MAST Overview
MAST Template Description
The following example shows the general form of a template that uses
sections.

The sections required vary depending on the model. Template sections can be
in any order (except for the local declarations section, which must appear first).

Sections can also be used to optimize simulation efficiency.

Note:

One situation where you must use one of these explicit sections (the
equations section) is explained in the topic "Modeling an Idealized Op Amp
with MAST" which is an operational amplifier template with one output pin.

template header

header declarations

{

local declarations - must appear first

parameters {

parameter assignments and argument testing

}

netlist components

values {

value assignments

}

control_section {

simulator-dependent control statements

for non-linearities

}

equations {

equations describing behavior

}

when (expression) {

event-dependent assignments and scheduling

}

}

24 Saber® MAST Language User Guide
B-2008.09

Chapter 2: MAST Overview
MAST Template Description
Variable Types in MAST Sections
The MAST language has several types of constants and variables. The table
below summarizes the different types, showing where in the template they may
be declared, where their values can be assigned (left side of assignment
statement), and where their values can be referenced (right side of assignment
statement).

*Simvar variables step_size and next_time can be assigned in Values section.

Type of Variable Section Declared Section
Assigned

Section Referenced

number

enum

struc

array

union

string

Header declaration

or

Local declarations

Parameter

(if declared
locally)

Parameters

Netlist

when statement

Values

Control

Equations

val Local declaration Values when statement

Values

Control

Equations

var

ref

Header declaration (var
and ref)

or

Local declarations

(var only)

none

(determined by
the

simulator)

Netlist

when statement

Values

Control

Equations

simvar none none* when statement

Values

Equations

state Header declaration

or

Local declarations

when statement Netlist

when statement

Values

Equations
Saber® MAST Language User Guide 25
B-2008.09

Chapter 2: MAST Overview
MAST System Variables
MAST System Variables

The concept of through and across variables makes it possible to specify
network systems in the convenient form of a netlist, as shown in the electrical
network sample. Without this concept, the system could be specified only in a
much less convenient form, as shown in the following figure.

Through and across variables are also instrumental for an efficient
implementation of continuous analog systems using the MAST language.

The across variable in an electrical system is the voltage at each node with
respect to the reference node. Similarly, the through variable is the current
flowing through each element connected to each node. The simulator solves
the simultaneous equations for the system variables, which include the across
variables of the system. It does this based on the conservation of through and
across variables, which, for electrical systems, are Kirchhoff’s Current Law
(KCL) and Kirchhoff’s Voltage Law (KVL), respectively.

Branch

A conservation model (such as an electrical model that observes KCL and
KVL) provides a branch when the model can connect between two nodes in a
system and model a path from one node to the other.

For example, the model of an electrical resistor (having two pins) provides a
single branch in a circuit—from p to m. Similarly, the model of a bipolar

v

+

–

+

+ v2

0I

rV di= R ir

1

=Is• (e v2/vt -1) ∫v2 = 1/C ic dt

ic

•

Data flow representation of electrical schematic
26 Saber® MAST Language User Guide
B-2008.09

Chapter 2: MAST Overview
MAST System Variables
transistor (having three pins) provides three branches—from base to emitter,
from base to collector, from collector to emitter.

This concept of branch from electrical circuit theory can be generalized to any
conservation model and used as a MAST construct for templates. The use of
branches is referred to as part of the unstructured modeling approach.

When writing a template for a conservation model, you can define the through
and across variables for each branch, either explicitly or implicitly, as explained
in the following topics:

Explicit Declaration
The explicit specification of a branch consists of the following:

1. The reserved word branch.

2. The branch name, which is either a through branch or an across branch.

3. The declaration of either the through or the across variable.

4. The names of the two pins defining this branch, which must match the pin
names in the header declaration. For a through variable, pin names are
separated by the combination of a hyphen and a right angle bracket (->). For
an across variable, pin names are separated by a comma.

For example, the branch current and branch voltage of a resistor might be
declared as shown below. Each number refers to the list given above.

Branches may be declared in any order within the template body. You may
combine branch declarations on one line, separated by a comma:

branch ir=i(p->m), vr=v(p,m)

Given this declaration, you could then use branch variables ir and vr in a
template equation, as shown below.

ir = vr/res
Saber® MAST Language User Guide 27
B-2008.09

Chapter 2: MAST Overview
MAST System Variables
Implicit Declaration
Although not recommended, you can omit the word branch and the local name
of the branch variable and just use the branch through or across variable along
with the corresponding pins.

For example, in the following resistor template, the branch declarations:

could be omitted and the following template equation could be used:

i(p->m) = v(p,m)/res

Note:

Using i(p->m) or v(p,m) in this way more than once in the same template
would define a different branch each time; therefore, it is recommended to
use the explicit declaration method instead.

Creating a MAST System Variable

From the perspective of a template, the across variables are “given” and can
be used to compute the through variables (e.g., branch currents).

Note:

For optimum template efficiency, you should algebraically rearrange the
characteristic equations so that the through variables are expressed as
explicit functions of the across variables.

Case 1
A resistor template should implement the following characteristic equation:

I = V/R (rather than V = I•R)
28 Saber® MAST Language User Guide
B-2008.09

Chapter 2: MAST Overview
MAST System Variables
This is done using branch declarations as follows:

 In the third line, res is the template argument. It assumes the value of
resistance specified by the user in a netlist.

Case 2
Unfortunately, the choice shown in "Case 1" is not always available—a
template equation may not be able to express the through variable as a
function of the across variable.

Two basic examples of this are the unstructured examples for the voltage
source and inductor models.

Case 3
It is possible for a conservation model to have a pin that does not define a
branch. This is a situation where the through variable cannot be declared as a
branch, but it is still needed in the characteristic equation. This is done by
declaring the through variable as a var variable (see the MAST Reference
Manual for more information).

A var variable is a local declaration that is required for the following conditions:
■ The simulator cannot determine the through variable explicitly as a function

of the across variable, and
■ The through variable cannot be declared as branch variable

This technique is described more completely in the template for a simple, ideal
operational amplifier with two input pins (ip, im) and a single output pin (out).
Because no branch characteristic is modeled between the output pin and either
input, the output connection does not constitute a branch. Thus, the current at
out cannot be declared as a branch current.

The remedy for this situation is to declare a local variable for current at the
output pin (iout) as a var variable and use it in the equations section. This
declaration would be made as:

branch ir=i(p->m)

branch vr=v(p,m)

ir = vr/res

var i iout
Saber® MAST Language User Guide 29
B-2008.09

Chapter 2: MAST Overview
MAST Reference Node
where iout is the name of the variable and i identifies it as a current (for display
units).

Case 4
The Saber simulator can solve simultaneous algebraic or differential equations
that are internal to the template (i.e., equations that are not necessarily
characteristic equations for a particular model). For example, the simulator can
solve the following simultaneous equations, which are not specific to any
model:

The preceding set of equations can appear in a MAST template (or as a
template by itself), as follows:

The line var nu y declares y as a var variable with no units (nu). You can
perform a DC analysis or transient analysis on this template, and the simulator
will solve the equations to find that x=1 and y=7. You can use this technique
whenever you need to solve a system of simultaneous algebraic or differential
equations.

MAST Reference Node

The topic titled "The Saber Netlist Overview" describes conservation models
and provides a simple example of using templates containing such models in a
netlist (a string of resistors and a voltage source). The following diagram of this
netlist, lists the names of the nodes of this simple circuit: A, C, and 0.

x = (y - 4)/3

y = 4x + 3

var nu y

x = (y-4)/3

y = 4*x + 3
30 Saber® MAST Language User Guide
B-2008.09

Chapter 2: MAST Overview
MAST Reference Node
Note that the node connected to circuit ground is named “0”. This conforms to a
convention that is used by the Saber simulator, as described below.

One of the requirements of a conservation template is that, when used in a
design, the value of the across variable at any of its pins must be measurable
with respect to some reference value in the design. This reference value is
provided by a node in the design whose across value is always zero—the
reference node of the design.

In electrical designs (circuits), the reference node is usually referred to as the
ground node. However, the requirement of a reference node extends to all
designs that have conservation templates (electrical, mechanical, magnetic,
etc.); it serves as a generalized source/sink for all through variable quantities
(current, torque, flux, etc.). Although templates of event-driven or data flow
models do not have this requirement, the Saber simulator makes sure that
every design has a reference node, as follows:
■ If there are conservation templates in the netlist, and a node has been

explicitly assigned the name 0, then it is used as the reference node.
■ If there are conservation templates in the netlist, but no node has been

explicitly assigned the name 0, then the Saber simulator arbitrarily selects a
node to be used as the reference node. In addition, a warning message is
displayed that this has been done.

■ If there are no conservation templates in the netlist, then the Saber simulator
automatically adds a reference node named 0 (without displaying warning
message). Note that it is not possible (or necessary) to add this reference
node yourself—it is just done for the convenience of programming.

+

-
v.1 5V

A

0

two_r.1 two_r.2

ra=10

C

rb=20 ra=30 rb=40

An electrical circuit with a reference node
Saber® MAST Language User Guide 31
B-2008.09

Chapter 2: MAST Overview
Model Implementation Using the MAST Language
Model Implementation Using the MAST Language

The following topics summarize some essential principles of implementing a
MAST model, indicating the appropriate MAST constructs for each task:

1. Determine Characteristic Equations

2. MAST Equation Modifications

3. Pre-Simulation Calculations and Error Checking

4. Equation Implementation

5. MAST Model Verification and Testing

Determine Characteristic Equations

The most difficult aspect of writing a template is determining the appropriate
characteristic equations. Once you have a satisfactory set of equations, the
MAST implementation is relatively straightforward. Bear in mind that the
objective of a large number of technical papers is to produce equations that
describe the operation of some process or device—someone else may have
already developed some or all of the equations you need. Conducting a search
of the literature is usually preferable to developing and deriving the equations
yourself.

MAST Equation Modifications

Once you have a basic set of equations, you may have to make some
modifications to get the equations into a usable form.

1. Select the appropriate through and across variables. Although this is often
easy, it can sometimes require some thought. The across variable of an
element is the one that, when a connection point of the element is
connected to a connection point of another element, has to have the same
value at both connection points.

For example, when two resistors are soldered together, their voltages are
the same at the connection node. Therefore, voltage is the across variable.
The through variable is the one that sums to zero at any node. In the resistor
example, this is the current, so current is the through variable.
32 Saber® MAST Language User Guide
B-2008.09

Chapter 2: MAST Overview
Model Implementation Using the MAST Language
2. Rearrange the equations so that each through variable is expressed as an
explicit function of the across variables. If only an implicit relationship can
be expressed, then it is necessary to declare the through variable as a
branch or to add one or more equations, with the through variable declared
as a var variable for each new equation (see the topic titled "MAST System
Variables".

3. Examine the equations for pitfalls:

• Avoid potential singularities (division by zero). In particular, avoid
division as much as possible and check denominators carefully when
they do occur.

• Avoid taking the difference of two large numbers. Digital computers can
run out of resolution when taking the difference of large numbers.

• Watch out for functions that are not well behaved, especially around
zero. Troublesome functions can often be rewritten or approximated
with a truncated series around unstable points.

4. Replace non-time derivatives with time derivative equivalents, because the
time derivative is the only available derivative function. For example:

can be replaced with

5. Consider whether the equations can be characterized. Many promising
models fail because their parameters are impossible to determine. A simple
model that can be accurately characterized is better than a complex model
that cannot. Complete the characterization phase before starting the
implementation phase.

y = dm
dh

y =

dm
dt
dh
dt
Saber® MAST Language User Guide 33
B-2008.09

Chapter 2: MAST Overview
Model Implementation Using the MAST Language
Pre-Simulation Calculations and Error Checking

The next step in implementing a MAST model is to check the equations for
quantities that can be calculated before the simulation begins. For example, if
your equations use the square of an argument value, it is better to square it
once, rather than each time it is used during the simulation. You can do this by
declaring a local parameter of type number and setting it equal to the square of
the argument. The squared value is then used in the model evaluation, which
improves the computational efficiency of your model.

You can also perform other calculations that precede the simulation, such as
unit conversions or characterization functions.

You can also examine input arguments and check for range errors when you
write the model by using instance (), error (), and warning (), message
functions. This way the model itself can catch these types of violations and
report them to the screen.

Equation Implementation

In the simplest situations, the characteristic equations of the model can be
implemented directly as a template equation. However, model equations may
require the results of if-else statements, which you can specify separately from
the template equations and then have them refer to the if-else values, so this
requirement causes no difficulties.

If the model has discrete or event-driven characteristics, then you must use at
least one when statement in the template.

Post-Simulation Calculation

It is often desirable to calculate some quantities after the simulation is
complete. For example, the power dissipated by a resistor is easily calculated
from the solution of the equations involving the resistor, even though the value
of power dissipation is not required in the solution of the system. To obtain this
value using the MAST language, it is declared as a local variable (a val
variable) and calculated accordingly. You can do this for any val variable, var
variable, parameter, state, etc.—the value is calculated after the simulation is
complete, but only if requested, so it doesn't cost extra to define it in the
template.
34 Saber® MAST Language User Guide
B-2008.09

Chapter 2: MAST Overview
Walkthrough of a Simple MAST Template
MAST Model Verification and Testing

A model is not complete until it has been tested and its accuracy and
functionality verified. A common mistake in template development is to develop
several new templates as a batch and then throw them all together to see if
they work. It is much more productive to test each template individually and
verify it before proceeding. In fact, it is often appropriate to develop each
template in stages, implementing the bare essence of functionality first, and
then proceeding with additional features, testing each one before going on to
the next.

Walkthrough of a Simple MAST Template

This topic provides the actual contents of the file for a template that models an
electrical resistor. The same model is shown twice, once using the structured,
and once using the non-structured modeling approach. It is provided as a
“walkthrough” to illustrate the most common principles of writing a MAST
template and to briefly contrast the two modeling approaches.

The following text shows two MAST descriptions of the same resistor model.
Either of these modeling approaches can be used to create a template that is
used by the Saber simulator.

By convention, the text of one of these models would be in a file called
resistor.sin, so that the Saber simulator can find the file upon invocation.

Un-Structured Structured

1

2

3

4

5

6

7

8

9

template resistor p m = res

electrical p

electrical m

number res

{

branch cur=i(p->m)

branch vlt=v(p,m)

cur=vlt/res

}

template resistor p m = res

electrical p

electrical m

number res

{

equations {

i(p->m)+= (v(p)-v(m))/res

}

}
Saber® MAST Language User Guide 35
B-2008.09

Chapter 2: MAST Overview
Walkthrough of a Simple MAST Template
Note:

It is often possible to combine declarations of multiple arguments,
connection points, and branches on a single line (separated by commas).
For the sake of explanation, this has not been done here.

Line 1: Template Header

The word resistor determines the “official” name of the template for use in a
circuit description (i.e., a netlist). The letters p and m identify the connection
points for the system variables used by the model. The equals sign (=)
separates connection points from the arguments. The word res is the name of
the single argument for this template.

Thus, when the simulator encounters resistor in a netlist entry, it takes the rest
of the information in that entry and applies it to the model described in the
template file named resistor.sin.

Lines 2 and 3: Connection Points

The word electrical implicitly defines the connection points as “pin-type”, which
means they use the through and across variables of a physical system (in this
case, an electrical circuit uses current and voltage). This word automatically
defines the units (amperes and volts) that will be displayed in CosmosScope
for these variables. There are a number of other physical systems that have
corresponding words similarly defined in the units.sin file that is automatically
loaded when the Saber simulator is invoked. See the MAST Reference Manual
for information on the units.sin file. For example, the words magnetic, thermal,
rotational_vel, and rotational_ang in this file define through and across units for
magnetic, thermal, and mechanical systems.

The letters p and m are the names of the points at which the current and
voltage for this resistor model are provided to/from the rest of the circuit. In an
implicit netlist, these are actually mnemonic placeholders that will be assigned
the names of circuit nodes in a netlist. An explicit netlist uses these names.

Note that lines 2 and 3 are usually combined into one line, as follows:

electrical p, m
36 Saber® MAST Language User Guide
B-2008.09

Chapter 2: MAST Overview
Walkthrough of a Simple MAST Template
Line 4: Argument Declaration

The word number defines the type of parameter that follows. See the MAST
Reference Manual for information on parameter types. In this case, the
parameter can assume real numerical values. The word res is the name of the
argument to the template. An argument is a parameter whose value can be
specified in a netlist. This user-specified value is used by the template to
evaluate its characteristic equation.

Line 5: Opening Brace

This character is the required syntax for beginning the body of the template.

Line 6 - Un-Structured: Branch Through Variable

Branch through variable—The keyword branch is a MAST term for the
characteristics of a conservation model between two connections in a circuit
(system). In this case, the model of an electrical resistor is a single branch in a
circuit. The definition of electrical connection points (declared in Lines 2 and 3)
includes current, i, as the through variable for the branch between p and m.

The word cur following branch is the name of the branch variable. The equals
sign (=) signifies that a definition of this branch variable is to follow. The i
following the equals sign defines the branch variable as current. The hyphen
followed by a right angle bracket, ->, is the notation for the through variable
(current) from one pin (p) to another (m). The indicated positive direction of the
variable is from p to m.

Line 6 - Structured: Equation Section

The keyword equations is used at the start of an equations section, followed by
an opening brace. The equations section contains the terminal (connection
point) equations of the model. Relationships involving the through and across
variables must be defined in this section.

Line 7 - Un-Structured: Branch Across Variable

As with the through branch, the definition of electrical connection points
(declared in Lines 2 and 3) includes voltage, v, as the across variable for the
Saber® MAST Language User Guide 37
B-2008.09

Chapter 2: MAST Overview
Walkthrough of a Simple MAST Template
branch between p and m. The word vlt following branch is the name of the
branch variable. The equals sign (=) signifies that a definition of this branch
variable is to follow.

The v following the equals sign defines the branch variable as a voltage. The
comma separating p and m is the notation for the across variable (voltage)
between one pin (p) and another (m).

Line 7 - Structured: Characteristic Equation

This equation describes the relationship between the through and across
variable.

Note:

For the simplicity of this example, no provision was made to check for res=0.
This is called parameter checking and is explained in a subsequent chapter.

Line 8 - Un-Structured: Characteristic Equation

This is an expression of the terminal (connection point) equations as the
relationship of the through and across branch variables. The through variable
(cur) should be computed as a function of the across variable (vlt) whenever
possible.

Thus, the characteristic equation for this resistor template is

instead of

Note:

For the simplicity of this example, no provision was made to check for res=0.
This is called parameter checking.

Line 8 - Structured: Closing Brace

This character is the required syntax for ending the equations section.

cur=vlt/res

vlt=cur*res
38 Saber® MAST Language User Guide
B-2008.09

Chapter 2: MAST Overview
General MAST Conventions
Line 9: Closing Brace

This character is the required syntax for ending the template body, indicating to
the simulator that it has reached the end of template.

General MAST Conventions

■ All across variables are determined with respect to a reference value. In a
netlist, the MAST convention for specifying the reference point is the special
node name 0. For more information, see the topic titled "MAST Reference
Node".

■ The Saber simulator solves the system of equations such that the through
variables at every node sum to zero (KCL is a special case of this). It is
important, therefore, to know what the Saber simulator considers to be a
positive contribution and a negative contribution to the through variable of a
node. The convention is that the through variable contribution is positive
when it goes into a template and negative when it comes out of a template.

■ Typically, each template is contained in its own file that has the same name
as the template (as it appears in the header). However, the file name must
be followed by a .sin extension so that the simulator will automatically find
and include the template whenever it finds a reference to it in a netlist.

For example, the file containing the two_r template should be named
two_r.sin (although the file could be named something like twores.sin and it
would still work).
Saber® MAST Language User Guide 39
B-2008.09

Chapter 2: MAST Overview
General MAST Conventions
■ When possible, it is a good idea to define connection points in the header of
a template such that the inputs (if any) to the model are specified first,
followed by the outputs. This is not absolutely necessary, but it helps make
the templates more intuitive for most people.

■ The Saber simulator is capable of simulating continuous analog, event-
driven, and data flow models (i.e., it is not restricted to electrical models).
Generally, you can look at the declaration of connection points in a template
to determine which type of model it is. The units.sin file specifies units for
several types of connection points.

For example,

The word electrical preceding a connection point name means that it is a
pin-type connection with current and voltage as through and across
variables, respectively.

The words rotational_vel or rotational_ang preceding the connection point
name means that it is a pin-type connection with torque or angular velocity
as through and across variables, respectively.

The word state preceding a connection point name means that it is an event-
driven connection (no through and across variables). There is also a unit
declaration following the word state, such as nu (no units) or logic_4 (4-state
logic units), defining the unit of the state for display in Saber Sketch.
40 Saber® MAST Language User Guide
B-2008.09

3
3Basic Modeling

The topics in this chapter introduce concepts of the MAST modeling language.
Templates of electrical elements are used as examples to introduce new
concepts. The topics are ordered so that the first one introduces concepts that
the later topics build on. The later topics add new concepts.

MAST Modeling Examples - Electrical Elements

The MAST Template Library includes templates for most of the functionality
modeled in these examples.
■ Modeling a Constant Current Source (isource)
■ Modeling a Linear Resistor with MAST (resistor)
■ Modeling a Linear Capacitor with MAST (capacitor)
■ Modeling a Constant Voltage Source with MAST (vsource)
■ Modeling a Linear Inductor with MAST (inductor)
■ Modeling a Current-Controlled Voltage Source with MAST (cvt)
■ Modeling Mutual Inductance with MAST (mutind)
■ Preserving Hierarchy - MAST Template with Netlist (rlc1)
■ Flattened Hierarchy - MAST Template with Equations (rlc2)
■ Mixed Hierarchy - MAST Template with Netlist and Equations (rlc3)
■ Modeling Extractable Capacitor Voltage and Charge with MAST

(capacitor_1)
■ Modeling Multiple-Mode Voltage Source with MAST (vsource_1)
■ Modeling a Linear Transformer with MAST (xformer)
■ Modeling a Temperature-Dependent Resistor with MAST (resistor_1)
■ Modeling an Idealized Op Amp with MAST (opamp)
Saber® MAST Language User Guide 41
B-2008.09

Chapter 3: Basic Modeling
MAST Modeling Examples - Electrical Elements
For simplicity, some of these templates model ideal elements that ignore
certain types of information (such as noise or temperature effects) that might
otherwise be included.

MAST Modeling Concepts using Electrical Elements

Some of the concepts introduced in one or more of the templates listed in the
previous topic titled "MAST Modeling Examples - Electrical Elements" are as
follows:
■ Starting the isource MAST Template -- shows the general form of a template
■ isource Netlist Example -- shows the correspondence between the template

header and an instance of the template in a netlist (netlist entry)
■ Characteristic Equation for a Linear Resistor -- describes selecting a

template equation so that the through variable (current) is computed as a
function of a system variable (voltage)

■ Equations Section -- describes the time derivative operator, d_by_dt, used
in the template equation

■ Equations Section and Local Declarations -- describes the local
declarations section of a template, describes explicitly declaring var
variables, a new system variable type, and describes assigning an equation
to a var variable, where there must be exactly one equation for each var
variable in the equations section of a template

■ Equation Section -- shows how to use a var variable to change an
integration formulation into a differentiation formulation

■ Solving for Across Variables at a System Node -- provides an example that
is intended to clarify why a template equation should express the through
variable in terms of the across variable

■ Using MAST System Variables Between Models -- provides two examples
to show how a template can use the value of a system variable from another
template without an explicit pin connection between them by using a ref
connection point

■ The chapter on Modeling Hierarchical Systems -- introduces the following
examples:

• Preserving Hierarchy - MAST Template with Netlist -- refers to the
previously-created resistor, capacitor, and inductor templates
42 Saber® MAST Language User Guide
B-2008.09

Chapter 3: Basic Modeling
Modeling a Constant Current Source
• Flattened Hierarchy - MAST Template with Equations -- describes the
whole system by its equations, which results in a flat description of the
system

• Mixed Hierarchy - MAST Template with Netlist and Equations --
describes element templates and their properties and describes rules
for deciding whether a template should be an element template or an
ordinary template

• Modular vs. Non-Modular MAST System Descriptions -- provides a
summary of the characteristics of the hierarchical system and the flat
system

■ The chapter on Variables and Arguments -- offers topics describing ways
of using internal variables and writing arguments to provide more template
versatility. They also demonstrate how to check the validity of argument
values, use message functions, and improve template performance by
precalculating expressions.

Modeling a Constant Current Source

The example for a source of constant current (or of any “through” variable) is
one of the simplest analog templates that can be written in the MAST
language. The following figure shows the symbol used for the constant current
source, as well as the variable names used in the template.

v(p,m) v(m)

p m

is

(rest of system)

v(p)

Constant current source
Saber® MAST Language User Guide 43
B-2008.09

Chapter 3: Basic Modeling
Modeling a Constant Current Source
The contents of the constant current source template are shown below,
followed by an explanation of the contents.

Concepts Introduced Using this Example

The description of the constant current source template (isource) introduces
the following concepts:
■ Characteristic Equation For a Constant Current Source
■ Starting the isource MAST Template, shows the general form of a template
■ Template Header
■ isource Netlist Example, shows the correspondence between the template

header and an instance of the template in a netlist (netlist entry)
■ isource Header Declarations, which include “Declaring Connection Points”

in the isource MAST Template and “Declaring Arguments in the isource
MAST Template"

■ Template Body
■ Equations Section
■ Syntax Guidelines for isource Template

Characteristic Equation For a Constant Current Source

As shown in the following figure, the current is enters the current source at
connection point p and leaves the source at connection point m. The value of is
is user-specified for an instance of this template in a netlist; it is therefore an

template isource p m = is

electrical p,m

number is

{

equations {

i(p->m) += is

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/isource.sin
44 Saber® MAST Language User Guide
B-2008.09

Chapter 3: Basic Modeling
Modeling a Constant Current Source
argument for the source model. That is, if isource is used in a netlist, the
current flowing between the system nodes to which pins p and m are
connected is determined by the value of current specified for is.

In an ideal constant current source, the current supplied is independent of the
voltage across the connections. A current source model expresses this
relationship as follows:
■ Let is = constant
■ Choose v(p,m) such that Kirchhoff’s Current Law is satisfied. (That is, the

current between nodes p and m has a value of is).

Starting the isource MAST Template

You create the template file using a text editor that can create an unformatted
text file. You should give the file the same name as the template it contains,
with the addition of the .sin extension. Because the name of this template is to
be isource, this file must be named isource.sin.

Giving the file the same name as the template is a convention, not a
requirement. Using this convention provides the following significant
advantage:

When the Saber simulator encounters a reference to a previously undefined
template x, it tries to find the template in a file named x.sin and, if successful,
automatically includes the template. If you do not follow this convention, you
may need to include the name of the file containing template x in the netlist.

This topic develops the parts of the template in the order shown below, to
clarify the use of declarations.

The syntax for this template appears in the following sequence.

v(p,m) v(m)

p m

is

(rest of system)

v(p)

Constant current source
Saber® MAST Language User Guide 45
B-2008.09

Chapter 3: Basic Modeling
Modeling a Constant Current Source
When the simulator reads a template, it ignores white space (spaces, tabs, and
blank lines), except when the white space separates two names. In that case, it
replaces any amount of white space with a single space.

When you write a template, you must give each variable (including connection
points) a unique name that is not a reserved word. Such variable names are
local to a template; they distinguish the constituent parts of a template, but they
do not have semantic meaning to the simulator (for example, you could name a
voltage variable current). It is therefore good practice to choose variable names
that reflect variable usage.

As shown in the isource template, the following names are used:

isource name of the template

p the plus connection point

m the minus connection point

is the argument specifying the constant current

template header

header declarations

equations

(statements describing behavior
at the analog pins)
46 Saber® MAST Language User Guide
B-2008.09

Chapter 3: Basic Modeling
Modeling a Constant Current Source
Template Header

The template header declares the name of the template, connection points,
and any arguments through which particular characteristics can be assigned to
the template in a netlist.

The form of the standard template header is:

where template is a required reserved word, templatename is the name you
give the template, connectionpoints are the names you give the connection
points, and arguments are names of parameters to which you can assign
specific values (arguments must be separated from connectionpoints by an
equals sign, =). Note that arguments and connectionpoints are optional,
although all templates in this manual have at least one of each.

The name of this template is isource, and the names of its connection points
are p and m. It has only one argument, is, which is the user-specified value of
current to be provided by the source.

Therefore, the template header for the template isource is:

On the left-hand side of the equal sign (=), space separate all names. (An
alternative is to use commas to separate connection point names.) On the
right-hand side of the equal sign (=), commas must separate all names. For

template isource p m = is

electrical p,m

number is

{

equations {

i(p->m) += is

}

}

template template_name connectionpoints = arguments

template isource p m = is
Saber® MAST Language User Guide 47
B-2008.09

Chapter 3: Basic Modeling
Modeling a Constant Current Source
example, if two arguments were to be used in the template, such as is and tc,
the header would be:

The template header tells how the template can be used in a system, as
defined by a template instance. A template instance is a specific usage of a
template by the simulator, as specified in a netlist. A template instance defines
which argument values to use and where to place the connection points in the
design.

isource Netlist Example
Suppose a system description (netlist) contains an instance of this constant
current source template, isource, specified as follows:

The following statement, a netlist entry, places this instance of the isource
template into the system description (design), naming both the nodes to which
it is connected and its argument value:

isource.i1 a b = is=2

Note the correspondence between this netlist entry for the isource template
and its template header:

The netlist entry designates this instance of isource as i1, connects pin p of the
template to node a, connects pin m to node b, and specifies the value of is as
2.

template isource p m = is, tc

unique identifier i1

connected to nodes a, b

argument value (amperes) 2

template isource p m = is

isource.i1 a b = is=2

template header

netlist entry
48 Saber® MAST Language User Guide
B-2008.09

Chapter 3: Basic Modeling
Modeling a Constant Current Source
isource - MAST Header Declarations
The header declarations section is where you declare all the names used in the
template header, except the template name. For the isource template, the two
kinds of declarations in the header declarations section are:
■ connection points, p and m
■ argument, is

Declaring Connection Points in the isource MAST Template The
connection points (or pins) of a template are of a particular type. Depending on
the system being modeled, the type of pin could be mechanical, thermal,
electrical, etc., or any combination thereof. Because the current source is an
electrical model, declare its pins to be electrical, using the following statement
(comma-separated names of the same type can appear in the same
statement):

The pin type (electrical) appears first, followed by the pin names (p, m). The
word electrical is a pin definition provided in the units.sin file that identifies the
type of node to which these pins may be connected. This is an “include” file that
is automatically used by the Saber simulator upon invocation. Included in this
definition are the through and across variables that the simulator solves for at
this type of node, along with their respective units. In this case, the through
variable for an electrical node is defined as current in amperes; the across
variable is defined as voltage in volts.

The across variables are those system variables that are equalized by the
simulator when two or more pins are connected to the same node. An across
variable adheres to a generalization of Kirchhoff’s Voltage Law: the sum of
across variables (e.g., voltage) around a closed loop is zero. The simulator
makes the voltage v(p) at pin p and the voltage v(m) at pin m available (or
“known”) inside the template.

template isource p m = is # Template Header

Header declarations - connection points

Header declarations - argument declarations

{

#equations section

}

electrical p, m
Saber® MAST Language User Guide 49
B-2008.09

Chapter 3: Basic Modeling
Modeling a Constant Current Source
The through variables are those system variables that are conserved at a node,
adhering to a generalization of Kirchhoff’s Current Law: the sum of through
variables (e.g., current) flowing out of a node is zero. The current i(p) at pin p
and the current i(m) at pin m are not available inside the template, which can
only define current contributions to these nodes. In this example, the source
current contributes to both i(p) and i(m).

Declaring Arguments in the isource MAST Template According to the
isource characteristic equation, this constant current source has one parameter
(is) that can be assigned a value each time it appears in a netlist. By including
is in the template header and declaring it in the header declarations, it
becomes an argument of the current source template.

Template arguments are parameters that can receive values when the
template is used in a netlist statement. This distinguishes them from
parameters that are declared locally in templates. The topic titled "Modeling an
Idealized Op Amp with MAST" introduces local parameters.

Each parameter in a template (and thus each argument) must be declared as a
particular type. Because the source current in this example (is) is a single
numerical value, its type is declared as number. This is the simplest parameter
type—the simulator does not distinguish between integers and real numbers.
Other parameter types are introduced in later chapters. For a complete
description of all types and how to use them in declarations, refer to the MAST
Reference Manual.

Thus, is is declared as an argument as follows:

In this declaration, no default value has been assigned to is (although there
could be one). Consequently, whenever isource appears in a netlist entry, the
value of the is argument must be specified.

The following lines of this template have been covered so far:

number is

template isource p m = is # template header

electrical p, m # pin declarations

number is # argument declaration
50 Saber® MAST Language User Guide
B-2008.09

Chapter 3: Basic Modeling
Modeling a Constant Current Source
Template Body

All MAST templates in this manual contain a template header, header
declarations, and a body. The body is begun with an opening brace, {, and
ended with a closing brace, }. In this template, the body contains the equations
section:

Equations Section

The next step is to express the characteristic equation of the constant current
source using the constructs of the MAST language. This is done with the
template equation, which describes the effect of the continuous analog portion
of a template at its connection points.

In the constant current source figure, the source current is enters at pin p and
leaves at pin m. That is, if isource is used in a netlist, the current flowing
between the nodes to which pins p and m are connected is modified by the
source current from isource. In the MAST language, the simplest way to
express this is:

 The terms in this equation include:

template isource p m = is

electrical p,m

number is

{ # Beginning of Template Body

equation

section

goes here

} # End of Template Body

i(p->m) += is

i(p->m) the current flowing from the node connected to pin p to the
node connected to pin m.

is the user-specified current contributed by the source.
Saber® MAST Language User Guide 51
B-2008.09

Chapter 3: Basic Modeling
Modeling a Constant Current Source
A general form of a template equation expressing terminal characteristics is
shown as follows:

through(pin1->pin2) = operator expression

This statement has the following interpretation:

The value of the variable flowing through the template between the node
connected to pin1 and the node connected to pin2 becomes equal to the
amount specified by expression.

For a constant current source, this means that a current of the amount is is
provided between the node connected to pin p and the node connected to pin
m. Because an independent current source is not affected by its branch
voltage, no equations need to be provided for voltage across the source (i.e.,
the branch voltage becomes whatever is required to maintain the specified
level of branch current, is).

+= a MAST language operator meaning “is added to”. Its
counterpart is -=, which means “is subtracted from”

through is the name of through variable associated with pin1 and
pin2, depending on their declaration (for instance, i
(current) is the through variable for pins declared as
electrical).

pin1->pin2 is the notation for the through variable of the branch from
pin1 to pin2.

operator is either += or -=

expression is a MAST expression that specifies the through variable
of the branch. See the MAST Reference Manual for more
information on expressions. The expression can include
variables of different types (usually arguments and
parameters), mathematical functions, the algebraic
operators +, -, *, /, and ** (for addition, subtraction,
multiplication, division, and exponentiation,
respectively), parentheses (()), and, with restrictions that
are described in subsequent chapters, the special
operators d_by_dt (time derivative) and delay (ideal
delay).
52 Saber® MAST Language User Guide
B-2008.09

Chapter 3: Basic Modeling
Modeling a Constant Current Source
Therefore, the following equation is a complete description of a constant
current source:

Syntax Guidelines for isource Template

When putting a template together in final form, remember the following general
syntax guidelines:
■ Use extra spaces, indentation, and blank lines at will.
■ Use comments. Comments begin with a pound sign (#) and continue to the

end of the line. They can begin anywhere on a line.
■ Place complete statements on separate lines.
■ Place the body of the template (all sections below the header declarations)

between braces.

With these rules in mind, the current source template is repeated below, with a
comment on each line following the # sign.

equations {

i(p->m) += is

}

template isource p m = is

electrical p,m

number is

{

equations {

i(p->m) += is

}

}

Saber® MAST Language User Guide 53
B-2008.09

Chapter 3: Basic Modeling
Modeling a Linear Resistor with MAST
Modeling a Linear Resistor with MAST

This topic defines a simple resistor template as shown below:

The description of the resistor template is divided into the following topics:
■ Characteristic Equation for a Linear Resistor -- describes selecting a

template equation so that the through variable (current) is computed as a
function of a system variable (voltage)

■ Selecting Names for a MAST Linear Resistor Template
■ Creating the template header and template header declarations
■ Equations Section

Characteristic Equation for a Linear Resistor

The voltage, VR, across an ideal resistor is equal to the current through the
resistor (IR) multiplied by the value of resistance, R. Thus, the characteristic
equation of an ideal resistor is that of Ohm’s law, namely:

The resistance, res, characterizes each instance of a resistor and is therefore
written as an argument of the template. The following figure shows the
variables contained in the resistor template.

template resistor p m = res

electrical p,m

number res

{

equations {

i(p->m) += (v(p)-v(m))/res

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/resistor.sin

Vr = Ir * res
54 Saber® MAST Language User Guide
B-2008.09

Chapter 3: Basic Modeling
Modeling a Linear Resistor with MAST
The equation would be expressed in terms of these template variables as:

where:

However, because the value of the across variable at the system node is
known inside the template, this equation should be written in the template such
that the current is a function of the voltage, namely:

Selecting Names for a MAST Linear Resistor Template

In this example, the following names have been chosen for the user-specifiable
items in the template:

vlt = cur * res

vlt is the voltage across the resistor (from p to m -- v(p)-v(m))

cur is the current through the resistor (from p to m-- i(p->m))

res is the non-zero resistance value, the template argument

cur = vlt/res

resistor template name

p plus pin

m minus pin

v(p)
vlt

v(m)

+ _

p m
res

cur

Ideal resistor
Saber® MAST Language User Guide 55
B-2008.09

Chapter 3: Basic Modeling
Modeling a Linear Resistor with MAST
Template Header and Header Declarations

The template header and declarations for the resistor template are similar to
those for the isource template, the current source template, as shown below:

res argument (resistance)

template resistor p m = res

electrical p,m

number res

{

 # equations section here

}

Resistor Template

template resistor p m = res

electrical p,m

number res

{

 # equations section here

}

Current Source Template

template isource p m = is

electrical p,m

number is

{

equations section here

}

56 Saber® MAST Language User Guide
B-2008.09

Chapter 3: Basic Modeling
Modeling a Linear Resistor with MAST
Equations Section

The equations section contains the characteristic equation of the resistor
written as a MAST template. Referring to the following Ideal resistor figure, the
voltage across the resistor is given as the difference between the voltages at its
pins:

Because both p and m are electrical, v(p) and v(m) are implicitly declared as
system variables. That is, the simulator supplies their values. Therefore, the
current ir through the resistor is given by:

This is the amount of current that the resistor contributes to the current flowing
from pin p to pin m. (From now on, this manual uses this form, rather than the
more complicated, but exact statement: the current flowing from the node
connected to pin p to the node connected to pin m.)

Thus, the equations section of the template is:

vr = v(p) - v(m)

cur = (v(p) - v(m))/res

equations {

i(p->m) += (v(p)-v(m))/res

}

v(p)
vlt

v(m)

+ _

p m
res

cur

Ideal resistor
Saber® MAST Language User Guide 57
B-2008.09

Chapter 3: Basic Modeling
Modeling a Linear Capacitor with MAST
Note:

For simplicity, no provision was made in this example to check for res=0.
This is done with conditional statements in the resistor_1 template in the
topic "Modeling a Temperature-Dependent Resistor with MAST".

Modeling a Linear Capacitor with MAST

The template for a linear capacitor uses the same sections as the current
source and resistor templates. The capacitor template appears as follows:

The description of the capacitor template is divided into the following topics:
■ Selecting Names for a MAST Linear Capacitor Template
■ Template Header and Header Declarations
■ Characteristic Equation for a Linear Capacitor
■ Equations Section -- describes the time derivative operator, d_by_dt, used

in the template equation

Selecting Names for a MAST Linear Capacitor Template

In this example, the following names have been chosen for the user-specifiable
items in the capacitor template:

template capacitor p m = cap

electrical p,m

number cap

{

equations {

i(p->m) += d_by_dt(cap*(v(p)-v(m)))

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/capacitor.sin

capacitor template name
58 Saber® MAST Language User Guide
B-2008.09

Chapter 3: Basic Modeling
Modeling a Linear Capacitor with MAST
Template Header and Header Declarations

The template header and declarations for the capacitor template are similar to
those for the isource template (the current source template) and the resistor
template as shown below:

p plus pin

m minus pin

cap argument (capacitance)

template capacitor p m = cap

electrical p,m

number cap

{

equations section here

}

Capacitor Template

template capacitor p m = cap

electrical p,m

number cap

{

equations section here

}

Current Source Template

template isource p m = is

electrical p,m

number is

{

equations section here

}

Saber® MAST Language User Guide 59
B-2008.09

Chapter 3: Basic Modeling
Modeling a Linear Capacitor with MAST
Characteristic Equation for a Linear Capacitor

The current, Ic, through any capacitor is defined as the derivative of the charge
(Qc) on the capacitor with respect to time:

Ic = dQc/dt

For a linear capacitor, the charge is defined as the product of the capacitance,
C, of the capacitor and the voltage (Vc) across it:

Qc = C•Vc

Therefore, capacitor current can be expressed in terms of capacitance and
voltage:

Ic = d(CVc)/dt

The capacitance (C) in Equations 2 and 3 characterizes each instance of a
capacitor and is therefore provided as an argument of the template (cap). The
following figure shows the symbol and the relevant characteristics of a linear
capacitor, including the variables to be included in the ideal capacitor template.

Resistor Template

template resistor p m = res

electrical p,m

number res

{

 # equations section here

}

v(p)
vc

v(m)

+ _

p m
cap

qc = cap * vc

Linear capacitor
60 Saber® MAST Language User Guide
B-2008.09

Chapter 3: Basic Modeling
Modeling a Linear Capacitor with MAST
Equations Section

To write the equations section of the template, you need to express the voltage
across the capacitor in terms of system variables. Because both p and m are
electrical pins, this becomes:

The simulator solves for the values of v(p) and v(m) as system variables, so
they are known to the template.

Referring to the characteristic equation, the current (ic) of the capacitor is given
as the time derivative of its charge. In the MAST language, taking the time
derivative of an expression is represented by applying the d_by_dt operator to
the expression.

In this example, this becomes:

The d_by_dt operator can operate on any expression that does not include a
delay operator or another d_by_dt operator. It can appear only in a template
equation, and you can only add terms to it and subtract terms from it.
Therefore, the expression cap * d_by_dt(v(p) - v(m)), while valid in
conventional calculus, is not valid in the MAST language. Higher order
derivatives are implemented with multiple d_by_dt statements.

With the contribution of the capacitor template to the current flowing from pin p
to pin m, the equations section is as follows:

It is sometimes useful to specify, in the equations section, the current
contribution of a component to each pin individually, rather than to a current
flowing between two pins. Using the equations section of the capacitor as an
example, the statement:

vc = v(p) - v(m)

ic = d_by_dt(cap * (v(p) - v(m)))

equations {

i(p->m) += d_by_dt(cap*(v(p)-v(m)))

}

i(p->m) += d_by_dt(cap * (v(p) - v(m)))
Saber® MAST Language User Guide 61
B-2008.09

Chapter 3: Basic Modeling
Modeling a Constant Voltage Source with MAST
can also be interpreted as the following:
■ Add the current defined by the expression to the current at pin p

AND
■ Subtract the current defined by the expression from the current at pin m

The MAST language lets you express these two facts separately:

For the Saber simulator, these two statements are equivalent to the single
statement above in every respect, including the amount of work it must do to
set up and solve the equations. Which formulation you use usually depends
only upon your personal preferences. The single-statement formulation
automatically guarantees that current is conserved in the template. The pin-
oriented formulation places this burden on the template writer. On the other
hand, the pin-oriented formulation provides more flexibility, which can be
important in advanced cases.

Modeling a Constant Voltage Source with MAST

The template describing a constant voltage source is as follows:

i(p) += d_by_dt(cap * (v(p) - v(m)))

i(m) -= d_by_dt(cap * (v(p) - v(m)))

template vsource p m = vs

electrical p, m

number vs

{

var i ivs

equations {

i(p->m) += ivs

ivs: v(p) - v(m) = vs

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/two_r.sin
62 Saber® MAST Language User Guide
B-2008.09

Chapter 3: Basic Modeling
Modeling a Constant Voltage Source with MAST
Constant Voltage Source Topics

The description of the vsource template is divided into the following topics:
■ Characteristic Equation for a Constant Voltage Source
■ Equations Section and Local Declarations - describes the local declarations

section of a template, describes explicitly declaring var variables, a new
system variable type, and describes assigning an equation to a var variable,
where there must be exactly one equation for each var variable in the
equations section of a template

Characteristic Equation for a Constant Voltage Source

In an ideal constant voltage source, the voltage supplied is independent of the
current passing through the connections. The following figure illustrates the
voltage source; it provides a constant voltage (vs) across pins p and m. The
value of vs is user-specified for an instance of this template in a netlist; it is
therefore an argument for the source model.

A voltage source model expresses this relationship to the simulator as follows:

Let vs = constant.
Choose ivs such that Kirchhoff’s Voltage Law is satisfied, meaning the
voltage between nodes p and m has a value of vs.

The first statement defines the vs parameter as characterizing the voltage
source; it is declared as an argument to the template. The second statement
recognizes that ivs cannot be determined by the source template alone.

v(m)

p mivs

v(p) vs
+ _

Voltage source

vsource
Saber® MAST Language User Guide 63
B-2008.09

Chapter 3: Basic Modeling
Modeling a Constant Voltage Source with MAST
Instead, its value depends upon the system to which the constant voltage
source is connected.

That is, if vsource is used in a netlist, the voltage across pins p and m is held at
the value specified. Because there is no dependency between current and
voltage in an independent voltage source, a provision must be made for the
current through the source.

Equations Section and Local Declarations

Given the following figure and characteristic equation:

Let vs = constant.
Choose i(p->m) such that Kirchhoff’s Voltage Law is satisfied, meaning the
voltage between nodes p and m has a value of vs.

The equations for the connection points are as follows:

One piece is missing with just these two lines. The simulator needs to know
that it must solve for ivs such that Kirchhoff’s Voltage Law (KVL), the second
equation, is satisfied. This means that ivs must be a system variable. The
simulator solves for system variables, such as the across variables at the pins.

i(p->m) += ivs

ivs: v(p) - v(m) = vs

v(m)

p mivs

v(p) vs
+ _

Voltage source

vsource
64 Saber® MAST Language User Guide
B-2008.09

Chapter 3: Basic Modeling
Modeling a Constant Voltage Source with MAST
Do this with the following statement in the local declarations section of the
vsource template:

In general, the statement:

declares one or more system variables with the specified unit.

Many such units are provided in the Saber simulation environment. You can
define additional units for your own application (refer to the MAST Reference
Manual, “Unit Definition”). Units are currently used only to ensure consistency
of connection points and for the labeling the axes of graphs. In addition, they
help you to associate simulation results with physical interpretations.

A var variable is a system variable, much like implicitly declared system
variables. When you declare pin p to be electrical, this implies that there is a
system variable v(p). In particular, a var variable can be used anywhere an
implicitly-declared system variable can be used. The important difference
between implicitly-declared system variables and var variables (which are
declared explicitly) is that the template writer must tell the simulator which
equation to use to solve for the var variable. The simulator uses KCL to solve
for implicitly declared system variables.

The syntax for associating an equation with a var variable is as follows:

where:

var i ivs

var unit name[, name ...]

var_variable : expression1=expression2

var_variable is the name of a var variable declared earlier in the template
in a var variable declaration.

expression1

expression2

are two expressions formed from variables of different types
(but not through variables); mathematical functions; the
algebraic operators +, -, *, /, and **; parentheses (()); and the
special operators d_by_dt and delay
Saber® MAST Language User Guide 65
B-2008.09

Chapter 3: Basic Modeling
Modeling a Linear Inductor with MAST
The simulator interprets this statement as the following:

Find the value of var_variable such that expression1 equals expression2.
For the constant voltage source, the statement associating an equation with ivs
is as follows:

which is declarative and means:

Find ivs such that the voltage across the voltage source equals the specified vs
value.

This now specifies the voltage source equation completely, and the equations
section is as follows:

Modeling a Linear Inductor with MAST

The template describing a linear inductor is as follows:

ivs: v(p) - v(m) = vs

equations {

i(p->m) += ivs

ivs: v(p) - v(m) = vs

}

template inductor p m = ind

electrical p, m

number ind

{

var i il

equations {

i(p->m) += il

il: v(p) - v(m) = d_by_dt(ind*il)

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/inductor.sin
66 Saber® MAST Language User Guide
B-2008.09

Chapter 3: Basic Modeling
Modeling a Linear Inductor with MAST
Linear Inductor Topics

The description of the inductor template is divided into the following topics:
■ Characteristic Equation for a Linear Inductor
■ Equation Section -- shows how to use a var variable to change an

integration formulation into a differentiation formulation
■ Header and Header Declarations

Characteristic Equation for a Linear Inductor

The voltage, VL, across an inductor is defined as the derivative of magnetic flux
(f) with respect to time (Faraday’s Law):

VL = df/dt

For a linear inductor, the flux is defined as the product of the inductance, L, of
the inductor and the current (IL) through it:

f = L•IL

Therefore, inductor voltage can be expressed in terms of inductance and
current:

VL = d(LIL)/dt

The inductance (L) characterizes each instance of an inductor and is provided
as an argument of the template (ind). The following figure shows the symbol
and the relevant characteristics of a linear inductor, including the variables to
be contained in the ideal inductor template.

v(p) v(m)

+ _

p mind

il

vl

Ideal inductor
Saber® MAST Language User Guide 67
B-2008.09

Chapter 3: Basic Modeling
Modeling a Linear Inductor with MAST
Equation Section

As with the resistor template, you should try to express the inductor current (the
through variable contribution) as a function of the voltage across the inductor,
which would be:

il = 1/ind vl dt

Although this equation serves as a compact implementation of the model, it
requires the use of an integral, which the MAST language does not support.
Therefore, it is necessary to use a new approach that differs from the one used
to implement the resistor and capacitor templates.

Note:

When you encounter an integral expression as in the previous equation, you
need to differentiate both sides of the equation to eliminate the integral.

As with the constant voltage source, create a new system variable by declaring
a var variable as follows:

You do this in the local declarations section of the template.

In the equations section, the equation associated with il is the characteristic
equation of the inductor, shown as follows:

var i il

il: v(p) - v(m) = d_by_dt(ind*il)

v(p) v(m)

+ _

p mind

i(p->m)

v(p,m)

Ideal inductor
68 Saber® MAST Language User Guide
B-2008.09

Chapter 3: Basic Modeling
Modeling a Linear Inductor with MAST
This statement can be interpreted as follows:

The current through the inductor, il, is to be such that the voltage drop is the
derivative of ind*il, this flux.

Consequently, by introducing another system variable, you replace the
integration formulation for the inductor current with a differentiation formulation
for the inductor voltage.

In the equations section, you must still define the contribution of the inductor
branch current. With il as a var variable that receives this value, you can use
the following statement:

The entire equations section of this template is as follows:

Header and Header Declarations

The template header and the header declarations are very similar to those in
other templates (ind has been chosen as the name for the user-specifiable
value of inductance):

Note that the word element has been inserted as the first word of the header.
This has been done to make the branch current available for mutual
inductance. Additional reasons for using the word element in a template header
are explained in the topic titled "Using MAST Element Templates".

i(p->m) += il

equations {

i(p->m) += il

il: v(p) - v(m) = d_by_dt(ind*il)

}

element template inductor p m = ind

electrical p,m

number ind
Saber® MAST Language User Guide 69
B-2008.09

Chapter 3: Basic Modeling
Solving for Across Variables at a System Node
Solving for Across Variables at a System Node

This topic provides an example that is intended to clarify why a template
equation should express the through variable in terms of the across variable.
Basically, it results from the principle shown as follows:
■ The simulator calculates the value of an across variable at a system node

and makes this value available to templates connected to that node—This
is not done for the through variable.

■ The known across value (voltage) at the system node is then “internalized”
by the template to solve for the through value (current).

Consider node N1 of the simple circuit shown in the following figure, consisting
of the isource and resistor. The characteristic equation for the resistor template
is written to express current as a function of voltage:

IR = VR/R

This is done although it would be equally valid to express the same relationship
with voltage as a function of current:

VR = IR•R

However, it is Equation 7 that defines the through variable contribution of each
resistor model to the circuit shown in the figure above. This is the optimum
representation for use by the Saber simulator. Why is this so?

isource.I1in 0 N1 = 1
resistor.R1 N1 0 = 1
resistor.R2 N1 0 = 1

Circuit showing through and across variables

Vin

N1

iin R1 R2

i1 i2
0

70 Saber® MAST Language User Guide
B-2008.09

Chapter 3: Basic Modeling
Solving for Across Variables at a System Node
Examining node N1, the system must observe Kirchhoff’s Current Law (KCL)
as follows:

S i = 0 or iin + (-i1) + (-i2) = 0

Therefore, the simulator is solving the following problem:

Find Vin such that iin - i1 - i2 = 0

It is extremely important to note that, because i1 = Vin/R1 and
i2= Vin/R2, the simulator makes the following substitution for i1 and i2 in
Equation 9:

iin - (Vin/R1) - (Vin/R2) =0

That is, to observe KCL at N1, the simulator solves an equation for Vin (by
rewriting to obtain Equation 11). Notice that i1 and i2 are no longer in the
equation—the solution to Equation 11 produces only the across variable, Vin, at
node N1.

Simplified view of how the simulator solves for through variables only

Substitute

Rewrite

Equation 9

Equation 10

Equation 11

iin + (-i1) + (-i2) = 0

iin - (Vin/R1) - (Vin/R2) =0

Vin = iin

1/R1 + 1/R2
Saber® MAST Language User Guide 71
B-2008.09

Chapter 3: Basic Modeling
Solving for Across Variables at a System Node
This results in the following conclusions:

1. The across variables in the system (such as Vin) can be treated as “known”
in the resistor template (or any other template connected to N1)—where it
is provided as the voltage at p (abbreviated as v(p)). Thus, Vin is referred to
as a system variable because it is known at system node N1.

2. The through variables in the system (such as i1 and i2) cannot be treated as
known in the resistor template (or any other template connected to N1). The
current at p (abbreviated as i(p)) is not provided, because the simulator
doesn’t solve for it.

Note:

The values for the through variables i1 and i2 can be calculated from the
across variable, Vin However, this is a post-simulation process (i.e.,
these currents are not calculated unless explicitly requested).

Because Equation 10 is linear, Vin can be determined directly. In general,
however, the simulator solves multiple nonlinear equations by making iterative
guesses at values for the across variables.

The following figure summarizes the relationships among voltages, currents,
and connection points for electrical templates.

Pin Connection point

Electrical
v — across
i — through

System variables

Simulator uses system variables

declarationspecification

ACCESSIBLE
within
template

ACCESSIBLE
within
template

NOT

IMPORTANT!

to solve KCL at p and m

Relating across and through variables

v(p), v(m)

at pins p, m
i (p->m)

current

Electrical

p, m
72 Saber® MAST Language User Guide
B-2008.09

4
4Using System Variables Between Models

The topics in this chapter explain how a template can use the value of a system
variable from another template without an explicit pin connection between them
by using a ref connection point:
■ Modeling a Current-Controlled Voltage Source with MAST
■ Modeling Mutual Inductance with MAST

Introduction to MAST ref Connection Points

When a template declares a through variable as a system variable, it is made
available to other templates in the system. One way that these other templates
can then use this variable is to declare a new kind of connection point called a
ref variable. A ref variable connection point allows the template declaring it to
“import” the through variable directly, without using pin connections.

Modeling a Current-Controlled Voltage Source with MAST

Declaring a pin implicitly declares a through variable and an across variable,
according to the type of the pin (for example, an electrical type of pin implicitly
declares current and voltage). The MAST language also lets you declare other
types of connection points in a template besides pins. This section introduces
one such type of connection point by using a current-controlled voltage source
(CCVS), also called a current-to-voltage transducer (CVT).
Saber® MAST Language User Guide 73
B-2008.09

Chapter 4: Using System Variables Between Models
Modeling a Current-Controlled Voltage Source with MAST
The template describing a CCVS is shown as follows:

The description of the cvt template is divided into the following topics:
■ Characteristic Equation for a Current-Controlled Voltage Source
■ Equations Section and Local Declarations
■ Header and Header Declarations -- describes how to dealer a ref variable,

which refers to a var variable defined elsewhere
■ Using a CCVS Template

Characteristic Equation for a Current-Controlled Voltage
Source

The characteristic equation for a CCVS is similar to that of a constant voltage
source, except that the output voltage is determined differently.

v = k*ci
choose i such that KVL is satisfied.

In this equation, ci is the controlling current, k is the transimpedance
characterizing an instance of the cvt template, v and i are the output voltage
and current, respectively.

template cvt ci p m = k

ref i ci

electrical p, m

number k

{

var i i

equations {

i(p->m) += i

i: v(p)-v(m) = k*ci

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/cvt.sin
74 Saber® MAST Language User Guide
B-2008.09

Chapter 4: Using System Variables Between Models
Modeling a Current-Controlled Voltage Source with MAST
Equations Section and Local Declarations

The equations section differs only slightly from that of the template for the
constant voltage source, vsource.

Similarly, you must make i a system variable by adding the following statement
in the local declarations section:

This statement declares i to be a var variable with unit i. (The first i is the unit
name, and the second is the name of the var variable.)

Header and Header Declarations

Because the controlling current (ci) comes from elsewhere in the system to
which the cvt template is connected, the simulator must determine it. That is, ci
is a system variable that is declared in some other template in the circuit, either
as a branch current or as a var variable. See the MAST Reference Manual for
more information on var variables and ref variables. The cvt template brings in
the value of this current to its ref variable connection point, which is specified

equations {

i(p->m) += i

i: v(p)-v(m) = k*ci

}

var i i

i
p

m

ci k*ci cvt

Current-controlled voltage source
Saber® MAST Language User Guide 75
B-2008.09

Chapter 4: Using System Variables Between Models
Modeling a Current-Controlled Voltage Source with MAST
as the node name in a netlist. However, unlike node names for pins, this type of
node name consists of two parts:
■ The name of the branch current or var variable from the external template
■ The instance name of that external template

The ref variable declaration declares ci as a system variable with unit i (current,
a through variable). Its purpose is to declare current as a system variable that
this template refers to. Both refs and vars require declaration in any template
that uses them. The difference is that a var variable is defined in the same
template in which it is declared. That is, the equations that the simulator uses to
determine the value of a var variable must reside in the template containing the
declaration of the var variable. On the other hand, if a variable is declared as a
ref variable in a template, then its defining equation(s) must reside in another
template (where it is declared as a var variable and probably has a different
name).

The name of this ref variable connection point (ci) is included in the header just
like the names of pin connection points:

This reinforces the fact that ci, like the across variable at pins p and m,
provides a connection for a system variable. As with pins p and m, the ref
variable declaration appears with the header declarations.

Thus, the three connection points (ci, p, m) for cvt are declared as:

The declaration of the template argument (k) is similar to previous examples:

The argument k models the transimpedance of the source, so that when its
value is multiplied by the controlling input current (ci), the product is an output
voltage (i.e., A•W = V).

template cvt ci p m = k

ref i ci

electrical p, m

number k
76 Saber® MAST Language User Guide
B-2008.09

Chapter 4: Using System Variables Between Models
Modeling a Current-Controlled Voltage Source with MAST
Using a CCVS Template

You could use the cvt template in a netlist as follows:

The v template in the Standard MAST Template Library declares its branch
current i as a var variable. Therefore, i(v.1) is a var variable that can be passed
to the cvt template, where it is given as a value the ref variable connection
point, ci. Note that i(v.1) serves as the node name to which ci is connected, just
like a and b are the node names to which pins p and m are connected. As
stated earlier, this node name, i(v.1), consists of two parts:
■ i, the name of the var variable in the external template
■ v.1, the instance name of that external template

Also note that, in this example, you cannot use vsource, the constant voltage
source template. You must use the v template instead, because the current, i,
is not available outside of the vsource template. The next chapter shows how
to make this current available to other templates in the system (by declaring
vsource as an element template).

cvt.1 i(v.1) a b = 1k

v.1 c d = 5
Saber® MAST Language User Guide 77
B-2008.09

Chapter 4: Using System Variables Between Models
Modeling Mutual Inductance with MAST
Modeling Mutual Inductance with MAST

This example shows how a template can modify the equation associated with a
branch variable or var variable from another template in the same design. The
template describing mutual inductance (mutind) is as follows:

This template can be used in a netlist to provide electromagnetic coupling
between two inductors as shown in the following example:

 where inductor.l1 and inductor.l2 are two instances of the inductor template,
with inductance values of 1H and 2H, respectively. Notice that the mutind
template is not electrically connected to this circuit.

The description of the mutind template is divided into the following topics:
■ Characteristic Equations for Modeling Mutual Inductance
■ Setting up the Equations Section -- shows that a template with a ref variable

connection can modify the equation associated with the current to which it
refers (usually in another template)—this current must be a branch current
or a var variable.

template mutind i1 i2 = m

ref i i1, i2

number m

{

equations {

i1 -= d_by_dt(m*i2)

i2 -= d_by_dt(m*i1)

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/mutind.sin

inductor.l1 p:p1 m:m1 = ind=1

inductor.l2 p:p2 m:m2 = ind=2

mutind.1 i1:il(inductor.l1) i2:il(inductor.l2) = \

m=0.98*sqrt(ind(inductor.l1)*ind(inductor.l2))
78 Saber® MAST Language User Guide
B-2008.09

Chapter 4: Using System Variables Between Models
Modeling Mutual Inductance with MAST
■ Header and Header Declarations
■ Using the Mutual Inductance (mutind) MAST Template -- shows that an

element template is required when providing current to a ref variable of
another template.

Characteristic Equations for Modeling Mutual Inductance

Mutual inductance does not exist on its own. Instead, it describes how two
inductors are coupled by a magnetic field, which transfers energy from one
inductor to the other. The figure below shows two mutually coupled inductors
and the variables that pertain to this example.

The two equations below describe this system of two coupled inductors:

V1 = d(L1I1)/dt + d(MI2)/dt

V2 = d(L2I2)/dt + d(MI1)/dt

The first term in each equation is the self-inductance term—it is equivalent to
the characteristic equation of a single, simple inductor. The second term in
each equation is the mutual inductance term—the contribution of the mutual
inductance template of this example.

Mutual inductance, represented here as m, is given by the expression:

m = k•

where L1 and L2 are the inductance values for the respective inductors and k is
their coupling factor (where -1 £ k £ 1).

M
p1 i1 p2i2

v1 v2

m1 m2

l1 l2

Coupled inductors
Saber® MAST Language User Guide 79
B-2008.09

Chapter 4: Using System Variables Between Models
Modeling Mutual Inductance with MAST
Setting up the Equations Section

The template equations for mutind use the equation in the inductor template.
There, the associated equation was essentially the first term shown in
Equations 1 and 2 as follows:

V1 = d(L1I1)/dt + d(MI2)/dt

V2 = d(L2I2)/dt + d(MI1)/dt

The mutind template modifies the equation in the inductor template that is
associated with the var variable, i, of the inductor. That is, when used in a
netlist, the mutual inductance template “searches out” the equations of the two
inductors and couples them as specified in the mutind model.

The following MAST construct in the equations section modifies an equation
associated with an explicitly-declared system variable (i.e., a var variable):

system_variable operator expression

where:

Using this construct, the characteristic equations of mutual inductance yield the
following equations section for mutind:

system_variable is the name of a branch variable, var variable, or a ref
variable (which is a var variable from another template)

operator is either += or -=, indicating that expression is added to or
subtracted from the left side of the equation defining
system_variable

expression is a MAST expression formed from variables of different
types; mathematical functions; the algebraic operators +,
-, *, /, and **; parentheses; and the special operators
d_by_dt and delay

equations {

i1 -= d_by_dt(m*i2)

i2 -= d_by_dt(m*i1)

}

80 Saber® MAST Language User Guide
B-2008.09

Chapter 4: Using System Variables Between Models
Modeling Mutual Inductance with MAST
It is important to understand that d_by_dt(m * i2) is not subtracted from i1, but
rather from the left side of the equation that defines i1 (and, because i1 is a ref
variable in this template, its defining equation is in the inductor template).

This is illustrated using the following example netlist:

Because the inductor template declares il as a var variable, its associated
equation is:

This corresponds to the first term of either Equation 1 or Equation 2.
Considering inductor.l1, the current from inductor.l2 is passed as ref variable i2
into the mutind template, which, in turn, modifies the equation in inductor.l1,
using its var variable, il, and inductance, ind. The effective equation in
inductor.l1 would be:

 which, after algebraic rearrangement, corresponds to Equation 1. A similar
modification is applied to the equation associated with the var variable il and
inductance, ind in inductor.l2 to yield Equation 2. Thus, the mutind template,
together with two instances of the inductor template, provide the inductance
coupling shown in the “Coupled inductors” figure, shown previously, under the
topic titled "Characteristic Equations for Modeling Mutual Inductance".

Header and Header Declarations

The mutind template has mutual inductance, m, as its only argument. The
connection points of this template are the currents from the two coupled

inductor.l1 p:p1 m:m1 = ind=1

inductor.l2 p:p2 m:m2 = ind=2

mutind.1 i1:il(inductor.l1) i2:il(inductor.l2) = \

m=0.98*sqrt(ind(inductor.l1)*ind(inductor.l2))

il: v(p)-v(m) = d_by_dt(ind*i)

il: v(p)-v(m)-d_by_dt(m*i2) = d_by_dt(ind*i)
Saber® MAST Language User Guide 81
B-2008.09

Chapter 4: Using System Variables Between Models
Modeling Mutual Inductance with MAST
inductors, which you must declare as refs. Template header and header
declarations, therefore, are as follows:

Note that the word element has been inserted as the first word of the header,
as was done for the inductor template. This was done for mutind to make its
reference current available for the transformer template (xformer).

Using the Mutual Inductance (mutind) MAST Template

Using the mutind template in a netlist is demonstrated using the following
example netlist:

Note, however, that in order to use the inductor template with the mutind
template, the branch current had to be made available outside of the inductor
template. This was done by declaring inductor to be an element template,
which is explained in more detail in the topic titled "Using MAST Element
Templates" in a subsequent chapter.

element template mutind i1 i2 = m

ref i i1, i2

number m

inductor.l1 p1 m1 = ind=1

inductor.l2 p2 m2 = ind=2

mutind.1 i(inductor.l1) i(inductor.l2) = \

m=0.98*sqrt(ind(inductor.l1)*ind(inductor.l2))
82 Saber® MAST Language User Guide
B-2008.09

5
5Modeling Hierarchical Systems

The following topics describe four ways to use the MAST language to model
hierarchical systems:
■ Preserving Hierarchy - MAST Template with Netlist -- refers to the

previously-created resistor, capacitor, and inductor templates
■ Flattened Hierarchy - MAST Template with Equations -- describes the whole

system by its equations, which results in a flat description of the system
■ Mixed Hierarchy - MAST Template with Netlist and Equations -- uses a

combination of the first two methods
■ Modular vs. Non-Modular MAST System Descriptions-- provides a

summary of the characteristics of the hierarchical system and the flat
system

Introduction to Modeling Hierarchical Systems

The topic titled "MAST Modeling Modularity and Hierarchy" introduces the
concept of system hierarchy. The topic "The Saber Netlist Overview" in the
earlier chapter, “Fundamental Modeling Concepts”, Example 2, shows a simple
resistor network (the two_r template), which illustrates the concept of hierarchy.

The topics in this chapter expands this idea of using the MAST language to
describe hierarchical systems using a simple RLC circuit as an example as
shown in the following figure. This circuit has two external connection points (p
and m), and one internal node (x).
Saber® MAST Language User Guide 83
B-2008.09

Chapter 5: Modeling Hierarchical Systems
Introduction to Modeling Hierarchical Systems
The rlc1, rlc2, and rlc3 examples also introduce the following new concepts:
■ Modular system description
■ Element templates
■ Internal nodes
■ Default values for arguments
■ Modular description and hierarchy as different concepts. In particular, it is

possible to have a modular description that is flat

Simulation Efficiency of Hierarchical Systems

Unlike other simulators that flatten a hierarchical system description, the Saber
simulator exploits system hierarchy when it solves the system equations. Thus,
the computational effort to simulate a hierarchical system grows sublinearly
with increasing system size—with most other simulators, the growth rate is
close to quadratic. Therefore, hierarchical system descriptions generally
improve simulation efficiency.

This rule, however, is not absolute. If a subsystem described hierarchically is
very small, the overhead required to handle the hierarchy may exceed the
benefit of having hierarchy. It is best to model such systems without introducing
a new level of hierarchy.

vpm

ipm

r1

l1 c1

p m
x

+ _

ipx ixm

+ _ + _vpx vxm
The RLC network
84 Saber® MAST Language User Guide
B-2008.09

Chapter 5: Modeling Hierarchical Systems
Preserving Hierarchy - MAST Template with Netlist
In the MAST language, you can do this by declaring the template to be an
element template. The following convention is recommended:

You should declare a template to be an element template if the number of
its connection points is greater than the number of system variables (local
pins, vars, additional branches) declared in the template.

Preserving Hierarchy - MAST Template with Netlist

With resistor, inductor, and capacitor templates already defined, the simplest
way to describe an RLC circuit is by creating a template that consists primarily
of an internal netlist of other templates. Each reference in this netlist creates an
instance of the corresponding template and gives values to its arguments.
Thus, the netlist section is identical to a top-level system template that just
refers to other templates (i.e., they are circuit netlists with no additional
modeling information).

The following template describes the RLC network in terms of the resistor,
capacitor, and inductor templates to preserve the hierarchy in the system:

The rlc1 template uses a netlist for the circuit shown in the following figure:

template rlc1 p m = r,l,c

number r = 10k, # resistance arg. w/default

l = 1m, # inductance arg. w/default

c = 1u # cap. arg. w/default

{

resistor.r1 p m = r

inductor.l1 p x = l

capacitor.c1 x m = c

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/rlc1.sin
Saber® MAST Language User Guide 85
B-2008.09

Chapter 5: Modeling Hierarchical Systems
Preserving Hierarchy - MAST Template with Netlist
rlc1 Template Topics

The description of the rlc1 template is divided into the following topics:
■ Template Header -- shows implicit declarations of connection points and the

use of an internal node, thereby implicitly declaring its type
■ Header Declarations -- shows the assignment of default values to template

arguments
■ Netlist Section

Template Header

This template named rlc1 provides two connection points to an external circuit:
p and m. The template has three arguments: r, l, and c, which represent the
values of the internal elements. When rlc1 is used in a circuit netlist, any values
that a user would specify for these arguments are passed to the arguments of
the internal templates (see the topic titled "Netlist Section").

Therefore, the template header becomes:

Note that, on the right-hand side of the equals sign (=), the multiple arguments
are separated by commas.

template rlc1 p m = r, l, c

vpm

ipm

r1

l1 c1

p m
x

+ _

ipx ixm

+ _ + _vpx vxm
The RLC network
86 Saber® MAST Language User Guide
B-2008.09

Chapter 5: Modeling Hierarchical Systems
Preserving Hierarchy - MAST Template with Netlist
The header declaration typically includes the declaration of the pins and the
arguments. However, in this case it is sufficient to declare only arguments,
because the simulator can determine from the usage of p and m that their pin
type is electrical. This is because they are nodes of r1, l1, and c1—the
simulator finds this information in the resistor, inductor, and capacitor
templates.

Thus, the following rule applies to references to connection points in templates:

If, in a template, the first reference to a connection point is as a node in an
internal netlist, then the simulator implicitly declares the type of that
connection point. It will be of the same type as found in the netlist template.

The same is true of an internal node, such as x in this template. It needs to be
declared only if the simulator cannot determine its type from its usage in a
netlist entry. In this example, x is implicitly declared to be electrical by its use as
a node between an inductor and a capacitor. In general, it is good practice to
declare all nodes even if declaration is not required.

Header Declarations

Declaring the arguments for this template introduces the idea of providing
initializers as default values. An initializer is a value assigned to an argument in
the header declarations. It becomes the value of that argument if none is
explicitly specified in a netlist entry.

For this template, all arguments are of type number, so their declarations
(including initializers) are as follows:

The commas at the end of the first two lines are used to separate the
arguments and to provide line continuation. If a line ends with a comma, that
indicates that the line is incomplete, and the next line is automatically
interpreted as a continued line. (For a complete list of the line continuation
characters, see the topic titled "MAST Line Continuation" in the MAST
Reference Manual.) This declaration could be written on a single line, as
follows (note the commas):

number r = 10k,

l = 1m,

c = 1u

number r=10k, l=1m, c=1u
Saber® MAST Language User Guide 87
B-2008.09

Chapter 5: Modeling Hierarchical Systems
Preserving Hierarchy - MAST Template with Netlist
Netlist Section

The netlist section of a MAST template consists of one or more netlist entries,
each describing an instance of an internal template. Internal templates are
sometimes referred to as components. However, this term is not used here
because we also provide a Component Library.

The general form of a netlist entry is:

templatename.refdes node_list [= argument_list]

where:

The rlc1 template should be designed such that it can be used in many places.
Therefore, it does not assign numerical values to the arguments of “internal”

templatename is the name of a template describing the model to
which this netlist entry refers.

refdes is the reference designator of this template
instance—thus, templatename.refdes is the full
name of the template instance (note the period as
separator). This full name should be unique in the
netlist, although the same reference designator
may be used for different templates.

node_list lists the names of the nodes to which the
connection points of the template instance are
connected. This list is separated by spaces. Note
that the names of these nodes correspond to the
connection point names of the top-level template
(e.g., the rlc1 template).

= separates node_list from argument_list.

argument_list lists the values characterizing this template
instance. The simulator assigns these values to
the arguments of templatename. Depending upon
the template, the argument_list and the equals
sign (=) may be optional.
88 Saber® MAST Language User Guide
B-2008.09

Chapter 5: Modeling Hierarchical Systems
Flattened Hierarchy - MAST Template with Equations
templates in its netlist section. Instead, the argument names of the rlc1
template (r, l, c) are assigned to the argument_list of each internal template:

Thus, any value assigned to an rlc1 argument in a netlist will be passed to the
corresponding argument in one of its internal templates. In other words, to
override the default values assigned to these internal templates, you specify an
instance of rlc1 in a netlist and provide appropriate argument values there.

Flattened Hierarchy - MAST Template with Equations

Another method for defining an RLC template is to include all the equations for
solving the network without referring to any other templates. This approach
requires the model descriptions from the resistor, inductor, and capacitor
templates to be defined in one template. In addition, their relationships to one

resistor.r1 p m = r

inductor.l1 p x = l

capacitor.c1 x m = c
Saber® MAST Language User Guide 89
B-2008.09

Chapter 5: Modeling Hierarchical Systems
Flattened Hierarchy - MAST Template with Equations
another and their relationships to the pins must also be included. The template
that does this (rlc2) is shown as follows:

This template contains a flat description of the RLC circuit shown in the
following figure:

template rlc2 p m = r,l,c

electrical p, m

number r = 10k, # resistance arg. w/default

l = 1m, # inductance arg. w/default

c = 1u # capacitance arg. w/default

{

electrical x # internal node x

var i il

equations { # current through r, l, c

i(p->m) += (v(p)-v(m))/r

i(p->x) += il

i(x->m) += d_by_dt((v(x)-v(m))*c)

tell simulator how to find il

il: v(p)-v(x) = d_by_dt(il*l)

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/rlc2.sin
90 Saber® MAST Language User Guide
B-2008.09

Chapter 5: Modeling Hierarchical Systems
Flattened Hierarchy - MAST Template with Equations
rlc2 Template Topics

The description of the rlc2 template is divided into the following topics:
■ Header and Header Declarations
■ Equations Section -- shows multiple equations that can appear in any order
■ Template Body with Local Declarations -- shows the declaration of a local

node

Header and Header Declarations

The template header is declared the same as rlc1, but with the name rlc2:

Giving the same default values to the header arguments as in rlc1, the header
declarations are:

Here you must explicitly declare the connection points p and m, because they
are used only in the equations section, so there is no way for the simulator to
determine their type (i.e., they do not appear elsewhere in a netlist entry).

template rlc2 p m = r, l, c

electrical p, m

number r = 10k, l = 1m, c = 1u

vpm

ipm

r1

l1 c1

p m
x

+ _

ipx ixm

+ _ + _vpx vxm
The RLC network
Saber® MAST Language User Guide 91
B-2008.09

Chapter 5: Modeling Hierarchical Systems
Mixed Hierarchy - MAST Template with Netlist and Equations
Equations Section

The template equations for the rlc2 template consist of the equations from the
resistor, inductor, and capacitor templates described in previous chapters,
using the variable names from the rlc2 template. Note that these statements
can appear in any order.

Template Body with Local Declarations

As with the connection points p and m, you must explicitly declare internal node
x because there is no way for the simulator to determine its type (i.e., it does
not appear elsewhere in a netlist entry). Node x it is a local internal node. It
must be declared following the opening brace before it can be used in the
equations section:

The variable il is declared to handle the inductor current.

Mixed Hierarchy - MAST Template with Netlist and Equations

Another approach for modeling an RLC network is to create a template that
contains equations for some of the elements and netlist entries for other
elements—a mixture of the methods used in the rlc1 and rlc2 templates. For

ipm = vpm/r

vpx = d_by_dt(ipx*l)

ixm = d_by_dt(vxm*c)

{

electrical x

var i il
92 Saber® MAST Language User Guide
B-2008.09

Chapter 5: Modeling Hierarchical Systems
Mixed Hierarchy - MAST Template with Netlist and Equations
instance, you can define the capacitor and the resistor by their equations, but
reference the inductor template in a netlist entry.

The equations for the inductor branch are described in the inductor template.
Note that you could have omitted the declaration of connection point p; its type
(and the type of x) can be determined from the inductor template in the netlist
entry. Because the inductor template is included in an internal netlist, rlc3 is
hierarchical. It could be made flat by making inductor an element template.

Element template is described in the following topics:
■ Introduction to MAST Element Templates
■ Properties of MAST Element Templates
■ Using MAST Element Templates

Introduction to MAST Element Templates

It is preferable to model small subsystems so that they do not introduce a new
level of hierarchy into the system description.

template rlc3 p m = r,l,c

electrical p,m

number r = 10k, # resistance arg. w/default

l = 1m, # inductance arg. w/default

c = 1u # capacitance arg. w/default

{

inductor.l1 p x = l # use inductor template

equations {

i(p->m) += (v(p)-v(m))/r

i(x->m) += d_by_dt((v(x)-v(m))*c)

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/rlc3.sin
Saber® MAST Language User Guide 93
B-2008.09

Chapter 5: Modeling Hierarchical Systems
Mixed Hierarchy - MAST Template with Netlist and Equations
Note:

A subsystem is “small” when the number of connection points is greater than
the number of its locally-declared system variables (local nodes, branch
declarations, and var variable declarations).

This definition is satisfied by most templates containing equations for a single
element (such as a resistor or a capacitor) and some templates containing
netlists (such as rlc2). In particular, all templates given as examples in previous
chapters are “small.”

The MAST language contains a construct for specifying that a template should
not introduce a new level of hierarchy. This construct declares it to be an
element template, rather than a template, in the template header. For example,
the inductor template would have the following header:

Properties of MAST Element Templates

An element template flattens the hierarchy locally. This has three main
consequences when referencing an element template in an internal netlist:
■ An element template does not introduce a new level of hierarchy.
■ The simulator merges the equations of the internal element template with

that of the calling (containing) template, for the purpose of solving the
simultaneous differential equations.

■ Any vars and branch through variables declared in the element template
become available in the calling template.

The third consequence is the key to using the voltage source template (v) with
the current-controlled voltage source, and to using the inductor template with
the mutual inductance template. Because v and l are declared as element
templates, their currents become available to a calling template; they can be
passed as refs to the current-controlled voltage source template (cvt) and
mutual inductance template (mutind), respectively.

Using MAST Element Templates

You can use element templates in the same way you use regular templates.
Therefore, if the resistor, capacitor, and inductor templates had been declared
as element templates, then the rlc1 and rlc3 templates, which contain netlist

element template inductor p m = ind
94 Saber® MAST Language User Guide
B-2008.09

Chapter 5: Modeling Hierarchical Systems
Modular vs. Non-Modular MAST System Descriptions
references to those templates, would describe flat subsystems. In other words,
rlc1 and rlc3 would not be hierarchical to the simulator, even though they
reference other templates internally.

This demonstrates that you cannot determine, by looking at a netlist, whether it
represents a flat or hierarchical system—you must look at each template
referenced in the netlist.

Modular vs. Non-Modular MAST System Descriptions

You can decide whether to model a system or subsystem hierarchically, based
on the number of local pins and additional branches. Further, you also can
choose between a modular description (like rlc1), a completely local description
(like rlc2), or a combination of the two (like rlc3). A comparison of the
characteristics of each are described in the following topics:
■ Modular (hierarchical) MAST System Descriptions - Summary
■ Non-Modular (flat) MAST System Descriptions - Summary

Modular (hierarchical) MAST System Descriptions - Summary

The characteristics of modular system descriptions are:
■ Modular descriptions are easier to develop and maintain
■ Modular descriptions provide a library of building-block templates that can

be reused in other designs
■ Modular descriptions can be hierarchical or flat (by using element

templates)
■ Improvements in one of the templates referenced in a modular description

become available immediately
■ Changes in one of the templates in a modular description may require

updating the system description
Saber® MAST Language User Guide 95
B-2008.09

Chapter 5: Modeling Hierarchical Systems
Modular vs. Non-Modular MAST System Descriptions
Non-Modular (flat) MAST System Descriptions - Summary

The characteristics of non-modular system descriptions are:
■ Non-modular descriptions are always flat
■ In a non-modular description, it is simpler to extract a variable (such as the

inductor current) in the system using Saber’s extract command
■ Modeling a system in a non-modular way may duplicate some efforts spent

to model another system (e.g., repeating the entire model description for a
resistor instead of calling the resistor template).
96 Saber® MAST Language User Guide
B-2008.09

6
6Variables and Arguments

The following topics describe ways of using internal variables and writing
arguments to provide more template versatility. They also demonstrate how to
check the validity of argument values, use message functions, and improve
template performance by precalculating expressions:
■ Modeling Extractable Capacitor Voltage and Charge with MAST -- shows

how to obtain charge in a capacitor, which is not available in a template as
a system variable; it also shows how to write arguments that provide a
nonzero voltage across the capacitor at DC (initial condition).

■ Modeling Multiple-Mode Voltage Source with MAST -- shows how to use
conditional statements (if-else) to describe a voltage source that can be
used as both a constant supply and a variable-input stimulus.

■ Modeling a Linear Transformer with MAST -- shows how to create a
transformer by using the inductor template and the mutind template.

■ Modeling a Temperature-Dependent Resistor with MAST -- shows how to
check for a value of zero for the resistance argument and issue an error
message when it happens.

■ Modeling an Idealized Op Amp with MAST -- demonstrates a three-pin
operational amplifier.

Introduction to MAST Variables and Arguments

The Saber simulator solves (i.e., finds values of the system variables for) the
simultaneous nonlinear differential equations that are given by the system
description. In electrical systems, system variables are typically node voltages,
except for models such as inductors and voltage sources, in which case current
is the system variable.

During simulation, certain information about the system (such as system
variables) is automatically extracted from the raw simulation results and made
available for display. The amount of such information is typically controlled by
the siglist variable of the simulation command.
Saber® MAST Language User Guide 97
B-2008.09

Chapter 6: Variables and Arguments
Modeling Extractable Capacitor Voltage and Charge with MAST
After simulation, you can extract this information from raw simulation results
using the extract command (also known as extraction).

The example templates, isource through rlc3, in the chapter “Basic Modeling”,
topic titled "MAST Modeling Examples - Electrical Elements", have the
following two characteristics in common:
■ Argument values are assumed to be valid
■ Arguments are used directly in the template equation(s)

In general, a template should be prepared to handle invalid argument values.
For example, the resistor template should check for res=0 to prevent division
by 0. In addition, if template arguments are not directly usable by the model,
the template has to convert them to appropriate local parameters. The topics in
this chapter explain how to use local variables and conditional statements to
accomplish these tasks. These constructs are incorporated into templates such
as resistor and opamp.

Modeling Extractable Capacitor Voltage and Charge with MAST

The capacitor template directly expresses the characteristic equation of the
capacitor. This topic describes how to modify the capacitor template (now
called capacitor_1, listed below) such that the voltage across the capacitor and
its charge become available for extraction.
98 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling Extractable Capacitor Voltage and Charge with MAST

The description of the capacitor_1 template is divided into the following topics:
■ Header and Header Declarations -- shows how to write arguments that

provide a nonzero voltage across the capacitor at DC (initial condition).
■ Values Section -- describes how to define variables that can be extracted
■ Equations Section -- describes how the equations section works with the

values section
■ Local Declarations
■ Control Section -- shows how to insert a statement that allows an initial

conditions argument

element template capacitor_1 p m = cap, ic

electrical p, m

number cap, ic=undef

{

val q qc

val v vc

values {

vc = v(p) - v(m) # voltage across cap.

qc = vc * cap # charge stored in cap.

}

control_section{

initial_condition(vc,ic)

}

equations {

i(p->m) += d_by_dt(qc)# current through cap.

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/capacitor_1.sin
Saber® MAST Language User Guide 99
B-2008.09

Chapter 6: Variables and Arguments
Modeling Extractable Capacitor Voltage and Charge with MAST
Header and Header Declarations

The template header declares capacitor_1 to be an element template. This
means that the capacitor_1 template does not introduce a new level of
hierarchy into the system description.

It also contains a new argument, ic, that allows you to specify an initial voltage
across the capacitor when a DC analysis is performed (instead of being set to
0).

The default value for ic has the initializing value undef, a special numeric
constant representing an undefined value in the MAST language. You can
assign it as a value to a template parameter (such as ic=undef). However, you
should not use it as a value in an expression (such as qc=undef/6), although
you can use it in a conditional statement to test equivalence (such as if
(ic==undef)).

This is because the results of evaluating the expression are unpredictable if the
simulator has to operate on undefined values (i.e., any parameter set to undef
should be given a numerical value when the template is used). However, in this
case, ic=undef means that ic is ignored.

Values Section

While the MAST language can describe the characteristic equations of most
physical systems in a template, you can use the values section for the
following:
■ Define a variable (called a val) specifically for use with the extract command

or the siglist variable. A val variable is usually used as an intermediate
variable; you can assign expressions to it. Once a val variable is declared
and defined, it is available for extraction—even if it does not appear in a
template equation.

■ Simplify other template sections. You can use vals not only in the values
section, but also in the equations section, the control section, and when
statements.

element template capacitor_1 p m = cap, ic

electrical p, m

number cap, ic=undef
100 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling Extractable Capacitor Voltage and Charge with MAST
■ Call foreign routines that return more than one value
■ Define the values of noise sources

The values section consists of assignment statements and conditional
statements. The syntax of a assignment statement is as follows:

variable = expression

where:

The values section is both procedural and declarative. Because it is
procedural, it must be able to execute its statements in sequence, so you must
order the statements such that each variable is defined before it is used.
Because it is declarative, each of its statements might be executed only if the
simulator requires variable, for example if a variable is a val variable that is to
be extracted or is needed for solution of the system variables.

If variable is not needed, the simulator skips the statement during evaluation of
the values section, although it might "absorb", during initial setup, certain
information provided by a statement. Therefore, including a values section in a
template does not impose any performance penalties if no variables are
extracted. This means that a values section should be part of almost every
structured template.

One objective stated earlier was to make the voltage across the capacitor and
the charge of the capacitor available for post-processing. The following figure
shows the relationship of these quantities

variable is a val variable

expression is a MAST expression defining variable—the value of
expression is assigned to variable (this is not a mathematical
equality). An expression can include variables of different
types (except for through variables); mathematical functions;
the +, -, *, /, **, and parentheses (()).
Saber® MAST Language User Guide 101
B-2008.09

Chapter 6: Variables and Arguments
Modeling Extractable Capacitor Voltage and Charge with MAST
The following values section expresses the relationship of the voltage across
the capacitor and the charge of the capacitor:

The quantity vc is defined as the difference of the across variables at pins p
and m; qc is the product of vc and the capacitance value. As required, the
definition of vc precedes the definition of qc.

Equations Section

The following equations section for the capacitor_1 template is very similar to
the capacitor template, except that now the capacitor charge is available as a
val variable from the values section:

The Saber simulator uses the equations and values sections jointly to set up
the system equations. It uses the values section only to the extent necessary to
determine the through variable contribution at the resistor pins as a function of
the across variables at the pins. It does not, however, evaluate the values
section, except when simulator users specify that certain information is to be

values {

vc = v(p) - v(m) # voltage across cap.

qc = vc * cap # charge stored in cap.

}

equations {

i(p->m) += d_by_dt(qc)# current through cap.

}

v(p)
vc

v(m)

+ _

p m
cap

qc = vc * cap

Linear capacitor
102 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling Extractable Capacitor Voltage and Charge with MAST
extracted, and even then it evaluates only the equations needed to provide the
requested information.

This does not mean that the values section is evaluated for solution of the
system variables. Rather, the simulator "absorbs" certain information when it
sets up the simultaneous equation describing the system. Consequently, the
equation that the simulator solves for with the capacitor_1 template is identical
to the one for the capacitor template.

Local Declarations

It is required that all variables defined in the values section must be declared
among the template's local declarations. Both vc and qc are vals. These two
vals, the voltage vc and the charge qc, are declared as follows:

The declaration of a val variable is similar to that of a var variable. The
statement:

This declares one or more variables to be vals having the specified unit.

You can assign a value to a val variable only in a values section of a template
or an assignment statement in the local declarations section of an unstructured
template. However, you can use a val variable in the template equation, the
control section, and in when statements.

There is a collection of predefined units in the units.sin file, which is provided
with the Saber simulator. The simulator, by default, includes the units.sin file
with each system description.

Control Section

The control section of a template provides the simulator with information that is
specific to the system being analyzed but is not directly part of the component
model. An example of such information is the initial voltage across the
capacitor. This is implemented by using the initial_condition statement within
the control section.

val q qc

val v vc

val unit name [,name, name, ...]
Saber® MAST Language User Guide 103
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
The control section consists of the keyword control_section, followed by a
sequence of control section statements, enclosed between braces, { }.

Such statements are special in the sense that they can occur only in an
explicitly-declared control section. A complete list of these statements is given
in the MAST Reference Manual. Here, only an initial_condition statement for
the voltage across the capacitor (v) is used.

When you specify a value for the argument ic, that value is used by the branch
voltage, vc, when a DC analysis is performed (using either the dc or dctr
command).

Initial Conditions
For some templates, you may want to specify the initial condition of a system
variable or difference of two system variables. The initial_condition statement
allows you to assign a value or values to such system variables (for instance,
by means of a template argument). The general form for this statement in the
control section is as follows:

where variable is a system variable or difference of system variables (such as
across branch variables), and value is the name of the initial condition
parameter (i.e., variable=value at time=0).

If there are multiple system variables to receive initial conditions, each one
must have a separate initial_condition statement in the control section. In this
template, value is named ic. It is provided as an argument to the template and
assigned the value of undef. However, other implementations are possible, and
it is up to the writer of the template to select from them (including assigning
names).

Modeling Multiple-Mode Voltage Source with MAST

The vsource template models a source that provides a constant voltage output,
independent of time and frequency. Such voltage sources are common, but

control_section {

initial_condition(vc,ic)

}

initial_condition (variable, value)
104 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
many systems have voltage sources with waveforms that are time- or
frequency-dependent. The purpose of this example is to show how to use
conditional statements (if-else) to describe a voltage source (vsource_1, listed
below) that can be used as both a constant supply and a variable-input
stimulus.

This voltage source can model the following:
■ A constant voltage, to be used as a supply.
■ An exponential voltage, as a simple example of a time-dependent

waveform. This overrides the constant voltage if both are specified.
■ A frequency-dependent AC signal, to be used for frequency-domain (small-

signal) analyses.

The following topics describe how to activate each of these outputs, depending
on the analysis being run. An extended version of this voltage source (which
provides several additional waveforms using these same techniques) is
described in the vsource_2 template.

element template vsource_1 p m = supply, tran, ac

electrical p, m # header declarations

number supply=0

struc { # start of tran structure

number v1=0, # initial voltage

v2=0, # voltage at time=inf

tau=0.000001 # time constant

} tran=() # end of tran structure

struc { # start of ac structure

number mag=0, # AC magnitude

phase=0 # AC phase

} ac=() # end of ac structure
Saber® MAST Language User Guide 105
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
{ # start template body

var i is # local declarations

val v vs

values {

if (dc_domain | time_domain) { # If large signal

if ((tran->v1~=0 | tran->v2~=0) & tran->tau>0){

If waveform is defined

vs=tran->v1 + (tran->v2-tran->v1) *(1-exp(-time/tran-
>tau))

} # source voltage = waveform

at current time

else { # otherwise

vs=supply # source voltage = supply

}

}

else if (freq_mag) { # or if source is ac magnitude

vs=ac->mag # source voltage = magnitude

}

else if (freq_phase) { # or if source is ac phase

vs=ac->phase # source voltage = phase

}

}# end of values section

equations { # start of equations section

i(p->m) += is # add current contributed by source

is: v(p)-v(m)=vs # determine current contributed

by source

} # end of equations section

} # end of template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
vsource1.sin
106 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
The description of the vsource_1 template is divided into the following topics:
■ Constant DC Supply Output -- shows the header and header declarations
■ Time-Dependent, Exponential Output -- shows the characteristic equation

and introduces the declaration of a structure parameter, which is further
described in the following topics:

• Initializing a Structure - Method 1 Using vsource_1

• Initializing a Structure - Method 2 Using vsource_1

• Summary of Structure Initializers

• Template Body - shows the template body, which include the following
concepts:

Introduction to MAST Simulator Variables (simvars)

Introduction to MAST Conditional Statements

Using simvars and Conditional Statements

Using a Structure Reference

Completing the Values Section for tran

Equations Section
■ Frequency-Dependent, AC Output -- shows how to model the small-signal

analysis behavior for the vsource_1 template using the following topics:

Small-Signal Structure Type Parameter

Small-Signal simvar Variables

Small-Signal Conditional Statements

Constant DC Supply Output

Template Header and Header Declarations
Because this voltage source models three different output functions, the
template header contains three arguments (supply, tran, ac), one for each
function. It is also declares vsource_1 as an element template.

1 element template vsource_1 p m = supply, tran, ac
Saber® MAST Language User Guide 107
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
In the header declarations, connection points (p and m) are declared as
electrical pins and supply is declared as a simple number parameter. To make
vsource_1 operate as a constant DC supply, the argument supply replaces the
argument vs (but is used the same way). Further, supply is assigned an
initializer (0), which becomes the default value if no value is specified for it in a
netlist:

This default value of 0 causes the voltage source to act as a short circuit
between p and m for a DC analysis.

Time-Dependent, Exponential Output

Characteristic Equation
The exponential waveform to be modeled by the voltage source template is
shown in the following figure and is defined by the following equation:

Vout = V1 + (V2 - V1)•(1 - e)

where the following quantities are specifiable arguments to the template:

3 number supply = 0

V1 the initial voltage (at time=0)

V2 the voltage at time = infinity

t the time constant (t > 0) of the
exponential function

(-time/τ)
108 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
Note that the three arguments (v1, v2, tau) that characterize the exponential
waveform do not appear in the template header. They are declared in the
template as part of the argument tran, which does appear in the template
header. This is a commonly-used arrangement.

Header Declaration Using a Structure Type Parameter
To emphasize that they belong together, the three arguments used in the
characteristic equation (v1, v2, tau) are declared so that the exponential
waveform can be referred to by a single name (tran). In the MAST language,
you do this by declaring this name as a structure parameter, which is an
ordered list of member parameters (here, v1, v2, tau). Each structure member
may be a number, an enum, another structure (which would then make a
nested structure), or any of the other types that a parameter can be. See the
MAST Reference Manual for more information.

In its most general form, the syntax for declaring a structure is (optional
declarations are enclosed by italicized square brackets, []):

struc [structurename] {

member

[member]

[...]

} id [=initial_value] [,id=initial_value, ...]

voltage

time
τ

V2

V1

Exponential waveform

(-time/τ)V1 + (V2 - V1)• (1 - e)
Saber® MAST Language User Guide 109
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
where:

You can declare the exponential waveform using a structure declaration in
various ways. Two possible methods are described in the following topics, both
initializing the structure (whose id is tran) so that all of its members are 0—
unless otherwise specified in a netlist entry:
■ Initializing a Structure - Method 1 Using vsource_1
■ Initializing a Structure - Method 2 Using vsource_1

struc is a required keyword that declares the structure.

structurename is an optional name identifying the structure. For
information about how to use this, see the MAST
Reference Manual.

member is the declaration of a structure member—a
“subordinate” parameter whose declaration is
identical to what it would be if it were outside of a
structure. This declaration can include initializing
values, as described in the topic titled "Initializing
a Structure - Method 1 Using vsource_1".

id is the name of a variable having the type
described by the structure. There can be multiple
ids, separated by commas, that declare duplicate
versions of this particular structure with different
names.

initial_value is an optional initializer for the structure. It
interacts with the initializers for the structure
members, depending on the initialization method
selected.
110 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
Initializing a Structure - Method 1 Using vsource_1
Specify the initializer for each structure member separately from the structure
initializer:

This declares a parameter named tran to be a structure consisting of number
type parameters v1, v2, and tau. Each of these members is initialized to 0. The
initializer for the structure is simply a pair of parentheses preceded by an
equals (=) sign. This means that, in a netlist entry referring to vsource_1, if the
tran structure is not defined, then its members take on the values specified by
their initializers. If this initializer for the structure (tran=()) were missing, the
structure would have to be defined (given a value) in a netlist entry, even
though the individual members have initializers.

Initializing a Structure - Method 2 Using vsource_1
Specify initializers for structure members within the structure initializer:

Again, this declares tran to be a structure consisting of three members and
initializes them to a value, so it is not necessary to specify tran in a netlist entry
because it is initialized in its declaration.

In a netlist entry referring to the vsource_1 template, these two declarations of
the tran structure are equivalent under the following conditions:
■ The tran structure is not specified in a netlist entry. This initializes two of the

structure members to 0.
■ The tran structure is specified in a netlist entry, and values are specified for

all three structure members. This initializes all three structure members to
their specified values.

5 struc {

6 number v1 = 0,

7 v2 = 0,

8 tau = 0.000001

9 } tran= ()

struc {

number v1, v2, tau

} tran = (0, 0, 0.000001)
Saber® MAST Language User Guide 111
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
These two methods behave differently when the tran structure is only partially
defined in a netlist entry. Suppose, for example, that a netlist entry specifies
values for v1 and v2 but not for tau. Then v1 and v2 take on the specified
values in both structure declarations. On the other hand, tau takes on the value
0 in the first case but is undefined in the second.

Summary of Structure Initializers
The following summarizes how structure initializers, member initializers and
values defined in a netlist entry interact to define the value for the structure
members:
■ A structure receives initializing values either from a structure initializer or

from values provided in a netlist entry. If both are present, the simulator
ignores the structure initializer and uses the values from the netlist entry. If
neither is provided, an error message is displayed.

■ Each member of a structure takes on the value provided for it in the structure
initializer or netlist entry (whichever applies, as described above). If no value
is provided, the structure member is set to the value specified in the member
initializer. If the member initializer is missing, its value is undefined.

A structure initializer has the following form:

The member initializers in the vsource_1 template are v1=value, v2=value, and
tau=value.

Considering these differences, the first method of declaring the exponential
waveform is recommended, so that all of its members will always be defined.
The example in the topic titled "Modeling Extractable Capacitor Voltage and
Charge with MAST" shows how to check for undefined parameters or invalid
values.

Template Body
To summarize, the three arguments of this template—supply, tran, ac—are
provided to allow a user to select whether the output will be a constant voltage,
an exponential voltage, or an AC signal.

id = (valuelist)
112 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
It is important at this point to distinguish between large-signal and small-signal
responses of a system:
■ A large-signal response, such as that obtained from a DC or transient

analysis, incorporates all nonlinearities of the system. Except for the DC
response (i.e., the operating point of the system), which is not related to time
or frequency, large-signal responses are typically evaluated in the time
domain.

■ A small-signal response, such as that obtained from an AC analysis,
assumes a linearization of the system about its operating point. It is a first-
order approximation of the large-signal response at that operating point and
is typically evaluated in the frequency domain. Modeling this functionality is
further described in the topic titled "Frequency-Dependent, AC Output".

Note:

The vsource_2 template extends this voltage source to provide a large-
signal sinusoidal waveform. This is not to be confused with the small-
signal sinusoid provided for a small-signal, AC analysis.

Given these distinctions, the constant and exponential voltages are to be used
for large-signal analyses (DC and transient analyses), while the AC voltage is
to be used for small-signal analyses (such as an AC analysis). Therefore, the
template must obtain, from the simulator, information about the simulation
being used.

Once the template has this information, it has to define the output voltage
according to the logic illustrated in the following figure:

large-signal? waveform output=exponential waveform

output=DC supply

output=small-signal

YES

NO

at present time

supply

tran

ac

YES

NO

(DC or Transient)

Selecting an output

 defined?

AC value
Saber® MAST Language User Guide 113
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
In order to provide these multiple modes, the vsource_1 template must have
the following capabilities:
■ Information from the simulator regarding the kind of analysis being

performed
■ Based on that information, the ability to decide which argument is assigned

to the output

These capabilities are provided by simulator variables and conditional
statements, which are described in the following topics:
■ Introduction to MAST Simulator Variables (simvars)
■ Introduction to MAST Conditional Statements
■ Using simvars and Conditional Statements
■ Using a Structure Reference
■ Completing the Values Section for tran

Introduction to MAST Simulator Variables (simvars) To pass analysis
information from the simulator to a template, the MAST language supports
what are called simvars (simulator variables). A simvar is a predefined MAST
variable that does not need to be declared. Simvars provide information about
the nature of the analysis being carried out, various stages of the analysis, the
present simulation time or frequency, and the present mathematical
environment (deterministic or statistical). They also let a template interact with
the simulator’s integration algorithm. With two exceptions simvars cannot be
modified by a template.

A complete list of simvars is given in the MAST Reference Manual. In
vsource_1, only the simvars related to the nature of the analyses and
simulation time are necessary.

Simvars used by tran in the vsource_1 template are:

dc_domain has a non-zero value when a DC analysis or DC
transfer analysis is being carried out. It is equal to
0 otherwise.

time_domain has a non-zero value when a transient analysis is
being carried out. It is equal to 0 otherwise.
114 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
Introduction to MAST Conditional Statements The following logic diagram
illustrates the decisions that the vsource_1 template makes in defining its
output voltage based on simvar information. It makes these decisions using
conditional statements.

In the MAST language, conditional statements are implemented as if-else
constructs, as follows:

where:

time contains the current simulation time when a time-
domain analysis is being done. It is equal to 0
otherwise.

if (condition1) statement1

else if (condition2) statement2

...

else statementN

if, else are MAST keywords

condition is a MAST expression that is false if its value is 0
or true if its value is not 0

statement is either a simple MAST statement or a group of
MAST statements enclosed in braces ({})

large-signal? waveform output=exponential waveform

output=DC supply

output=small-signal

YES

NO

at present time

supply

tran

ac

YES

NO

(DC or Transient)

Selecting an output

 defined?

AC value
Saber® MAST Language User Guide 115
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
When processing an if, else if,..., else compound statement, the simulator
evaluates the conditions in the order given. When it finds a true condition, then
it executes the associated statement and ignores the rest of the compound
statement. When all conditions are false, it executes the statement associated
with the last else keyword, if there is one. If there is no else keyword, it ignores
the entire compound statement.

In if statements, you can build conditions using the following building blocks:
■ Arithmetic expressions, such as the expressions that can be on the right-

hand side of an assignment statement, with the restriction that the
expression must return a single value. An arithmetic expression is true if it
has a non-zero value.

■ Relational expressions, which consist of two expressions separated by one
of the relational operators listed below. The value of such an expression is
1 if the relation is true. It is 0 otherwise.

■ The complement of an expression, that is, the ~ (tilde) operator followed by
an expression. If expression is true, then ~expression equals 0. Otherwise,
~expression equals 1.

■ A compound expression, that is, two expressions separated by a logical
operator (& for “and”, | for “or”):

• expression1 & expression2 has a value of 1 if both expression1 and
expression2 are not equal to 0. Otherwise, expression1 & expression2
has a value of 0.

• expression1 | expression2 has a value of 1 if either expression1 or
expression2 (or both) is not equal to 0. Otherwise,
expression1|expression2 has a value of 0.

== equal to

~= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to
116 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
It is important to understand that the condition in an if statement can include
system variables and vals that depend upon system variables.

Using simvars and Conditional Statements Values Section

The following figure shows a partial implementation of the outline shown in the
previous figure by using the information just presented on simvars and
conditional statements. The following figure numbers each of the blocks and
provides statements beneath them that describe how the conditional portions
of the template associate decision Blocks 1 and 2 with output Blocks 3, 4, and
5. These statements use a val variable named vs that represents whichever
output is selected for vsource_1.

Following the figure are descriptions of each correspondingly-numbered block.

3

Selecting an output (continued)

large-signal? waveform output=exponential waveform

output=DC supply

output=small-signal

YES

NO

at present time

supply

tran

ac

YES

NO

(DC or Transient) defined?

AC value

21

4

5

Block 1 if (dc_domain | time_domain) {
if (waveform defined) {

vs = waveform at current time
}
else (if waveform not defined) {

vs = supply
}

Block 2
Block 3

Block 4

}
elseif (freq_mag) {

vs = magnitude of complex value
}

Block 5

elseif (freq_phase) {

vs = phase of complex value
}
Saber® MAST Language User Guide 117
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
1. The first condition is true if dc_domain or time_domain is true (i.e., if a either
a DC or a transient analysis is being performed). See Block 2.

The first condition is false if the simulator is executing a small-signal
analysis. See Block 5.

2. The second condition is true if the waveform is defined. See Block 3. (The
waveform is considered defined if either v1¼0 or v2¼0 (see the figure that
refers to the exponential waveform) and the value of tau is positive.)

The second condition is false if the members of tran have not been
specified. See Block 4.

3. The output of vsource_1 (vs) is given the waveform value, tran.

4. The output of vsource_1 (vs) is given the constant DC value, supply.

5. If the simulator is performing an AC analysis, it asks for either the magnitude
(freq_mag) or the phase (freq_phase) of the complex value specified by ac.
In such cases (the else if cases), the simulator takes the appropriate action,
depending on the values of freq_mag and freq_phase.

Using a Structure Reference To convert the following conditional
statements to those actually appearing in the template, it is necessary to gain
access to the parameter within the ac and tran structures.

Block 1 if (dc_domain | time_domain) {
if (waveform defined) {

vs = waveform at current time
}
else (if waveform not defined) {

vs = supply
}

Block 2
Block 3

Block 4

}
elseif (freq_mag) {

vs = magnitude of complex value
}

Block 5

elseif (freq_phase) {

vs = phase of complex value
}
118 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
In the MAST language, the “structure reference” operator (->) is used to do this,
as follows:

Refer to Section 3.4.4 of the MAST Reference Manual for more information on
the structure reference operator.

Here, the structure named name1 contains a member parameter named
name2. For example, the three parameters within the tran structure are
indicated by:

The type of name1->name2 is the same as the type declared for name2.
Therefore, because v1 is a number parameter within the tran structure, tran-
>v1 is also a number, which you can use just like any number parameter.

Completing the Values Section for tran By using simvars, conditional
statements, and structure references, the template can now define the tran
argument in such a way that it activates the exponential waveform output for
either a DC or transient analysis.

First, the members of tran are evaluated to see if they have defined the
waveform. The waveform is considered defined if an instance of vsource_1 (in
a netlist) has set the value of tau > 0 and either v1¼0 or v2¼0. If these
conditions are met, tran will override the constant value specified by supply.
This ensures continuity in the waveform at time 0.

Second, the waveform must be expressed as a function of time. The MAST
language provides a collection of mathematical and other functions that you
can use in expressions. The MAST Reference Manual lists all such functions.
This example requires the exponential function ex, which is implemented in the
MAST language by exp(x).

The resulting expression is:

name1->name2

tran->v1

tran->v2

tran->tau

v1 + (v2 - v1)*(1 - exp(-time/tau))
Saber® MAST Language User Guide 119
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
where time is a simvar. Note that time is set to the current simulation time
during a transient analysis and to 0 during a DC analysis.

Third, the conditional statements of the vsource_1 template use simvars (time,
dc_domain, time_domain, freq_mag, freq_phase) and the structure reference
operator (->) to decide whether the conditions for tran are satisfied. Compare
the actual condition testing of whether the waveform is defined (from the values
section, below) with the informal versions which follow it. Also, compare the
final statements defining vs (below) with the informal versions.

18 values {

19 if (dc_domain | time_domain) { # If large signal

20 if ((tran->v1~=0 | tran->v2~=0) & tran->tau>0){

21 # If waveform is defined

22 vs=tran->v1 + (tran->v2-tran->v1) *(1-exp(-time/tran-
>tau))

23 } # source voltage = waveform

24 # at current time

25 else { # otherwise

26 vs=supply # source voltage = supply

27 }

28 }

29 else if (freq_mag) { # or if source is ac magnitude

30 vs=ac->mag # source voltage = magnitude

31 }

32 else if (freq_phase) { # or if source is ac phase

33 vs=ac->phase # source voltage = phase

34 }

35 }# end of values section
120 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
Equations Section The template equation describes how the model that the
template represents interacts with the rest of the system. The voltage source
modifies the current at its pins p and m by its contribution is. The is current
contribution is to be determined by the simulator such that the voltage drop
across the source equals the specified source value. As with the vsource
template, you must declare the source current as a var variable. The resulting
equations section is as follows:

Frequency-Dependent, AC Output

The definition for the ac argument is very similar to that of the tran argument.
Simvar variables, conditional statements, and the structure reference operator
(->) are used to define conditions for which the ac argument determines the
output. The principal difference is that ac defines a small-signal response, such

36 equations { # start of equations section

37 i(p->m) += is # add current contributed by source

38 is: v(p)-v(m)=vs # determine current contributed

39 # by source

40 } # end of equations section

Informal Presentation of Condition Testing

Block 1 if (dc_domain | time_domain) {
if (waveform defined) {

vs = waveform at current time
}
else (if waveform not defined) {

vs = supply
}

Block 2
Block 3

Block 4

}
elseif (freq_mag) {

vs = magnitude of complex value
}

Block 5

elseif (freq_phase) {

vs = phase of complex value
}
Saber® MAST Language User Guide 121
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
as that obtained from an AC analysis, which assumes a linearization of the
system about its operating point. It is a first-order approximation of the large-
signal response at that operating point and is typically evaluated as function of
frequency.

The following topics describe how the small-signal functionality is modeled in
the vsource_1 template:
■ Small-Signal Structure Type Parameter
■ Small-Signal simvar Variables
■ Small-Signal Conditional Statements"

Small-Signal Structure Type Parameter
The ac argument represents a complex number specified by magnitude and
phase. Because the MAST language does not include complex arguments and
parameters, you declare this argument as a structure consisting of two real
numbers (which represent magnitude and phase) and initialize them both to 0,
as follows:

Note that this corresponds to Method 1 of initializing a structure described for
the tran argument (see the topic titled "Initializing a Structure - Method 1 Using
vsource_1"). It declares a parameter named ac to be a structure consisting of
number type parameters mag and phase, each of which is initialized to 0.

The initializer for the structure is simply a pair of parentheses preceded by an
equals (=) sign. This means that, in a netlist entry referring to vsource_1, if the
ac structure is not defined, then its members take on the values specified by
their initializers (here, 0 for each). If the structure’s initializer were missing, the
structure would have to be defined (given a value) in a netlist entry, even
though the individual members have initializers.

Small-Signal simvar Variables
Recall that the three arguments of the vsource_1 template—supply, tran, ac—
are provided to allow a user to select whether the output will be a constant
voltage, an exponential voltage, or an AC signal. The supply and tran

11 struc {

12 number mag=0,

13 phase=0

14 } ac = ()
122 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
arguments provide output voltages that are to be used for large-signal analyses
(DC and transient analyses), while the ac argument provides an AC voltage for
small-signal analyses (AC analysis). Therefore, the template must obtain, from
the simulator, information about the simulation being used.

As with the tran argument, the ac argument uses simvars to determine whether
or not the simulator is performing an AC analysis. The ones used by ac are:

freq_mag has a non-zero value when a small-signal (frequency
domain) analysis is being carried out and the simulator
is requesting the magnitude of a complex number. It is
equal to 0 otherwise

freq_phase has a non-zero value when a small-signal (frequency
domain) analysis is being carried out and the simulator
is requesting the phase portion of a complex number. It
is equal to 0 otherwise.

18 values {

19 if (dc_domain | time_domain) { # If large signal

20 if ((tran->v1~=0 | tran->v2~=0) & tran->tau>0){

21 # If waveform is defined

22 vs=tran->v1 +(tran->v2-tran->v1) *(1-exp(-time/tran-
>tau))

23 } # source voltage = waveform

24 # at current time

25 else { # otherwise

26 vs=supply # source voltage = supply

27 }

28 }

29 else if (freq_mag) { # or if source is ac magnitude

30 vs=ac->mag # source voltage = magnitude

31 }

32 else if (freq_phase) { # or if source is ac phase

33 vs=ac->phase # source voltage = phase

34 }

35 }# end of values section
Saber® MAST Language User Guide 123
B-2008.09

Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
Small-Signal Conditional Statements
The if else statements for the ac argument check to see whether the simulator
is requesting the magnitude of a complex number (i.e., whether freq_mag ¼ 0).
If so, then the output of vsource_1 (vs) is assigned the value of mag within the
ac structure by using the structure reference operator:

If freq_mag =0, the template checks to see whether the simulator is requesting
the phase of a complex number (i.e., whether freq_phase ¼ 0). If so, then the
output of vsource_1 (vs) is assigned the value of phase within the ac structure
by using the structure reference operator:

30 vs = ac->mag

33 vs = ac->phase

18 values {

19 if (dc_domain | time_domain) { # If large signal

20 if ((tran->v1~=0 | tran->v2~=0) & tran->tau>0){

21 # If waveform is defined

22 vs=tran->v1 + (tran->v2-tran->v1) *(1-exp(-time/tran-
>tau))

23 } # source voltage = waveform

24 # at current time

25 else { # otherwise

26 vs=supply # source voltage = supply

27 }

28 }

29 else if (freq_mag) { # or if source is ac magnitude

30 vs=ac->mag # source voltage = magnitude

31 }

32 else if (freq_phase) { # or if source is ac phase

33 vs=ac->phase # source voltage = phase

34 }

35 }# end of values section
124 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling a Linear Transformer with MAST
Modeling a Linear Transformer with MAST

In general, a transformer is modeled as two or more magnetically-coupled
inductors. The linear transformer template (xformer, listed below) consists of
two inductors and their mutual coupling, as shown in the following figure.

The xformer template uses the inductor and mutind templates in a netlist
section. The arguments of xformer are the two inductance values and their

M
p1 i1 p2i2

v1 v2

m1 m2

l1 l2

Coupled inductors
Saber® MAST Language User Guide 125
B-2008.09

Chapter 6: Variables and Arguments
Modeling a Linear Transformer with MAST
coupling factor, whose user-specified values are passed to inductor.1,
inductor.2, and mutind.12.

The description of the xformer template is divided into the following topics:
■ Header and Header Declarations
■ Netlist Section
■ Local Declarations

element template xformer p1 m1 p2 m2 = l1, l2, k

electrical p1, m1, p2, m2

number l1, l2, k = 1

{ # start body of template

number m # local declaration

parameters { # start parameters section

if (k < -1 | k > 1) {

error("%:coupling factor must be between -1 and 1:k=%",

instance(), k) # if error, display message

and terminate simulation

}

else {

m = k * sqrt(abs(l1 * l2))

otherwise, compute mutual

inductance

}

}

Use following netlist to make a transformer from

two mutually-coupled inductors

inductor.1 p1 m1 = l1 # inductor netlist entry

inductor.2 p2 m2 = l2 # other inductor netlist entry

mutind.12 i(inductor.1) i(inductor.2) = m

mutual inductance netlist entry

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
xformer.sin
126 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling a Linear Transformer with MAST
■ Parameters Section
■ Error Reporting
■ Template Equation

Header and Header Declarations

Three values characterize a model of a linear transformer: two self inductances
and a mutual inductance. However, from a user’s point of view, it is more
convenient to supply a mutual coupling factor, k (which has a value between -1
and 1) instead of a mutual inductance (which must be calculated from k and the
two inductance values). Each inductance is connected between a pair of
electrical pins, so the template header and header declarations are:

Note that the arguments are declared such that k has a default of 1, while l1
and l2 have no default values. Thus, when xformer appears in a netlist, its l1
and l2 values must be specified, whereas k defaults to 1 (which models ideal
coupling, so k need not be specified if this is acceptable).

Netlist Section

This transformer template uses an internal netlist to connect instances of the
inductor and the mutind templates, which have been declared as element
templates:

element template xformer p1 m1 p2 m2 = l1, l2, k

electrical p1, m1, p2, m2

number l1, l2, k=1

inductor.1 p1 m1 = l1

inductor.2 p2 m2 = l2

mutind.12 i(inductor.1) i(inductor.2) = m
Saber® MAST Language User Guide 127
B-2008.09

Chapter 6: Variables and Arguments
Modeling a Linear Transformer with MAST
It is important to understand that this netlist can work correctly only if both the
inductor and mutind templates are element templates. The reasons are as
follows:
■ If the inductor template is not an element template, the inductor branch

currents (which are vars) are not available outside the template. Thus,
declaring them as refs in the mutind template would not be sufficient to
provide access to them.

■ The mutind template must be declared an element template because it
modifies the equations associated with the inductor currents, and this is
possible only at the same level of hierarchy.

Local Declarations

The only item that requires local declaration is the mutual inductance m, which
is a numeric parameter:

number m

In general, local declarations of parameters are very similar to argument
declarations. They can take on the same types as arguments and they can
have initializing values. The following statement:

type name [=initial_value]

declares the parameter name as type type and, if the optional part of the
statement is present, sets its value to the specified initial_value. If initial_value
is not present, name has the initializing value undef, a special numeric constant
representing an undefined value in the MAST language. You can use this
constant wherever you can use a numeric constant, although the results are
unpredictable if the simulator has to operate on undefined values.

If an initial value of a local parameter is specified, you can alter it from the
Saber simulator, using the alter command. You cannot alter a local parameter
that has no initializer. Note that you cannot alter the value of a local parameter-
-you can alter only its initializer. This is because you can modify parameters in
the parameters section.

Parameters Section

The parameters section of a template is useful for manipulating parameters,
such as template arguments, that are variables or structures that do not
change during simulation.
128 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling a Linear Transformer with MAST
The parameters section is used primarily for the following purposes:
■ Validating template arguments
■ Converting template arguments into parameters needed by a model
■ Specifying, for statistical analysis, correlation between parameters
■ Setting up static information, such as sample points, that depends upon

template arguments

The xformer template example addresses only the first two points.

The parameters section is a procedural section--meaning that, when executed,
its statements are executed in the sequential order. It consists of the keyword
parameters followed by a sequence of statements between braces ({}).

The simulator executes the parameters section as follows:
■ Once during initialization of the system description
■ Once for each alter command (including alter commands generated by the

vary command), but only for the template instances affected by the alter
command

■ Once for each Monte Carlo run, but only for the template instances having
statistical distributions

Statements in the parameters section follow the same syntactical rules as
values section statements, except that the operations can involve only
parameters, that is, template arguments and parameters declared locally in the
template. There are also several routines, most for error reporting, that you can
use only in the parameters section and in when statements.

Template arguments and parameters declared locally in a template are
collectively called parameters. They can assume the same types (numbers,
structures, etc.), can take on the same values, and can be used identically in a
template, except that a template argument cannot be changed inside a
template. That is, it is not possible to assign a value to a template argument in
an assignment statement.

The parameters section in the xformer template checks to see if the user-
specified value for coupling factor, k, lies between -1 and 1:

Note the opening brace at the end of the line; it introduces the error reporting
statements that follow, as explained in the topic titled "Error Reporting".

if (k < -1 | k > 1) {
Saber® MAST Language User Guide 129
B-2008.09

Chapter 6: Variables and Arguments
Error Reporting
The else clause is used, when there is no error detected, to compute the
mutual inductance and assign the result to m, which is later used in the netlist
section.

Error Reporting

If a user has specified invalid argument values to a template instance in a
netlist, there should be a clear error message to indicate the situation. In the
xformer template, you should report an error if the user-specified value for
coupling factor, k, does not lie between -1 and 1, because such a factor
represents a physically impossible situation.

parameters { # start parameters section

if (k < -1 | k > 1) {

error("%:coupling factor must be between -1 and 1:k=%",\

instance(), k)# if error, display message

and terminate simulation

}

else {

m = k * sqrt(abs(l1 * l2))

otherwise, compute mutual

inductance

}

}

130 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Error Reporting
The MAST language supports a set of functions that can be included in a
template that will inform the user which instance has the bad value, what the
bad value is, and what must be done to correct the problem:
■ The instance() function returns a string containing the full pathname of the

template instance, describing its exact position in the design hierarchy.
■ The error(format [, argument...]) function reports error conditions that the

template cannot correct. It issues an error message specified by the
arguments of the function, which are:

Calling the error() function causes the condition causing the error to be
discarded. If this happens during simulator start-up, the simulator quits. If it
happens because of an alter statement, the alter statement is discarded.

■ The warning(format [, argument...]) function is for reporting an abnormal
condition that the template can correct. It issues a warning message, where
format and argument are as described for the error() function, above.
Calling the warning() function has no effect on simulator operation.

■ The message(format [, argument...]) function is for debugging and for
printing out general information. It simply issues the message described by
format and argument. Calling the message() function has no effect on
simulator operation.

It is typical to use these functions with conditional statements, although you can
also use them in when statements.

For the xformer template, the error() function is required, because the template
cannot correct a user-specified argument value. The resultant message should

format a string holding the message text and, optionally, placeholders
for information that is can vary, such as the instance name. A
string is a sequence of characters enclosed between quotation
marks (" ") but not including quotation marks. Percent signs (%)
in the string are interpreted as placeholders, unless preceded by
a backslash (\). In the printed message, they are replaced with
the remaining arguments of the error() function.

argument an optional numeric or string quantity, such as a parameter or
function value. When the error message prints, the i’th argument
replaces the i’th placeholder in format. If the i’th argument is a
variable of type structure, the whole structure is printed in place
of only the i’th placeholder. There must be as many arguments as
there are placeholders in the format string.
Saber® MAST Language User Guide 131
B-2008.09

Chapter 6: Variables and Arguments
Error Reporting
display the current instance, the bad value, and the range of valid values for the
user to correct. This message is implemented as follows:

Note that the format string has two placeholders (the percent (%) signs), which
are filled in with the instance name and the value of k, respectively.

For example, the following netlist entry specifies an invalid coupling factor of 2:

This would result in the following error message:

Template Equation

The xformer template combines existing models (inductor and mutind) into one
template and provides some error checking—it has no characteristic equation
of its own. However, it does compute the mutual inductance value (to be used
by mutind) from the arguments of coupling factor (k) and the two inductance
values (l1, l2).

The mutual inductance value is given by the equation:

m = k•

This is implemented in the template as:

m = k* sqrt(abs(l1*l2))

where m is the argument of the mutind template instance, sqrt is the square
root function, and abs is the absolute value function. The sqrt and abs functions
are intrinsic to the MAST language (sqrt requires a non-negative argument).
Although you could use conditional statements to restrict l1 and l2 to positive
values, it is more efficient to use the abs function and take the square root of
their absolute value.

Thus, this statement assigns a value to m resulting from an expression using
the xformer arguments k, l1, and l2.

error("%:coupling factor must be between -1 and
1:k=%",instance(),k)

xformer.bad a b c d = 1m, 2m, 2

** ERROR "TEMPLATE_ERROR" ** xformer.bad:coupling factor must be between -
1 and 1:k=2
132 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling a Temperature-Dependent Resistor with MAST
Modeling a Temperature-Dependent Resistor with MAST

Materials used in electronic components often change their characteristics with
temperature variations. You can distinguish two different causes of
temperature-related effects:
■ Operation at an ambient temperature different from the nominal one
■ Self-heating effect in a component
Saber® MAST Language User Guide 133
B-2008.09

Chapter 6: Variables and Arguments
Modeling a Temperature-Dependent Resistor with MAST
The template in this section models a resistor that can operate at various
ambient temperatures. This template, called resistor_1, also checks for a value
of zero resistance and allows power to be extracted, is listed below:

element template resistor_1 p m = res, tc, tnom

electrical p, m

number res, tc[2]=[0, 0], tnom=27

external number temp

export val p power # make power available

{

number r # local declaration

val v v

val i i

parameters {

r = res * (1 + tc[1]*(temp-tnom) + tc[2]*(temp-tnom)**2)

computation of resistance

if (r==0) error("%: resistance value is zero",instance())

message returned if error

}

values {

v = v(p,m)

i = v/r

power = v*i # calculate power

}

equations {

i(p->m) += i # current based on res.

}

}

134 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling a Temperature-Dependent Resistor with MAST
The description of the resistor_1 template is divided into the following topics:
■ Header and Header Declarations -- shows how to declare, initialize, and use

arrays

• External Variable for Temperature
■ Temperature Dependence of the Resistance Value
■ Equations Section
■ Parameters Section and Local Declarations

• Error Checking and Message
■ Altering an External Parameter
■ Export a Variable

Header and Header Declarations

The arguments of the resistor template are the nominal resistance, the
temperature coefficients, and the nominal temperature:

Note that this template declares all arguments on the same line, shown as
follows:

The nominal resistance, res, is not initialized and must be specified by the user.
Temperature coefficients, tc, are contained in an array of length 2; its entries
are both initialized to 0. The nominal temperature, tnom, is initialized to 27×C.

It is preferable to have just one argument, tc, for the temperature coefficients,
by declaring it to be an array of length 2. An array is an ordered set of
parameters that are all of the same type.

The elements of an array need not be number parameters, although they are
here. Array elements can be of any valid parameter type, such as structures or
enums. Arrays can be of fixed size, as in this example, or of unbounded size,
which you can specify by declaring them with an asterisk (*), for example, as in

element template resistor_1 p m = res, tc, tnom

electrical p, m

number res, tc[2]=[0, 0], tnom=27

number res, tc[2] = [0,0], tnom=27
Saber® MAST Language User Guide 135
B-2008.09

Chapter 6: Variables and Arguments
Modeling a Temperature-Dependent Resistor with MAST
tc[*]. If not declared otherwise, array subscripts run from 1 to the array size.
The i’th element of array is array[i]. For information about multi-dimensional
arrays and subscripts not starting at 1, refer to the MAST Reference Manual.

For the resistor_1 template, if both array elements tc[1] and tc[2]are left at 0,
the resistance value is independent of temperature.

Note the following use of initializers for template arguments:
■ res has no initializer, so anyone using the resistor_1 template must specify

a resistance value.
■ tc[1], tc[2], and tnom have initializers or default values that are satisfactory

in most cases, because temperature effects are rarely used.

The topic titled "Export a Variable" describes how to use power, which is
declared as an export variable in the header declarations:

External Variable for Temperature
In order to compute the actual resistance value (see the topic “Temperature
Dependence of the Resistance Value”), you need to use the value of the
ambient simulation temperature, temp. This is a “global” variable that is used
by all templates; it is specified in the provided header.sin file. The Saber
simulator, by default, includes the contents of this file at the top of each system
description. (For more information on which files are automatically activated by
the Saber simulator, see the topic “Information Common to all Generic
Templates” in the Saber online documentation.) Therefore, a template can
refer to the value of temp by declaring it external in the header declarations
section:

This ambient temperature is initialized in header.sin to a suitable value, 27×C.

In general, a parameter declared as external is declared as a type that is found
elsewhere in the design (not necessarily within the same template). If a
template instance, say x.y, refers to an external parameter in a hierarchical
design, the simulator resolves the external reference by “walking up” the
hierarchy from x.y, going first to the “parent” of x.y, then to its “grandparent,”
and so on. This is continued until either the specified name is found or until the
top level of the design is reached. If the simulator finds the name, it uses its

export val p power

external number temp
136 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling a Temperature-Dependent Resistor with MAST
value in x.y. Otherwise, it reports an error. This mechanism for resolving
external references allows you to have different values for the same variable in
different parts of the design. Refer to the MAST Reference Manual for a more
extensive example of this resolution process.

By declaring a variable as external in the header declarations section, you can
change its value for any instance of that template in a design—as if the variable
were an argument for that template. For example, the netlist entry listed below
changes the value of temp for resistor_1.r1 to 58×C; all other templates in the
design (including other instances of resistor_1) use the value of temp specified
in the header.sin file (27×C).

Note:

You cannot modify the value of an external variable from within a template.

Temperature Dependence of the Resistance Value

This model implements first-order and second-order temperature dependence
according to the following:

R = Rnom • [1 + K1(T - Tnom) + K2(T - Tnom)]

where K1 is the linear coefficient and K2 is the quadratic temperature
coefficient. The nominal resistance value, Rnom, is assumed to have been
measured at the nominal temperature, Tnom.

The actual resistance value, R, is therefore a function of the difference between
the actual simulation temperature, T, and Tnom.

Note that Equation 3 is not the characteristic equation of the template—it is
only a modification of the user-specifiable nominal resistance, Rnom; however,
the result of this modification (R) is used in the characteristic (template)
equation.

Equations Section

The equation for the resistor_1 template is similar to the one used in the
resistor template, except that it uses the calculated resistance value (r) from

resistor_1.r1 n1 b10 = 5k, temp=58

2

Saber® MAST Language User Guide 137
B-2008.09

Chapter 6: Variables and Arguments
Modeling a Temperature-Dependent Resistor with MAST
the equation shown in the topic titled "Temperature Dependence of the
Resistance Value", rather than the argument value (res).

Refer to the highlighted sections in the following code:

element template resistor_1 p m = res, tc, tnom

electrical p, m

number res, tc[2]=[0, 0], tnom=27

external number temp

export val p power # make power available

{

number r # local declaration

val v v

val i i

parameters {

r = res * (1 + tc[1]*(temp-tnom) + tc[2]*(temp-tnom)**2)

computation of resistance

if (r==0) error("%: resistance value is zero",instance())

message returned if error

}

values {

v = v(p,m)

i = v/r

power = v*i # calculate power

}

equations {

i(p->m) += i # current based on res.

}

}

138 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling a Temperature-Dependent Resistor with MAST
Parameters Section and Local Declarations

The resistor_1 example shows how to compute the actual resistance value (by
modifying the nominal resistance with temperature effects) and report an error
if this value is 0. This prevents division by 0 in the template equation.

With access to the actual temperature established, the equation shown in the
topic titled "Temperature Dependence of the Resistance Value", is
implemented in the template as shown highlighted in the following parameters
section:

where array elements tc[1] and tc[2] correspond to temperature coefficients K1
and K2, respectively. This is a direct translation into the MAST language of the
equation describing the temperature dependence of the resistor (note the
exponentiation operator, **). The actual resistance value is assigned to a local
parameter r—you cannot simply modify res, because a template cannot
change the value of an argument.

Error Checking and Message
A conditional expression (beginning with if) is included to test whether the
actual resistance value (r) is 0. Using a relational expression in an if statement

number r # local declaration

...

parameters {

r = res * (1 + tc[1]*(temp-tnom) + tc[2]*(temp-tnom)**2)

computation of resistance

if (r==0) error("%: resistance value is zero",instance())

message returned if error

}

Saber® MAST Language User Guide 139
B-2008.09

Chapter 6: Variables and Arguments
Modeling a Temperature-Dependent Resistor with MAST
to check whether a variable is equal to a number requires that the double
equals sign (= =) be used as shown highlighted in the following example:

If r is calculated to be 0, an error is returned using the error() and instance()
functions. These indicate the erroneous value and the template instance in
which it occurred. Note that the error() function call is on the same line as the if
statement.

Altering an External Parameter

You can include an alter command within a netlist file to change a value of a
declared parameter that is available at the same level of hierarchy. The altered
parameter must be initialized and available locally. It may be declared within
any of the following:
■ a template in the netlist (e.g., within resistor_1)
■ a template not in the netlist but that is automatically included when the

Saber simulator is invoked (e.g., within header.sin)
■ the netlist itself (e.g., by including a line such as number von=5)

The most useful occurrence of this is to alter the default temperature of the
system (temp, which is declared within header.sin) at the top of a netlist.

In that case, you cannot simply change the initializer on the declaration,
because you have no local access to the declaration in header.sin. However, in
the netlist, you can specify one of the following and change the default
temperature in the system for that simulation. With the first method, the value
of temp in the alter statement overrides the value of temp in header.sin. With

number r # local declaration

...

parameters {

r = res * (1 + tc[1]*(temp-tnom) + tc[2]*(temp-tnom)**2)

computation of resistance

if (r==0) error("%: resistance value is zero",instance())

message returned if error

}

140 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling a Temperature-Dependent Resistor with MAST
the second method, you specify a temperature instance-by-instance in a netlist
as shown in the following example:

Export a Variable

As was done for charge of the capacitor_1 template, you can specify the power
dissipation of the resistor_1 template as a val variable. Like charge, power is a
quantity that is not required by the model, but the simulator can provide it with
no performance penalty.

This is normally done by declaring a val variable named power in the template
header and then calculating it as a function of other template variables (i, v)
that have been previously declared. The computation for i, v and power is done

alter temp=37

r.load 0 aout = rnom=1k, tc=[0.4, 0.5]

. . .

or

r.load 0 aout = rnom=1k, tc=[0.4, 0.5], temp=37
Saber® MAST Language User Guide 141
B-2008.09

Chapter 6: Variables and Arguments
Modeling a Temperature-Dependent Resistor with MAST
in a values section. Refer to the highlighted statements in the following
example:

The letter p in the declaration establishes the variable named power as power
in watts, as defined in the units.sin file, which is provided with the Saber
simulator. The simulator, by default, includes the units.sin file with each system
description (netlist). (For more information on which files are automatically
activated by the Saber simulator, see the topic “Information Common to all

element template resistor_1 p m = res, tc, tnom

electrical p, m

number res, tc[2]=[0, 0], tnom=27

external number temp

export val p power # make power available

{

number r # local declaration

val v v

val i i

parameters {

r = res * (1 + tc[1]*(temp-tnom) + tc[2]*(temp-tnom)**2)

computation of resistance

if (r==0) error("%: resistance value is zero",instance())

message returned if error

}

values {

v = v(p,m)

i = v/r

power = v*i # calculate power

}

equations {

i(p->m) += i # current based on res.

}

}

142 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling a Temperature-Dependent Resistor with MAST
Generic Templates” in the Saber online documentation.) The unit for power
(watt) is then automatically used when power is displayed in the Scope
Waveform Analyzer after simulation.

However, you can make this value of power available to another template
hierarchically above an instance of the resistor_1 template, such as rlc1. (See
the Example subtopic, below). This is done by declaring power as an export
variable in the header declarations section of resistor_1:

An export variable is simply a val variable, a var variable, or a branch whose
declaration appears in the header declarations and is preceded by the keyword
export. This makes the value of the export variable upwardly available in a
hierarchy. That is, it can be used by a “parent” template at the next higher level
in the hierarchy (i.e., a template that calls an instance of resistor_1). However,
an export variable cannot be passed to other templates at the same level of
hierarchy (i.e., within the same circuit).

The main restrictions on an export variable are the following:
■ An export variable can be used only by the parent template (however, it can

be exported upward from the parent template using another export
declaration).

■ An export variable cannot be used in the template equation of another
template.

■ An export variable must be declared in the header declarations section.

Example
Consider the rlc1 template, which uses hierarchy by including an internal netlist
of three templates. Suppose resistor_1 were specified within rlc1, instead of
resistor. Then rlc1 could declare a val variable that used the value of power
from resistor_1.

This is shown as follows, using pwrd as the name of the val variable in rlc1:

Of course, if the capacitor and inductor templates within rlc1 had also declared
power as an export variable, the power from capacitor.c1 and inductor.l1 would

export val p power

val p pwrd # hypothetically in rlc1

pwrd = power(resistor_1.r1) # hypothetically in rlc1
Saber® MAST Language User Guide 143
B-2008.09

Chapter 6: Variables and Arguments
Modeling an Idealized Op Amp with MAST
also be available to rlc1. You could then write an expression within rlc1 to add
the power from all three of these subordinate templates. This sum could then
be specified in a signal list for display in Scope.

Modeling an Idealized Op Amp with MAST

The template for this operational amplifier is shown as follows:

The description of the opamp template is divided into the following topics:
■ Current Contribution for Each Pin -- shows a modeling technique that lets

you combine several apparently different model equations into one, so that
altering a parameter value does not change the topology of the system

■ Three-Pin Topology
■ Characteristic Equations

element template opamp ip im out = a

electrical ip, im, out # header declarations

number a = inf

{ # start of template body

var i iout # local declarations

number x1, x2

parameters {

if (a==inf | a==undef) { # if gain is infinite

x1=1; x2=0 # or undefined, then input

} # voltage is 0;

else { # otherwise, output voltage

x1=a; x2=1 # is gain times input voltage

} # end of parameters section

equations { # start of equations section

i(out) += iout # current contribution at output

iout: x1 * (v(ip) - v(im)) = x2 * v(out)

equation associated with iout

} # end of equations section

}

144 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling an Idealized Op Amp with MAST
■ Header and Header Declarations -- shows the use of the special MAST
constant inf

■ Local Declaration of Local Parameters -- shows how to declare local
parameters, along with how to initialize and alter them

■ Parameter Section -- shows how to put multiple statements on the same
line, separated by semicolons (;)

■ Equations Section

Current Contribution for Each Pin

It is sometimes necessary to specify the current that a template contributes to
each pin individually, rather than to specify the current flowing between two
pins (i.e., the branch current). This is the case for the opamp template.

For example, the equation from the capacitor template can be expressed in a
single line as follows:

This can be interpreted as a consolidation of the following instructions:
■ Add the current defined by the expression to the current at pin p
■ Subtract the current defined by the expression from the current at pin m

In the MAST language, you can express these two instructions separately, pin-
by-pin:

For the Saber simulator, these two statements are equivalent to the single
statement above in every respect—including the processing required to set up
and solve the equations. The single-statement formulation guarantees that
current is conserved in the template. The pin-by-pin formulation places this
responsibility on the template writer, but it provides more flexibility. This is
important in advanced or exceptional cases, such as the opamp template.

Which formulation to use is largely a matter of personal preference.

i(p->m) += d_by_dt(v(p,m)*cap)

i(p) += d_by_dt(v(p,m)*cap)

i(m) -= d_by_dt(v(p,m)*cap)
Saber® MAST Language User Guide 145
B-2008.09

Chapter 6: Variables and Arguments
Modeling an Idealized Op Amp with MAST
Three-Pin Topology

An important concept in simulation is the topology of the system to be
simulated. Simply put, this is a description of how the through variables depend
upon the across variables at each pin. In this context, the complexity of the
dependence (linear, nonlinear, etc.) is irrelevant. All that matters is that there is
dependence. The Saber simulator obtains this information from the template
equations of all template instances connected to a node when it sets up the
system equations. After that, the topology is fixed and may not be changed
without exiting and restarting the simulation.

There are cases where the model equations change depending upon a model
parameter, yielding different topologies for different values of that parameter. In
such cases, you can modify the parameter using the alter command only in a
value range that would not change the topology.

The opamp example introduces a modeling technique that lets you combine
different model equations such that a single equation satisfies all values of the
template parameters. This template allows specifying either finite or infinite
gain.

This example uses different constructs than those of the other electrical
element examples. The most notable distinction is the fact that this model
provides a two-terminal input and a one-terminal output, which means that
current iout cannot be found as a branch current—it must be declared as a var
variable. Because of this, the template equation uses the pin-oriented
formulation described in the topic titled "Current Contribution for Each Pin".

Characteristic Equations

An idealized op amp (shown in the figure below) is modeled as a voltage-
controlled voltage source, whose output voltage satisfies the following
equation:

Vout = A•Vin

where A is the gain. If the gain is infinite, it is more appropriate to use the form:

Vin = Vout /A

which immediately yields the result that, for an ideal op amp having infinite
gain, the input voltage is 0. There is an additional equation, just as in any
model having a voltage output—select the output current such that KVL is
satisfied (i.e. Equations 4 and 5).
146 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling an Idealized Op Amp with MAST
Header and Header Declarations

This op amp model is a three-terminal device with gain, a, as its only argument.
The template models an ideal op amp with a default value of infinite gain.
Therefore, the template header and header declarations are as follows:

Note that the third line initializes a to inf, a special numerical constant in the
MAST language (similar to undef) that can be used to indicate an infinite value
in the template. Although the Saber simulator does not use an infinite value for
inf, you can assign inf as a value to a template parameter (such as a=inf).
However, you should not use it as a value in an expression (such as x2=inf/6),
except in a conditional statement to test equivalence (such as if (a==inf)).

Local Declaration of Local Parameters

The following equations describe the voltage relations in this op amp. The first
equation is valid for all values of A except infinity; the second equation is valid
for all values of A except 0.

element template opamp ip im out = a

electrical ip, im, out

number a = inf

Vout = A*Vin

Vin = Vout/A

ip

vin

im

V

iout

out

+

_

Simple, idealized operational amplifier
Saber® MAST Language User Guide 147
B-2008.09

Chapter 6: Variables and Arguments
Modeling an Idealized Op Amp with MAST
This is a typical situation, in the sense that implementing just one of these
equations does not completely describe the model.

For example, a naive implementation would incorporate the first equation for all
values of A except infinity. It would treat A=infinity as a special case and set
Vin=0 explicitly. This means that for most values of A, Vout depends on Vin,
while for A=infinity, no such dependency exists. Therefore, by the definition of
topology, altering A from a finite value to infinity changes the topology of the
system. This is not a valid implementation, as explained at the beginning of the
topic “Three-Pin Topology”.

You can combine the two equations into one by introducing two auxiliary (local)
variables x1 and x2, with values that depend on the value of A (the template
argument, a):

Because x1 and x2 depend only upon the template argument, a, they can be
defined as local parameters:

In general, a local parameter is declared in much the same way that an
argument is declared. A local parameter can be any of the same types as
arguments and they can have initializing values. The generalized form of a
declaration:

declares the parameter name as type type and sets its value to initial_value, if
present. If initial_value is not present, name has the initializing value undef, a
special numeric constant representing an undefined value in the MAST
language.

The main reason for using undef is that if an initial value of a local parameter is
specified, you can alter it from the Saber simulator, using the alter command.
You cannot alter a local parameter that has no initializer. Note that you cannot
alter the value of a local parameter—you can alter only its initializer. This is
because you can directly modify a parameter value in the template.

x1 * vin = x2 * vout

number x1=1, x2=0

type name [=initial_value]
148 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling an Idealized Op Amp with MAST
Also, the output current must be declared as a var variable instead of as a
branch current because the template has only one output pin (out):

Declaring iout as a var variable allows it to be used as a system variable in the
template equations.

Parameter Section

The following if-else statement in the parameters section expresses the
dependency of x1 and x2 on the value of the argument, a:

The “|” character in the if statement denotes an OR condition—if a is specified
as inf OR undef, then use the following values of x1 and x2: x1=1; x2=0.

Inserting the values of x1 and x2 into the equation:

and comparing it with the characteristic equations of the op amp, you can see
that this single equation is valid for all values of the gain a.

Note that each of the lines listed below contains two statements that are
separated with a semicolon (;). The semicolon marks the logical end of a line,
so using one to separate two statements has the same effect as placing the
statements on different lines.

var i iout

parameters {

if (a==inf | a==undef) {

 x1=1; x2=0

}

else {

x1=a; x2=1

}

}

x1 * vin = x2 * vout

x1=1; x2=0

x1=a; x2=1
Saber® MAST Language User Guide 149
B-2008.09

Chapter 6: Variables and Arguments
Modeling an Idealized Op Amp with MAST
Also, changing the value of the gain from a finite value to infinity does not
change the topology of the system. This is because vin depends on vout in
both cases (although for infinite gain, the dependence has zero value).

Equations Section

The following equations describe the voltage relations in this op amp. The first
equation is valid for all values of A except infinity; the second equation is valid
for all values of A except 0.

The += operator is used to add the current of the system variable, iout, to the
current at the output pin of the op amp, i(out):

The simulator has to determine the value of iout in order to satisfy the voltage
gain equation.

Consequently, to express Vin and Vout in terms of the across variables at the
pins, the template equation becomes:

Thus, apart from describing the characteristic equations of the op amp, there
are two additional facts of note:
■ There is no need to specify explicitly that there is no current between pins

ip and im, although you could write i(ip->im) += 0. The default contribution
of a template to the through variable at a pin is 0.

■ There is no need to specify the contribution of a through variable to the
reference (ground) node, 0. The way the current contribution of the template
is specified implies that the current flows to ground. In general, if the
contribution of a through variable is not balanced, it is assumed to flow into
or out of the reference node.

Vout = A*Vin

Vin = Vout/A

i(out) += iout

iout: x1 * (v(ip) - v(im)) = x2 * v(out)
150 Saber® MAST Language User Guide
B-2008.09

Chapter 6: Variables and Arguments
Modeling an Idealized Op Amp with MAST
The complete equations section is as follows:

equations { # start of equations section

i(out) += iout # current contribution at output

iout: x1 * (v(ip) - v(im)) = x2 * v(out)

equation associated with iout

} # end of equations section
Saber® MAST Language User Guide 151
B-2008.09

Chapter 6: Variables and Arguments
Modeling an Idealized Op Amp with MAST
152 Saber® MAST Language User Guide
B-2008.09

7
7Modeling Digital Systems

Many models are written with the assumption that time-domain analyses are
continuous. This means that the Saber simulator chooses the size of a time
step to be as large or as small as necessary for accuracy. However, later topics
shows that it is possible to limit time steps using the next_time and step_size
simvar variables—this is done for the step output of the vsource_2 template.

Digital modeling also uses this ability of a template to schedule the exact time
for variables to take on new values. Further, systems of digital models are
concerned primarily with the occurrence of transitions from one logic level or
state to another at connection points. A change of state on a connection point
is known as an event. Thus, a digital model does not need to account for all
continuously changing analog information; it needs only to schedule
transitional events. As a result, scheduling can dramatically speed up
simulation, because the simulator has to check effects of state changes only at
scheduled times, instead of after each time step.

This process, known as discrete time simulation, enables you to create digital
models in a way that is an extension of time-domain modeling. The key to
discrete time simulation with MAST is the when statement. In addition, digital
modeling optimizes simulation speed without sacrificing simulation accuracy.

The following topics defines the terminology and some concepts of discrete
time simulation:
■ Digital Terminology
■ Connection Points
■ Time
■ Values
■ Events
■ Scheduling With the when Statement
■ Event Queue
Saber® MAST Language User Guide 153
B-2008.09

Chapter 7: Modeling Digital Systems
Digital Terminology
The following topics describe the special approach to initialization with digital
modeling:
■ Initializing Connection Points - Digital MAST Modeling
■ Initializing Internal Variables - Digital MAST Modeling

The following topics provide examples of digital modeling techniques:
■ Modeling an AND Gate - MAST Template
■ Initialization and Internal Events - MAST clock Template

Digital Terminology

Digital models often employ (but are not limited to) logic functions defined in
terms of Boolean algebra. These functions are mathematical ways of
representing propositional conditions based on binary choices referred to as
logic states (or levels). There are several equivalent ways of expressing a pair
of logic states:
■ true—false
■ HIGH—LOW
■ on—off
■ closed—open
■ 1—0

For example, the Boolean AND function specifies two inputs and an output with
the following conditions: if both inputs are HIGH (or 1, or true, etc.), then the
output is also HIGH. Otherwise, the output is LOW.

The MAST language provides constructs to model these types of propositions,
define logical levels, and track changes in logic levels. However, the capability
for digital modeling incorporates a different approach to simulation from that
used for analog models. Consequently, this requires a closer look at
terminology.

Connection Points

In previous chapters, connection points have been declared as electrical.
When connection points are declared as an electrical type, it is implied that
they are pin-type (i.e., electrical is a specific kind of analog, pin-type connection
154 Saber® MAST Language User Guide
B-2008.09

Chapter 7: Modeling Digital Systems
Digital Terminology
point). Pin-type connection points define associated through and across
variables for the simulator to solve as part of a continuously changing analog
system.

Digital modeling uses a different type of connection point, called state, which
does not define through or across variables. A state connection point is
restricted to a finite set of values, which are assigned only at discrete times.

The terms connection points and pins are often used interchangeably.
However, a pin is a specific kind of connection point that implicitly declares
through and across variables for a model.

Time

A digital model does not need to account for all continuously changing analog
information. A digital model only needs to account for scheduling transitions
from one logic level, or state, to another. For digital models, the simulator has
to check only the effects of state changes and only at scheduled times. As a
result, the differences between analog and digital models lie within two
fundamental quantities:
■ time—continuous for analog; discontinuous for digital
■ values—continuous for analog; discrete for digital

A state connection point declares that the values at those points change
discontinuously in time. Such points have no through and across variables
associated with them—there are no quantities that must “sum to zero.” They
are simply connection points that allow state transitions (see the topic titled
"Events") to pass between templates. A state connection point establishes a
discrete time model, for which the simulator has to check effects of state
changes only at scheduled times instead of after each time step.

Note:

It is possible to declare states for a continuous-valued (analog), but event-
driven model.

Values

In addition to declaring connection points to be discrete in time (by using the
term state), a digital model also declares them to assume only discrete values.
This is done by providing an additional term in the declaration that defines a set
of values the connection points can assume. Two such sets are provided in the
Saber® MAST Language User Guide 155
B-2008.09

Chapter 7: Modeling Digital Systems
Digital Terminology
units.sin file: logic_4 and logic_3. The logic_4 set contains MAST values for
logic states 0, 1, X, Z; logic_3 contains MAST values for 0, 1, X. The available
values for logic_4 and logic_3 are user-definable, just as those for electrical are
user-definable within the units.sin file.

The default values for the set named logic_4 has the following MAST values
(shown with their boolean interpretations):

Thus, a connection point declaration for a digital model appears in the header
with two terms (such as state and logic_4) that declare discrete time and
discrete values, respectively. For example,

This differs from the one-word declarations, such as electrical, used in template
examples from previous chapters.

The definition for logic_4 is contained in the units.sin file and is expressed as
follows:

Each line gives, respectively, a value that these pins can assume, the Boolean
equivalent of the value, how the value appears when printed, and how the
value appears when displayed graphically (as with the Scope Waveform
Analyzer). The name of the unit is logic_4 and the default value is l4_x. Such
unit constructs are documented in more detail in the Mast Reference Manual.

l4_0 Logic 0

l4_1 Logic 1

l4_x Logic X, unknown state

l4_z Logic Z, high impedance state

state logic_4 cp1, cp2,...

unit state {l4_0, "0", "0", "low.1",

l4_1, "1", "1", "high.1",

l4_x, "x", "x", "middle.1",

l4_z, "x", "z", "middle.1"} logic_4=l4_x
156 Saber® MAST Language User Guide
B-2008.09

Chapter 7: Modeling Digital Systems
Digital Terminology
Events

An event occurs at a connection point when the value changes from one state
value to another, at a scheduled time. It is very important to note that the mere
occurrence of a state transition does not constitute an event—it must be
scheduled.

An event is the result of associating a change in discrete value with a
scheduled discrete time—if this change is not scheduled, it is not an event.

Because digital templates are concerned only with events on their connection
points, they do not have through and across quantities to calculate (that is, they
do not contain template equations). Thus, they do not need to be declared as
element templates.

Scheduling With the when Statement

Scheduling an event at a connection point is absolutely necessary for the
Saber simulator to perform discrete time simulation with a circuit (or system) of
digital models. That is, you need to schedule events to “kick off” discrete time
simulation among templates—if no transitions (events) are scheduled, there is
no propagation of information from one digital template to the next.

Scheduling an event requires using the when statement, which is used in
conjunction with the following intrinsic, event-driven functions:
■ schedule_event
■ handle
■ event_on
■ deschedule

The combination of the when statement with one or more of these functions is
the basis of digital modeling, as shown in the examples in the topics titled
"Modeling an AND Gate - MAST Template" and "Initialization and Internal
Events - MAST clock Template". For reference information on the when
statement and its intrinsic functions, see the MAST Reference Manual.

It is not always necessary to use a when statement to specify a value for a
state variable. In the case of an internal (locally declared) variable, you can just
use an assignment statement as follows:

int_state = l4_1
Saber® MAST Language User Guide 157
B-2008.09

Chapter 7: Modeling Digital Systems
Digital Terminology
However, the assignment of this value will not be propagated externally (that is,
to other templates) as a scheduled event.

It is possible to change state values without scheduling them (by using
assignment statements in the template). However, these changes will not be
propagated externally to other templates that are waiting for scheduled events.

As a general rule, use the when statement to schedule state values of
connection points; use an assignment statement to specify state values of
internal variables.

Event Queue

The distinguishing characteristic of discrete time simulation is the ability to
detect and schedule events at connection points. The Saber simulator
performs discrete-time analyses based on an event queue rather than on time
steps. This event queue is simply the result of the Saber simulator
automatically ordering scheduled events from all digital templates that need to
be evaluated. During simulation, the simulator places events into the queue in
a temporal sequence, moves them up, and executes them in that order when
they reach the front of the queue.

The importance of the event queue is that the when statement —the principal
MAST construct for discrete time simulation—depends entirely upon events
being in the event queue.

The following topic titled shows a simplified representation of how an event
queue works at the time of simulation.

A Typical Event Queue
The following table indicates that the Saber simulator has determined that
there is a sequence of 227 events from all the digital templates in the circuit to
be processed (for example, “#1: at time 3ms, the value at node out1 changes
from its present value to l4_0; #2: at time 4ms, the value at connection point
out3 changes...”). Once the Saber simulator executes an event, the simulator
shifts all unexecuted events up one position until all events in the queue have
been executed.

event # node name time value

1 out1 3ms l4_0
158 Saber® MAST Language User Guide
B-2008.09

Chapter 7: Modeling Digital Systems
Digital Terminology
The contribution of a digital template to the event queue is determined by using
the when statement and intrinsic event-driven functions. For instance,

1. Event #1 was placed in the queue by including either of the following
statements in a template:

2. Once in the queue, event #1 was detected with the following when
statement in the template:

3. Event #1 can be removed from the queue with the following statement in the
template:

4. Event #1 will not be placed in the queue with an assignment statement in
the template, such as:

The MAST Reference Manual and the examples in topics titled "Modeling an
AND Gate - MAST Template" and "Initialization and Internal Events - MAST
clock Template" provide more details on the syntax of the when statement.

2 out3 4ms l4_1

3 in1 6ms l4_0

...

227 in2 261ms l4_x

schedule_event(3u,out1,l4_0)

handle = schedule_event(3u,out1,l4_0)

when (event_on(out1))

deschedule (handle)

out1 = l4_0

event # node name time value
Saber® MAST Language User Guide 159
B-2008.09

Chapter 7: Modeling Digital Systems
Digital Terminology
Note:

Multiple events scheduled at the same time are executed in an order that is
not user controllable.

Initializing Connection Points - Digital MAST Modeling

A digital model is mainly concerned with changes in discrete values of state
variables (events) occurring on its connection points. An analog model is
concerned with changes in continuous values of through and across system
variables. Because of this, the digital model requires a different approach to
initialization than that of an analog model.

The functional difference between these approaches is that nodes of an analog
circuit do not require explicit initialization by the constituent templates, whereas
nodes of a digital circuit do.

If you want to initialize a connection point of a digital template to a value other
than l4_x, you must use the when statement to schedule an event.

Initializing Internal Variables - Digital MAST Modeling

Digital templates often use internal state variables. These can be initialized in
one of two ways:

1. With a when statement—schedule an event to set the desired value

2. In the variable declaration—use an initializer to set the desired value

Note that the first method places the initialization of the internal variable in the
event queue—which is not always necessary. Recall that setting the value of a
state variable needs to be scheduled only if it is necessary to be in the event

analog: A circuit consisting of analog templates is initialized by setting
all nodes to a DC voltage of 0, treating all capacitors as open,
and all inductors as shorts. The simulator then performs a DC
analysis to find the resulting node voltages (operating point).

digital: A circuit consisting of digital templates is initialized by first
setting all nodes to a logic_4 value of l4_x (undetermined X
state) and then checking templates to see which connection
points have scheduled a value other than l4_x. The simulator
then performs a DC analysis and executes the event queue.
160 Saber® MAST Language User Guide
B-2008.09

Chapter 7: Modeling Digital Systems
Modeling an AND Gate - MAST Template
queue (that is, if other templates are “looking for” scheduled events). For
internal state variables, this is often not the case—you can use the second
method above to set their values.

The examples in topics titled "Modeling an AND Gate - MAST Template" and
"Initialization and Internal Events - MAST clock Template" demonstrate the
initialization of connection points and internal variables.

Modeling an AND Gate - MAST Template

The AND gate used in this example has two inputs and one output. The output
is the logical (Boolean) AND of the two inputs, as shown in the following figure.

in1

in2

out

Logical AND Gate
Saber® MAST Language User Guide 161
B-2008.09

Chapter 7: Modeling Digital Systems
Modeling an AND Gate - MAST Template
The and template (shown below) implements the AND gate in the MAST
language. The characters “|” means OR, “&” means AND, “~=” means “is not
equal to.”

The AND gate template description is divided into the following topic:
■ MAST AND Gate Model Logic States
■ Header Declarations
■ Local Declarations
■ The when Statement in the MAST AND Gate Template - shows how to

schedule and detect digital events and how to use a local variable to
internally hold a logic_4 value for further event scheduling

■ Initializing the AND Gate MAST Template
■ MAST Template Conflict Resolution - the driven Function - show how to use

the driven(out) statement and the l4cnfr subroutine
■ A Netlist Example - MAST AND Gate Template

template and in1 in2 out = td

state logic_4 in1, in2, out # state connection points

number td=0

{

state logic_4 out_state # internal state declaration

when (event_on(in1) | event_on(in2)) {

if ((in1==l4_1) & (in2==l4_1)) { # AND logic

out_state = l4_1

}

else out_state = l4_0

if (driven(out)~=out_state) { # update AND gate output

schedule_event(time+td, out, out_state)

}

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/and.sin
162 Saber® MAST Language User Guide
B-2008.09

Chapter 7: Modeling Digital Systems
Modeling an AND Gate - MAST Template
MAST AND Gate Model Logic States

The following table shows how an AND gate determines the output at pin out,
according to the input at pins in1 and in2. The model provides the Boolean
AND function as indicated in the truth table. In addition, it incorporates a non-
negative delay parameter named td for delay between input and output.

This truth table shows that discrete states appear at the in1, in2, and out
connection points. This implies a fundamental difference from the analog
electrical pins in other examples.

Header Declarations

The first indication of the major difference between analog and digital models
appears in the following header declarations of the and template:

It is important to note that the word state declares that the input and output
connection points assume discrete state variables (for discrete time
simulation). The term logic_4 declares the units for discrete values that these
connection points will assume. The word state is reserved, while logic_4 is
user-definable.

Local Declarations

The only local declaration for this template is out_state, which is a state
variable (state) that can assume discrete values (logic_4):

in1 in2 out

0 0 0

0 1 0

1 0 0

1 1 1

2 state logic_4 in1, in2, out

5 state logic_4 out_state
Saber® MAST Language User Guide 163
B-2008.09

Chapter 7: Modeling Digital Systems
Modeling an AND Gate - MAST Template
This declaration creates a local state variable that can be assigned logic_4
values in a when statement (see below).

The form of this declaration is identical to the declarations of the connection
points in the header.

The when Statement in the MAST AND Gate Template

The when statement is a fundamental construct for digital modeling. It provides
the primary means of detecting and scheduling events on state connection
points and state variables.

A when statement can be used in a netlist (at the top level of hierarchy) as well
as in a template.

The syntax for the when statement is as follows:

The above syntax means, “When condition occurs, execute the following
statements.” The power of this construct comes from the full set of simulator
variables, conditional statements, and intrinsic (built-in) functions that are part
of the MAST language. Refer to Section 5.4 of the Mast Reference Manual for
more information on event-driven functions.

The following when statement from the and template illustrates its usage in
digital modeling:

when (condition) {

statements

}

6 when (event_on(in1) | event_on(in2)) {

7 if ((in1==l4_1) & (in2==l4_1)) {

8 out_state = l4_1

9 }

10 else out_state = l4_0

11

12 if (driven(out)~=out_state) {

13 schedule_event(time+td, out, out_state)

14 }

15 }
164 Saber® MAST Language User Guide
B-2008.09

Chapter 7: Modeling Digital Systems
Modeling an AND Gate - MAST Template
This means that when at least one of the inputs to the AND gate changes, then
the output state might need to change. The event_on intrinsic function detects
any change in the value at either input at the time of the change.

Examine the following lines:

This statement uniquely determines the next output state and specifies that it
be stored in a local variable called out_state. Its logic can be interpreted as
follows:

If in1 has value logic 1 and input in2 has value logic 1, then the next output
state will be logic state 1; otherwise, the next output state will be logic 0.

 Examine the following lines:

This statement means that the result of the AND between in1 and in2, as
computed by the previous if-else statement, is propagated to the output only if
the output has changed. Its logic can be interpreted as follows:

If the output pin (out) has been scheduled by this template to have a value
not equal to the value of out_state, then schedule an event on the output pin
at the present time plus the delay time, td. The value of the scheduled event
is out_state.

For example, if the two inputs to the AND gate were logic 1 and 0, respectively,
then the output would be logic 0. If the inputs had changed to logic 0 and 0, the
output would be still be 0 and it would not be necessary to use the
schedule_event function to change the output of the template.

The general form of the schedule_event intrinsic function is:

7 if ((in1==l4_1) & (in2==l4_1)) {

8 out_state = l4_1

9 }

10 else out_state = l4_0

12 if (driven(out)~=out_state) {

13 schedule_event(time+td, out, out_state)

14 }

schedule_event (schedule_time, state, value)
Saber® MAST Language User Guide 165
B-2008.09

Chapter 7: Modeling Digital Systems
Modeling an AND Gate - MAST Template
where:

Initializing the AND Gate MAST Template

In this example, in1, in2, out_state, and out are not explicitly initialized by the
template—they are allowed to remain at l4_x, as set by the simulator. Note that
the internal state variable, out_state, serves as an intermediate placeholder
whose value is established by the if-else statements regarding in1 and in2.

The remainder of the when statement schedules a logic_4 value to be assigned
to the connection point out, but only if there is a change in out_state resulting
from events on in1 and/or in2.

The MAST Reference Manual lists several simvar variables that are used in
initializing a digital model before DC, DC Transfer, and Transient analyses.
These simvar variables were not used in this example because the template
uses the fact that in1, in2, out_state, and out are initialized to l4_x by default
(i.e., no event scheduling is required to determine that they are initialized to
l4_x).

In the example “Initialization and Internal Events - MAST clock Template”,
however, two of these simvar variables (dc_init, time_init) are used to schedule
an event to override the default initialization value of l4_x.

MAST Template Conflict Resolution - the driven Function

It would seem that the following code:

schedule_time is the time at which the event is to occur

state is the state variable whose change-of-state constitutes
the event

value is the new value to which state is to change

if (driven(out)~=out_state) {

schedule_event(time+td, out, out_state)

}
166 Saber® MAST Language User Guide
B-2008.09

Chapter 7: Modeling Digital Systems
Modeling an AND Gate - MAST Template
could have been accomplished with:

What was the purpose of the driven intrinsic function? The driven function is
necessary because it is possible for a pin to be driven by more than one gate.

The following figure shows two logic gates driving the same node. The output
of one gate is logic 1 and the output of the other is logic 0. What is the correct
value at that node? It’s ambiguous. It might be 1, it might be 0, and it might be
something in between. This conflict is resolved by the conflict resolution
mechanisms discussed in the topic titled "Defining Conflict Resolution in a
MAST Template". The value of out may be different from the value of
driven(out).

The driven function lets you proceed without having to worry about what is
happening outside the template.

The value of out reflects the value to which the output pin is finally set, whereas
the value of driven(out) reflects the most recent value that the template has
scheduled for the connection point, out.

if (out~=out_state) {

schedule_event(time+td, out, out_state)

}

1

1

1

0

1

0

?

Conflict at a digital node
Saber® MAST Language User Guide 167
B-2008.09

Chapter 7: Modeling Digital Systems
Modeling an AND Gate - MAST Template
Defining Conflict Resolution in a MAST Template
When two templates drive a single pin, there is potential for conflict. The
following mechanism is provided to resolve this conflict:

A resolving subroutine is defined for each type of logic units declared (e.g.,
l4cnfr is defined for logic_4). When the simulator detects conflict, it
automatically passes all conflicting values to this subroutine. The subroutine
automatically resolves conflicting values on a pairwise basis and returns the
results.

The subroutine that resolves conflicts is declared together with the state unit to
which it applies (such as logic_4). Typically, this is in the units.sin file, which is
automatically included for simulation. The declaration for the logic_4 state unit
looks something like the following:

This declares that the conflict resolution subroutine is a foreign function named
l4cnfr. This subroutine is called to resolve any conflicts that occur at logic_4
state connections. The l4cnfr subroutine is provided to the Saber simulator in
the same manner as any other foreign subroutine.

The conflict resolution subroutine l4cnfr selects the first two template output
pins (logic 0 and another logic 0). For logic_4, the resolution of these two is
defined as logic 0, so the subroutine determines a logic 0 to be paired with the
next output. Thus, the result of the first conflict resolution (logic 0) is paired with
the output of the third template (logic Z). For logic_4, the resolution of logic 0
with logic Z is logic 0. (The high impedance state is like an identity operator
when used in conflict resolution.) Therefore, the final result of conflict resolution
is logic 0, which is returned to that node.

For example, suppose that three different templates with logic_4 connections
have their outputs connected to a single pin. Suppose further that the output of
the first template is logic 0, that of the second is logic 0, and that of the third is
logic Z (high impedance). The conflict resolution mechanism would then
proceed as follows to determine the correct value of the node.

unit state {l4_0, “0”, “0”, “low.1”

l4_1, “1”, “1”, “high.1”,

l4_x, “x”, “x”, “middle.1”,

l4_z, “x”, “z”, “middle.1”} logic_4=l4_x\

{CONFLICT_RESOLUTION:foreign l4cnfr}
168 Saber® MAST Language User Guide
B-2008.09

Chapter 7: Modeling Digital Systems
Modeling an AND Gate - MAST Template
The body of the following table shows the resultant logic_4 value when a state
along the left appears simultaneously with a state along the top. This is the
truth table for conflict resolution for logic_4 unit states.

A Netlist Example - MAST AND Gate Template

The following netlist example shows two netlist instances of an AND template
whose outputs are connected to the same node, as shown in the figure that
follows.

l4_0 l4_1 l4_x l4_z

l4_0 l4_0 l4_x l4_x l4_0

l4_1 l4_x l4_1 l4_x l4_1

l4_x l4_x l4_x l4_x l4_x

l4_z l4_0 l4_1 l4_x l4_z

and.1 in11 in12 out = td=10n

and.2 in21 in22 out = td=10n

when (dc_init) {

schedule_event(time, in11, l4_0)

schedule_event(time, in12, l4_0)

schedule_event(time, in21, l4_0)

schedule_event(time, in22, l4_0)

}

when (time_init) {

schedule_event(1u, in11, l4_1)

schedule_event(2u, in12, l4_1)

schedule_event(3u, in21, l4_1)

schedule_event(4u, in22, l4_1)

}
Saber® MAST Language User Guide 169
B-2008.09

Chapter 7: Modeling Digital Systems
Modeling an AND Gate - MAST Template
The netlist also uses multiple when statements to generate delayed inputs to
the AND gates, as shown in the following figure.

1

1

1

0

1

0

?

Conflict at a digital node

l4_0

l4_1

in11

in12

in21

in22

out
l4_0

l4_x
l4_1

1us 2us 3us 4us 5us

1us 2us 3us 4us 5us

inputs

output

Inputs and output of netlist example
170 Saber® MAST Language User Guide
B-2008.09

Chapter 7: Modeling Digital Systems
Modeling an AND Gate - MAST Template
Note:

Multiple when statements are allowed in a netlist; however, they cannot be
nested.

Alternatively, the AND templates could be driven with event-generating
templates such as the clock template in the topic titled "Initialization and
Internal Events - MAST clock Template". The outputs of the AND gates are tied
together to exercise the conflict resolution function.

Note that the when statement can be used in a netlist as well as in a template.
The when (dc_init) statement initializes all of the inputs to logic 0 (l4_0), for the
DC analysis. The when (time_init) statement schedules l4_1 as events, starting
at 1ms and proceeding through the inputs at 1ms intervals. These events are
scheduled at the beginning of the transient simulation (using time_init), but do
not become active until their scheduled times in the transient simulation.
Saber® MAST Language User Guide 171
B-2008.09

Chapter 7: Modeling Digital Systems
Initialization and Internal Events - MAST clock Template
Initialization and Internal Events - MAST clock Template

The following clock template shows the use of internal events and also shows
172 Saber® MAST Language User Guide
B-2008.09

Chapter 7: Modeling Digital Systems
Initialization and Internal Events - MAST clock Template
the initialization of states.

template clock ckout = freq, duty

state logic_4 ckout

number freq=0, # clock frequency

duty=0.5 # clock duty cycle (time pulsed/period)

{

state nu tick # internal "wake-up" state

number ton=0, #clock on-time

toff=0 #clock off-time

parameters { # calculate off and on time

if (freq > 0) {

ton = duty/freq

toff = 1/freq - ton

}

}

when (dc_init) {

schedule_event(time,ckout,l4_0)

}

start clock ticking after delay time

when (time_init) {

if (freq > 0) schedule_event(time,tick,1)

}

when (event_on(tick)) {

if (driven (ckout)==l4_0) {

turn clock on (set to 1)

if (ton > 0) {

schedule_event(time,ckout,l4_1)

schedule_event(time+ton,tick,1)

}

}

Saber® MAST Language User Guide 173
B-2008.09

Chapter 7: Modeling Digital Systems
Initialization and Internal Events - MAST clock Template
The clock template description is divided into the following topics:
■ Header Declarations
■ Local Declarations - shows the use of a local variable to serve as an internal

counter for generating clock pulses
■ When Statements1 - shows the use of multiple when statements in a

template, shows the use of digital modeling simvar variables (dc_init,
time_init) to initialize a template

Header Declarations

The header and declarations of clock are as follows:

This template has only one connection point (ckout), providing the clock’s
output. This type of connection point is declared as a logic_4 state. The freq
parameter determines clock frequency; the duty parameter determines the
fraction of the clock cycle that the clock signal is at logic 1 (l4_1) for each
period.

else { # turn clock off (set to 0)

if (toff > 0) {

schedule_event(time,ckout,l4_0)

schedule_event(time+toff,tick,1)

}

}

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
clock.sin

1 template clock ckout = freq, duty

2 state logic_4 ckout

3 number freq=0, # clock frequency

4 duty=0.5 # clock duty cycle (time pulsed/period)
174 Saber® MAST Language User Guide
B-2008.09

Chapter 7: Modeling Digital Systems
Initialization and Internal Events - MAST clock Template
Local Declarations

The first local declaration for this template is the internal variable, tick as
follows:

This local variable is declared as a state with no units (nu). It is not being used
to assign a logic state to a connection point (as is the case for out_state in the
and template). In this template, tick serves as an internal counter to propagate
clock pulses. Thus, there is no need for it to assume a logic_4 value.

The values of ton and toff are based on the values specified for the arguments
freq and duty as follows:

These values for on time and off time are then used in the when statements to
determine the scheduling of each portion of the clock cycle. Note that the when
(time_init) statement will not allow template operation unless you specify freq >
0.

Note:

For simplicity, this template does not include error checking for duty > 1 or
duty < 0.

6 state nu tick

8 number ton=0,

9 toff=0
Saber® MAST Language User Guide 175
B-2008.09

Chapter 7: Modeling Digital Systems
Initialization and Internal Events - MAST clock Template
When Statements

This template contains the following three when statements:

Note:

Multiple when statements are allowed in the template, but they cannot be
nested.

#1--

17 when (dc_init) {

18 schedule_event(time,ckout,l4_0)

19 }

#2--

20 # start clock ticking after delay time

21 when (time_init) {

22 if (freq > 0) schedule_event(time,tick,1)

23 }

#3--

24 when (event_on(tick)) {

25 if (driven (ckout)==l4_0) {

26 # turn clock on (set to 1)

27 if (ton > 0) {

28 schedule_event(time,ckout,l4_1)

29 schedule_event(time+ton,tick,1)

30 }

31 }

32 else { # turn clock off (set to 0)

33 if (toff > 0) {

34 schedule_event(time,ckout,l4_0)

35 schedule_event(time+toff,tick,1)

36 }

37 }

38 }
176 Saber® MAST Language User Guide
B-2008.09

Chapter 7: Modeling Digital Systems
Initialization and Internal Events - MAST clock Template
Initialization
The Mast Reference Manual lists several simvar variables that are used in
initializing a digital model before DC, DC Transfer, and Transient analyses.
Two of them are used here to schedule an event to override the default
initialization value of l4_x:
■ The dc_init simvar variable in the first when statement becomes true at the

start of DC analyses, that is, at the start of DC operating point analysis (dc),
DC transfer analysis (dt), and the DC operating point analysis portion of the
combined DC operating point and transient analysis (dctr).

■ The time_init simvar variable in the second when statement becomes true
at the start of transient analysis. It does not become true when a transient
analysis is re-started from a previous transient analysis.

The three when statements listed above have the following functions:

1. when (dc_init)—DC analysis initialization. This uses the dc_init simvar
variable, which initializes the template at the start of a DC operating point
analysis. The result is that ckout is assigned an initial value of l4_0 (because
using schedule_event puts this assignment in the event queue).

2. when (time_init)—Transient analysis initialization. This uses the time_init
simvar variable, which initializes the template at the start of the transient
analysis. This enables timing for the clock template so that it can use the
simvar time variable to synchronize with simulation timing and the internal
counter, tick, to begin generating multiple clock cycles. Again, using
schedule_event puts time and tick in the event queue.

3. when (event_on(tick))—Clock pulse propagation. Because ckout has been
initialized to l4_0 and tick has been initialized to 1, the transient analysis can
begin to generate clock pulses. The first if statement checks the present
value of ckout—if it is l4_0 (off), it turns the clock on (ckout==l4_1).
Otherwise, it yields to the else statement, which turns the clock off. The
event_on function then schedules another event for tick and the process is
repeated for the duration of the transient analysis.
Saber® MAST Language User Guide 177
B-2008.09

Chapter 7: Modeling Digital Systems
Initialization and Internal Events - MAST clock Template
178 Saber® MAST Language User Guide
B-2008.09

8
8Modeling Mixed Analog-Digital Systems

The following topics combine time-domain analog modeling with digital
modeling—mixing analog and digital models in the same system:
■ Modeling a Voltage Comparator with MAST -- shows the use of the

threshold intrinsic function to detect threshold crossings of analog signals
■ Modeling A Digitally-Controlled, Ideal Switch with MAST -- shows how to

schedule analog time steps with the schedule_next_time intrinsic function
and describes issues about reconsidering the DC analysis

■ Using Interface Models in Mixed Analog-Digital Simulation -- describes the
use of interface models to connect analog and digital templates

• A MAST Analog-to-Digital (a2d) Interface Model

• A MAST Digital-to-Analog (d2a) Interface Model

• Analog-to-Digital and Digital-to-Analog Summary
■ MAST Interface Models and Foreign Simulators -- shows how to use

interface models to connect analog and discrete subsystems in mixed-
simulator applications

Modeling a Voltage Comparator with MAST

The comparator (shown in the figure below) used in this example has two
inputs and one output.
Saber® MAST Language User Guide 179
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Modeling a Voltage Comparator with MAST
This model compares the instantaneous analog voltage at the two input nodes
and produces a digital output of logic 1 if the voltage at p is greater than the
voltage at m, and logic 0 otherwise. A time delay parameter, td, specifies a
delay between the time the input voltage changes polarity to the time the output
changes state.

The text for this simple voltage comparator template (comparator) is listed
below:

element template comparator p m out = td # header

electrical p, m # pin declarations

state logic_4 out # pin declaration

number td=0 # argument declaration

{

state nu before, after # local variables

when (dc_init) { # DC initialization

schedule_event(time, out, l4_0)

when (threshold(v(p), v(m), before, after)) { # comparison

if (after >= 0) schedule_event(time+td, out, l4_1)

else schedule_event(time+td, out, l4_0)

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
comparator.sin

p

m

outAnalog Digital
inputs output

Voltage comparator
180 Saber® MAST Language User Guide
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Modeling a Voltage Comparator with MAST
comparator Gate Topics

The AND gate template description is divided into the following topic:
■ Header Declarations
■ Local Declarations
■ When Statements - shows how to detect threshold crossings of analog

signals with the threshold intrinsic function
■ DC Initialization - shows DC analysis considerations, particularly DC

initialization

• Initialization Example

Header Declarations

The header declarations show that this voltage comparator template has two
analog inputs and one digital output.

This portion of the template indicates that it is a mixed analog-digital template,
because the input pins are analog (electrical) and the output connection is
digital (state logic_4). The input pins are analog and electrical; the digital output
is a discontinuous state type. Thus, the output of the comparator template
could be used as an input to the and template. The time delay parameter is
also similar to the one introduced for the and template.

Local Declarations

The local variables for this template are before and after, declared as follows:

These variables determine which direction the input voltage is going after
crossing the threshold of 0 volts. They are simultaneously state variables and
analog variables, as mentioned the topic titled "Time". As analog variables,
they are not limited to a discrete set of values—they can take on any real-
numbered values. As state variables, they can change their values

electrical p, m

state logic_4 out

state nu before, after
Saber® MAST Language User Guide 181
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
When Statements
discontinuously in time. This type of variable is known as event-driven analog
(or analog state).

The units of before and after are declared as nu, which stands for no units. In
general, the units for analog state variables can be any of those in units.sin (or
its equivalent)—the same way a val or var variable can assume these units.
The topic titled "Modeling A Digitally-Controlled, Ideal Switch with MAST"
shows an example of an ideal switch example that has an analog state variable
(res) whose unit type is resistance (r).

The before and after variables must be of type state because their values are
set in a when statement. Any variable that is set in a when statement (either by
an assignment statement or by schedule_event) must be of type state.

When Statements

In this template, there are two when statements. The first is for DC initialization
(described in the topic titled "DC Initialization"); the second detects the crossing
of the two input voltages, which is described below.

The following when statement from the comparator template detects the
crossing of the two input voltages:

This when statement means the following:

When the voltage at p crosses the voltage at m, set the values of before and
after to their appropriate values (as described below), and execute the if-
else statements that follow.

The threshold intrinsic function is simply stated but powerful—it pinpoints the
exact time when two changing quantities become equal and it provides
information about the past and the future of those quantities. In this instance, it
monitors the voltages at connections p and m, then triggers an event during the
simulation at the precise time that the voltages become equal to each other.
This functionality is independent of analog time steps. (Refer to the MAST
Reference Manual for more information on the threshold function.)

when (threshold(v(p), v(m), before, after)) {
182 Saber® MAST Language User Guide
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
When Statements
This threshold checking sets the values of before and after according to the
following (see the table below):
■ If the first argument of the threshold statement, v(p), is crossing the second

argument, v(m), from negative to positive, then before is set to -1 and after
to +1.

■ If the first argument of the threshold statement is crossing the second from
positive to negative, then before is set to +1 and after to -1.

■ If v(p) and v(m) remain equal after becoming equal, then after is set to 0.

Now that there is a way to find the voltage crossing point, completion of the
comparator function is simple. Checking the after variable lets you determine
whether v(p) is crossing positive or negative. If the crossing is positive, then
out, the output pin, is scheduled to be l4_1 (after time delay td). Otherwise, out
is scheduled to be l4_0.

Note:

It is possible to implement conflict resolution for this model using the driven
function (see the topic titled "MAST Template Conflict Resolution - the
driven Function"), which was omitted here for simplicity.

before after meaning

-1 0 v(p) rose from below v(m) to equal v(m)

+1 0 v(p) fell from above v(m) to equal v(m)

0 -1 v(p) fell from equal to v(m) to below v(m)

0 +1 v(p) rose from equal to v(m) above v(m)

+1 -1 v(p) fell from above v(m) to below v(m)

-1 +1 v(p) rose from below v(m) to above v(m)

-1 -1 v(p) rose to equal v(m) then fell below v(m)

+1 +1 v(p) fell to equal v(m) then rose above v(m)
Saber® MAST Language User Guide 183
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
When Statements
DC Initialization

Using the threshold function, you can implement the comparator model for
transient simulation. However, for DC analysis there are further considerations.
The purpose of the DC analysis is to determine the quiescent values of all of
the system’s internal variables and states. The interactions between these
quantities can be complex. The algorithm used by the Saber simulator for a DC
analysis is specifically designed to manage these complexities.

One of the major problems that arises is that it is not always possible to find a
stable solution. A good example of a system that has no single stable operating
point is a ring oscillator. When the DC algorithm detects an oscillation, it
arbitrarily selects a state at a node and allows the unsatisfied scheduled events
to occur during the transient simulation.

To understand these state interactions, it is necessary to look at the DC
algorithm as it pertains both to the scheduling and detection of events and to
the use of the threshold function. For a detailed description of the DC
algorithm, refer to the MAST Reference Manual.

A simplified description of the DC algorithm is the following:

1. The simulator sets all analog system variables to zero, all event-driven
analog states to the initial values defined by their initializers, and all digital
states to the initial values defined by their unit declarations (e.g., logic_4
defines l4_x). Refer to topic titled "Initializing Connection Points - Digital
MAST Modeling".

2. It executes when (dc_init) statements in all templates, propagating all
events according to dependencies. It executes all when (dc_start)
statements in all templates.

By default, all uninitialized state logic_4 connection points are set to l4_x.

3. The effects of the analog subsystem on the discrete subsystem are found
by observing all threshold conditions, as analog signals go from zero to their
final DC values. For any threshold conditions that become satisfied, the
statements portion of the corresponding when statement is executed. The
simulator again propagates all events within the discrete subsystem
according to dependencies.

4. Repeatedly, the simulator finds the solution of the analog subsystem
solution and propagates all events within the discrete subsystem, until the
system stabilizes.
184 Saber® MAST Language User Guide
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
When Statements
Initialization Example
Consider the DC initialization provided by the first when statement in the
comparator template:

If this were not included in this template, the output could potentially be
incorrect at the end of a DC analysis. Given the circuit shown in the figure
below, if v(p) is 2 volts, v(m) is 2 volts, and the previous when (dc_init)
statement is omitted, then the DC algorithm would proceed as follows:

1. Start off with 0 volts at p and m and with the state of the output pin out at its
initial value of l4_x (logic X—unknown state).

2. Execute all when (dc_init) statements. (Assuming that the when (dc_init)
statement is absent, there is no action here—out remains at l4_x.)

3. As v(m) and v(p) increase together from 0 (the initial values) to 2 volts (the
source voltage), the threshold is not crossed, and the output remains at
l4_x. This is the value at out at the end of the DC analysis, which is
erroneous. The expected output would be logic 0 (l4_0), because v(m) is
equal to v(p). However, by this algorithm, the output pin out was set to logic
X and would remain there.

when (dc_init) {

schedule_event(time, out, l4_0)

}

v(p)

v(m) out
+2V

+2V

Comparator DC analysis

comparator.1 p m out = td=10n
v.p p 0 = 2
v.m m 0 = 2
Saber® MAST Language User Guide 185
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Modeling A Digitally-Controlled, Ideal Switch with MAST
Adding the DC initialization section shown above alleviates this problem by
setting the output pin out to logic 0.

If v(p) is set to a DC value greater than v(m), then the threshold will take care of
producing the correct DC value for the output, because the value of v(p) would
cross the value of v(m) in step 3 of the algorithm (above).

The following paragraph is a generalization of the threshold function and
dc_init statement:

A when (threshold()) statement should be accompanied by a when (dc_init)
statement that establishes the appropriate conditions, assuming that all
node voltages and system variables are 0. If the threshold is crossed, then
the conditions established by the when (dc_init) statement are overridden
and produce the expected result.

Modeling A Digitally-Controlled, Ideal Switch with MAST

This model of an ideal SPST switch demonstrates another aspect of the mixing
of analog and digital concepts. As shown in the following figure, a digital event
comes to the template through the cntl input pin. If the cntl pin is logic 1, then
the switch is closed. If the cntl pin is logic 0, logic X, or logic Z, then the switch
is open. The resistance between the electrical pins p and m is equal to roff
when the switch is open; the resistance equals ron when the switch is closed.
The resistance changes instantaneously when the event occurs on the cntl pin.

out

cntl

in

Ideal switch
186 Saber® MAST Language User Guide
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Modeling A Digitally-Controlled, Ideal Switch with MAST
The following sw template describes the switch functionality:

Note:

For simplicity, this template does not include error-checking, specifically for
a zero-valued denominator in the template equation. Therefore, the values
of ron and roff must be non-zero.

The sw template description is divided into the following topics:
■ Header Declarations
■ Local Declarations
■ When Statement -- shows the difference between using an assignment

statement and the schedule_event intrinsic function, to change the value of
a state

■ Template Equation

template sw p m cntl = ron, roff # template header

electrical p, m # analog pins

state logic_4 cntl # digital connection

number ron=1, roff=1meg # parameter declaration

{

state r res # internal state variable

when (event_on(cntl)) { # switch control

if (cntl == l4_1) res = ron

else res = roff

schedule_next_time(time)

}

equations { # switch analog equations

i(p->m) += (v(p) - v(m))/res

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
sw.sin
Saber® MAST Language User Guide 187
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Modeling A Digitally-Controlled, Ideal Switch with MAST
■ The schedule_next_time Function -- shows how to schedule analog time
steps with schedule_next_time; shows the difference between
schedule_next_time and the next_time simvar variable; and shows the
independence between discrete event time points and analog simulation
time steps

■ DC Initialization -- shows how to assign a default value to a state (for DC
analysis)

■ Netlist Example for the Ideal Switch

Header Declarations

The header shows that this ideal switch template has two electrical pins, one
digital connection point, and arguments for on and off resistances. These are
declared as:

This is a mixed analog-digital template, because some connection points are
analog pins (electrical) and others are digital states (state logic_4). The
template arguments, ron and roff, are initialized to default values of 1ohm and
1Mohm, respectively. Thus, you do not have to assign values to ron and roff to
use this template.

Local Declarations

Local declaration defines the analog state variable res, written as follows:

The variable named res has the units of resistance, r. This variable contains
the present value of resistance, whose value changes discontinuously. It can
be assigned the value of a passed-in argument. It cannot be assigned
anywhere except in a when statement, but it can be referenced anywhere that
state references are permitted. In this example, the value of res is referenced in
the template equation.

electrical p, m

state logic_4 cntl

number ron=1, roff=1meg

state r res
188 Saber® MAST Language User Guide
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Modeling A Digitally-Controlled, Ideal Switch with MAST
The variable res must be of type state, because its value is set in a when
statement. This is true for any variable whose value is set in a when statement,
either by assignment or by a schedule_event function call.

When Statement

A when statement is used to implement the digital portion of the model as
follows:

The event_on function is used in the when statement to determine at what time
the state of the switch changes from open to closed, or vice-versa. When an
event occurs at cntl, it is a simple matter to check and see whether it has
changed to logic 1 (l4_1) or logic 0 (l4_0). If it is l4_1, then the local state
variable for resistance, res, is set to the argument value for the on resistance,
ron. Otherwise, the res is set to roff.

There is a difference between assigning a value to a state variable (first
statement, below) and scheduling an event on a state variable (second
statement, below). The value resulting from the assignment statement is not
placed in the event queue.

Either of these two constructs would work for the sw template. Because there is
no need to detect an event (such as a change in the value of res), it is more
efficient to use the assignment statement. If, for some reason, you wanted to
detect the changing of the resistance value, you would have to use
schedule_event. This would allow you to detect the change by using a when
statement with the event_on function, as follows:

when (event_on(cntl)) {

if (cntl == l4_1) res = ron

else res = roff

schedule_next_time(time)

}

1 if (cntl == l4_1) res = ron

2 if(cntl == l4_1)schedule_event(time, res, ron)

when (event_on(res)) {...
Saber® MAST Language User Guide 189
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Modeling A Digitally-Controlled, Ideal Switch with MAST
The general rule for scheduling an event is described in the following
paragraph:

If you need to detect a change (with a when statement and an event_on
function), then you must use the schedule_event function to change the
value of the state. This is especially true if the change affects a connection
point. If you just need to use the value of a state in a another section of the
template, use an assignment statement to change its value.

It is essential to understand the significance of the next portion of this particular
when statement (as explained in the topic titled "The schedule_next_time
Function”):

Template Equation

The template equation for the sw template is straightforward, as shown below
(remember that res must be non-zero):

The current from p to m is the result of dividing the voltage across the nodes to
which they are connected by res, the present resistance value. This resistance
happens to be a state variable whose value is determined by events at the
control pin cntl. As a result, the value of res is changing discontinuously in time.
This does not generally cause a problem, because schedule_next_time
restarts the integration algorithm with each event, using the value of res from
the previous event as an initial point. However, it is best practice to provide
continuity. Refer to the sw1_l4 template (in the Saber online documentation) for
an example of how to provide this type of continuity in a template.

The schedule_next_time Function

Normally, analog time steps are determined by the analog simulation time-step
algorithm, which uses variable time steps and an integration algorithm to
ensure that the time-steps are as big as possible, without causing too much
error in the solution at any given time.

schedule_next_time(time)

equations { # switch analog equations

i(p->m) += (v(p) - v(m))/res

}

190 Saber® MAST Language User Guide
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Modeling A Digitally-Controlled, Ideal Switch with MAST
It is important to note the following:

The analog subsystem time points are completely independent of the
discrete subsystem time (event) points. The threshold function lets the
analog subsystems influence events in the discrete subsystems. On the
other hand, the schedule_next_time(time) function forces an analog time
step when a transient simulation reaches time.

Therefore, it is important to include schedule_next_time in the when statement,
as follows:

The fact that an event occurred on the cntl pin does not mean that there will be
an analog time step when res changes value. Instead, you must force an
analog time step to occur at that time by scheduling it with schedule_next_time.
This lets the new value of res affect the analog network at the right point in
time.

Note that there are some subtle usage differences between the
schedule_next_time function and the next_time simvar variable. They both
have the same objective—to force a time step in the analog simulation, but
they apply in different contexts:
■ The schedule_next_time function is used in a when statement (generally,

when modeling a mixed analog-digital system). It is invoked as a function
call. Once scheduled, it stays in effect until either it is descheduled or the
time point has been reached.

■ The next_time simvar variable is used in an assignment statement when
modeling an analog-only system. Its effect expires after each time step,
regardless of whether the appropriate time point has been passed.

DC Initialization

This simplified template relies on detecting an event coming into the template
during the DC analysis. The value of res is undefined until an event appears on

when (event_on(cntl)) {

if (cntl == l4_1) res = ron

else res = roff

schedule_next_time(time)

}
Saber® MAST Language User Guide 191
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Modeling A Digitally-Controlled, Ideal Switch with MAST
cntl. To ensure that res has a value when the transient analysis begins, you
could give it a default value:

For simple use, a when (dc_init) statement is generally not required, although
you could use one to initialize res. However, if you wanted to use the vary
command, you would need to use a when (dc_init|tr_start) statement to
initialize the value of res before each transient simulation (recall that the “|”
operator means “or”). You would then insert the following statement to do this:

Refer to the MAST Reference Manual for more information on using these
initialization simvar variables.

Netlist Example for the Ideal Switch

The following netlist example demonstrates the use of the sw template with a
voltage source and a resistor as seen in the figure below. The when statements
in the netlist provide an appropriate stimulus for controlling the switch at node
gt.

state r res=roff

when (dc_init|tr_start) {

res = roff

}

sw.1 in mid gt

r.1 mid 0 = 47k

v.in in 0 = 5

when (dc_init) {

schedule_event(time, gt, l4_0)

}

when (time_init) {

schedule_event(1u, gt, l4_1)

schedule_event(2u, gt, l4_0)

}
192 Saber® MAST Language User Guide
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Using Interface Models in Mixed Analog-Digital Simulation
Using Interface Models in Mixed Analog-Digital Simulation

Mixed analog-digital simulation generally requires interface models to connect
analog pins to digital connection points. Typically, an interface model has one
input port and one output port. The objective of the interface model is to convert
information from one form on the input port to another form on the output port.
That is, it can convert a transition between digital states to a transition between
analog voltage levels or vice versa.

A library of advanced interface models, called Hypermodel analog/digital
interface templates, has been developed. These Hypermodel templates use
the same basic modeling concepts presented in this section, but they
incorporate additional features. For more information on Hypermodel, search
the Saber online help index.

In many ways, the comparator and switch examples given in this chapter are
supersets of what needs to be in an interface model. However, interface
models can model very complicated effects. For example, a interface model
might be used in the modeling of a TTL (transistor-transistor logic) device in the
following way:

Most of the TTL devices could be modeled with strictly digital logic. An interface
model could be inserted at any digital connection of the TTL device that
connected to analog pins. All of the complex impedance characteristics and
fan-out properties of the TTL totem-pole output stage would be present for the

gt

in mid

r.1 47 k

sw.1
v.in
5V

+

_

0

when statements
open and close
the switch

Digitally-controlled switch in an analog circuit
Saber® MAST Language User Guide 193
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Using Interface Models in Mixed Analog-Digital Simulation
analog circuitry, while the convenience and speed of a digital description would
be maintained for the greater portion of the model.

Two very simple analog-to-digital and digital-to-analog interface models are
presented in the following examples:
■ A MAST Analog-to-Digital (a2d) Interface Model
■ A MAST Digital-to-Analog (d2a) Interface Model

A MAST Analog-to-Digital (a2d) Interface Model

This example of an analog-to-digital interface template (a2d) has two analog
input pins, a and m, and a digital output pin, d. The digital output is defined to
be HIGH (logic 1) when the analog input voltage (between a and m) is above
the value specified for input high voltage, ih. The digital output is defined to be
LOW (logic 0) when the analog input voltage is below the value specified for
input low voltage il. The output state remains at its previous state while the
input voltage is between ih and il.

The following figure shows a schematic representation of an analog-to-digital
interface model.

a d

m

logic_4
digital pin

analog
pins

a2d

Analog-to-digital interface model
194 Saber® MAST Language User Guide
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Using Interface Models in Mixed Analog-Digital Simulation
The a2d template is as follows:

template a2d a m d = td, il, ih

electrical a, m

state logic_4 d

number td=0, # input/output time delay

il=0.8, # input low voltage

ih=2.4 # input high voltage

{

state nu before, # variables for threshold

after # direction

when (dc_init) { # dc initialization

schedule_event(time, d, l4_0)

}

threshold crossing low

when (threshold(v(a)-v(m), il, before, after)) {

if ((after<0) & (driven(d)~=l4_0)) {

schedule_event(time+td, d, l4_0)

}

}

threshold crossing high

when (threshold(v(a)-v(m), ih, before, after)) {

if ((after>0) & (driven(d)~=l4_1)) {

schedule_event(time+td, d, l4_1)

}

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
a2d.sin
Saber® MAST Language User Guide 195
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Using Interface Models in Mixed Analog-Digital Simulation
This a2d example description is divided into the following topics:
■ Header Declarations
■ Local Declarations
■ When Statements
■ Template Equations

Header Declarations
The a2d template has an analog input pin a, a digital output pin d, and an
analog reference pin m as shown in the following code example. The input
parameters are time delay (td) from input threshold crossing to output digital
event, input logic low threshold (il), and input logic high threshold (ih). Input
parameters are initialized to reasonable values for TTL.

Local Declarations
The local states before and after are declared with no units (nu) to provide the
variables needed by the threshold function.

When Statements
The a2d template is very similar to the comparator example from the topic titled
"Modeling a Voltage Comparator with MAST" — they both accept an analog
input across two input pins, and they both provide a logic_4 value based on
that input to a state connection point. The when (dc_init) statement initializes
the output to a known value, l4_0, at the beginning of a DC analysis. The other
two when statements detect the crossing of the analog input voltage with the
specified logic thresholds. They schedule a logic event on the output if the

template a2d a m d = td, il, ih

electrical a, m

state logic_4 d

number td=0,

il=0.8,

ih=2.4

state nu before,

after
196 Saber® MAST Language User Guide
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Using Interface Models in Mixed Analog-Digital Simulation
appropriate threshold has been crossed and the output logic level changed
accordingly.

Even though it may be tempting to put the following statement inside the when
(threshold) statements above, you should resist this temptation:

The implementation of the threshold function guarantees that an event will
occur at the point of the threshold crossing. Because when (threshold) is
independent of the time step algorithm, it is generally not necessary to use the
schedule_next_time statement with it.

Template Equations
Although the a2d template has analog pins, it does not contain template
equations. When there are no equations in a template with analog pins, the
current contribution to each analog pin is assumed to be 0. In this example, this
corresponds to infinite input impedance for the analog pins.

when (dc_init) { # dc initialization

schedule_event(time, d, l4_0)

}

threshold crossing low

when (threshold(v(a)-v(m), il, before, after)) {

if ((after<0) & (driven(d)~=l4_0)) {

schedule_event(time+td, d, l4_0)

}

}

threshold crossing high

when (threshold(v(a)-v(m), ih, before, after)) {

if ((after>0) & (driven(d)~=l4_1)) {

schedule_event(time+td, d, l4_1)

}

}

schedule_next_time(time)
Saber® MAST Language User Guide 197
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Using Interface Models in Mixed Analog-Digital Simulation
In other words, the digital output of the a2d template is not affected with input
current—it is only concerned with input voltage levels that determine a logical
output level.

The analog-to-digital interface template (a2d) has two analog input pins, a and
m, and a digital output pin, d. The digital output is defined to be HIGH (logic 1)
when the analog input voltage (between a and m) is above the value specified
for input high voltage, ih. The digital output is defined to be LOW (logic 0) when
the analog input voltage is below the value specified for input low voltage il.
The output state remains at its previous state while the input voltage is
between ih and il.

A MAST Digital-to-Analog (d2a) Interface Model

The following digital-to-analog interface template (d2a) has a digital input pin,
d, and two analog output pins, a and m. When the state of the digital input pin
changes, the analog output voltage (between a and m) changes to a
corresponding value, as determined by the template input parameters.

When the input logic level is l4_1, the output voltage assumes the value
specified for output high voltage, oh. When the input logic level is l4_0, the
output assumes the value specified for output low voltage, ol. The delay from
input logic event to output voltage change is specified by td. The initial output
voltage is set to ol. Inputs of l4_x and l4_z are ignored.

Because the analog output changes only in response to the event-driven digital
input, this interface model produces discontinuous analog quantities.

logic_4
digital pin

d d2a

m
analog
pins

a

Digital-to-analog interface model
198 Saber® MAST Language User Guide
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Using Interface Models in Mixed Analog-Digital Simulation
Be aware that this template is intended only to demonstrate certain MAST
features. The library d2a Hypermodel templates (e.g., id_d2a) include a
mechanism to provide a continuous analog output. However, including that
level of detail here would obscure the more basic principles being illustrated.

The MAST template for this interface model (d2a) is listed below.

element template d2a d a m = td, ol, oh # template header

electrical a, m

state logic_4 d

number td=0, # input to output time delay

ol=0.5, # output logic low voltage level

oh=4.0 # output logic high voltage level

{

var i i # unknown branch current

state v vout=ol # output voltage

process input events

when (event_on(d)) {

if (d==l4_0) { # input low

schedule_event(time+td, vout, ol) # change vout

schedule_next_time(time+td) # force analog step

}

else if (d==l4_1) { # input high

schedule_event(time+td, vout, oh) # change vout

schedule_next_time(time+td) # force analog step

}

}

equations {

i(a->m) += i # analog branch current

i: v(a)-v(m) = vout # equation for branch current

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
d2a.sin
Saber® MAST Language User Guide 199
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Using Interface Models in Mixed Analog-Digital Simulation
The d2a template description is divided into the following topics:
■ Header Declarations
■ Local Declarations
■ When Statement
■ Template Equation

Header Declarations
The d2a template has a digital input pin, d, an analog output pin, a, and an
analog reference pin, m. The input parameters are td, the time delay from input
event to output voltage; ol, the output logic low level; and ol, the output logic
high level. Input parameters are initialized to reasonable values.

Local Declarations
Local declarations include the variable i for branch current and the state
variable, vout, which receives ol as its initial value.

When Statement
The when statement evaluates the digital input events and performs two tasks:

1. Schedule a change in the output voltage after time delay td.

2. Schedule an analog time step at the exact time that the output voltage is to
change.

element template d2a d a m = td, ol, oh # template header

electrical a, m

state logic_4 d

number td=0, # input to output time delay

ol=0.5, # output logic low voltage level

oh=4.0 # output logic high voltage level

var i i # unknown branch current

state v vout=ol # output voltage
200 Saber® MAST Language User Guide
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Using Interface Models in Mixed Analog-Digital Simulation
The statement is as follows:

It would be tempting to use an assignment statement to set the value of vout,
as follows (note the two commented lines):

This would almost work, but the simulator would force the output branch
voltage, v(a) - v(m), to become equal to vout at the very next analog time step.
Although there will be a time step at time+td, there is no guarantee that some
other template won’t schedule a time step between time and time+td.
Therefore, the output voltage might change before the time time+td. The

process input events

when (event_on(d)) {

if (d==l4_0) { # input low

schedule_event(time+td, vout, ol) # change vout

schedule_next_time(time+td) # force analog step

}

else if (d==l4_1) { # input high

schedule_event(time+td, vout, oh) # change vout

schedule_next_time(time+td) # force analog step

}

}

when (event_on(d)) {

if (d==l4_0) {

vout = ol # vout assigned instead of scheduled

schedule_next_time(time+td)

}

else if (d==l4_1) {

vout = oh # vout assigned instead of scheduled

schedule_next_time(time+td)

}

}
Saber® MAST Language User Guide 201
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
Using Interface Models in Mixed Analog-Digital Simulation
following statement prevents this problem, so that the value of vout doesn’t
change until you want it to.

Template Equation
The template equation of the d2a template is very similar to that of a simple
voltage source. In fact, this d2a template is nothing more than an event-driven
voltage source.

The vout variable is scheduled to have the discrete values ol and oh whenever
the state of the input pin changes. This does not generally cause a problem
because schedule_next_time restarts the integration algorithm each time it is
used, using the values from the previous time point as an initial point. However,
some problems may result from the discontinuous change. Refer to the id_d2a
template for an example of how to provide this type of continuity in a template.

schedule_event(time+td,vout,ol)

equations {

i(a->m) += i # analog branch current

i: v(a)-v(m) = vout # equation for branch current

}

202 Saber® MAST Language User Guide
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
MAST Interface Models and Foreign Simulators
Analog-to-Digital and Digital-to-Analog Summary

The important points illustrated in the a2d and d2a interface model examples
are as follows:

1. Digital information is transferred to analog using a combination of when,
event_on, and schedule_next_time:

Note that the analog output resulting from this approach is discontinuous in
time—resolving this requires a more advanced technique (as implemented
in the id_d2a ideal Hypermodel template).

2. Analog information is transferred to a digital value with the combination of
when, threshold, and schedule_event:

MAST Interface Models and Foreign Simulators

The Saber simulator simulates both analog systems and discrete systems, as
well as mixed-signal systems. However, it is sometimes desirable to simulate
the digital portion of the circuit on another simulator, which can be any one of
several commercial or proprietary simulators. It is also possible to use two
versions of the Saber simulator as partner simulators—one for simulating the
analog portion of the design and one for simulating the digital portion.

The primary way to connect different portions of the design to be simulated by
two separate simulators is with interface models. However, the a2d and d2a
interface models will not work for a mixed-simulator application. One minor
modification is needed—you must remove the digital pin from the header and
declare it as an internal foreign state.

when (event_on (state)) {

#set some values

}

schedule_next_time (time)

when (threshold(input, condition, before, after)) {

#set some values

}

schedule_event(time, state, level)
Saber® MAST Language User Guide 203
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
MAST Interface Models and Foreign Simulators
For example, the a2d_1 template (below) is created by modifying the a2d
template.

Pin d has been removed from the header and the header declaration state
logic_4 d has been changed to the local declaration foreign state logic_4 d.

template a2d_1 a m = td, il, ih

electrical a, m

number td=0,

il=0.8,

ih=2.4

{

#***********************

foreign state logic_4 d #dig. pin declared as foreign state

#***********************

state nu before,

after

when (dc_init) {

schedule_event(time, d, l4_0)

}

when (threshold(v(a)-v(m), il, before, after)) {

if ((after<0) & (driven(d)~=l4_0)) {

schedule_event(time+td, d, l4_0)

}

}

when (threshold(v(a)-v(m), ih, before, after)) {

if ((after>0) & (driven(d)~=l4_1)) {

schedule_event(time+td, d, l4_1)

}

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
a2d_1.sin
204 Saber® MAST Language User Guide
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
MAST Interface Models and Foreign Simulators
This minor change modifies the template to work with a foreign simulator. See
the appropriate mixed-simulator product manuals for more information on
simulation with such models. These manuals are provided by the respective
partner simulator manufacturer.
Saber® MAST Language User Guide 205
B-2008.09

Chapter 8: Modeling Mixed Analog-Digital Systems
MAST Interface Models and Foreign Simulators
206 Saber® MAST Language User Guide
B-2008.09

9
9Control System Modeling

A good modeling language lets modelers express their problems naturally.
Previous chapters demonstrate the through and across variable approach for
analog networks and the event-driven approach for digital networks. This topic
introduces another approach: connecting functional blocks by using var and ref
connections. This approach assumes that each functional block has distinct
inputs and outputs and that the outputs are a function of the inputs. Because
the inputs affect the outputs, but not vice versa, there is a notion of direction to
the flow of information through the functional blocks.

For example, consider a functional block that takes two inputs and produces
the sum of the two inputs as its output. The flow of information is from the
summing inputs to the output. Because there is no physical quantity to be
conserved, it isn’t necessary to create an equivalent circuit network to model
this block. The techniques described in this topic show how to model it directly.

In control system modeling, much of the information flows through functional
blocks. Consequently, this topic uses control system examples to illustrate the
concepts pertaining to information flow through functional blocks. However, the
concepts apply to other fields as well.

Control system models are sometimes referred to as signal flow or data flow
models.

The following topics introduce the modeling method of connecting functional
blocks by using var and ref connections:
■ Connection Points for Control System MAST Templates
■ Creating Basic Control System MAST Templates
■ S-Domain Modeling Using the MAST d_by_dt Operator
■ Ideal Delay
■ MAST Control System Example Results
Saber® MAST Language User Guide 207
B-2008.09

Chapter 9: Control System Modeling
Connection Points for Control System MAST Templates
The control system modeling topics show how to model control system blocks
using the following:
■ input and output connection points (which are similar to ref variable and var

variable connections)
■ s-domain modeling using the d_by_dt operator (including integration with

initial conditions)
■ Ideal delay modeling

Connection Points for Control System MAST Templates

Many of the other examples used in this manual illustrate the use of connection
points defined by through and across variables, principally electrical pins. A var
variable is a system variable for which the simulator must solve; a ref variable
is a reference to a variable declared as a var variable in another template.

This topic explains the advantages of using var variables and ref variables for
describing the flow of information among various functional blocks. In modeling
control system blocks, the output (a var variable) of one template is the input (a
ref variable) to a second template. As a convenience, the MAST language
provides two connection points that provide the same functionality as the var
variable and the ref variable, called output and input, respectively. They are
declared as connection points in the same way as var variables and ref
variables are declared. Refer to the MAST Reference Manual for more
information on ref variables and var variables as connection points.

Control system concepts are illustrated by developing element templates and
using hierarchy to combine them into the system model shown in the following
figure. The input to such a system comes from a “source” template, which is
similar to voltage source templates described in previous chapters, but which
has only a single connection, declared as output. The other templates are
developed using output and input connection points, s-domain modeling, and
ideal delay modeling.
208 Saber® MAST Language User Guide
B-2008.09

Chapter 9: Control System Modeling
Creating Basic Control System MAST Templates
Creating Basic Control System MAST Templates

This topic describes the basic approach for writing control system templates
using the following examples:
■ A simple source (dcsrc)—although not used in the example circuit shown in

the previous Control System diagram, this example illustrates the similarity
to the simple voltage source.

■ A full-featured source (multisrc)—this example extends the technique
introduced for dcsrc to a control system version of the multiple-output
voltage source.

■ A two-input summer (sum2)—this example shows how to write a control
system template whose output is the sum of its two inputs.

■ A constant multiplier (mply)—this example shows how to write a control
system template whose output is the product of a single input times a real-
valued argument.

+

_
gain

s

s
1

++
+

+
+

Proportional-Integral-Differentiator

source

Controller

e - sτ
τ • (1 s+1) • τ (2 s+1)•

1

source

Control system diagram
Saber® MAST Language User Guide 209
B-2008.09

Chapter 9: Control System Modeling
Creating Basic Control System MAST Templates
Simple DC Source

The DC source template (dcsrc) listed below is the simplest example of a
control systems template, because it has no inputs and only one output. This
template has one connection point, p, which is declared as an output.

Compare this template to the simple voltage source template (vsource).

element template dcsrc p = vs

output nu p

number vs

{

equations {

p: p = vs

}

}

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/dcsrc.sin

template vsource p m = vs

electrical p,m

number vs

{

var i ivs

equations {

i(p->m) += ivs

ivs: v(p) - v(m) = vs

}

}

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
vsource.sin
210 Saber® MAST Language User Guide
B-2008.09

Chapter 9: Control System Modeling
Creating Basic Control System MAST Templates
Note the following differences between these two templates:

1. The dcsrc template is an element template, while vsource is not. One of the
advantages of an element template is that any var variable that it contains
becomes available for other templates.

2. The dcsrc template has only one pin, which is unitless and of type output,
whereas the vsource template has two pins of type electrical. The vsource
template needs at least two pins because it uses an across variable
(voltage), which requires a circuit reference node. The dcsrc template needs
only one pin because it is a simple number source with no units (nu).

3. The vsource template models the conservation of electrical quantities
(current and voltage), and declares its pins (p, m) to be a branch for these
quantities. The dcsrc template does not model conservation of any physical
quantity; its output is a unitless value that requires no “path” to flow through
or to be measured across.

4. In the vsource template, the through and across variables (current and
voltage) at the output pins are referenced in the equations section as
follows:

In the dcsrc template, the value at p is provided as a var variable with no
units and can be referenced directly in the template equation. (The value of
a var variable is always referenced directly.) It can also be used as a
connection to other models.

Full-Featured Source - MAST multisrc Template

The multisrc template listed below is a control systems source template that
uses the same basic principles as the dcsrc template shown previously. The
only difference is that it is capable of producing transient and AC (small-signal)
outputs, in addition to DC outputs. The transient capability includes sinusoidal,
exponential, and step waveforms.

i(p->m) += ivs

ivs: v(p) - v(m) = vs
Saber® MAST Language User Guide 211
B-2008.09

Chapter 9: Control System Modeling
Creating Basic Control System MAST Templates
The principal difference between this source and those voltage sources is that
multisrc has only one connection point (out), which is declared as an output
with no units (nu). This provides the value at out as a var variable.

element template multisrc out = supply, tran, ac

output nu out

number supply = 0

union {

number off

struc {number vo, va, f, td;} sin

struc {number v1,v2,tau;} exp

struc {number v1,v2,tstep,tr;} step

} tran = (off=1)

struc {

number mag=0,

phase=0

} ac = ()
212 Saber® MAST Language User Guide
B-2008.09

Chapter 9: Control System Modeling
Creating Basic Control System MAST Templates
{ # Start template body

number pi = 3.14159

val nu vs

number td,vo,va,w,ss,v1,v2,tau,tstep,tr,slew

define intermediate values,

depending on selected output

parameters {

if (union_type (tran,sin)) {

td = tran->sin->td

vo = tran->sin->vo

va = tran->sin->va

w = 2*pi*tran->sin->f

ss = 0.05/tran->sin->f

}

else if (union_type (tran,exp)) {

v1 = tran->exp->v1

v2 = tran->exp->v2

tau = tran->exp->tau

}

else if (union_type (tran,step)) {

tstep = tran->step->tstep

v1 = tran->step->v1

v2 = tran->step->v2

tr = tran->step->tr

slew = (v2-v1)/tr

}

} # End parameters section
Saber® MAST Language User Guide 213
B-2008.09

Chapter 9: Control System Modeling
Creating Basic Control System MAST Templates
determine vs, which is set

equal to vn in template equation

values {

if (dc_domain|time_domain) {

if (union_type (tran,sin)) {

if (time <= td) {

vs = vo

next_time = td

}

else { # if (time > td)

vs = vo + va*sin(w*(time-td))

step_size = ss

}

} # end tran->sin

else if (union_type (tran,exp)) {

vs = v1 + (v2-v1)*(1-exp(-(time/tau)))

} # end tran->exp

else if (union_type (tran,step)) {

if (dc_domain|(time < tstep)) {

vs = v1

next_time = tstep

}

else if ((time >= tstep) & (time < tstep+tr)){

vs = v1 + (time-tstep)*slew

next_time = tstep + tr

}

else {

vs = v2

}

} # end tran->step

else vs = supply

} # end dc_domain|time_domain
214 Saber® MAST Language User Guide
B-2008.09

Chapter 9: Control System Modeling
Creating Basic Control System MAST Templates
Two-input Summer - MAST sum2 Template

This topic shows how to create a template that can take input stimuli, operate
on them, and produce an output. The following example is a two-input summer,
called sum2.

The schematic symbol and functionality are shown in the following figure.

else if (freq_mag) { # begin small-signal (ac)

vs = ac->mag # use magnitude value

}

else if (freq_phase) {

vs = ac->phase # use phase value

} # end small-signal

} # end values section

equations {

out : out = vs

}

}

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
multisrc.sin

element template sum2 in1 in2 out = k1, k2

input nu in1, in2

output nu out

number k1=1, k2=1

{

equations {

out: out = k1*in1 + k2*in2

}

}

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
sum2.sin
Saber® MAST Language User Guide 215
B-2008.09

Chapter 9: Control System Modeling
Creating Basic Control System MAST Templates
Note that the two inputs (in1 and in2) are declared as input connections with no
units (nu). The output (out) is declared as an output connection with no units.

The output is defined as the sum of products, each the product of an input and
its corresponding constant. Typically, k1 and k2 are either 1 or -1, depending
on the desired function. If k1 is 1 then in1 is added, whereas if k1 is -1, then in1
is subtracted. A similar statement applies to k2 and in2. In general, k1 and k2
can be any desired real numbers.

Example
The following netlist shows how two instances of a source template (dcsrc) can
be used as inputs to the sum2 template.

The schematic for this system is shown in the figure below.

dcsrc.input1 input1 = vs = 5

dcsrc.input2 input2 = vs = 7

sum2.in input1 input2 output

in1

in2

out

out = k1•in1 + k2•in2 Arguments
k1
k2

To subtract in2 from in1, specify k1=1 and k2=−1.

Two-input summer
216 Saber® MAST Language User Guide
B-2008.09

Chapter 9: Control System Modeling
Creating Basic Control System MAST Templates
The completion of a DC or transient analysis using this netlist would produce
the following node value results:

Multiplier - MAST mply Template

A multiplier template is also needed to complete the example shown in the
figure below. The mply template shown below implements a constant gain
function. The input to the template is declared as an input connection, and the

input1 5

input2 7

output 12

input1

input2

output dcsrc.input1=5

dcsrc.input2=7

sum2.1

Connection diagram for sum2 and dcsrc templates
Saber® MAST Language User Guide 217
B-2008.09

Chapter 9: Control System Modeling
S-Domain Modeling Using the MAST d_by_dt Operator
output is declared as an output connection. The output (out) is defined such
that out equals the product of the input (in) and the parameter constant (konst).

S-Domain Modeling Using the MAST d_by_dt Operator

In control systems modeling, the system description is often available in s-
domain form. The control system diagram above shows several blocks where
the block transfer function is defined as an s-domain function. The letter “s” is
standard notation for the complex number quantity s+jw, where s is the real
part of the quantity and jw is the imaginary part (j is the square root of -1 and w
is frequency in radians/second). The “s” quantity is used when solving time-
domain differential equations using Laplace transforms. The Laplace

element template mply in out = konst

input nu in

output nu out

number konst

{

equations {

out: out = konst*in

}

}

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
mply.sin

konstin out

out = konst ⋅ in

Constant gain

Argument

konst
218 Saber® MAST Language User Guide
B-2008.09

Chapter 9: Control System Modeling
S-Domain Modeling Using the MAST d_by_dt Operator
transforms and inverse Laplace transforms make it possible to perform
calculations in either the time-domain or the s-domain.

The advantage of using the s-domain is that complicated operations in the
time-domain are made easier in the s-domain. For example, differentiation in
the time-domain is multiplication by s in the s-domain. Similarly, integration in
the time-domain is simply division by s in the s-domain. Initial conditions must
be established for integration.

The MAST modeling language does not directly implement s-domain modeling.
However, a simple rule is given as follows for converting s-domain expressions
into time-domain expressions and simplifying the operation:

Whenever a quantity in the s-domain expression is multiplied by s,
substitute the multiplication operation with a differentiation operation, using
the MAST differentiation operator, d_by_dt.

This process is illustrated using the following examples:
■ A differentiator (using multiplication by s)
■ An integrator (using division by s)
■ A two-pole transfer function (using an s-domain polynomial in the

denominator)

Note that integration can be performed without the explicit need for an
integration operator—the differentiation operator (d_by_dt) is sufficient.

Differentiator

The following figure shows a diagram for a differentiator. This illustrates the
equivalence of multiplication by s in the s-domain to differentiation in the time
domain. The output is the time derivative of the input multiplied by a constant
(parameter tau).
Saber® MAST Language User Guide 219
B-2008.09

Chapter 9: Control System Modeling
S-Domain Modeling Using the MAST d_by_dt Operator
The MAST template for this differentiator (deriv) is shown as follows:

Note that the constant multiplier, tau, must be inside the d_by_dt operation in
the template equation. The simulator finds the value of out, such that out is
equal to the time derivative of the product of tau and in.

Because the tau constant multiplier must be inside the d_by_dt operation, the
following line:

will produce a MAST syntax error. The MAST language requires that all
multiplication take place inside the d_by_dt operator.

element template deriv in out = tau

input nu in

output nu out

number tau

{

equations {

out: out = d_by_dt(tau*in)

}

}

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
deriv.sin

out: out = tau*d_by_dt(in)

out = d(tau• in)/dt out = tau•s• in

in outinout

In time domain: In s-domain:

d(tau• in)
dt

tau•s

Argument
tau

Differentiator model
220 Saber® MAST Language User Guide
B-2008.09

Chapter 9: Control System Modeling
S-Domain Modeling Using the MAST d_by_dt Operator
Integrator

Integration in the time domain is identical to division by s in the s-domain, which
could be expressed as follows:

To implement this as a valid template equation, you need to perform the
following steps:

1. Revise the statement so that it has no denominator. To accomplish this,
simply multiply both sides by tau*s, which yields the following:

2. Replace the s operator with the MAST d_by_dt operator, and move tau
inside the d_by_dt operator. This sets the time derivative of the output
multiplied by a constant (tau, the template argument) equal to the input as
follows:

The MAST template for an integrator (intgr) is listed below and illustrated in the
figure below.

out = in/(tau*s)

out: in = tau*s*out

out: in = d_by_dt(tau*out)

element template intgr in out = tau

input nu in # template input

output nu out # template output

number tau # constant multiplier

{

equations {

out: in = d_by_dt(tau*out)

}

}

Saber® MAST Language User Guide 221
B-2008.09

Chapter 9: Control System Modeling
S-Domain Modeling Using the MAST d_by_dt Operator
This integrator template operates as expected for transient and small signal AC
analyses. However, it produces a singularity in the DC analysis. This is
because the equation, expressed in integral form, is as follows:

 where C is a constant of integration. The MAST implementation effectively
differentiates both sides of the integral equation. The constant of integration is
therefore lost (the derivative of a constant is zero).

One way to eliminate the constant of integration is to change the integral from
an indefinite integral to a definite integral, by specifying the initial condition for

out = 1/tau* Ú(in dt) + C

in outinout

In time domain: In s-domain:

d(out• tau)
dt tau•s

Argument
tau

1

in = d(out• tau)/dt
out = 1/tau ∫ in dt, which becomes

Integrator model
222 Saber® MAST Language User Guide
B-2008.09

Chapter 9: Control System Modeling
S-Domain Modeling Using the MAST d_by_dt Operator
the out variable. The following template, intgr_1, shows this modification to
intgr that includes the initial value (init) for the output.

By definition, the DC solution to a system is the solution to the system when all
time derivatives are set to 0. DC initialization is taken care of by using an
initial_condition statement. Here, this is implemented in two steps:

1. Declare an argument (init) that allows the user to specify a value to be
assigned to out at DC. Here it appears on the same line as tau and has been
given a default of undef.

2. Create a control section and insert an initial_condition statement within it:

This technique allows you to specify the init parameter of the intgr_1 template
as the output of the template during the DC analysis. If the analysis is in the

element template intgr_1 in out = tau, init

input nu in

output nu out

number tau, init=undef

{

control_section{

initial_condition(out,init)

}

equations {

out: in = d_by_dt(tau*out)

}

}

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
intgr_1.sin

number tau, init=undef

control_section{

initial_condition(out,init)

}
Saber® MAST Language User Guide 223
B-2008.09

Chapter 9: Control System Modeling
S-Domain Modeling Using the MAST d_by_dt Operator
time domain or frequency domain, the template equation (which is identical to
the original template equation for intgr) is then in effect:

Two-Pole Transfer Function

This example of a two-pole transfer function demonstrates how s-domain
transfer functions that are of order greater than one are implemented in the
MAST modeling language. The following figure compares the time domain and
s-domain representations of this function.

In the s-domain, the two-pole transfer function (with poles represented by tau1
and tau2) is expressed as:

Isolating the output term on the left side, this transfer function can be
expressed as follows:

When you have a transfer function expressed in this general form:

equations {

out: in = d_by_dt(tau*out)

}

out/in = 1/((tau1*s +1)*(tau2*s + 1))

out = 1/((tau1*s +1)*(tau2*s + 1)) * in

Arguments
tau1, tau2

out =

(tau1•s+1)• (tau2•s+1)

in outinout

In time domain: In s-domain:

11

(tau1•d()/dt+1)• (tau2•d()/dt+1)

d((tau1+tau2)in)/dt + 1

Two-pole transfer function

(tau1 dt2 +d2 in)/• •tau2
224 Saber® MAST Language User Guide
B-2008.09

Chapter 9: Control System Modeling
S-Domain Modeling Using the MAST d_by_dt Operator
you can use the MAST transfer_function operator to implement it as a template
equation, without having to rewrite each occurrence of s in terms of the
d_by_dt operator.

The general form for using the transfer_function operator is as follows:

where:

Thus, you would expand the denominator of the following two-pole transfer
function:

 to the following:

output = transfer_function(input_expression, \

[numerator], [denominator])

output is the output variable (output, branch, or var)

input_expression is an expression containing the input variable (input,
branch, val, or ref)

numerator a fixed-length array of coefficients for the numerator
polynomial (highest order coefficients listed first)

denominator a fixed-length array of coefficients for the denominator
polynomial (highest order coefficients listed first)

out = 1/((tau1*s +1)*(tau2*s + 1)) * in

tau1*tau2*s**2 + (tau1+tau2)*s + 1

output =
numerator

denominator
• input_expression
Saber® MAST Language User Guide 225
B-2008.09

Chapter 9: Control System Modeling
S-Domain Modeling Using the MAST d_by_dt Operator
You can then take these denominator coefficients (tau1*tau2, tau1+tau2, and
1) and use them with the transfer_function operator to implement the following
template equation (the numerator consists only of the constant, 1):

 The template for this two-pole transfer function is shown as follows:

equations {

out: out = transfer_function(in, [1], \

[tau1*tau2, tau1+tau2, 1])

}

element template twopole in out = tau1, tau2

input nu in

output nu out

number tau1, # time constant of first pole

tau2 # time constant of second pole

{

equations {

out: out = transfer_function(in, [1], \

[tau1*tau2, tau1+tau2, 1])

}

}

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
twopole.sin
226 Saber® MAST Language User Guide
B-2008.09

Chapter 9: Control System Modeling
S-Domain Modeling Using the MAST d_by_dt Operator
For contrast, the following example shows how you might have written this
template if the transfer_function had not been available. You would rewrite
each occurrence of s in terms of the d_by_dt operator as follows:

Combining Elements - MAST pid Template

Because the gain, derivative, and integral s-domain templates were declared
as element templates, you can take advantage of MAST’s hierarchical
capabilities to use them as “building-blocks” to form the Proportional-Integral-
Derivative (PID) model shown in the following figure:

element template twopole_1 in out = tau1, tau2

input nu in # template input

output nu out # template output

number tau1, # first pole time constant

tau2 # second pole time constant

{

var nu doutdt # For finding first derivative

equations {

doutdt: doutdt = d_by_dt(out)

out: in = d_by_dt(tau1*tau2*doutdt) + \

(tau1+tau2)*doutdt + out

}

}

Saber® MAST Language User Guide 227
B-2008.09

Chapter 9: Control System Modeling
S-Domain Modeling Using the MAST d_by_dt Operator
The PID model functions as the controlling module of the system as shown in
the following control system diagram figure:

gain

s

s
1

++

+

Hierarchically constructed PID

+

_
gain

s

s
1

++
+

+
+

Proportional-Integral-Differentiator

source

Controller

e - sτ
τ • (1 s+1) • τ (2 s+1)•

1

source

Control system diagram
228 Saber® MAST Language User Guide
B-2008.09

Chapter 9: Control System Modeling
Ideal Delay
Note that the following PID template includes an embedded netlist along with
parameters that are passed to the embedded templates. It also contains a
template equation.

Ideal Delay

This topic describes the modeling of an ideal control system delay in the s-
domain. The intrinsic delay function is used here.

The s-domain transfer function for an ideal delay is:

where the output is identical to the input, but delayed by an amount of time
represented as tdelay. This function is implemented using the delay function,
rather than replacing the quantity s with the operator d_by_dt, shown in the
following figure.

template pid in out = konst,dtau,itau,iinit

input nu in

output nu out

number konst,dtau,itau,iinit=0

{

mply.1 in in1 = konst

deriv.1 in1 dout = dtau

intgr_1.1 in1 iout = itau,iinit

equations {

out: out = in1 + dout + iout

}

}

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
pid.sin

out/in = exp(-s*tdelay)
Saber® MAST Language User Guide 229
B-2008.09

Chapter 9: Control System Modeling
MAST Control System Example Results
The delay function makes it a simple matter to write a template for an ideal
delay (dlay).

The quantity s can be replaced by the d_by_dt operator only in expressions
involving linear combinations of s, which is not the case above.

MAST Control System Example Results

The templates described in this chapter provide all the pieces for the control
system example shown in the following control system diagram figure. The

template dlay in out = tdelay

input nu in # template input

output nu out # template output

number tdelay # delay from input to output

{

equations {

out: out = delay(in,tdelay)

}

}

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
dlay.sin

Argument
tdelay

out = in delayed by time delay

in outinout

In time domain: In s-domain:

delay(in,tdelay) e-tdelay•s

Ideal delay
230 Saber® MAST Language User Guide
B-2008.09

Chapter 9: Control System Modeling
MAST Control System Example Results
figure adds numbers for the appropriate constants. Note that the PID model
functions as the controlling module for the system.

The following netlist (testpid.sin) relates to the system shown in the preceding
figure:

 The stimulus to the system is provided by the two netlist entries named
multisrc.set and multisrc.load. The multisrc.set entry models the control set
point of the system. It specifies DC value 3 and AC value (1,0). This means that
during a DC analysis the value of the set node will be 3.

During a transient analysis the value of the set node will remain constant at 3.
During an AC analysis, the simulator linearizes the rest of the system, based

multisrc.set set = 3, ac=(1,0)

multisrc.load load = tran=(step=(3,5,1,1u))

sum2.1 set dlyout error = k2=-1

pid.1 error cntl = konst=6.7,dtau=1,itau=3.9

sum2.2 cntl load input

twopole.1 input out = tau1=10,tau2=1

dlay.1 out dlyout = 1

+

_
6.7

s

s
1

++
+

+
+

1
e-s

PID Controller

(10s + 1) • (1s + 1)

source source

System with PID controller
Saber® MAST Language User Guide 231
B-2008.09

Chapter 9: Control System Modeling
MAST Control System Example Results
upon value 3 at the set node. Then it applies a small signal to node set with
magnitude 1 and a phase of 0 degrees.

Similarly, the multisrc.load source models the feed load into the system. During
a DC analysis, the load node will have the initial value of the step, which is 3.
During a transient analysis, the value of the load node will start out at 3 and
then step from 3 to 5 at 1 second. The transition will take 1 microsecond.
During an AC analysis, the simulator linearizes the system, using a load node
value equal to the DC value, 3. The multisrc.load source has no AC source
specification, so the load node has no effect during an AC analysis.

Small Signal AC Analysis Results

You can use the testpid.sin netlist to simulate the set point-to-output
characteristics of the system. The following figure shows the magnitude
(dashed line) and phase (solid line) of the changes in the output that would
result from unity changes in the frequency of the control set point input signal.
These results were obtained by invoking the Saber simulator on testpid.sin.
From the simulator Transcript window, type <testpid.scs. Both testpid.sin and
testpid.scs are files that are provided with the Saber simulator, along with the
example templates shown in this manual.
232 Saber® MAST Language User Guide
B-2008.09

Chapter 9: Control System Modeling
MAST Control System Example Results
Step Load Transient Analysis Results

The testpid.sin netlist can also be used to simulate the step-load characteristics
of the system. The following figure shows the system output that would result
from a step in the input from 3 to 5. The system set point remains at 3, so the
final system output should eventually approach this set point value. You can
evaluate the effectiveness of the PID controller by observing the system
response to the step change in input.

From the curve shown in the following figure, it is apparent that the system
requires approximately 30 seconds to recover from a step change in the input
from 3 to 5.

1m 3m 10m 30m 100m300m 1 3 10 30 100

f(Hz)-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
0
10
20

DEG(-)

-65
-60
-55
-50
-45
-40
-35
-30
-25
-20
-15
-10
-5
0
5

DB(-)
Set-Point to Output

Phase

Magnitude
(dB)

(deg)

Set point-to-output small signal analysis
Saber® MAST Language User Guide 233
B-2008.09

Chapter 9: Control System Modeling
MAST Control System Example Results
0 5 10 15 20 25 30 35 40 45 50
t(s)9.4

9.5

9.6

9.7

9.8

9.9

10

10.1

10.2

10.3

Step-Load Transient Response
(–)

Step load transient result
234 Saber® MAST Language User Guide
B-2008.09

10
10Predefined MAST Declarations

In the examples used throughout the Guide to Writing MAST Templates topics,
various variable types are used and assumed to be declared. One assumption
includes the electrical pin type with i and v as the through and across variables.
Another is the system temperature variable named temp. These are part of the
default Saber simulation set of MAST declarations that are provided. They are
not, however, part of the Saber simulator.

When you start the Saber simulator either from the Saber User Interface or with
the saber command, without specifying a load option (-la; -ls; -ln; -lh; or -l
filename), or if you start it with the -la option, the Saber simulator loads the
analogy.sld file before reading your design. The analogy.sld file does several
things, including setting up the simulation environment and declaring a set of
templates. For a complete list of the templates loaded with analogy.sld, refer to
the analogy.sin file located in the following directory:

The analogy.sld file is created from analogy.sin.

The included templates consists of the following major parts:
■ Constant declarations
■ Unit definitions (refer to the MAST Reference Manual)
■ Pin definitions (refer to the MAST Reference Manual)
■ External declarations (refer to the MAST Reference Manual)
■ Set of frequently-used templates

Saber Simulator Include Files

An include file is a file that is specified to be used by the Saber simulator. This
specification can be made either from another file, from a schematic through
the use of the saber symbol, or as part of the saber command line. The general

install_home/template/support
Saber® MAST Language User Guide 235
B-2008.09

Chapter 10: Predefined MAST Declarations
SPICE-Compatible Pre-Loaded Templates
format for specifying an include file in a MAST template, netlist, or other include
file is to enter a left angle bracket (<) followed by the name of the include file:

where filename can be the name of any file in your data search path. The left
angle bracket (<) must appear in the first column of the line (i.e., it cannot be
preceded by leading or embedded spaces).

When the simulator finds a statement for an include file, it replaces the
statement with the complete contents of the named file. The Saber simulator
reads in the contents of an include file directly, so you must position the include
statement precisely where the information is required.

The following files are automatically specified as include files as part of the
invocation of the Saber simulator:

These files are located in the following directory:

SPICE-Compatible Pre-Loaded Templates

The SPICE simulation environment is selected if you start the Saber simulator
with the saber -ls load option. This environment differs from the default
environment only in the collection of pre-loaded templates. Instead of loading
MAST templates, the simulator includes SPICE-compatible templates. The
SPICE simulation environment is stored in the spice.sld file.

<filename

consts.sin declares some useful constants, such as pi, Boltzmann’s
constant, and electron charge.

header.sin declares some commonly-used parameters (such as simulation
temperature) and initializes them to default values.

units.sin declares standard units and pin types used by all library
templates.

install_home/template/include
236 Saber® MAST Language User Guide
B-2008.09

Chapter 10: Predefined MAST Declarations
Setting Up Your Own MAST Include Files
For a list of the SPICE templates loaded with this environment, refer to the
spice.set file located in the following directory:

Note that you are not prevented from using SPICE-compatible templates if you
do not use the -ls option—it just takes longer to initialize the Saber simulator.
This is because it needs to find and read the appropriate templates, rather than
have them pre-loaded.

Setting Up Your Own MAST Include Files

There may be cases when neither the provided pre-loaded include file set is
sufficient for your problem. In such cases, you can either modify an existing
include file or create a new one from scratch. Additionally, you can set up your
include file set temporarily, or you can save it for later use. These options are
described in the following topics:
■ Adding Your Own Include File
■ Creating Your Own Include Files
■ Saving Your Include File Set

Adding Your Own Include File

The simplest way to modify the simulation environment is to add your own unit
or pin-type declarations. One way to do this is put these declarations in a
separate file, and include this file at the top of your Saber input file (netlist),
before any other noncommented entries in this file. The way to include your
own file from a schematic is to use the saber symbol and the associated
SaberInclude property on your top-level schematic. This makes your
declarations available everywhere in your design.

As an example, assume that you need a unit declaration for distance in meters
and that you want to call the physical quantity dist. You must first check the
units.sin file to see whether a declaration with that name already exists. If it
does and is distance in meters, there is no need to modify the environment. If a
unit declaration for dist already exists but means something else, you must
select another name, because names of physical quantities must be unique. If

install_home/template/spice
Saber® MAST Language User Guide 237
B-2008.09

Chapter 10: Predefined MAST Declarations
Setting Up Your Own MAST Include Files
no such declaration exists, put your declaration for distance into a file, say
myunits.sin, as follows:

Then put the following line, without leading or embedded spaces, at the top of
your Saber input file (design.sin):

This includes the myunits.sin file at the specified place in design.sin, which has
the same effect as writing the contents of myunits.sin at that location.

In general, you can define units anywhere in your design, not just at the top
level. In such a case, the unit will be defined only at that location in your design.
For example, if you define a unit in the body of a template, that unit will be
known only in that template and possibly its subordinate templates.

Creating Your Own Include Files

It is possible to create your own include file set, consisting of your units and pin
types, without referring to the declarations in the units.sin and header.sin files.
However, the templates provided depend on many of the units, pin types, and
parameters in these files to be part of the environment.

Note:

It is recommended that your simulation environment always include the
declarations provided.

To create your own include files, without any of the pre-declared templates,
include the header.sin file at the top of your Saber input file, using the following
statement:

without leading or embedded spaces. This automatically includes units.sin and
also declares the parameters defined in the header.sin file. If you have your
own unit declarations, include them immediately after header.sin:

unit {“m”, “meter”, “distance”} dist

<myunits.sin

<header.sin

<myunits.sin
238 Saber® MAST Language User Guide
B-2008.09

Chapter 10: Predefined MAST Declarations
Setting Up Your Own MAST Include Files
The rest of your Saber input file will remain unchanged. When invoking the
Saber simulator, be sure to specify the -ln option (load nothing) to tell the
simulator not to load any other environment.

Saving Your Include File Set

It is sometimes useful to save your include file set, so that you can load it later
without recreating it. Typically, in such cases you also want to include some
frequently used templates in your saved file set, so that they don’t have to be
compiled each time they are needed. You can do so as described in the
following example.

Assume you want to call your include file myenv. It should include the
declarations from header.sin and your units from myunits.sin. Suppose, further,
that you want the file to include the r, c, v, and q MAST templates, as well as
your own opamp template. Create a file named myenv.sin that contains the
following lines:

There must be no leading or embedded spaces on any of these lines. Each line
instructs the simulator to include the specified file and to make their constants
part of myenv.sin. Now, to create and save your environment, start the Saber
simulator as follows:

The -ln option tells the simulator not to load anything. The -p option instructs it
to pre-compile myenv.sin, that is, to read it contents, together with all files it
includes, find the declarations in those files, and put the result in a file named
myenv.sld. This file now contains your environment as specified in myenv.sin.

<header.sin

<myunits.sin

<r.sin

<c.sin

<v.sin

<q.sin

<opamp.sin

saber -ln -p myenv
Saber® MAST Language User Guide 239
B-2008.09

Chapter 10: Predefined MAST Declarations
MAST Template Extraction Groups
To use your environment when simulating your design, start the simulator as
follows:

where design.sin is the full name of your Saber input file (netlist).

MAST Template Extraction Groups

All MAST library templates are designed to make it convenient for you to
extract relevant information (such as all voltages or all currents), without having
to know the name of each variable. Each template description (in the Saber
online documentation) contains a post-processing section that lists all variables
that are available for extraction.

You can use intuitive names for such things as voltages or currents and collect
several of each type into extraction groups. The meaning, declaration, and use
of extraction groups is described in the BJT example. The following list shows
some of the groups used in MAST templates:

saber -l myenv design

v voltages

i currents

q charges

pwr power dissipations

f fluxes

noise noises

dv8 deviations from nominal
240 Saber® MAST Language User Guide
B-2008.09

11
11Modeling Piecewise-Defined Behavior

Examples in earlier topics use models of familiar electrical circuit elements.
This topic presents information about how to create models whose behavior is
defined in piecewise segments. You can represent this type of nonlinear
behavior with many of the same MAST constructs used for linear models in
earlier topics.

This topic uses the following nonlinear example templates:
■ Modeling a Simple Voltage Limiter with MAST
■ Modeling a Voltage Divider with MAST

The two examples of nonlinear models introduce the following concepts:
■ A method to approximate a discontinuous function by a continuous one, so

that it can be modeled in the MAST language
■ If expressions
■ Newton steps to limit changes of the independent variable from one iteration

to the next, which aids convergence
■ Recommendations on when to specify newton steps
■ Parameterized newton steps

Nonlinear Elements

A linear component is characterized by the fact that its template equations
include only linear functions of system variables after substitution of all relevant
expressions from val variable definitions. That is, there are no products or
ratios of system variables in a template equation, and no system variable is an
argument of a foreign or intrinsic function (except d_by_dt and delay).

If one or more of these requirements for a linear template is not met, the
template is considered nonlinear. Note that a template can include nonlinear
assignment statements yet still describe a linear element. The important
question is whether the nonlinearity enters the template equation.
Saber® MAST Language User Guide 241
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Simple Voltage Limiter with MAST
For example, the resistor_1 template defines power as the square of the
voltage drop across the resistor divided by the resistance. Nevertheless, the
template is linear because power does not enter the template equation. In other
words, power is part of the resistor template, but it is not part of the resistor
model. A template can also include nonlinear functions of time, frequency, or
any parameter, without being a nonlinear template.

Nonlinear models are not confined to curvelinear functions—other types
include those whose outputs have discontinuities or regions of piecewise linear
behavior. The examples in this chapter illustrate these kinds of nonlinear
characteristics.

There are issues that can arise when modeling a nonlinear element. Most of
these are handled automatically by the Saber Simulator; however, there are
MAST constructs, (sample points), that allow you to provide your own values
for more efficient simulation. All such constructs require statements in the
control section of the template.

Modeling a Simple Voltage Limiter with MAST

This topic shows how to use conditional expressions (if- else) in the template
equation to define three regions of a symmetric voltage limiter shown in the
following figure.

Vout

Vmax-Vmax

Vin

Ideal Voltage Limiter Characteristics
242 Saber® MAST Language User Guide
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Simple Voltage Limiter with MAST
The structured template for this limiter is shown below.

element template vlim ip im op om = vmax

template header

electrical ip, im, op, om # header declarations

number vmax

{ # start of template body

val v vin, vout # local declarations

var i iout

number slope=1u, vmx

struc {number bp, inc;} nvin[*]

parameters { # start of parameters sect.

vmx = abs(vmax) # ensure use of positive

nvin = [(-vmx,1.9*vmx),(vmx,0)]

} # Newton step array for vin

values { # start of values section

vin = v(ip) - v(im) # input voltage

if (vin < -vmx) vout = -vmx + slope * (vin + vmx)

else if (vin > vmx) vout = vmx + slope * (vin - vmx)

else vout = vin # voltage-limiting

} # end of values section

control_section { # start of control section

newton_step (vin, nvin) # assign Newton steps

} # end of control section

equations { # start of equations section

i(op -> om) += iout # current contribution

iout: v(op) - v(om) = vout # equation determining iout

} # end of equations section

} # end of template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
vlim.sin
Saber® MAST Language User Guide 243
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Simple Voltage Limiter with MAST
The description of the vlim template is divided into the following topics:
■ Characteristic Equations
■ Header and Header Declarations
■ Values and Equations Sections -- This topic describes if expressions that

include conditions. These conditions can use system variables, a branch
variable, or a val variable that is a function of system variables to introduce
nonlinear dependencies.

Models described with if statements must satisfy various requirements for
consistency, continuity, and non-zero slope.

• Requirements For If Expressions
■ Control Section—Newton Steps

• Purpose of Newton Steps

• Newton Step Example

Characteristic Equations

The characteristic equations of the voltage limiter are:

Header and Header Declarations

The vlim template is an element template with one argument, the limiting
voltage (vmax). Its header and corresponding declarations are as follows:

There is no default value for vmax, which makes it mandatory for a user to
specify an instance value. Note that this value may be specified as positive or
negative—the template uses the absolute value of vmax.

vout = -vmax if vin < -vmax

vout = vin if -vmax <= vin <= vmax

vout = vmax if vin >= vmax

element template vlim ip im op om = vmax

electrical ip, im, op, om

number vmax
244 Saber® MAST Language User Guide
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Simple Voltage Limiter with MAST
Values and Equations Sections

The equations section for vlim follows the standard pattern for voltage-driven
outputs as follows:

These equations closely reflect the limiting characteristics given in the topic
titled "Characteristic Equations", except that they include a nonzero slope in the
limiting regions (slope).

These equations require the following declarations in the local declarations
section:

The limiting takes place in the following values section as follows:

 Although negative values for vmax are allowed, the equations for determining
vout assume vmax is positive. That is, they use the absolute value of vmax,

equations {

i(op -> om) += iout

iout: v(op) - v(om) = vout

}

val v vout, vin

var i iout

number slope=1u, vmx

values {

vin = v(ip) - v(im)

if (vin < -vmx) \

vout = -vmx + slope * (vin + vmx)

else if (vin > vmx) \

vout = vmx + slope * (vin - vmx)

else vout = vin

}

Saber® MAST Language User Guide 245
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Simple Voltage Limiter with MAST
which is obtained by using abs, the intrinsic absolute value function. This
absolute value of vmax is assigned to the local parameter vmx as follows:

The local declarations in conjunction with the values section enable the
characteristic equations to express the output voltage (vout) as a function of
the input voltage (vin), while finding the current contribution (iout) required for
this to be true.

Requirements For If Expressions

There are several points worth noting about the conditional statements used in
the values section:
■ If a system variable, a branch variable, or a val variable that is a function of

system variables appear in the condition of an if statement, the variables
defined in the body of the if statement depend nonlinearly on the variable
used in the condition. In this example, vout depends nonlinearly on vin.

■ You must ensure that nonlinear models implemented with if statements or if
expressions are continuous from one region to the next. In these template
equations, it is necessary to force continuity at vin = ±vmax. Discontinuities
can cause problems during simulations (e.g., small time steps (and long
simulation time) or nonconvergence).

parameters {

vmx = abs(vmax)

other statements removed

}

246 Saber® MAST Language User Guide
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Simple Voltage Limiter with MAST
■ You must ensure that variables in an if statement are always defined,
regardless of the conditions of if statements or if expressions. One way to
accomplish this is to make sure that any variable defined in any condition of
an if statement is defined in every condition of the if statement or if
expressions.

■ An independent variable defined in the body of an if statement or if
expression should never be set to a constant value. The reason is that, if the
simulator, while iterating to find the solution of nonlinear equations, goes
into a limiting region, it might not be able to get out of the region if the slope
of the function is equal to 0—that is, the voltage limiter might latch.

To prevent this problem, a small but non-zero multiple of vin named slope is
added to vout (as shown in the following figure). In most cases, adding a
very small slope yields a more realistic model than just a constant limit.

Purpose of Newton Steps

The previous figure shows that the dependence of vout on vin is piecewise
linear, with -vmax and vmax defining crossover points for three separate
regions of linear operation. For templates with this kind of input/output
relationship, we recommend that you specify newton steps for the independent
variable (here, vin). Newton steps are specified as pairs of numbers that

vout

vin

slope

slope

Voltage Limiter Template Characteristics

Vmax-Vmax
Saber® MAST Language User Guide 247
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Simple Voltage Limiter with MAST
specify a breakpoint and an increment, which is described in more detail
below.

The purpose of newton steps is to place a limit on the change of the
independent variable from one iteration to the next. The effect of this is to
restrict the range of approximation the simulator performs around the crossover
points, which helps improve simulation efficiency and is summarized as
follows:

When the variable is in a flat region, newton steps prevent the simulator
from “guessing” a solution that grossly overshoots the actual solution. Such
overshoots can cause slow convergence to a nonlinear solution or even
numerical oscillation.
Newton step increments are chosen to be large enough to let the
independent variable move from one piecewise linear segment to another,
but small enough to prevent it from moving too far and possibly skipping a
segment altogether.

Newton steps are related to the iterative algorithm that the simulator uses to
find the solution of nonlinear equations. If these equations include
exponentials, convergence may be slow, because a small change in the
independent variable of the exponential may cause a large change in the
function value.

More specifically, the goal is for the value of the independent variable vin to
move quickly into the intended region of operation and, once there, have its
movement restricted so that it is unlikely to leave the region again.
248 Saber® MAST Language User Guide
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Simple Voltage Limiter with MAST
Control Section—Newton Steps

Newton steps require three different statements to be included in the template
as follows:

1. A declaration of a structure parameter (nvin) to specify values for
breakpoints and increments, as pairs of numbers in an array (bp, inc). This
parameter may be declared either as an argument in the header
declarations or as a local parameter in the template body. Values for these
pairs are specified as described in 2, below.

2. An assignment statement in the parameter section that specifies values for
nvin:

3. A statement in the control section to associate the newton steps parameter
(nvin) with the independent variable of the template (vin):

It is possible for a template to have multiple independent variables requiring
newton steps.

The meaning of the (breakpoint, increment) pairs is best defined by explaining
the two pairs given for nvin in the assignment statement:

struc {

number bp, inc;

} nvin[*]

nvin = [(-vmx,1.9*vmx),(vmx,0)] #parameter sect.

control_section {

newton_step(vin,nvin)

}

[(-vmx,1.9*vmx),(vmx,0)]
Saber® MAST Language User Guide 249
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Simple Voltage Limiter with MAST
■ Below the first breakpoint (-vmx), there is no restriction on how much vin can
change from one iteration to the next.

■ Between the first two consecutive breakpoints (-vmx and vmx), the change
in vin is restricted to the first specified increment (1.9*vmx) per iteration.

■ Above the last breakpoint (vmx), there is no restriction on how much vin can
change.

To see why newton steps are used for this type of model, refer again to the
figure above. Typically, the solution of the nonlinear equations should be in the
nonlimiting (central) linear region. If, during iterations, there is limiting (say, on
the left side), you do not want vin to “step over” the nonlimiting region and go
directly to the limiting region on the right side. Instead, it is preferable to limit
changes in vin such that it is in the nonlimiting region for at least one iteration.

Newton steps that have breakpoints (such as -vmx and vmx) that depend on
the value given to an argument (vmax) are referred to as parameterized.

To accomplish this, newton steps are specified as shown for the nonlimiting
region (between -vmx and vmx) but not for the upper and lower limiting regions.
This has the effect of limiting the distance the simulator can step between
±vmx.—i.e., when it enters the nonlimiting region or is inside the region— to
1.9•(vmx). Because this region has width 2•(vmx), this newton step array
prevents the simulator from stepping completely over the nonlimiting region.

In general, the maximum allowable change should be less than the width of the
critical region. In this example, there is no restriction on the size of an iteration
step if vin remains in either the upper or lower limiting region. This is indicated
by the fact that nvin does not specify limiting below -vmx or above +vmx. (The 0
increment means no limiting above +vmax.)

Newton Step Example

Assume that vmax has been specified by the user as 10V, which sets the lower
limit of the output to -10V and the upper limit to +10V, as shown in the following
figure. Further, assume that vin is in the lower limiting region at -35V and that
the iterative algorithm intends to change it to +35V. This would result in the
simulator stepping over the nonlimiting region between ±10V.

Inside the nonlimiting region, the amount of change is restricted to 1.9•vmax,
which is 19V. However, this restriction does not affect the amount of change
outside the nonlimiting region (i.e., vin can move from -35V to -10V in one
iteration; the 19V limit does not apply until vin reaches -10V).
250 Saber® MAST Language User Guide
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Voltage Divider with MAST
Therefore, for the next iteration, vin will have a value of +9V (-10 + 19), which is
in the nonlimiting region.

Modeling a Voltage Divider with MAST

A voltage divider provides an output voltage as the ratio of two input voltages.
The vdiv template models this relationship as a form of controlled voltage
source as shown in the following figure:

Its characteristic equation needs to express the following: Determine the output
current such that vout = vin1/vin2.

Vout

10V-10V

Vin

-35V 35V

First
iteration

9V

Second
iteration

How Newton Steps Limit the Change of vin

vin1

vin2

vout

Voltage Divider
Saber® MAST Language User Guide 251
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Voltage Divider with MAST
The vdiv template has a discontinuity. At vin2=0, vout “jumps” from -infinity to
+infinity. Because the Saber Simulator requires models to be continuous, you
have to modify the model to provide a “connection” across the discontinuity, as
shown by the dashed line in the following figure:

The solid lines in the figure above show vout as a function of vin2 for a
constant, positive value of vin1. There are various ways of connecting the two
branches of the hyperbola so that vout is a continuous function of vin2. The
dashed line shows the simplest way, using a straight line segment through the
origin that intersects the hyperbolic branches of vout vs. vin2. The values of
eps and -eps determine the points at which this line segment intersects the
hyperbola.

vout

vin2

-eps

eps

Voltage Divider Output as a Function of vin2
252 Saber® MAST Language User Guide
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Voltage Divider with MAST
By adding this connecting segment from -eps to +eps, the model for the voltage
divider is expressed as:

Determine the output current such that:

In general, if a model has a discontinuity, it must be converted to a continuous
model (as in this example). Note that this procedure would be much more

vout = vin1/vin2 if vin2 < -eps or if vin2 > eps

vout = vin1*vin2/eps2 if -eps <= vin2 <= eps
Saber® MAST Language User Guide 253
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Voltage Divider with MAST
difficult if continuous derivatives were also required by the Saber Simulator.

element template vdiv ip1 im1 ip2 im2 op om

template header

electrical ip1, ip2, im1, im2, op, om

header declarations

{ # start of template body

val v vin1, vin2, onev, vout # local declarations

var i iout

number eps = 1e-6, eps2

struc {number bp, inc;} nv2[*]

parameters { # start of parameters section

if (eps<=0) eps = 1e-15 # prevent negative eps values

if (eps>.01) eps = .01

eps2 = 1/(eps*eps)

nv2 = [(-2*eps,eps), (2*eps,0)]

newton steps for vin2

} # end of parameters section

values { # start of values section

vin1 = v(ip1) - v(im1) # input voltage vin1

vin2 = v(ip2) - v(im2) # input voltage vin2

if (abs(vin2)<1e-50) onev = 0 # Prevent divide-by-zero

else onev = 1/vin2

if (abs(vin2) > eps) vout = vin1*onev # output voltage

Next line prevents output from growing without bounds

else vout = vin1*vin2*eps2

} # end of values section
254 Saber® MAST Language User Guide
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Voltage Divider with MAST
The description of the vdiv template is divided into the following topics:
■ Header Declarations
■ Parameters Section - MAST vdiv Template
■ Newton Step Parameters -- shows unparameterized newton steps and

requirements for newton steps
■ Equation and Values Sections

Header Declarations

As shown in the following figure, the vdiv template has two input ports and one
output port, each consisting of two connection points.

control_section { # start of control section

newton_step (vin2, nv2) # assign newton steps to vin2

} # end of control section

equations { # start of equations section

i(op->om) += iout # current contribution

iout: v(op) - v(om) = vout # equation to determine current

} # end of equations section

} # end of template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/vdiv.sin

vin1

vin2

vout

Voltage Divider
Saber® MAST Language User Guide 255
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Voltage Divider with MAST
This template provides no arguments and the template header and header
declaration is written as follows:

Parameters Section - MAST vdiv Template

The eps parameter specifies half the horizontal distance between the end
points of the line segment shown in the following figure:

It is possible to make eps an argument of the template, but here it is declared

locally and initialized to 10 . Although this approach does not allow the value
of eps to be changed in a netlist, you can still change its value using the alter
command.

Further, an error-checking statement is included that resets eps to 10 if a
user tries to alter it to a negative value or zero:

element template vdiv ip1 im1 ip2 im2 op om

electrical ip1, ip2, im1, im2, op, om

number eps = 1e-6, eps2 # local declarations

if(eps <= 0) eps = 1e-15 #In parameters section

vout

vin2

-eps

eps

eps Parameter

-6

-15
256 Saber® MAST Language User Guide
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Voltage Divider with MAST
In addition, the following line keeps eps at a level no greater than.01:

The eps2 parameter is defined as the reciprocal of eps squared; it is used in
the equation that defines vout when vin2 lies in the region between -eps and
+eps.

 The last line in the parameters section relates to the nv2 parameter, which is
an assignment statement that specifies (breakpoint, increment) values for nv2
as follows:

Refer to the topic titled "Newton Step Parameters".

Newton Step Parameters

The output voltage, vout, of the vdiv template depends nonlinearly upon the
two input voltages vin1 and vin2. (The nonlinear dependence on vin1 is
established by recognizing that
¹vout/¹vin1 = 1/vin2 is not constant, but a function of the circuit’s operation.) As
with the vlim template, the vdiv template provides different regions in which the
output (vout) depends on the input (vin2).

if(eps>.01) eps = .01 #In parameters section

eps2 = 1/(eps*eps) #In parameters section

nv2 = [(-2*eps,eps), (2*eps,0)]
Saber® MAST Language User Guide 257
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Voltage Divider with MAST
The figure above shows that vout is a hyperbolic function of vin2, with -eps and
eps defining crossover points for three separate regions of continuous
operation. Because vout depends on vin2 differently in different regions of vin2,
and because, when vin2 is near 0, vout changes considerably even for small
changes in vin2, it is advisable to specify newton steps for the independent
variable, vin2.

vout

vin2

-eps

eps

Voltage Divider Output as a Function of vin2
258 Saber® MAST Language User Guide
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Voltage Divider with MAST
Newton steps require the inclusion of three different statements in the vdiv
template:
■ A declaration of a structure parameter (nv2) that specifies values for

breakpoints and increments, as pairs of numbers (bp, inc) in an array of
unspecified size. This parameter may be declared either as an argument in
the header declarations or as a local parameter in the template body. Here,
nv2 is declared as a local parameter:

■ An assignment statement that specifies (breakpoint, increment) values for
nv2:

■ A statement in the control section that associates the newton step variable
(nv2) with the independent variable of the template (vin2):

The values for the (breakpoint, increment) pairs in the assignment statement
(Item 2, above) enforce the following restrictions on iterations of the simulator:
■ Below the first breakpoint (-2*eps), there is no restriction on how much vin2

can change from one iteration to the next.
■ Between the first two consecutive breakpoints (-2*eps and 2*eps), the

change in vin2 is restricted to the first specified increment (eps) per iteration.
■ Above the last breakpoint (2*eps), there is no restriction on how much vin2

can change.

To see why newton steps are used for this type of model, refer back to the
above figure. Typically, the solution of the nonlinear equations should be in one
of the regions where vin2 ¼0 (i.e., on the hyperbola). If, during iterations, vin2
=0, you do not want vin2 to “jump over” from one branch of the hyperbola to the
other. Instead, it is preferable to limit changes in vin2 such that it is in the
connecting region for at least one iteration.

struc { number bp, inc; } nv2[*] #local decl.

nv2 = [(-2*eps,eps),(2*eps,0)] #parameters sect.

control_section {

newton_step (vin2, nv2)

}

Saber® MAST Language User Guide 259
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Equation and Values Sections
To accomplish this, newton steps are specified as shown for the connecting
region (between ±2*eps) but not for the positive or negative regions of the
hyperbola. Defining breakpoints with a factor of two means that the increment
(eps) limits the distance the simulator can step to one-fourth of the distance
between breakpoints. This ensures that at least one iteration is performed in
this region. Limiting the distance the simulator can step as vin2 approaches 0
prevents the simulator from stepping completely over the connecting region.

Equation and Values Sections

In the vdiv template, the values section contains the statements that handle the
output voltage. The equations section handles the current contribution.

The template equation for vdiv is similar to that of the voltage limiter template
(vlim) as follows:

This requires that iout is declared as a var variable as follows:

In addition, vout is declared as a val as part of the following local declaration:

The values section defines the output voltage as a function of the two input
voltages, according to the modified model. Because vout depends nonlinearly
on the input voltages, you must declare both vin1 and vin2 as val variables as
in the previous statement.

equations {

i(op->om) += ioutn

iout: v(op) - v(om) = vout

}

var i iout #local declaration

val v vin1, vin2, onev, vout #local declaration
260 Saber® MAST Language User Guide
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Equation and Values Sections
The following values section contains comments that identify the function of
each statement:

values {

vin1 = v(ip1) - v(im1) # input voltage vin1

vin2 = v(ip2) - v(im2) # input voltage vin2

Next line prevents divide-by-zero error

if (vin2<1e-50) onev = 0

else onev = 1/vin2

Next lines prevent output from

growing without bounds

if (abs(vin2) > eps) vout = vin1*onev

else vout = vin1*vin2*eps2

}

Saber® MAST Language User Guide 261
B-2008.09

Chapter 11: Modeling Piecewise-Defined Behavior
Equation and Values Sections
262 Saber® MAST Language User Guide
B-2008.09

12
12Modeling Nonlinear Devices

This topic provides models of two common electrical devices—the junction
diode and the bipolar junction transistor. For simplicity, the following example
templates provide idealized models of these nonlinear devices:
■ Modeling an Ideal Diode with MAST
■ Ebers-Moll MAST Model for the Bipolar Transistor, a bipolar junction

transistor that allows the user to select as either NPN or PNP

Each of these templates uses a control section to include statements for
newton steps and for initial conditions. In addition, these examples introduce
the following concepts:
■ Enumerated parameters
■ Grouping of val variables or system variables for extraction
■ Control section statements that specify small-signal parameters for use with

the ssp command
■ Collapsing nodes

Modeling an Ideal Diode with MAST

The ideal diode is a typical example of a nonlinear electrical device, because
the diode current is proportional to the exponential of the voltage across the
diode as shown in the following figure.
Saber® MAST Language User Guide 263
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Modeling an Ideal Diode with MAST
The following shows the ideal diode example template:

element template diode p m = is, ic # template header

electrical p, m # header declarations

number is = 1e-16,

ic = undef

external number temp

id

is vd

Ideal Diode Characteristics
0

264 Saber® MAST Language User Guide
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Modeling an Ideal Diode with MAST
{ # start of template body

number k = 1.318e-23, # local declarations

qe = 1.602e-19,

vt

val v vd

val i id

struc {

number bp, inc; # Newton steps

} nvd[*] = [(0,.001),(2,0)]

parameters { # start of parameters section

vt = k * (temp+273.15) / qe # compute thermal voltage

} # end of parameters section

values { # start of values section

vd = v(p) - v(m) # diode voltage

id = is * (limexp(vd/vt)-1) # diode current

} # end of values section

control_section { # start of control section

newton_step (vd,nvd) # Newton steps assigned to vd

initial_condition(vd,ic)

start_value(vd,0.6)

device_type("diode","example")

small_signal(vd,voltage,"p-m voltage", vd)

} # end of control section

equations { # start of equations section

i(p->m) += id # current contribut. of diode

} # end of equations section

} # end of template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/diode.sin
Saber® MAST Language User Guide 265
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Modeling an Ideal Diode with MAST
diode Template Topics

The description of the diode template is divided into the following topics:
■ Characteristic Equation
■ Header Declarations
■ Modeling Temperature
■ Newton Steps

Newton Steps Example - MAST diode Template

■ Template Equation -- shows how to use the limexp function, which is a
modified exponential operator that is limited for large exponents to prevent
overflow.

■ Initial Conditions
■ Starting Value -- shows how to specify a starting value for the first iteration

of a DC analysis, using a start_value statement in the control section (which
is different from the initial_condition statement).

■ Small-Signal Parameters -- shows how to specify small-signal parameters
within a template, which are reported in response to a Saber ssp command.

Characteristic Equation

The characteristic equation for a diode is:

id = is • (e - 1)

where:

id is the current through the diode

vd is the voltage across the diode

is is the saturation current, typically in the order of 10 A

q is the electron charge: q = 1.602•10 AÞs (1 AÞs = 1 coulomb)

k is Boltzmann’s constant: k = 1.381•10 J/K

T is the absolute temperature (in kelvins)

(vd • q)/k • T)

-16

-19

-23
266 Saber® MAST Language User Guide
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Modeling an Ideal Diode with MAST
The expression (k*T)/q is usually called thermal voltage. The template assigns
this expression to the variable vt, which is then substituted into the template
equation.

Header Declarations

The diode template is an element template with two electrical pins and
arguments for the saturation current (is) and the initial voltage across the diode

(ic). By initialization, is receives the default value 10 A and ic is undefined.
The template header and header declarations are as follows:

In addition, the system’s operating temperature, which is external to the diode
template, must be made available—this is done by including temp as an
external parameter in the header declarations as follows:

Modeling Temperature

Because this simplified diode model does not include self-heating effects, it
makes sense to compute the thermal voltage for use as a constant. The
absolute temperature (T) used for calculating the thermal voltage is expressed
in kelvins. However, the system temperature (temp) is expressed in ×C—this is
converted to kelvins by adding 273.15 within the formula for thermal voltage in
the parameters section as follows:

1 element template diode p m = is, ic

2 electrical p, m

3 number is = 1e-16,

4 ic = undef

5 external number temp # part of header declar.

15 parameters {

16 vt = k * (temp+273.15) / qe

17 }

-16
Saber® MAST Language User Guide 267
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Modeling an Ideal Diode with MAST
In addition, you need to assign values to the Boltzmann’s constant (k) and the
electron charge (qe) parameters, which is done in the following local
declarations:

Newton Steps

Newton steps place a limit on the change of the independent variable (vd) from
one iteration to the next. The newton step parameter (nv) is declared as a
structure that specifies values for breakpoint and increment pairs (bp, inc) in an
array of unspecified size. This parameter may be declared either as an
argument in the header declarations or as a local parameter in the template
body. Here, nv is declared as a local parameter and initialized to the values
indicated:

This combines the declaration statement method and the assignment
statement method of assigning newton steps. There is no functional difference
between the two methods.

The statement for newton steps in the control section associates the newton
steps parameter (nvd) with the independent variable of the template (vd) as
follows:

7 number k = 1.318e-23,

8 qe = 1.602e-19,

9 vt

12 struc {

13 number bp, inc;

14 } nvd[*] = [(0,0.001),(2,0)]

23 newton_step(vd,nvd) # part of control_section
268 Saber® MAST Language User Guide
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Modeling an Ideal Diode with MAST
The breakpoint and increment values for nvd ((0,0.001),(2,0)) enforce the
following restrictions on iterations of the simulator.
■ Below the first breakpoint (0), there is no restriction on how much vd can

change from one iteration to the next.
■ Between the first two consecutive breakpoints (0 and 2), the change in vd is

restricted to the first specified increment (0.001) per iteration.
■ Above the last breakpoint (2), there is no restriction on how much vd can

change.

Note that the value of nvd does not depend on the value of an argument to the
template. Therefore, these newton steps are not parameterized.

Newton Steps Example - MAST diode Template
The effect of this newton step definition is best seen in the example figure
shown below. Assume first that vd = 0.27V, and that the iterative algorithm
intends to change it to 0.55V. However, between 0V and 2V, the change is
restricted to 0.1V, so in the next iteration vd will have a value of 0.37V.
Similarly, if the algorithm intends to change vd to 0, it will change only to 0.17V.
However, if vd = -3V and the algorithm intends to change it to 0.67V, vd will
change to 0.1V. This is because there is no limit to the amount vd can change
below zero, whereas between 0V and 2V, vd can change by only 0.1V.

id

0

is vd

0.27 0.55 2.0

LImiting region

0.37

How Newton Steps Limit the Change of vd
Saber® MAST Language User Guide 269
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Starting Value
Template Equation

The following equation expresses the branch current (id) as a function of the
branch voltage (vd):

The assignment to id is handled in the values section. The equations section
uses the computed value of id to assign the current contribution of the diode as
follows:

Note the usage of the MAST limexp function rather than the exp function. The
limexp function is a limited exponential function. Its value is identical to that of
exp for arguments between -80 and 80, but for arguments outside this range,
limexp limits the function value to prevent overflows. The exact definition of
limexp is given in the MAST Reference Manual.

The diode voltage contribution is handled by the following statement in the
values section:

Initial Conditions

Initial conditions allow you to specify the initial value for the voltage across the
diode (vd) prior to a DC analysis. The initial_condition statement in the control
section associates vd with the argument ic:

Starting Value

When finding a DC solution, the Saber simulator sets all system variables to
their start values, which, by default, are 0. The start_value statement allows

20 id = is*(limexp(vd/vt)-1) # Part of values section

29 equations {

30 i(p->m) += id

31 }

19 vd = v(p) - v(m) # Part of values section

24 initial_condition (vd,ic) #part of control_section
270 Saber® MAST Language User Guide
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Starting Value
you to overwrite this default with a value that is closer to the solution you
expect. For example, the forward bias value of a PN junction puts the junction
into its conducting region and is somewhere around 0.6V. You can specify this
with a start_value statement in the control section, as follows:

It is important to note the difference between start_value and initial_condition.
The value of initial_condition is held throughout the DC analysis and is
therefore the value at the end of DC. The value of start_value is used as an
initial “guess” by the simulator for the first DC iteration only. After the first
iteration, start_value is ignored for all subsequent iterations.

Small-Signal Parameters

The next two statements in the control section allow you to specify the small-
signal characteristics of this model that will be reported in response to the
Saber ssp command. See the topic titled "Small-Signal Parameters Report"
below for more information on small-signal characteristics of the diode
template.

Small-Signal Parameters Report
There are additional statements that you can insert into the control section of a
MAST template that allow you to list the values of a set of small-signal
parameters by using the ssp command. The simulator obtains these values by
linearizing the model at a given operating point, usually by taking the partial
derivative of a dependent variable with respect to an independent variable. The
ssp command reports small-signal parameter values for the linearized model
only at the operating point—you cannot plot these values. Note that the
complete specification for small-signal parameters requires that you run a DC
analysis, which gives additional DC operating point information such as node
voltages and branch currents.

25 start_value (vd, 0.6) # part of control_section

26 device_type("diode","example")

27 small_signal(vd,voltage,"p-m voltage", vd)
Saber® MAST Language User Guide 271
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Starting Value
The report appears in the .out file following simulation and provides the
following headings for small-signal parameters:

For example, the report for the small-signal parameter of the diode template
would look something like the following:

Small-Signal Parameter Statements
You can specify a small-signal parameter (SSP) for a template by using three
types of SSP statements in the control section, which are identified as follows:
■ device_type - MAST Small Signal Parameter Statement
■ small_signal - MAST Small Signal Parameter Statement
■ Four Fields: - small_signal Statement
■ Five Fields: - small_signal Statement
■ ss_partial - MAST Small Signal Parameter Statement

Because of the simplicity of the diode model, there are not many small-signal
dependencies that can take advantage of the SSP reporting feature.

device_type - MAST Small Signal Parameter Statement This statement is
inserted into the control section to provide an identifier in the SSP report; it has
no effect on determining the SSP values.

small_signal - MAST Small Signal Parameter Statement One
small_signal statement is required to define each SSP. This statement can
have either four or five fields that define the SSP characteristics. In either case,
the first three fields are the same.

Parameter Name Classification Value

Parameter Name Classification Value

p-m voltage vd voltage 0.46

26 device_type("diode","example")
272 Saber® MAST Language User Guide
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Starting Value
Four Fields: - small_signal Statement The following four-field small_signal
statement appears in the diode template:

The four fields are specified as follows:
■ parameter name (vd)—this is the name of the SSP that is reported under the

Name heading by the ssp command.
■ classification (voltage)—this is reported under the Classification heading by

the ssp command.
■ report identifier ("p-m voltage")—this is an identifier string that is reported

under the Parameter heading by the ssp command.
■ assigned variable (vd)—this is an internal variable whose value is assigned

directly to the SSP. It must be either a val (an intermediate variable), a
branch variable, a parameter, a value obtained from an ss_partial
statement, or an expression of these. Here, the value of vd is assigned to vd.

Five Fields: - small_signal Statement The following five-field small_signal
statement appears in the d template from the MAST Template Library:

The five fields are specified as follows:

1. parameter name (cd)—this is the name of the SSP that is reported under the
Name heading by the ssp command.

2. classification (capacitance)—this is reported under the Classification
heading by the ssp command.

3. report identifier ("p-is capacitance")—this is an identifier string that is
reported under the Parameter heading by the ssp command.

4. dependent variable (qd)—this is differentiated with respect to the specified
independent variable. It must be either a val (an intermediate variable), a
branch variable, or an expression of these.

5. independent variable (vdi)—this is the variable with respect to which the
dependent variable is differentiated.

The variable in field 4 must be directly dependent upon the independent
variable in field 5. Otherwise, a value of 0 will be reported by the ssp command.

27 small_signal(vd,voltage,"p-m voltage", vd)

small_signal(cd,capacitance,"p-is capacitance",qd,vdi)
Saber® MAST Language User Guide 273
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Ebers-Moll MAST Model for the Bipolar Transistor
In other words, you cannot use the variable that should be in field 5 in an
expression and then put the result of that expression in field 5.

For example, in the five-field statement above, qd must depend directly on the
value of vdi; qd cannot depend on the result of an expression containing vdi.

ss_partial - MAST Small Signal Parameter Statement This is an alternate
way of taking a partial derivative for use by the four-field form of a small_signal
statement (above). It has three fields that define the differentiation. The
following ss_partial statement appears in the d template from the MAST
Template Library:

The line is composed of the following:

1. variable name—this is the name of the partial derivative of the next two
fields. This partial derivative can be used in the fourth field of the 4-field form
of the small_signal statement above.

2. dependent variable—this is differentiated with respect to the specified
independent variable in the third field, below. It must be either a val (an
intermediate variable), a branch variable, or an expression of these.

3. independent variable—this is the variable with respect to which the
dependent variable is differentiated.

The variable in field 2 must be directly dependent upon the independent
variable in field 3. Otherwise, a value of 0 will be reported by the ssp command.
In other words, you cannot use the variable that should be in field 3 in an
expression and then put the result of that expression in field 3.

For example, in the ss_partial statement above, idi must depend directly on the
value of vdi; idi cannot depend on the result of an expression containing vdi.

Ebers-Moll MAST Model for the Bipolar Transistor

A bipolar junction transistor (BJT) is a typical example of a device consisting of
several nonlinear functions. However, implementing a complete transistor
model in the MAST language is beyond the g c

of this manual. As a result, this topic describes a reduced implementation of an
Ebers-Moll model that shows various important aspects of modeling a complex
device. The model shown in this topic is a simplified version of the EM2 model

ss_partial(g_d,idi,vdi)
274 Saber® MAST Language User Guide
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Ebers-Moll MAST Model for the Bipolar Transistor
described in the book titled Modeling the Bipolar Transistor, by Getreu, I.
(Tektronix, Inc. 1976).

The transistor model presented in this section is shown in the following figure
for an NPN transistor. It implements the Ebers-Moll DC model, non-zero
collector resistance, and the junction capacitance of the base-emitter and
base-collector diodes. The model has three external nodes (base, collector,
and emitter) and one internal node (cp, the internal collector).

b
cbc

cbe

vbcp

vbe

c

irrc

cp

ict

ibc

ibe

e

Ebers-Moll Model of an NPN transistor
Saber® MAST Language User Guide 275
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Ebers-Moll MAST Model for the Bipolar Transistor
The complete BJT template (bjt) is shown as follows (line numbers are added
for reference):

element template bjt c b e = model, ic

electrical c, b, e

struc { # the transistor mode

enum {_n, _p} type

number is=1e-16, bf=100, br=1, \

cje=0, vje=.75, mje=.33, \

cjc=0, vjc=.75, mjc=.33, rc=0

} model = ()

number ic[2]=[undef,undef]

external number temp

{ # begin template body

declare local param., vals, and extraction groups

number k = 1.381e-23, # Boltzmann's constant

qe = 1.602e-19, # electron charge

vt,

qbe0, qbc0, vje0, vjc0

struc {

number bp, inc;

} nv[*] = [(0,.1),(2,0)]

val v vbc, vbe, vce # declarations of vals

val i iec, icc, iba, ico, ir

val q qbc, qbe

electrical cp # local node

group {vbc,vbe} v # extraction groups

group {iba,ico,ir} i

group {qbc,qbe} q
276 Saber® MAST Language User Guide
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Ebers-Moll MAST Model for the Bipolar Transistor
parameters {

calculate thermal volts and functions of model param.

vt = k * (temp + 273.15) / qe

qbe0 = model->cje * model->vje / (1 - model->mje)

qbc0 = model->cjc * model->vjc / (1 - model->mjc)

vje0 = 2 * model->vje / model->mje

vjc0 = 2 * model->vjc / model->mjc

} # end of parameters section

values {

calculate basic quantities of npn and pnp trans.

vbc = v(b) - v(cp)

vbe = v(b) - v(e)

vce = v(cp) - v(e)

if (model->type == _n) {

iec = model->is * (limexp(vbc/vt) - 1)

icc = model->is * (limexp(vbe/vt) - 1)

}

else {

iec = -model->is * (limexp(-vbc/vt) - 1)

icc = -model->is * (limexp(-vbe/vt) - 1)

}

calculate base, collector, and resistor currents

iba = iec/model->br + icc/model->bf

ico = icc - iec - iec/model->br

if (model->rc ~= 0) ir = (v(c) - v(cp)) / model->rc

else ir = 0
Saber® MAST Language User Guide 277
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Ebers-Moll MAST Model for the Bipolar Transistor
calculate charges

if(model->type == _n) {

if (vbc<0) {

qbc = qbc0*(1-((1-vbc/model->vjc)**(1-model->mjc)))

}

else {

qbc = model->cjc*vbc*(1 + vbc/vjc0)

}

if (vbe<0) {

qbe = qbe0*(1-((1-vbe/model->vje)**(1-model->mje)))

}

else {

qbe = model->cje*vbe*(1 + vbe/vje0)

}

} # end “if type _n” condition

else { # if model is not of type _n

if(vbc > 0) {

qbc = -qbc0*(1-(1+vbc/model->vjc)**(1-model->mjc))

}

else {

qbc = model->cjc*vbc*(1-vbc/vjc0)

}

if(vbe > 0) {

qbe = -qbe0*(1-(1+vbe/model->vje)**(1-model->mje))

}

else {

qbe = model->cje*vbe*(1-vbe/vje0)

}

} # end “if not type _n” condition

} # end values section
278 Saber® MAST Language User Guide
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Ebers-Moll MAST Model for the Bipolar Transistor
control_section {

if no collector resistance, collapse nodes c and cp

if (model->rc == 0) collapse(c,cp)

specify Newton steps

newton_step((vbc,vbe),nv)

initial conditions and start value

initial_condition(vbe, ic[1])

initial_condition(vce, ic[2])

start_value (vbe, 0.6)

small-signal parameters

device_type("bjt", "example")

small_signal(ibase,current,"base current",iba)

small_signal(icoll,current,"collector current",ico)

small_signal(vbe,voltage,"base-emitter voltage", vbe)

small_signal(vbc,voltage,"base-collector voltage", vbc)

small_signal(rc,resistance,"collector resistance",\

model->rc)

} # end control_section

equations {

current at base, internal collector, and emitter

i(b->e) += iba + d_by_dt(qbe)

i(b->cp) += d_by_dt(qbc)

i(cp->e) += ico

current at collector resistor, if present

if (model->rc ~= 0) i(c->cp) += ir

} # end equations section

} # end template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/bjt.sin
Saber® MAST Language User Guide 279
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Ebers-Moll MAST Model for the Bipolar Transistor
The description of the bjt template is divided into the following topics. Some of
the concepts highlighted by these topics follow the topic title:
■ Basic Model Equations
■ Preparing to Write the MAST bjt Template
■ Header Declarations

Transistor Type -- shows the enumerated parameter type (enum),
which is useful if a parameter can take on only a limited set of values.
Collector Resistance
Initial Conditions

■ Local Parameters

Temperature
Junction Capacitance
Newton Steps Declaration - MAST bjt Template
Local Node - MAST bjt Template
Intermediate Current and Charge Variables
Defining Groups For Extraction - MAST bjt Template -- shows that
groups (specified using a group statement) are useful for grouping
together several val variables or system variables, so that you can refer
to them by a single name as when doing extraction.

■ Thermal Voltage
■ Junction Capacitance -- shows that model equations often need to be

“transformed” into a MAST-compatible set of equations. In this example,
you have to compute the charges stored in the nonlinear junction
capacitances and account for their singularities.

■ Intermediate Calculations

Fundamental Quantities - MAST bjt Template
Currents
Charges

■ Control Section

• Collapse Node -- shows that collapsing nodes (using a collapse
statement) is useful for reducing the size of a system, but it can place
restrictions on parameter alteration.

• Newton Steps -- shows association of the same set of newton steps with
multiple variables.

• Initial Conditions in Control Section
280 Saber® MAST Language User Guide
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Ebers-Moll MAST Model for the Bipolar Transistor
• Starting Value

• Small-Signal Parameters
■ Equations Section

Basic Model Equations

The following equations describing the model in the following figure are taken
from the book titled Modeling the Bipolar Transistor, by Getreu, I. (Tektronix,
Inc. 1976).

ict = icc - iec

ibc = iec / βr

ibe = icc / βf

iec = is * (exp((qe * vbcp) / (k * T)) - 1)

icc = is * (exp((qe * vbe) / (k * T)) - 1)

cbc = cjco / (1 - vbcp / vjc) ** mjc

cbe = cjeo / (1 - vbe / vje) ** mje

b
cbc

cbe

vbcp

vbe

c

irrc

cp

ict

ibc

ibe

e

Ebers-Moll Model of an NPN transistor
Saber® MAST Language User Guide 281
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
These equations use the following model parameters:

Preparing to Write the MAST bjt Template

Before starting to write a MAST template for this transistor model, you need to
take two preliminary steps:

1. Take into account that the junction capacitances cbc and cbe have
singularities at vbcp = vjc and vbe = vje, respectively.

2. Compute the charge stored in the junction capacitances as a function of the
junction voltage.

Both steps are contained in the context of expressing a generic junction
capacitance:

cj = cjo / (1 - v / vj)

According to the book titled Modeling the Bipolar Transistor, by Getreu, I.
(Tektronix, Inc. 1976), this is an empirical equation that is not valid for forward
bias (v > 0). Under forward bias conditions, the diffusion capacitances
dominate, so that a simple approximation of the junction capacitances for v > 0
is usually sufficient. Although this transistor model does not include diffusion
capacitances, it uses an approach similar to that in the Getreu book. That is, it

is transistor saturation current (typically about 10 A)

βf forward current gain (typically about 100)

βr reverse current gain (typically about 1)

cjco collector-base junction capacitance (typically about 5pF)

cjeo emitter-base junction capacitance (typically about 5pF)

vjc collector-base barrier potential (typically about 0.75V)

vje emitter-base barrier potential (typically about 0.75V)

mjc gradient factor for collector-base capacitance (between 0.333 and 0.5)

mje gradient factor for emitter-base capacitance (between 0.333 and 0.5)

-16

m

282 Saber® MAST Language User Guide
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
assumes that, for v > 0, the junction capacitance depends linearly on the
junction voltage. Thus, it has a slope that results in matching slopes at v = 0.
This leads to the following equation set for junction capacitance:

cj = cjo / (1 - v/vj) for v < 0

cj = cjo * (1 + m*v/vj)for v Š 0

The second step consists of computing the charge stored in the junction
capacitor as a function of the junction voltage. This is given as the integral of
the capacitance over junction voltage, v:

qj(v) = cj(v) dv

with the additional requirement that qj(0) = 0. The results, for reverse and
forward bias of the junction, respectively, are:

qj = cj*vj*(1 - (1 - v/vj))/(1-m)for v < 0

qj = cj*v*(1 + 0.5*m*v/vj)for v Š 0

Note that qj is continuous at v = 0 in these equations.

Header Declarations

The bipolar junction transistor (BJT) is an electrical device with three terminals:
collector (c), base (b), and emitter (e). Eleven parameters characterize the
transistor model. Nine of them are the ones listed in the topic titled "Basic
Model Equations". The other two are the transistor type (type) and the collector
resistance (rc).

m

v

0

1 -m
Saber® MAST Language User Guide 283
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
The following example shows the template header and header declarations for
the bjt template:

The following topics describe the bjt template header declarations in more
detail:
■ Transistor Type
■ Collector Resistance
■ Initial Conditions

Transistor Type
There are only two possible values for transistor type—NPN or PNP. For
parameters with a limited set of possible values, the MAST language provides
the enumerated parameter type (enum), which has the following syntax:

where evalue is a comma-separated list of values that the name parameter can
assume. If present, init_val must be one of the values in evalue. For the
transistor type, there are only two choices, which are represented as _n (for
NPN) and _p (for PNP). Therefore, you can define an argument that allows
selecting the transistor type as follows:

1 element template bjt c b e = model, ic

2 electrical c, b, e

3 struc {

4 enum {_n, _p} type

5 number is=1e-16, bf=100, br=1, \

6 cje=0, vje=.75, mje=.33, \

7 cjc=0, vjc=.75, mjc=.33, rc=0

8 } model = ()

9 number ic[2]=[undef,undef]

10 external number temp

enum {evalue [, evalue]} name[[=init_val], name[=init_val...]]

4 enum {_n, _p} type
284 Saber® MAST Language User Guide
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
Collector Resistance
Rather than having each model parameter as an individual argument of the bjt
template, it is preferable to group them into a single structure argument and
give this structure argument the name model. The parameter for collector
resistance (rc) has been included in model as follows:

Using the model structure emphasizes the fact that the parameters it contains
belong together. It is their combination that characterizes a particular transistor
instance. It also allows you to refer to such a combination by a single name
(model), which makes it easy to use the same group of parameters for several
transistor instances.

In the declaration, initialize each structure member to a typical value. The
initialized value is then that member’s default value. The exceptions are the
transistor type, for which there is no reasonable default, and the two junction
capacitance values (cjc and cje), which are initialized to 0 so that, by default,
the model does not include charge effects.

Each individual parameter of the structure model is referenced later using the
format model->cje to reference the cje parameter or model->vje to reference
the vje parameter and so on.

Initial Conditions
You can declare an argument that specifies the initial value for the voltage
across the pn junctions of the transistor. However, a BJT has two junctions of
interest: the base-emitter junction and the collector- emitter junction. Thus, the
argument for initial conditions needs to specify initial values for base-emitter
voltage (vbe) and collector-emitter voltage (vce). This requires that the ic
argument be declared as a two-dimensional array as follows:

This declaration is declared outside the model structure (lines 5 through 8),
because it isn’t really associated with the characterization of the BJT model
(although it would work just as well if it were included within model).

5 number is=1e-16, bf=100, br=1, \

6 cje=0, vje=.75, mje=.33, \

7 cjc=0, vjc=.75, mjc=.33, rc=0

8 } model = ()

9 number ic[2]=[undef,undef]
Saber® MAST Language User Guide 285
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
In addition there needs to be initial_condition statements in the control section
to associates vbe and vce with the ic argument.

The following external parameter, temp, makes the system temperature
available in the template.

10 external number temp
286 Saber® MAST Language User Guide
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
Local Parameters

Because of the complexity of the BJT model, there are several intermediate
calculations that must be performed prior to using the template equation as
shown below:

As a result, there are also several local parameters and variables that must be
declared for use in these calculations, which are explained in the following
topics:
■ Temperature
■ Junction Capacitance

12 # declare local param., vals, and extraction groups

13 number k = 1.381e-23, # Boltzmann's constant

14 qe = 1.602e-19, # electron charge

15 vt,

16 qbe0, qbc0, vje0, vjc0

17 struc {

18 number bp, inc;

19 } nv[*] = [(0,.1),(2,0)]

20 val v vbc, vbe, vce # declarations of vals

21 val i iec, icc, iba, ico, ir

22 val q qbc, qbe

23 electrical cp # local node

24 group {vbc,vbe} v # extraction groups

25 group {iba,ico,ir} i

26 group {qbc,qbe} q

27 parameters {

28 # calculate thermal volts and functions of model param.

29 vt = k * (temp + 273.15) / qe

30 qbe0 = model->cje * model->vje / (1 - model->mje)

31 qbc0 = model->cjc * model->vjc / (1 - model->mjc)

32 vje0 = 2 * model->vje / model->mje

33 vjc0 = 2 * model->vjc / model->mjc

34 } # end of parameters section
Saber® MAST Language User Guide 287
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
■ Newton Steps Declaration - MAST bjt Template
■ Local Node - MAST bjt Template
■ Intermediate Current and Charge Variables
■ Defining Groups For Extraction - MAST bjt Template

Temperature
The following local declarations are for parameters used in calculations for
thermal voltage:

Junction Capacitance
The declarations below are for parameters used in calculations for junction
charges:

where qbe0 and qbc0 are used to calculate junction charges under reverse
bias conditions; vje0 and vjc0 are used for forward bias conditions.

Newton Steps Declaration - MAST bjt Template
The newton steps parameter (nv) is nearly identical to that of the diode
template (see the topic titled "Modeling an Ideal Diode with MAST"):

In the control section, line 88 assigns these newton step values to two
independent variables (vbc and vbe) as follows:

13 number k = 1.381e-23, # Boltzmann's constant

14 qe = 1.602e-19, # electron charge

15 vt,

16 qbe0, qbc0, vje0, vjc0 #Part of number declar.

17 struc {number bp, inc;}\

18 nv[*] = [(0,0.1),(2,0)]

88 newton_step((vbc,vbe), nv)
288 Saber® MAST Language User Guide
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
Local Node - MAST bjt Template
As shown in the following figure, this model allows you to specify collector
series resistance (rc).

For non-zero values of rc, the topology of the model changes, which requires
an internal node called cp as follows:

This is the point at which this series resistance connects between the external
collector (c) and the interior of the model.

You can specify that this node be collapsed to the external collector (meaning
that it no longer exists) if rc=0 (see line 86).

Intermediate Current and Charge Variables
The variables listed below are declared as val variables and are used in
calculating currents and charges.

23 electrical cp

21 val i iec, icc, iba, ico, ir

22 val q qbc, qbe

b
cbc

cbe

vbcp

vbe

c

irrc

cp

ict

ibc

ibe

e

Ebers-Moll Model of an NPN transistor
Saber® MAST Language User Guide 289
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
Defining Groups For Extraction - MAST bjt Template
Any val variable can be made available for post-processing using the extract
command, along with any system variable (pin, var, and ref variables). It is
sometimes useful to extract only currents or voltages or, in general, any
convenient collection of val variables and system variables. You can do this by
defining the collection as a group in the local declarations of the template.
Once a group is defined, you can refer to all members of the group by the name
of the group.

The following statement is the general form for defining a group of variables.

where:

The bjt template contains three groups for holding voltages, currents, and
charges:

For example, a netlist could contain the following netlist entries:

You could then use the Saber command shown below to extract all val
variables and system variables in bjt.1, but only the currents defined in group i
from bjt.2 (i.e., ib, ic, ir):

group {variable_list} name

variable_list is a comma-separated list of val variables and system
variables.

name is the name of the group and makes all variables in
variable_list available by referring to name.

24 group {vbc, vbe} v

25 group {iba, ico, ir} i

26 group {qbc, qbe} q

bjt.1 a b c = model=(type=_n)

bjt.2 d e f = model=(type=_p)

extract bjt.1/* bjt.2/i
290 Saber® MAST Language User Guide
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
Thermal Voltage

Thermal voltage (vt) is calculated by the following statement in the parameters
section:

Junction Capacitance

The charges at the collector-base and the emitter-base junctions under reverse
and forward bias conditions are calculated as follows in the parameters
section:

Note:

Normally, some parameter checking would be provided at this point. To
keep the example short, this has not been included in this example.

29 vt = k * (temp + 273.15) / qe

30 qbe0 = model->cje * model->vje / (1 - model->mje)

31 qbc0 = model->cjc * model->vjc / (1 - model->mjc)

32 vje0 = 2 * model->vje / model->mje

33 vjc0 = 2 * model->vjc / model->mjc
Saber® MAST Language User Guide 291
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
Intermediate Calculations

Because of the complexity of the BJT model, there are several intermediate
calculations that must be performed prior to using the template equation.
These calculations are located in the following values section:

The calculations used in the values section use the locally declared parameters
and variables.

The following topics describe the different computational blocks shown in the
previous code example:
■ Fundamental Quantities - MAST bjt Template
■ Currents
■ Charges

Fundamental Quantities - MAST bjt Template
The fundamental quantities of the model, upon which all currents and charges
are based, are the base-emitter and base-collector voltages and the currents

35 values {

36 # calculate basic quantities of npn and pnp trans.

37 vbc = v(b) - v(cp)

38 vbe = v(b) - v(e)

39 vce = v(cp) - v(e)

40 if (model->type == _n) {

lines 41 through 47

48 # calculate base, collector, and resistor currents

lines 49 through 53

54 # calculate charges

55 if(model->type = = _n) {

lines 56 through 82

83 } #end values section
292 Saber® MAST Language User Guide
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
iec and icc. Their definitions are straightforward, although dependent upon
transistor type:

Lines 40 through 43 for an NPN type shows that in order to determine the
base-collector voltage, you have to use the internal collector cp, rather than pin
c. As with the diode template, you use limexp, a MAST language function,
instead of exp, to compute the two currents. The reason is for protection
against overflow.

Lines 44 through 47 provide the same function for the PNP type with negated
values of voltage and current.

Currents
The currents in the bipolar transistor model are ict, ibc, ibe, and ir. These could
easily be computed, but it is preferable to define currents that have a physical
meaning and therefore are useful for extraction. The values of all val variables
can be made available for post-processing using the extract command.

Although you could define the emitter current, it is not necessary. Its value is
given by ie = -iba - ico.

36 # calculate basic quantities of npn and pnp trans.

37 vbc = v(b) - v(cp)

38 vbe = v(b) - v(e)

40 if (model->type == _n) { # If type = NPN

41 iec = model->is * (limexp(vbc/vt) - 1)

42 icc = model->is * (limexp(vbe/vt) - 1)

43 }

44 else { # If type = PNP

45 iec = -model->is * (limexp(-vbc/vt) - 1)

46 icc = -model->is * (limexp(-vbe/vt) - 1)

47 }

48 # calculate base, collector, and resistor currents

49 iba = iec / model->br + icc / model->bf

50 ico = icc - iec - iec / model->br

51 if (model->rc ~= 0) ir = (v(c) - v(cp)) / model->rc

52 else ir = 0
Saber® MAST Language User Guide 293
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
The definition of ir is meaningful only if the collector resistance (rc) is non-zero.
For rc=0, it would be good to express ir as the sum of ic and d(qbc)/dt, but the
MAST language allows usage of the d_by_dt operator only in a template
equation. Therefore, set ir=0 and write the rest of the template such that the
value of ir is not needed if rc=0.

You could make ir available independent of the value of rc. This would be done
by declaring ir as a var variable and letting the simulator determine its value.
For efficiency, this example does not do so.

Charges
The remaining intermediate calculations define the charges stored in the two
junctions. This is a direct translation of the charge equations into the MAST
294 Saber® MAST Language User Guide
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
language, except that it uses parameters as they are defined in the template as
follows:

54 # calculate charges

55 if(model->type == _n) {

56 if (vbc<0) {

57 qbc = qbc0*(1-(1-vbc/model->vjc)**(1-model->mjc)

58 }

59 else {

60 qbc = model->cjc*vbc*(1 + vbc/vjc0)

61 }

62 if (vbe<0) {

63 qbe = qbe0*(1-(1-vbe/model->vje)**(1-model->mje)

64 }

65 else {

66 qbe = model->cje*vbe*(1 + vbe/vje0)

67 }

68 } # end “if type _n” condition

69 else { # if model is not of type _n

70 if(vbc > 0) {

71 qbc = -qbc0*(1-((1+vbc/model->vjc)**(1-model->mjc)))

72 }

73 else {

74 qbc = model->cjc*vbc*(1-vbc/vjc0)

75 }

76 if(vbe > 0) {

77 qbe = -qbe0*(1-((1+vbe/model->vje)**(1-model->mje)))

78 }

79 else {

80 qbe = model->cje*vbe*(1-vbe/vje0)

81 }

82 } # end “if not type _n” condition
Saber® MAST Language User Guide 295
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
Control Section

The following lines comprise the bjt template control section:

These lines are further described in the following topics:
■ Collapse Node
■ Newton Steps
■ Initial Conditions in Control Section
■ Starting Value
■ Small-Signal Parameters

Collapse Node
As described for local declarations, cp is declared as an internal node. When
rc=0, there is no resistance between c and cp; thus, they actually refer to the

84 control_section {

85 # if no collector resistance, collapse nodes c and cp

86 if (model->rc == 0) collapse(c,cp)

87 # specify Newton steps

88 newton_step((vbc,vbe),nv)

89 # initial conditions and start value

90 initial_condition(vbe, ic[1])

91 initial_condition(vce, ic[2])

92 start_value (vbe, 0.6)

93

94 # small-signal parameters

95 device_type("bjt", "example")

96 small_signal(ibase,current,"base current",iba)

97 small_signal(icoll,current,"collector current",ico)

98 small_signal(vbe,voltage,"base-emitter voltage", vbe)

99 small_signal(vbc,voltage,"base-collector voltage", vbc)

100 small_signal(rc,resistance,"collector resistance",\

101 model->rc)

102 } # end control_section
296 Saber® MAST Language User Guide
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
same node. You can indicate this to the simulator by using a collapse
statement in the control section as follows:

Collapsing nodes has the advantage that it reduces the size of the system, that
is, the number of system variables. This is particularly valuable in systems
where there are numerous instances of a template, because reducing system
size typically increases simulation speed. However, a disadvantage of
collapsing nodes in this example is that using the alter command to change the
collector resistance from zero to nonzero (or vice-versa) would alter the
topology of the system. This is not allowed after starting simulation.

Newton Steps
For the control section, you need to identify the independent variables of the
nonlinear equations, in order to specify newton steps for them. Referring back
to the topic titled "Basic Model Equations", the two voltages vbcp and vbe (vbc
and vbe in the template) fit the requirements. All the nonlinear quantities
ultimately depend upon vbc or vbe or both, and both vbc and vbe are
expressed as the difference of two system variables. Therefore, both vbc and
vbe require newton steps.

Because these voltages are used identically in the model equations, you can
use the same newton step values for both. Further, because both the base-
emitter and base-collector junctions are modeled as diode junctions, you can
use the same newton step values as for the diode example.

The control section statement that associates the arrays of newton step values
with the independent variables is as follows:

Initial Conditions in Control Section
One initial_condition statement in the control section is required for each
variable (vbe and vce) whose initial value is specified by the ic argument, which
is declared as a two-dimensional array:

85 # if no collector resistance, collapse nodes c and cp

86 if (model->rc == 0) collapse(c,cp)

88 newton_step((vbc,vbe), nv)

90 initial_condition (vbe,ic[1])

91 initial_condition (vce,ic[2])
Saber® MAST Language User Guide 297
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
Starting Value
You can use the following start_value statement to specify the forward bias
value (vbe) of the base-emitter junction at the first iteration of the DC iteration.
This puts the junction into its conducting region at a value that is closer to the
solution you expect (around 0.6V).

Small-Signal Parameters
You can insert statements into the control section that allow you to list the
values of a set of small-signal parameters (SSP) when using the ssp
command. The simulator obtains these values by linearizing the model at a
given operating point, usually by taking the partial derivative of a dependent
variable with respect to an independent variable. The ssp command reports
small-signal parameter values for the linearized model only at the operating
point—you cannot plot these values. For the complete specification, you need
to run a DC analysis, which gives additional DC operating point information
such as node voltages and branch currents.

For example, some of the parameters that might be reported for the bjt
template are listed below.

You can specify a small-signal parameter for a template by using the
device_type and small_signal statements in the control section. These are
explained below.

Note:

Because of the simplicity of this transistor model, there are not many small-
signal dependencies that can take full advantage of these statements (for
example, using an ss_partial statement).

92 start_value (vbe, 0.6)

Parameter Name Classification Value

collector
resistance

rc resistance 170

base-emitter
voltage

vbe voltage 0.672

base current iba current 0.176u
298 Saber® MAST Language User Guide
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
device_type This statement is inserted into the template to provide an
identifier in the SSP report; it has no effect on determining the SSP values:

small_signal One small_signal statement is required to define each SSP.
This statement can have either four or five fields that define the SSP
characteristics, as explained in the topic titled "Modeling an Ideal Diode with
MAST”. In either case, the first three fields are the same.

The following 4-field small_signal statements appear in the bjt template:

Equations Section

The template equations list the branch currents and express them as functions
of the intermediate variables previously calculated:

95 device_type("bjt", "example")

96 small_signal(ibase,current,"base current",iba)

97 small_signal(icoll,current,"collector current",ico)

98 small_signal(vbe,voltage,"base-emitter voltage", vbe)

99 small_signal(vbc,voltage,"base-collector voltage", vbc)

100 small_signal(rc,resistance,"collector resistance",\

101 model->rc)

103 equations {

104 # current at base, internal collector, and emitter

105 i(b->e) += iba + d_by_dt(qbe)

106 i(b->cp) += d_by_dt(qbc)

107 i(cp->e) += ico

108

109 # current at collector resistor, if present

110 if (model->rc ~= 0) i(c->cp) += ir

110 } # end equations section
Saber® MAST Language User Guide 299
B-2008.09

Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
These equations show the following:
■ How to use an if statement to set up equations differently for different

parameter values. The condition part of such an if statement can include
only parameters.

■ It is preferable to write the template such that ir is needed only if the collector
resistance (rc) is non-zero, as shown by the if statement. If rc=0, the internal
and external collector nodes (cp and c) are collapsed to the same node.
300 Saber® MAST Language User Guide
B-2008.09

13
13Modeling Nonlinearities

This topic is divided into the following subtopics:
■ Simulation Techniques for Evaluating Nonlinearities
■ Modeling a Voltage Squarer - MAST vsqr Template -- describes the

following concepts:

• Using the control section of the template to pass certain information that
is not part of the model to the simulator

• Using sample points for the independent variables of nonlinear
equations, including their selection and specification

• The effect of the simulator’s density variable on the sample points

• Using arrays of structures and their initialization

• Default sample points automatically provided by the Saber Simulator.

Simulation Techniques for Evaluating Nonlinearities

To illustrate the problems that arise in modeling a nonlinear element, consider
the characteristic equation of a voltage squaring block:

vout = vin * vin

In finding the solution of nonlinear networks such as those containing squaring
blocks, the simulator must solve a set of nonlinear, simultaneous equations.
There are no techniques that do so directly, so the simulator uses the following
method:

1. Guess a set of values for all unknowns.

2. Linearize each nonlinearity about these values, thereby obtaining a set of
simultaneous linear equations.

3. Solve the linear equations (using well-known techniques).

4. Update the values of all unknowns using the solution of the linear equations.

5. Repeat steps 2 through 4 until the correct solution has been obtained.
Saber® MAST Language User Guide 301
B-2008.09

Chapter 13: Modeling Nonlinearities
Simulation Linearization Techniques
This algorithm reveals two important concepts:
■ Simultaneous nonlinear equations are solved iteratively
■ The iterative method involves linearization

These are not independent of each other.

Simulation Linearization Techniques

There are several techniques for the linearization of nonlinear equations. Of
these, three used by different simulators are described as follows:

1. Taking the slope of the characteristic equation at the present value

2. Using a piecewise linear approximation of the characteristic equation

3. Using a piecewise linear evaluation of the characteristic equation (used by
the Saber Simulator)

Taking the Slope (Method 1)

A common technique for linearization is to take the slope of the characteristic
equation (i.e., its first derivative) at the present value of the independent
variable. Some simulators use this technique, which is shown in the following
figure.

Vout

Vin

V0

Linearization by taking the slope—Method 1
302 Saber® MAST Language User Guide
B-2008.09

Chapter 13: Modeling Nonlinearities
Simulation Linearization Techniques
Simulators using this technique typically require a model to include both the
characteristic equations of the element and their derivatives with respect to the
independent variables. Moreover, both the model equations and their
derivatives must be continuous functions of the independent variables. In
particular, the requirement for continuous derivatives makes modeling of such
characteristics very difficult, if they are described by different functions in
different regions of the independent variables (as in the case of MOS devices).
Simulators using this approach find, for the nonlinear equations, an
approximate solution that is controlled by one or more convergence
parameters.

Piecewise linear approximation (Method 2)

Another linearization technique is piecewise linear approximation. Rather than
describing a nonlinear characteristic exactly, the model consists of a set of
straight lines approximating the nonlinear equation, as shown in the following
figure.

The piecewise linear approximation of the characteristic equations is obtained
before the simulation begins, so all the simulator “sees” is the piecewise linear
model, which must be continuous, but obviously has discontinuous derivatives.
This model is solved exactly using special algorithms. However, the solution is
only as accurate as the piecewise linear approximations, and you can change
the accuracy only by changing the model.

vout

vin

v0

v1 v2
v3 v4 v5

Piecewise linear approximation—Method 2
Saber® MAST Language User Guide 303
B-2008.09

Chapter 13: Modeling Nonlinearities
Simulation Linearization Techniques
Piecewise Linear Evaluation (Method 3)

A third linearization technique, the one used by the Saber Simulator, is called
piecewise linear evaluation. The model consists of the nonlinear equations plus
a set of sample points for the independent variables. The simulator uses the
sample points (which may be specified in the template) to find a piecewise
linear approximation of the nonlinear equations, as shown in the figure below,
where v1...v5 are the sample points.

Note:

The Saber Simulator automatically uses default sample points for any
independent variables of a nonlinear template that require them.
Consequently, all the information on sample points in this chapter is
optional—it is necessary only if you want to change the values of sample
points from the default. See the topic titled "Default Sample Points".

The simulator then solves the piecewise linear approximation of the model
exactly, using specialized algorithms. Again the accuracy of the solution
depends upon the piecewise linear approximation, but the main advantage of
this approach is that the density of the sample points is easily changed. The
density variable of any given analysis is a multiplier for the sample points of all
templates that have them specified (default density is 1). This enables the user
to choose (at run time) either increased accuracy or faster computation time.
For more information on density, refer to the Calibrating DC Analysis topic in
the Saber online documentation.

Vout

Vin

V0

V1 V2
V3 V4 V5

Piecewise linear evaluation—Method 3
304 Saber® MAST Language User Guide
B-2008.09

Chapter 13: Modeling Nonlinearities
Simulation Linearization Techniques
Given that the slope technique cannot solve the equations exactly, this
technique can produce results as accurate as those produced by the slope
technique, if the density of the sample points is sufficiently high.

Comparison and Summary of Linearization Techniques

These three linearization techniques can be summarized as follows:
■ slope technique requires a continuous model with continuous first-order

derivatives. The simulator finds an approximate solution of the linearized
model, where accuracy is controlled by convergence parameters.

■ piecewise linear approximation technique requires a model consisting of
continuous piecewise linear segments. The simulator finds an exact solution
of the piecewise linear model, where accuracy can be changed only by
changing the model.

■ piecewise linear evaluation technique used by the Saber Simulator requires
a continuous model and a set of sample points. The simulator finds an exact
solution of the piecewise linear approximation specified by the sample
points, where accuracy can be changed by changing the density of the
sample points.

From this, then, a nonlinear model implemented in a MAST template must
include the following information:
■ The nonlinear equations describing the model
■ A set of sample points for each independent variable in the model
Saber® MAST Language User Guide 305
B-2008.09

Chapter 13: Modeling Nonlinearities
Modeling a Voltage Squarer - MAST vsqr Template
Modeling a Voltage Squarer - MAST vsqr Template

This example shows a nonlinear model that is a simple voltage squarer
template, vsqr, whose output voltage is the square of its input voltage. Note
that this is implemented as an element template.

vsqr Template Topics

The following topics describe the vsqr template:
■ Template Header
■ Values Section

element template vsqr ip im op om

electrical ip, im, op, om # header declarations

{

var i iout # local declarations

val v vin, vout

sample points defined

struc {number bp, inc;} svin[*]=\

[(-100k,1),(-1k,.1),(10,.01),\

(0,.01),(10,.1),(1k,1),(100k,0)]

values {

vin = v(ip) - v(im) # input voltage

vout = v(op) - v(om) # output voltage

} # end of values section

control_section {

sample_points(vin, svin) # sample points associated

with input voltage

} # end of control section

equations {

i(op->om) += iout # current contribution

iout: vout = vin * vin

} # end of equations section

} # end of template body
306 Saber® MAST Language User Guide
B-2008.09

Chapter 13: Modeling Nonlinearities
Modeling a Voltage Squarer - MAST vsqr Template
■ Equations Section
■ Control Section
■ Understanding Sample Points
■ Specifying Sample Points
■ Density of Sample Points
■ Default Sample Points

Template Header

The vsqr template has two input pins and two output pins, but no arguments.
The header and its corresponding declarations are:

Values Section

The values section declares vin and vout, which are used in the equations
section as follows:

Both vin and vout are declared as a val variable as follows:

element template vsqr ip im op om

electrical ip, im, op, om

values {

vin = v(ip) - v(im) # input voltage

vout = v(op) - v(om) # output voltage

} # end of values section

val v vin, vout
Saber® MAST Language User Guide 307
B-2008.09

Chapter 13: Modeling Nonlinearities
Modeling a Voltage Squarer - MAST vsqr Template
Equations Section

The characteristic equation of the voltage squarer finds the voltage across the
output pins (vout) in terms of the voltage across the input pins (vin). The
equations section appears as follows:

 The equations section implements the voltage squarer as a nonlinear voltage-
controlled voltage source as follows:

The output current iout, contributes to the current at pins op and om as follows:

The simulator determines iout such that the output voltage is the square of the
input voltage.

At this point, the voltage squarer template is complete, unless you want to
specify sample point values for the independent variable (vin) that are different
from the values specified in the template (see the topic titled "Specifying
Sample Points").

The Saber Simulator automatically uses default sample points for any
independent variables of a nonlinear template that require them. Consequently,
all the information on sample points in this chapter is optional—it is necessary
only if you want to specify values of sample points that differ from these
automatically-supplied default values (see the topic titled "Default Sample
Points").

Control Section

The control section of a template provides the simulator with information that is
specific to the system being analyzed but is not directly a part of the model. An

equations {

i(op->om) += iout # current contribution

iout: vout = vin * vin

}

iout: vout = vin * vin

i(op->om) += iout
308 Saber® MAST Language User Guide
B-2008.09

Chapter 13: Modeling Nonlinearities
Modeling a Voltage Squarer - MAST vsqr Template
example of such information is the sample points required for the independent
variables in nonlinear equations.

The control section consists of the keyword control_section, followed by a
sequence of control section statements, enclosed between braces ({}). Such
statements are special in the sense that they can occur only in the control
section. A complete list of these statements is given in the MAST Reference
Manual. Here, only a sample points statement for the independent variable of a
nonlinear equation is of interest.

The sample points statement inserted in this section takes the following form:

where:

For the voltage squarer template, you have to specify sample points for the
input voltage (vin), which is the independent variable in the characteristic
equation.

With svin as the name of the array containing the sample points, the control
section for this template is as follows:

The actual values of the sample points (within svin) are specified as local
parameters, as described in the topic titled "Specifying Sample Points".

sample_points (variable, sa_points)

variable is a branch variable, a var variable, or a val variable that is
equal to either a system variable or a difference of two system
variables (i.e., var1 - var2)

sa_points is the name of an array of sample points —note that the actual
sample point values are specified in an array declared as a
local parameter

control_section {

sample_points(vin, svin) # sample points associated

with input voltage

} # end of control section
Saber® MAST Language User Guide 309
B-2008.09

Chapter 13: Modeling Nonlinearities
Modeling a Voltage Squarer - MAST vsqr Template
Understanding Sample Points

The specification of sample points for an independent variable of a nonlinear
equation consists of the following two parts:

1. Considerations for selecting sample points (described in the next topic)

• General Approach

• Specific Approach (voltage squarer)

2. The actual specification of sample point values in a template, using MAST
language constructs (described in the topic titled "Specifying Sample
Points").

Considerations for Selecting Sample Points
There are several considerations for selecting sample points:
■ Accuracy vs. speed. Denser sample points provide better accuracy of the

piecewise linear approximation of the nonlinearity, but this is usually
accompanied by slower simulation speed.

■ Optimum combination of accuracy and speed. The Saber Simulator lets you
change the density of the sample points at run time by means of the density
variable of the analysis you are running (see the topic titled "Density of
Sample Points"). You should specify values for sample points such that the
accuracy of the piecewise linear approximation is sufficient for the default
simulator density of 1 (which means density has no effect on sample points).
Of course, the meaning of “sufficient accuracy” depends upon the
application.

■ Operation limits. These are the minimum and maximum values that the
independent variable is not supposed to exceed—if it does, the Saber
Simulator reports a warning and sets the variable to the limit value.

■ Intended region of operation of the model. This is a region inside the
operation limits where the model is intended to be used. Typically, you want
better accuracy inside this region than outside.

■ Numerical considerations. The independent variable may be restricted to a
certain value range by the laws of physics, but during iterations it may
assume values outside this range. (For example, absolute temperature may
become negative during iterations.)

■ Other requirements. The Saber Simulator requires that 0 (zero) be a sample
point.
310 Saber® MAST Language User Guide
B-2008.09

Chapter 13: Modeling Nonlinearities
Modeling a Voltage Squarer - MAST vsqr Template
The accuracy of the piecewise linear evaluation is demonstrated in the
following figure.

This figure shows a nonlinear function y=f(x) and a linear approximation that
intersects the function at x1 and x2. That is, x1 and x2 are sample points of
y=f(x). Further, y1 and y2 are the function values at x1 and x2, respectively,
and e is the maximum error of the linear approximation of f(x) between x1 and
x2. In order to find approximate sample points for x, you need to express e as a
function of Dx=x1-x2. If there were such a function, its inverse would yield the
sample point spacing for a given maximum error. In general, such a function is
difficult to derive, except in the very simplest cases, such as this voltage
squarer. Therefore, a general approach is described first, then a specific
approach as it is applied to the voltage squarer.

General Approach The preceding figure shows that e is always smaller than
Dy=y2-y1 if the sign of the slope of f(x) does not change between x1 and x2.

Therefore, if f(x) is monotonic between x1 and x2, Dy is an upper bound for the
approximation error. Because simulation always involves a trade-off between
accuracy and speed, you will expect a certain accuracy of simulation results

(such as three digits of relative accuracy or an absolute accuracy of 10). In
both cases, you actually specify a minimum resolution or “granularity” for the
simulator results, and you expect Dy to be smaller than this level of resolution.

y

y2

y1

y = f(x)

x
x1 x2

ε

Accuracy of a piecewise linear approximation

-3
Saber® MAST Language User Guide 311
B-2008.09

Chapter 13: Modeling Nonlinearities
Modeling a Voltage Squarer - MAST vsqr Template
Next, find Dx as a function of Dy. In many cases, it is possible to do this using

the inverse relationship x=f (y). In more complicated cases (particularly with
multi-dimensional nonlinearities), selecting the sample points may be a process
of trial and error. Keep in mind the concept of resolution or “granularity” as an
aid for quickly finding a reasonable set of sample points. Remember too, that
Dy might be a pessimistic upper bound (i.e., too large) for the approximation
error, depending upon the nonlinearity.

In the case where f(x) is non-monotonic between x1 and x2, divide Dx into
smaller parts, such that f(x) is monotonic throughout each part. In practice, this
further division is not critical, because the monotonicity of f(x) is required only to
ensure that e is smaller than Dy. Therefore, if Dx is sufficiently small, Dy is a
good upper bound for the approximation error.

Specific Approach (voltage squarer) For vsqr, use the direct approach.

Note that e=Dx , which indicates that the (absolute) error of the piecewise
linear approximation depends only on the distance between two sample points.
Therefore, equal-spaced sample points yield constant approximation error.
Similarly, if the relative error should be constant, Dx should be proportional to
÷x. However, as described earlier, the approximation error is not the only thing
to consider when selecting sample points.

The value range of each independent variable consists of several parts, as
shown in the figure below. You must specify sample points for the entire
allowable region, but typically you want better accuracy (and therefore denser
sample points) in the intended region of operation. Sometimes it is desirable to
have different accuracy in several different regions in order to get better results
when x is closer to the intended region of operation. For vsqr, limit the
allowable region of operation to ±100kV. Select sample points separated by 1V
near the outer limits of the allowable region and closer together near 0V, which
gives a relative approximation error that is fairly constant.

-1

2

312 Saber® MAST Language User Guide
B-2008.09

Chapter 13: Modeling Nonlinearities
Modeling a Voltage Squarer - MAST vsqr Template
Taking all these points into account, it is clear that there is no universal
algorithm for selecting sample points. Rather, the selection depends upon
various trade-offs and often requires some experimentation.

Specifying Sample Points

The control section of a template associates sample points with an
independent variable by a sample_points(variable, sa_points) statement. The
sa_points variable is an array that describes the distribution of sample points.
Rather than requiring you to specify each sample point individually, the
sa_points array describes the sample point distribution by means of a
collection of breakpoint (bp) and increment (inc) pairs, which the simulator
interprets as shown in the following figure.

Each breakpoint (bp) marks the left end of a region of x. The actual sample
points throughout that region are separated by the distance inc.

Each (bp, inc) pair is kept in a structure, so sa_points becomes an array of
structures. For vsqr, the local declarations becomes:

struc {number bp, inc;} svin[*]

out of
limits

out of
limits

intended region
of operation

allowable region of operation

x

Value range of an independent variable

bp1 bp2

inc1 inc2...inc1 inc1 inc1... inc2 ...

Specifying sample points using breakpoints and increments
Saber® MAST Language User Guide 313
B-2008.09

Chapter 13: Modeling Nonlinearities
Modeling a Voltage Squarer - MAST vsqr Template
which declares svin to be an array of structures, where the array is of
undetermined length, and each structure holds the two values bp and inc. The
semicolon (;) is required. It introduces a logical end-of-line so that the right
brace is (syntactically) at the beginning of a new line, as required.

Sample Point Statement Syntax
The syntax for specifying a sample point statement in the control section is as
follows:

where svin is an array of (bp, inc) pairs that are specified as one of the
following:
■ A local parameter
■ An argument (in the header declarations)
■ A control section statement (within the sample_points statement itself)

The values in svin can be defined either by means of an initializer in the
declaration (used here) or separately, as described for newton steps in the
topic titled “Modeling a Simple Voltage Limiter with MAST” in a previous
chapter. As suggested in the topic titled “Understanding Sample Points”, svin
has at least three entries:
■ Two breakpoints, at 100kV and -100kV, to mark the allowable range of

operation
■ A breakpoint at 0, as required by the Saber Simulator

Thus, you can declare and initialize the sample points as shown below. Note
that the backslash (\) indicates that the next line is to be a continuation of the
current line.

Sample Point Values
Select four additional breakpoints for vin, at ±1kV and ±10V, with increment
values that start at 1 near the operational limits and decrease to 0.01 near 0.
This provides a relative approximation error that is almost constant throughout

sample_points (vin,svin)

struc {number bp, inc;} svin[*]=\

[(-100k,1),(-1k,.1),(10,.01),(0,.01),\

(10,.1),(1k,1),(100k,0)]
314 Saber® MAST Language User Guide
B-2008.09

Chapter 13: Modeling Nonlinearities
Modeling a Voltage Squarer - MAST vsqr Template
the specified value range. Following the requirement that the breakpoints be
listed in increasing order, define svin as follows:

Each pair of values between parentheses, (bp, inc), is one array element.
These values have the following meanings:
■ From -100k to -1k, and from 1k to 100k, the spacing between sample points

is 1
■ From -1k to -10, and from 10 to 1k, the spacing is 0.1
■ From -10 to 10, the spacing is 0.01
■ The first and last breakpoints determine the allowable region of operation
■ The last breakpoint marks the beginning of the right-hand “off-limits” area,

so the associated increment, while syntactically required, is not used (i.e.,
the number of breakpoints is always one greater than the number of
intervals defined)

Note:

Increment values must be non-negative.

Density of Sample Points

The Saber Simulator lets you increase the density of the sample points, that is,
reduce the size of the spaces separating them, in order to get better accuracy.
Referring to the figure above, running a simulation with the density variable set
to 1 (the default) will cause the simulator to sample the independent variable at
the sample points specified in the template. Using a different density has no
effect on the breakpoints, but the increments between breakpoints are divided
by the specified density. Thus, with a density of 2, the spacing between sample
points is half that specified in the template, and with a density of 0.2, the
spacing is five times the default.

Specifying a density greater than 1 typically increases both simulation time and
simulation accuracy. Similarly, specifying a smaller density typically decreases
both simulation time and simulation accuracy.

The simulator automatically limits the number of sample points between any

two consecutive breakpoints to 2 -1, regardless of the selected density.

[(-100k,1),(-1k,.1),(-10,.01),(0,.01),\

(10,.1),(1k,1),(100k,0)]

31
Saber® MAST Language User Guide 315
B-2008.09

Chapter 13: Modeling Nonlinearities
Default Sample Points
Default Sample Points

For any nonlinear template, the Saber Simulator uses the default breakpoints
and increments listed below for the sample points of all independent variables
that require them. There are two ways to express them, either with multiplier
prefixes (shown first, below) or in scientific notation (shown second, below).

With multiplier prefixes:

In scientific notation:

[(-1t,1meg), (-1g,1k), (-1meg,1), (-1k,1m),\

(1,1u),(1m,1n), (-1u,1p), (0,1p), (1u,1n),\

(1m,1u), (1,1m),(1k,1), (1meg,1k), (1g,1meg),\

(1t,0)]

[(-1d12,1d6), (-1d9,1d3), (-1d6,1d0), \

(-1d3,1d-3), (-1d0,1d-6), (-1d-3,1d-9), \

(-1d-6,1d-12), (0d0,1d-12), (1d-6,1d 9), \

(1d-3,1d-6), (1d0,1d-3), (1d3,1d0),\

(1d6,1d3), (1d9,1d6), (1d12,0d0)]
316 Saber® MAST Language User Guide
B-2008.09

14
14MAST Functions

It is sometimes useful to implement portions of a model as separate functions.
These functions reside in separate files outside of the template, but they are
called (invoked) from within the bjtm template.

There are three major reasons for using MAST functions:

1. You can modularize MAST code for readability and maintainability.

2. You can encapsulate MAST code for re-use (for example, use the same
MAST function call in a diode template and in a bjt template).

3. You can easily convert code from a foreign routine to a MAST function (for
example, convert a SPICE3 MOS model from a C routine to a MAST
function).

Using a MAST Function Instead of a Foreign Routine

It is possible to call a foreign routine (such as one written in C or FORTRAN)
from a template. However, it is recommended to use the MAST functions
shown in the bjtm template instead whenever possible. Using a MAST function
has the following advantages over using a foreign routine:
■ The interface between function and template is substantially easier and less

error-prone.
■ A MAST function is more easily debugged. You can use message ()

statements, or you can pass signals back to the template for plotting.
■ Porting to different computers is no longer required—the code is written in

the MAST language, which is executed on every machine by the Saber
Simulator.

■ The Saber Simulator interprets a MAST function more readily than it does a
foreign function, which generally results in greater simulation efficiency.
Saber® MAST Language User Guide 317
B-2008.09

Chapter 14: MAST Functions
Modeling the Bipolar Transistor Using MAST Functions
Modeling the Bipolar Transistor Using MAST Functions

The bjtm template shows how MAST functions can perform some of the
calculations that are included within the bjt template. The MAST functions
(residing in separate files) perform the intermediate calculations and return the
results to the template. The combination of the bjtm template and the MAST
functions have the same functionality as the original bjt template.

This topic is divided into the following subtopics:
■ Guidelines for Splitting a MAST Template into Separate Functions
■ The bjtm Template Architecture Using MAST Functions -- describes how

the functions are placed in a file with the same name as the function. In
addition, .sin is appended so that the Saber Simulator can access the
functions.

■ The bjtm Template -- shows calls to two different functions and a
“companion” template.

■ Function Call Overview - bjtm MAST Template
■ bjtm_arg Declaration Template -- shows that creating a “companion”

template is a more efficient way of providing argument and local parameter
declarations for use by the original template and any functions it calls.

■ Local Parameters Function bjtm_pars -- shows the essential parts of a
MAST function.

■ Calculated Values Function bjtm_values
318 Saber® MAST Language User Guide
B-2008.09

Chapter 14: MAST Functions
Modeling the Bipolar Transistor Using MAST Functions
Guidelines for Splitting a MAST Template into Separate
Functions

Deciding how to split a model between a template and a MAST function can be
summarized by the following general rule:

When a model is split between a template and MAST functions, declarative
parts must be in the template, while procedural parts (calculations and
assignments) can be implemented in the MAST function.

Beyond this simple rule, the following guidelines can help decide how to split
the model:
■ The template header and header declarations must be specified within the

template.
■ All parameters, val and var variables, local nodes, and extraction groups

must be declared in the template body.
■ A “companion” template can be created that declares arguments and local

parameters externally. Arguments are then referenced from this external
template in the header declarations of the original template; local
parameters are referenced from the external template in the body of the
original template. This is demonstrated in the example in the topic titled "The
bjtm Template".

This is similar to an include file used in high-level languages, such as the C
programming language.

■ The control section, netlist section, and template equations are still specified
in the template body, but they can include calls to MAST functions.

■ All assignment statements and intermediate calculations using variables
and parameters can be implemented in a MAST function.

■ Template equations must be in the template.

The bjtm Template Architecture Using MAST Functions

By implementing the guidelines described in the previous topic, the bjtm
template is largely the same as the bjt template—the only parts that changed
are the calls to the MAST functions (named bjtm_arg, bjtm_pars, and
bjt_values), which are indicated by comments in the template.
Saber® MAST Language User Guide 319
B-2008.09

Chapter 14: MAST Functions
Modeling the Bipolar Transistor Using MAST Functions
Comparing the bjtm template with the bjt template, the calls from the bjtm
template refer to the following external files:
■ bjtm_arg.sin—a “companion” template
■ bjtm_pars.sin—an external function
■ bjtm_values.sin—an external function

Although these file names are arbitrary, each file must have a .sin extension.
The following figure shows an overview of this relationship between functions
and templates. The solid lines represent function calls; the dashed lines
represent “centralized” declarations.

bjtm template

bjtm_arg

bjtm_pars

bjtm_values

Calling external functions from the bjtm template
320 Saber® MAST Language User Guide
B-2008.09

Chapter 14: MAST Functions
Modeling the Bipolar Transistor Using MAST Functions
The bjtm Template

The bjtm template including MAST function calls is shown as follows:

element template bjtm c b e = model, ic

electrical c, b, e

bjtm_arg..model model = () # ... use arguments from

... "companion" template

number ic[2]=[undef,undef]

external number temp

{ # begin template body

bjtm_arg..work work # ... use local parameters

... from “companion” template

struc {

number bp, inc;

} nv[*] = [(0,.1),(2,0)]

val v vbc, vbe, vce # declare variables

val i iec, icc, iba, ico, ir

val q qbc, qbe

electrical cp # local node

group {vbc,vbe} v # extraction groups

group {iba,ico,ir} i

group {qbc,qbe} q

parameters {

calculate thermal voltage and 4 functions of model param.

... 1’st call to MAST function

work = bjtm_pars(model,temp)

} # end of parameters section
Saber® MAST Language User Guide 321
B-2008.09

Chapter 14: MAST Functions
Modeling the Bipolar Transistor Using MAST Functions
values {

calculate basic quantities of npn and pnp trans.

vbc = v(b) - v(cp)

vbe = v(b) - v(e)

vce = v(cp) - v(e)

... 2’ond call to MAST function

(iec,qbc,icc,qbe) = bjtm_values(model,work,vbc,vbe)

calculate base, collector, and resistor currents

iba = iec/model->br + icc/model->bf

ico = icc - iec - iec/model->br

if (model->rc ~= 0) ir = (v(c) - v(cp)) / model->rc

else ir = 0

} # end values section

control_section {

if no collector resistance, collapse nodes c and cp

if (model->rc == 0) collapse(c,cp)

specify Newton steps

newton_step((vbc,vbe),nv)

initial conditions and start value

initial_condition(vbe, ic[1])

initial_condition(vce, ic[2])

start_value (vbe, 0.6)

small-signal parameters

device_type("bjtm", "example")

small_signal(ibase,current,"base current",iba)

small_signal(icoll,current,"collector current",ico)

small_signal(vbe,voltage,"base-emitter voltage", vbe)

small_signal(vbc,voltage,"base-collector voltage", vbc)

small_signal(rc,resistance,"collector resistance",\

model->rc)

} # end control_section
322 Saber® MAST Language User Guide
B-2008.09

Chapter 14: MAST Functions
Function Call Overview - bjtm MAST Template
Function Call Overview - bjtm MAST Template

The three types of function calls in the bjtm template are explained as follows:

1. The bjtm_arg template is not actually a MAST function (see the topic titled
"bjtm_arg Declaration Template"). It is a template that serves as a central
location for the declaration of arguments and local parameters of bjtm by
declaring them in model and work, which are structure parameters. The bjtm
template, the bjtm_pars function, and the bjtm_values function then use
these parameters by calling them from bjtm_arg.

This is done using the argdef operator (..), which references the model and
work parameters from bjtm_arg as follows: (Refer to the MAST Reference
Manual for information on the argdef operator.)

equations {

current at base, internal collector, and emitter

i(b->e) += iba + d_by_dt(qbe)

i(b->cp) += d_by_dt(qbc)

i(cp->e) += ico

current at collector resistor, if present

if (model->rc ~= 0) i(c->cp) += ir

} # end equations section

} # end template body

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
bjtm.sin

3 bjtm_arg..model model = ()# use local parameters

4 # from “companion” template

...

8 bjtm_arg..work work # use local parameters

9 # from “companion” template
Saber® MAST Language User Guide 323
B-2008.09

Chapter 14: MAST Functions
Function Call Overview - bjtm MAST Template
Using bjtm_arg to provide these declarations illustrates the convenience of
the modular approach. Although it is not necessary to use an additional
template like bjtm_arg, not doing so means that you must declare variables
and structures in both the calling template and in the function being called.

2. The bjtm_pars function provides values to the work parameter as the first
call from the bjtm template:

This shows the syntax for calling an external MAST function:

(variable_list) = name(argument_list)

where:

On the righthand side of the equals sign (=), the bjtm_pars function uses the
arguments from model and the external parameter temp. It computes and
returns the following values to work on the lefthand side of the equals sign:

22 # 1’st call to MAST function

23 work = bjtm_pars(model,temp)

variable_list is a comma-separated list of variables to receive the
results of the function call. If a state is returned by the
function, it must appear in a when statement. If only
one value is returned, the parentheses enclosing
variable_list must be omitted.

name is the name of the MAST function being called (for
example, bjtm_pars). The file containing this function
(for example, bjtm_pars.sin) should be in the same
directory as the calling template.

argument_list is a comma-separated list of variables passed as
arguments to the MAST function.

vt, qbe0, qbc0, vje0, vjc0
324 Saber® MAST Language User Guide
B-2008.09

Chapter 14: MAST Functions
Function Call Overview - bjtm MAST Template
These values are stored in the work structure rather than in individual
numbers as in the bjt template in order to show how structures are passed
between a template and an external MAST function. Note that model and
temp are still declared as parameters in the bjtm template.

3. The bjtm_values function computes values for currents and charges based
on whether the device is NPN or PNP. The transistor type checking is
located in the bjtm_values function. This function call appears as follows:

Notice that these calls have identical variable lists and similar argument
lists. The first argument is the model structure. The second argument is the
work structure holding the values returned by bjtm_pars. The third and
fourth arguments are the base-collector and base-emitter voltages.

On the righthand side of the equals sign (=), the bjtm_values function uses
the appropriate argument values to compute and return the following four
values on the lefthand side of the equals sign:

These variables are then used in the template equations. This function is
described more completely in the topic titled "Calculated Values Function
bjtm_values".

The remaining parts of the template are identical to the corresponding parts of
the bjt example.

30 # 2’ond call to MAST function

31 (iec,qbc,icc,qbe) = bjtm_values(model,work,vbc,vbe)

iec,qbc,icc,qbe
Saber® MAST Language User Guide 325
B-2008.09

Chapter 14: MAST Functions
Function Call Overview - bjtm MAST Template
bjtm_arg Declaration Template

The bjtm_arg template performs the actual declaration of the model argument
and local parameters used by the bjtm template, the bjtm_pars function, and
the bjtm_values function.

template bjtm_arg = model, work

the bjt model...

struc {

enum{_n, _p} type

number is=1e-16, bf=100, br=1,

cje=0, vje=.75, mje=.33,

cjc=0, vjc=.75, mjc=.33, rc = 0

} model

working parameters for local bjt calculations...

struc {

number vt,

qbe0, qbc0, vje0, vjc0

} work

{ # empty template body...

}

326 Saber® MAST Language User Guide
B-2008.09

Chapter 14: MAST Functions
Function Call Overview - bjtm MAST Template
There are three major points to note about this template:
■ Although using bjtm_arg is not strictly required, it prevents having to declare

model and work in both bjtm (the calling template) and in bjtm_pars and
bjtm_values (the functions being called). This helps avoid errors associated
with duplication and maintenance.

■ It consists solely of a header and header declarations of two structure type
parameters (model, work). These are arguments for this template that are
used for other purposes in other templates and functions. This template has
no connection points and an empty body, as shown by the empty braces at
the bottom, { }.

■ Local parameters vt, qbe0, qbc0, vje0, and vjc0 have been grouped under
a structure named work for convenience. The bjtm template then declares
all the parameters within work by referring to the declaration within bjtm_arg
as follows:

Local Parameters Function bjtm_pars

An external MAST function such as this one has some similarities to a MAST
template:
■ It has similar partitioning (header, header declarations, body).
■ It uses the same referencing techniques.
■ It resides in a file of the same name as the function and has the .sin

extension (for example, bjtm_pars.sin). Although not required, it is good
practice to make this file available to the Saber Simulator the same way that
templates are.

8 bjtm_arg..work work # use local parameters

9 # from “companion” template
Saber® MAST Language User Guide 327
B-2008.09

Chapter 14: MAST Functions
Function Call Overview - bjtm MAST Template
Each section of this function is described in the following topics, using the
following bjtm_pars function as an example:
■ Function Header
■ Header Declaration
■ Function Body

Function Header
As is the case for a template, the function header is the first noncommented
line of the function. The header identifies the function, specifies the output from
the function, assigns a name to the function, and specifies the input to the
function:

function (work)= bjtm_pars(model,temp)

bjtm_arg..work work # output from this function

bjtm_arg..model model # input to this function

number temp # input to this function

{

The following include file declares math_boltz constant

(is k in bjt template), the math_charge constant

(is qe in bjt template), and the math_ctok constant

<consts.sin

Calculation of thermal voltage and 4 other quantities

work->vt = math_boltz * (temp + math_ctok) / math_charge;

work->qbe0 = model->cje * model->vje / (1.0 - model->mje);

work->qbc0 = model->cjc * model->vjc / (1.0 - model->mjc);

work->vje0 = 2.0 * model->vje / model->mje;

work->vjc0 = 2.0 * model->vjc / model->mjc;

}

1 function (work) = bjtm_pars(model,temp)
328 Saber® MAST Language User Guide
B-2008.09

Chapter 14: MAST Functions
Function Call Overview - bjtm MAST Template
This line from bjtm_pars shows the general syntax for the header of a MAST
function (note the similarity to the call from the template):

where:

The bjtm_pars function uses the arguments from model along with the external
parameter temp to compute and return the following five values:

These values are stored in the work structure rather than as individual
numbers. This structure is then passed to the calling template, bjtm.

Header Declaration
The following line in the bjtm_pars function declares the output parameter that
appears in the variable_list of the function header:

 This is followed by declarations for the input parameters appearing in
argument_list of the function header:

Note that the bjtm_arg template is referenced again in lines 3 and 4 to obtain
work and model, eliminating the need to enter all the parameters that they

function (variable_list) = name(argument_list)

function a reserved word that identifies the contents of this file as
a MAST function.

variable_list a comma-separated list of parameters that receive the
output of the function for passing to the calling template.

name the name of the MAST function being called (bjtm_pars).

argument_list a comma-separated list of parameters supplied as input
to the function by the calling template.

vt, qbe0, qbc0, vje0, vjc0

3 bjtm_arg..work work

4 bjtm_arg..model model

5 number temp
Saber® MAST Language User Guide 329
B-2008.09

Chapter 14: MAST Functions
Function Call Overview - bjtm MAST Template
contain. The declaration for temp allows a simple numeric value to be passed
into the function.

Function Body
The body begins with a left brace, {, and ends with a right brace, }. The first line
within the body includes the consts.sin file (file inclusion is denoted by the <).
This is a standard include file provided with the Saber Simulator that contains
several commonly used constants for this function to perform calculations:

The next five lines perform calculations for thermal voltage and junction
characteristics. The results are assigned to the individual parameters in work,
which is provided as a single output parameter from this function:

Calculated Values Function bjtm_values

The bjtm_values function takes the values in work (obtained from bjtm_pars) to
compute currents and charges that will appear in the template equations.
Although a little more elaborate than bjtm_pars, it has the same general

10 <consts.sin

14 work->vt = math_boltz * (temp + math_ctok) / math_charge;

15 work->qbe0 = model->cje * model->vje / (1.0 - model->mje);

16 work->qbc0 = model->cjc * model->vjc / (1.0 - model->mjc);

17 work->vje0 = 2.0 * model->vje / model->mje;

18 work->vjc0 = 2.0 * model->vjc / model->mjc;
330 Saber® MAST Language User Guide
B-2008.09

Chapter 14: MAST Functions
Function Call Overview - bjtm MAST Template
characteristics as described in the topic titled "Local Parameters Function
bjtm_pars".

function (iec,qbc,icc,qbe) = bjtm_values(model,work,vbc,vbe)

val i iec, icc # output from function

val q qbc, qbe # output from function

bjtm_arg..model model # input to function

bjtm_arg..work work # input to function

val v vbc, vbe # input to function

{

calculate basic quantities of npn and pnp trans.

if (model->type == _n) {

iec = model->is * (limexp(vbc/work->vt) - 1)

icc = model->is * (limexp(vbe/work->vt) - 1)

}

else {

iec = -model->is * (limexp(-vbc/work->vt) - 1)

icc = -model->is * (limexp(-vbe/work->vt) - 1)

}

Saber® MAST Language User Guide 331
B-2008.09

Chapter 14: MAST Functions
Function Call Overview - bjtm MAST Template
calculate charges

if(model->type == _n) {

if (vbc<0) {

qbc = work->qbc0*(1-((1-vbc/model->vjc)**(1-model->mjc)))

}

else {

qbc = model->cjc*vbc*(1 + vbc/work->vjc0)

}

if (vbe<0) {

qbe = work->qbe0*(1-((1-vbe/model->vje)**(1-model->mje)))

}

else {

qbe = model->cje*vbe*(1 + vbe/work->vje0)

}

} # end “if type _n” condition

else { # if model is not of type _n

if(vbc > 0) {

qbc = -work->qbc0*(1-((1+vbc/model->vjc)**(1-model->mjc)))

}

else {

qbc = model->cjc*vbc*(1-vbc/work->vjc0)

}

if(vbe > 0) {

qbe = -work->qbe0*(1-((1+vbe/model->vje)**(1-model->mje)))

}

else {

qbe = model->cje*vbe*(1-vbe/work->vje0)

}

} # end “if not type _n” condition

}

332 Saber® MAST Language User Guide
B-2008.09

Chapter 14: MAST Functions
Function Body
The following topics describe each section of the bjtm_values function in more
detail:
■ Function Header
■ Header Declaration
■ Function Body

Function Header
The header for bjtm_values shows that the output consists of individual
parameters (iec, qbc, icc, qbe), and the input contains both structures (model,
work) and individual parameters (vbc, vbe):

Header Declaration
The following five lines from the bjtm_values function declare the input and
output parameters appearing in the header:

Note that the bjtm_arg template is referenced once again to obtain work and
model, eliminating the need to enter all the parameters that they contain. The
declarations for the input and output vals duplicate their declarations in the
calling template (bjtm).

Function Body

The body of the bjtm_values function template consists of the same equations
for charges and currents as found in the bjt template. The only difference is that
in the bjtm template, the following arguments are part of the work structure.

1 function(iec,qbc,icc,qbe)=bjtm_values(model,work,vbc,vbe)

3 val i iec, icc # output from function

4 val q qbc, qbe # output from function

5 bjtm_arg..model model # input to function

6 bjtm_arg..work work # input to function

7 val v vbc, vbe # input to function
Saber® MAST Language User Guide 333
B-2008.09

Chapter 14: MAST Functions
Function Body
Therefore, these arguments are referenced in this function using the structure
name work followed by -> and then the argument name (such as work->vt).

The body of the bjtm_values function is as follows:

vt, qbe0, qbc0, vje0, vjc0

8 { # start template body

9 # calculate basic quantities of npn and pnp trans.

10 if (model->type == _n) {

11 iec = model->is * (limexp(vbc/work->vt) - 1)

12 icc = model->is * (limexp(vbe/work->vt) - 1)

13 }

14 else {

15 iec = -model->is * (limexp(-vbc/work->vt) - 1)

16 icc = -model->is * (limexp(-vbe/work->vt) - 1)

17 }
334 Saber® MAST Language User Guide
B-2008.09

Chapter 14: MAST Functions
Function Body
18 # calculate charges

19 if(model->type == _n) {

20 if (vbc<0) {

21 qbc = work->qbc0*(1-((1-vbc/model->vjc)**(1-model-
>mjc)))

22 }

23 else {

24 qbc = model->cjc*vbc*(1 + vbc/work->vjc0)

25 }

26 if (vbe<0) {

27 qbe = work->qbe0*(1-((1-vbe/model->vje)**(1-model-
>mje)))

28 }

29 else {

30 qbe = model->cje*vbe*(1 + vbe/work->vje0)

31 }

32 } # end “if type _n” condition

33 else { # if model is not of type _n

34 if(vbc > 0) {

35 qbc = -work->qbc0*(1-((1+vbc/model->vjc)**(1-model-
>mjc)))

36 }

37 else {

38 qbc = model->cjc*vbc*(1-vbc/work->vjc0)

39 }

40 if(vbe > 0) {

41 qbe = -work->qbe0*(1-((1+vbe/model->vje)**(1-model-
>mje)))

42 }

43 else {

44 qbe = model->cje*vbe*(1-vbe/work->vje0)

45 }

46 } # end “if not type _n” condition

47 }
Saber® MAST Language User Guide 335
B-2008.09

Chapter 14: MAST Functions
Function Body
336 Saber® MAST Language User Guide
B-2008.09

15
15Foreign Routines in MAST

This topic, which shows how to use foreign routines as extensions of the MAST
language, is divided into the following subtopics:
■ Using a FORTRAN Function in a MAST Template -- shows a foreign routine

that returns the factorial of its argument. Because it returns a single value,
this routine can be used in a template wherever an intrinsic function can be
used (if properly declared).

■ Modeling the Bipolar Transistor Using Foreign Routines -- shows the bipolar
transistor model, implemented here partly in the MAST language and partly
in C. It demonstrates a more general use of foreign routines.

■ Implementing a MAST Foreign Routine in C -- shows the calling interface for
foreign routines written in C; shows the mechanism for passing structures,
enumerated types, and arrays, both to and from the foreign routine; shows
the implementation and usage of multi-purpose foreign routines that are
called with a varying argument list and return different values for different
calls; and shows guidelines for splitting a component model into a MAST
template and a foreign routine.

Introduction

It is sometimes useful to implement part of a model in a routine that has been
written in a general-purpose programming language, such as C or FORTRAN,
rather than in the MAST language. One such case is when the model requires
operations that are not supported in the MAST language, such as certain
mathematical functions (e.g., Bessel functions). Another is when a model
implemented for another simulator has to be adapted for use with the Saber
Simulator. The MAST language includes a well-defined way of calling such
foreign routines, which can be written in any programming language provided
that they can be called from a FORTRAN environment.

A foreign routine requires an appropriate compiler (such as C) and a significant
amount of interface between the MAST language and the language of the
Saber® MAST Language User Guide 337
B-2008.09

Chapter 15: Foreign Routines in MAST
Using a FORTRAN Function in a MAST Template
foreign routine. For these reasons, it is recommended to use a MAST function
instead of a foreign routine whenever possible.

Using a FORTRAN Function in a MAST Template

The factorial, n!, of a positive integer, n, is defined as the product of all positive
integers from 1 through n:

n! = 1X2X*3X...X(n-1)Xn

Therefore, a function computing the factorial (fact) has one argument and
returns one value as shown in the following UNIX example:

The implementation of the FORTRAN routine for this is explained in the
following topics:
■ Writing the FORTRAN Routine -- shows the following concepts:

• Defining the header of the factorial routine

• Getting input in the first element of the in array

• Returning results in the first element of the out array

• Using c.. to indicate comments (which are ignored by the routine)

subroutine fact(in,nin,ifl,nifl,out,nout,ofl,nofl,undef,ier)

c..header declarations

integer nin, ifl(*), nifl, nout, ofl(*), nofl, ier

double precision in(*), out(*), undef

c..local declarations

integer n, i

c..convert input value to integer (ignore fractions)

n = in(1)

c..compute factorial and store in out(1)

out(1) = 1

do 10 i=1,n

10 out(1) = out(1)*i

c..return to template

return

end
338 Saber® MAST Language User Guide
B-2008.09

Chapter 15: Foreign Routines in MAST
Using a FORTRAN Function in a MAST Template
■ Making the routine available to the Saber Simulator
■ Declaring and calling the routine from a template

Writing the FORTRAN Routine

The way to call a foreign routine from the MAST language is through a unique
calling interface that has two parts:
■ The header of the foreign routine
■ The mechanism for passing values between MAST templates and the

foreign routine

The foreign routine header is identical for all foreign routines on a given
platform and is independent of the way the routine is used in a MAST template.
For a foreign routine, the UNIX header is as follows (an asterisk, *, indicates
unlimited array size):

The header for Windows NT is shown as follows:

where:

subroutine name(in,nin,ifl,nifl,out,nout,ofl,nofl,undef,ier)

integer nin, ifl(*), nifl, nout, ofl(*), nofl, ier

double precision in(*), out(*), undef

subroutine
name(inp,ninp,ifl,nifl,out,nout,ofl,nofl,aundef,ier)

!MS$ATTRIBUTES DLLEXPORT :: name

integer ninp,nifl,nout(2),nofl,ifl(*),ofl(*),ier

real*8 inp(*),out(*),aundef

name is the user-selected name of the foreign routine. From MAST
templates, the routine must be called by this name. The name must
be unique and must be a valid name in both the MAST language and
FORTRAN. For the factorial function, let name be fact.
Saber® MAST Language User Guide 339
B-2008.09

Chapter 15: Foreign Routines in MAST
Using a FORTRAN Function in a MAST Template
The remaining arguments in the foreign routine header, namely ifl, nifl, ofl, nofl,
and ier, are reserved for future use. Although currently unused, they must be
present in the foreign routine header.

The mechanism used to pass the values of variables from a MAST template to
a foreign routine depends upon the type of the variables, as declared in the
template. Similarly, the routine must return its results in a format that depends
on the type of the variables that receive those results. It is therefore important
to understand that a foreign routine and the templates using it must agree in
the number and the type of both the variables passed to the routine (its
arguments) and the results of the foreign routine. Here, the mechanism is
described only to the extent that it is used in the examples—refer to the MAST
Reference Manual for more information on the argument-passing mechanism.

According to its intended use, the factorial function has a single numeric value
as input and returns a single numeric value. Several types of MAST variables
are represented by a single numeric value: number (both template arguments
and local parameters), var variables, ref variables, val variables, and state

in is a double-precision array containing the arguments from the call to
the foreign routine. These arguments, when received by the foreign
routine, are packed. Arguments of certain types are encoded as well.
The encoding scheme for arguments is further described in the
MAST Reference Manual.

nin is an integer containing the number of elements in the in array. It is
often different from the number of arguments passed to the foreign
routine in the MAST template.

out is a double-precision array into which the foreign routine must place
the values to be passed back to the MAST template. Depending upon
the data type of the results (as declared in the calling template), the
routine might have to encode certain values. The out array is
guaranteed to be large enough to hold the properly-encoded results,
except when the routine is returning a variable-length array to the
template. Information about returning variable-length arrays is given
in the MAST Reference Manual.

nout is an integer containing the size of the out array.

undef is a double-precision number indicating an undefined quantity. Its
value is identical to the undef constant in the MAST language.
Foreign routines can use it to interpret input values or to return
undefined values.
340 Saber® MAST Language User Guide
B-2008.09

Chapter 15: Foreign Routines in MAST
Using a FORTRAN Function in a MAST Template
variables. In the argument-passing mechanism all are handled identically: if a
variable of any of the listed types is passed as the only argument to the foreign
routine in a template, the foreign routine receives its value in the first element of
the in array, and nin is 1. Similarly, if the foreign routine returns a single value
of one of the types listed, nout has a value of 1, the out array has length 1, and
the routine must return its result in the first element of the out array.

Declaring and Calling the Routine From a Template

Like any other user-defined quantity in the MAST language, a foreign routine
must be declared in the calling template before being used.

You declare a foreign routine in the template body in either of the following two
ways, depending upon how many values it returns:

A routine returning a single numeric value should be declared as:

You can use such a routine wherever you can use MAST intrinsic functions,
even in expressions. This means you can use them anywhere in the template
body including in the template equations, in the netlist section, in when
statements, and even in a local declaration to initialize a number.

A routine returning multiple values must be declared as:

An example of such a routine is described in the topic titled "Modeling the
Bipolar Transistor Using Foreign Routines".

Because this factorial routine always returns a single value, it appears as a
local declaration of any template that calls it, as follows:

Having done this, you can compute the factorial of a given positive integer
anywhere in the template. For example, you could include the following
statement in a template:

foreign number (name)

foreign (name)

foreign number fact()

nfact = fact(n)
Saber® MAST Language User Guide 341
B-2008.09

Chapter 15: Foreign Routines in MAST
Modeling the Bipolar Transistor Using Foreign Routines
where nfact and n must be declared as numeric values (i.e., as number
variables, val variables, or state variables). Note that n can also be a var
variable or a ref variable. You could also use the fact function in an expression
to define a 1.2k ohm resistor by writing the netlist entry as follows:

Modeling the Bipolar Transistor Using Foreign Routines

This topic presents a more general way to use foreign routines with a MAST
template. As an example, it uses the bipolar transistor model (bjt) as described
in the topic “Ebers-Moll MAST Model for the Bipolar Transistor”. The goal of
this example is to write a MAST template and a foreign routine that implement
the model in such a way that the combination has the same functionality as the
bjt template. Initial conditions, start values, and small-signal parameters are
removed from the new template for brevity.

This new template (bjtf) and its foreign routine are such that the model contains
only one-dimensional nonlinearities, which optimizes its speed.

This topic is divided into the following subtopics:
■ Splitting Functionality Between a MAST Template and a Foreign Function
■ Modifying the BJT Template to Use a Foreign Routine
■ General Foreign Function Call Syntax
■ Calling the Foreign Routines

Splitting Functionality Between a MAST Template and a Foreign
Function

Unlike the example in the topic titled "Using a FORTRAN Function in a MAST
Template" (which essentially added another mathematical function to the
MAST language), deciding how to split a model between a MAST template and
a foreign routine is not trivial.

r.1 a b = 10 * fact(5)
342 Saber® MAST Language User Guide
B-2008.09

Chapter 15: Foreign Routines in MAST
Modeling the Bipolar Transistor Using Foreign Routines
Deciding how to split a model between a template and a MAST function can be
summarized by the following general rule:

When a model is split between a template and a foreign function, declarative
parts must be in the template, while procedural parts (calculations and
assignments) can be implemented in the foreign function.

Beyond this simple rule, the following guidelines can help decide how to split
the model:
■ The template header and header declarations must be specified entirely

within the MAST template.
■ The control section, values section, parameters section, netlist section, and

template equations must be specified in the MAST template, but they can
include calls to foreign routines that return a single numeric value. The
factorial routine from the topic titled "Using a FORTRAN Function in a MAST
Template" is an example of such a routine.

■ The local declarations section of the template must include declarations of
all variables used in the template. Specifically, it must include all
parameters, val variables, var variables, local nodes, extraction groups, and
foreign routine names.

■ Messages and error handling should be done in the template, because the
functionality of the MAST error(), warning(), and message() functions is not
directly available in foreign routines.

■ All assignment statements and intermediate calculations using variables
and parameters can be implemented in a foreign routine.

■ Any val variable defined by a foreign routine call is considered to be a
nonlinear function of all the val variables or system variables passed as
arguments to the foreign routine.

This fact leads to the following rules:

• val variables that are linear functions of system variables should be
defined in the template.

• val variables defined by foreign routine calls should, if possible, be
grouped according to how they depend upon other val variables. It is
typically more efficient to call a foreign routine several times with a small
number of val variables as arguments (that is, with low dimensionality)
than to call it once with all val variables (thereby creating a high-order
nonlinear function). This rule is illustrated later in this chapter.

• val variables defined only for extraction purposes can be defined either
in the template or in foreign routines.
Saber® MAST Language User Guide 343
B-2008.09

Chapter 15: Foreign Routines in MAST
Modeling the Bipolar Transistor Using Foreign Routines
Modifying the BJT Template to Use a Foreign Routine

The bjtf template (listed below) is largely the same as bjt—the only parts that
changed were the calls to the foreign routine (named bjt), which are indicated
by comments.

Unlike the bjtm template, which uses calls to two different MAST functions plus
an include file, all calls in the bjtf template are made to the same foreign routine
(bjt).

element template bjtf c b e = model, ic

electrical c, b, e

struc { # the transistor model

enum {_n, _p} type

number is=1e-16, bf=100, br=1, \

cje=0, vje=.75, mje=.33, \

cjc=0, vjc=.75, mjc=.33, rc=0

} model = ()

number ic[2]=[undef,undef]

external number temp

{ # begin template body

declare local param., vals, and extraction groups

number work[5]

struc {number bp,inc;} \

nv[*] = [(0,.1),(2,0)]

val v vbc, vbe, vce

val i iec, icc, iba, ico, ir

val q qbc, qbe

electrical cp # local node

group {vbc,vbe} v #...extraction groups

group {iba,ico, ir} i

group {qbc,qbe} q

foreign bjt # ... foreign routine
344 Saber® MAST Language User Guide
B-2008.09

Chapter 15: Foreign Routines in MAST
Modeling the Bipolar Transistor Using Foreign Routines
control_section {

If no collector res., collapse nodes c and cp

if(model->rc == 0) collapse(c,cp)

specification of sample points and newton steps

newton_step((vbc,vbe),nv)

initial conditions, start values, and

small-signal parameters removed for brevity

}

Saber® MAST Language User Guide 345
B-2008.09

Chapter 15: Foreign Routines in MAST
Modeling the Bipolar Transistor Using Foreign Routines
parameters {

Calculate thermal voltage and 4 functions of model

parameters. They are stored in a work vector

work = bjt(1,model,temp) #...foreign call

}

values {

vbc = v(b,cp)

vbe = v(b,e)

vce = v(cp,e)

calculate currents and charges

if(model->type == _n) {

(iec,qbc) = bjt(2,model,work,vbc) #...foreign call

(icc,qbe) = bjt(3,model,work,vbe) #...foreign call

}

else {

(iec,qbc) = bjt(2,model,work,-vbc) #...foreign call

(icc,qbe) = bjt(3,model,work,-vbe) #...foreign call

}

#calculate base, collector, and resistor currents

iba = iec/model->br + icc/model->bf

ico = icc - iec - iec/model->br

if (model->rc ~= 0) ir = (v(c,cp)) / model->rc

else ir = 0

} # end of values section
346 Saber® MAST Language User Guide
B-2008.09

Chapter 15: Foreign Routines in MAST
Modeling the Bipolar Transistor Using Foreign Routines
The foreign function calls are described in the following topics:
■ General Foreign Function Call Syntax
■ Calling the Foreign Routines

General Foreign Function Call Syntax

All of the foreign routine calls in the bjtf template use the syntax of the following
general foreign routine call:

where:

equations {

current at base, internal collector, and emitter

i(b->e) += iba + d_by_dt(qbe)

i(b->cp) += d_by_dt(qbc)

i(cp->e) += ico

current at collector resistor, if present

if (model->rc ~= 0) i(c->cp) += ir

} # end of equations section

} # end of template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
bjtf.sin

(variable_list) = name(argument_list)

variable_list is a comma-separated list of variables to receive the results of
the routine call. If a state is returned by the routine, it must
appear in a when statement. If only one value is returned by the
foreign routine, the parentheses enclosing variable_list are
optional.

name is the name of the foreign routine to call.
Saber® MAST Language User Guide 347
B-2008.09

Chapter 15: Foreign Routines in MAST
Modeling the Bipolar Transistor Using Foreign Routines
Calling the Foreign Routines

Note that the bjtf template contains the following declaration and calls to the
foreign routine:

1. The bjt routine is declared locally as a foreign function:

This declaration indicates that the bjt routine may return more than one
value, and that the type and number of returned values might differ for
different calls. In fact, the bjt routine returns an array of length five for the
first call, but it returns a pair of vals (that is, a pair of simple numeric values)
for the second and third calls.

2. The first call to the bjt foreign routine is:

The first argument of the call to bjt (1) identifies the first task to be
performed. This is necessary because this same routine is called, with
different arguments, further down in the template.

The second and third arguments (model, temp) are the model argument and
the system temperature (temp). Note that model and temp are still declared
as parameters in the template.

The values of model and temp are used to compute and return the following
five values that are computed in bjt:

argument_list is a comma-separated list of variables passed as arguments to
the foreign routine.

23 foreign bjt

35 work = bjt(1, model, temp)

vt, qbe0, qbc0, vje0, vjc0
348 Saber® MAST Language User Guide
B-2008.09

Chapter 15: Foreign Routines in MAST
Implementing a MAST Foreign Routine in C
These values are stored in the work array, rather than in individual numbers,
to show how arrays are passed between templates and foreign routines.
This is described in the topic "Implementing a MAST Foreign Routine in C".

3. The calls to the bjt routine in the following lines are made to compute
currents and charges:

Although all bjtf template currents and charges could be computed in one
routine call, it is preferable to call the routine twice—first for the iec, qbc pair,
second for the icc, qbe pair.

According to the above guidelines, all four of these val variable are
interpreted as one-dimensional nonlinear functions of vbc or vbe. If all four
val variables were computed in one foreign routine call, they would be
considered two-dimensional nonlinear functions of vbc and vbe, which
would be less efficient for simulation.

Notice that the second and third routine calls have similar arguments. The
first tells the bjt routine whether the base-collector or the base-emitter
characteristics have to be computed. The second argument is the model
structure. The third argument is the work vector holding the values returned
by the first call. The fourth argument is the base-collector or base-emitter
voltage.

The remaining parts of the template are identical to the corresponding parts of
the bjt template described in later topics and are therefore not discussed here.

Implementing a MAST Foreign Routine in C

This topic describes how to implement the bjt routine as a C language routine.
The calling interface is functionally identical to the one described in the topic
"Using a FORTRAN Function in a MAST Template" for FORTRAN routines, as

43 if(model->type == _n) {

44 (iec,qbc) = bjt(2,model,work,vbc)

45 (icc,qbe) = bjt(3,model,work,vbe)

46 }

47 else {

48 (iec,qbc) = bjt(2,model,work,-vbc)

49 (icc,qbe) = bjt(3,model,work,-vbe)

50 }
Saber® MAST Language User Guide 349
B-2008.09

Chapter 15: Foreign Routines in MAST
Implementing a MAST Foreign Routine in C
are the meaning and usage of arguments. The following shows a UNIX routine
format:

The following shows a Windows NT routine format:

In a Windows NT environment, the C routine name must be entered in upper-
case characters.

Some systems require name to have a trailing underscore (_), in order for the
routine to be callable from a FORTRAN environment, as the MAST language
requires. This topic is divided into the following subtopics:
■ Defining Template Arguments
■ First Call—Setting Up Return Parameters
■ Second and Third Calls—Performing Calculations
■ Complete BJT C Routine

Defining Template Arguments

The factorial function example in the topic "Using a FORTRAN Function in a
MAST Template" shows how a single numeric argument is passed to the
foreign routine. If there are multiple arguments, the process is similar, except
that arguments must appear in a particular order, and each argument occupies
a specific number of places in the in or out array.

To improve the readability of the routine and reduce the possibility of errors,
you should define a name for each entry in the in and out arrays. Choose
names that suggest the purposes of the quantities passed to and from the
routine.

name(in, nin, ifl, nifl, out, nout, ofl, nofl, undef, ier)

int *nin, *ifl, *nifl, *nout, *ofl, *nofl, *ier;

double *in, *out, *undef;

__declspec(dllexport) void name(double* inp,long*

ninp,long* ifl,long* nifl,double* out,long* nout,long* ofl,

long* nofl,double* aundef,long* ier)

{

}

350 Saber® MAST Language User Guide
B-2008.09

Chapter 15: Foreign Routines in MAST
Implementing a MAST Foreign Routine in C
The first argument is a single number telling the foreign routine what to do. It
can have any of the values 1, 2, and 3. This argument is passed to the foreign
routine as the first element of the in array, that is, in in[0]. (Unlike FORTRAN,
arrays in C start with element 0.) The corresponding definitions are as follows:

The second argument is the model structure. A structure is passed to and from
foreign routines by passing each member of the structure as a separate
parameter, in the order in which they are declared in the structure. The first
member of the model structure is the model type, which is of type enum. An
enum is passed as a single number, which is 1 if the value of the variable is first
in the list of possible values, 2 if the value is second in the list, etc. In the
declaration of the model type, note that _n (for an npn transistor) is encoded as
1, and _p is encoded as 2. All other members of the model structure are
numbers, which can be handled directly. Therefore, the definitions for the
model structure are as follows:

4 #define JOB in[0]

5 #define PARAMETERS 1

6 #define BC_CHARACTERISTICS 2

7 #define BE_CHARACTERISTICS 3

8 #define MODEL_TYPE in[1]

9 #define _N 1 /* npn */

10 #define _P 2 /* pnp */

11 #define MODEL_IS in[2]

12 #define MODEL_BF in[3]

13 #define MODEL_BR in[4]

14 #define MODEL_CJE in[5]

15 #define MODEL_VJE in[6]

16 #define MODEL_MJE in[7]

17 #define MODEL_CJC in[8]

18 #define MODEL_VJC in[9]

19 #define MODEL_MJC in[10]

20 #define MODEL_RC in[11]
Saber® MAST Language User Guide 351
B-2008.09

Chapter 15: Foreign Routines in MAST
Implementing a MAST Foreign Routine in C
In addition, the system temperature, which is a local parameter is defined as
follows:

The rest of the definitions depend on the calls to the foreign routine, described
in the next topics.

First Call—Setting Up Return Parameters

As its result, the new bjtf template returns an array, of length 5, called work.
Arrays are passed to and from foreign routines in two parts, the array size and
the array contents. The array size is a single number, and each array element
takes as many places as a variable of the same type would. The work array
consists of five numbers, so it needs six places in the out array.

Each array element has been given a name that indicates its use in the
following lines:

The P in each name stands for parameters. You must distinguish these work
values, which are returned from the bjt routine, from work values for the second
and third calls (described in the next topic), which are passed to the bjt routine.

Note that, in order to compute thermal voltage, the values of Boltzmann’s
constant and the electron charge must also be included as follows:

21 #define TEMP in[12]

24 #define WORK_P_SIZE out[0]

25 #define WORK_P_VT out[1]

26 #define WORK_P_QBE0 out[2]

27 #define WORK_P_QBC0 out[3]

28 #define WORK_P_VJE0 out[4]

29 #define WORK_P_VJC0 out[5]

51 #define K 1.381e-23 /*Boltzmann's constant */

52 #define QE 1.602e-19 /*electron charge */
352 Saber® MAST Language User Guide
B-2008.09

Chapter 15: Foreign Routines in MAST
Implementing a MAST Foreign Routine in C
The first part of implementing the first call to the bjt routine is a straightforward
translation of the intermediate calculations of vt, qbe0, qbc0, vje0, and vjc0
(from the original bjt template) into the C language:

The second part consists of defining the size of the work array as follows:

It is important to define this size and to make it identical to the array size as
declared in the template. If omitted, the size will be undefined, and the routine
call will not have the expected effect.

Second and Third Calls—Performing Calculations

The second and third calls to this routine both have the work vector as their
third argument. The work vector occupies the six positions following the model
structure. (TEMP is not present in these calls):

75 if (JOB == PARAMETERS) {

76 /* Calculate thermal voltage and four other quant. */

77 WORK_P_VT = K * (TEMP + 273.15) / QE;

78 WORK_P_QBE0 = MODEL_CJE * MODEL_VJE / (1.0 - MODEL_MJE);

79 WORK_P_QBC0 = MODEL_CJC * MODEL_VJC / (1.0 - MODEL_MJC);

80 WORK_P_VJE0 = 2.0 * MODEL_VJE / MODEL_MJE;

81 WORK_P_VJC0 = 2.0 * MODEL_VJC / MODEL_MJC;

83 /* Define the array size */

84 WORK_P_SIZE = 5;

85 }

32 #define WORK_V_SIZE in[12]

33 #define WORK_V_VT in[13]

34 #define WORK_V_QBE0 in[14]

35 #define WORK_V_QBC0 in[15]

36 #define WORK_V_VJE0 in[16]

37 #define WORK_V_VJC0 in[17]
Saber® MAST Language User Guide 353
B-2008.09

Chapter 15: Foreign Routines in MAST
Implementing a MAST Foreign Routine in C
Note that these definitions for the elements in the work array are similar to the
ones given in the first call, except that the work array now appears in the in
array. They are distinguished by the V in each name, which stands for values.

The second call computes the iec, qbc pair as a function of vbc. Therefore, vbc
is an additional input, and iec and qbc are outputs of the routine.

The code calculating both iec and qbc is again a straightforward translation into
the C language of the corresponding calculations from the original bjt template
as follows:

The only difference is the exp() function of the C language is called instead of
the limexp() function of the MAST language.

41 #define VBC in[18]

42 #define IEC out[0]

43 #define QBC out[1]

86 else if (JOB == BC_CHARACTERISTICS) {

87 /* Calculation of iec and qbc from vbc */

88 IEC = MODEL_IS * (exp(VBC / WORK_V_VT) - 1.0);

89 if (VBC < 0.0) {

90 QBC=WORK_V_QBC0 *

91 (1.0 - pow(1.0 - VBC/MODEL_VJC, 1.0 - MODEL_MJC));

92 }

93 else {

94 QBC = MODEL_CJC * VBC * (1.0 + VBC / WORK_V_VJC0);

95 }

96 if (MODEL_TYPE == _P) {

97 IEC = -IEC;

98 QBC = -QBC;

99 }

100 }
354 Saber® MAST Language User Guide
B-2008.09

Chapter 15: Foreign Routines in MAST
Implementing a MAST Foreign Routine in C
The third call is very similar to the second call, calculating icc and qbe:

This concludes the detailed description of the bjt routine and the argument-
passing mechanism. Further information, including how foreign routines can
return variable-length arrays, is given in the MAST Reference Manual.

47 #define VBE in[18]

48 #define ICC out[0]

49 #define QBE out[1]

86 else if (JOB == BE_CHARACTERISTICS) {

87 /* Calculation of icc and qbe from vbc */

88 ICC = MODEL_IS * (exp(VBE / WORK_V_VT) - 1.0);

89 if (VBE < 0.0) {

90 QBE=WORK_V_QBE0 *

91 (1.0 - pow(1.0 - VBE/MODEL_VJE, 1.0 - MODEL_MJE));

92 }

93 else {

94 QBE = MODEL_CJE * VBE * (1.0 + VBE / WORK_V_VJE0);

95 }

96 if (MODEL_TYPE == _P) {

97 ICC = -ICC;

98 QBE = -QBE;

99 }

100 }
Saber® MAST Language User Guide 355
B-2008.09

Chapter 15: Foreign Routines in MAST
Implementing a MAST Foreign Routine in C
Complete BJT C Routine

The following is a listing of the complete bjt routine, written in the C language.

/* Define names for the input and output of the foreign*/

/* routine. First the part that is common to all usage:*/

/* result = bjt(job, model...) */

#define JOB in[0]

#define PARAMETERS 1

#define BC_CHARACTERISTICS 2

#define BE_CHARACTERISTICS 3

#define MODEL_TYPE in[1]

#define _N 1 /* npn */

#define _P 2 /* pnp */

#define MODEL_IS in[2]

#define MODEL_BF in[3]

#define MODEL_BR in[4]

#define MODEL_CJE in[5]

#define MODEL_VJE in[6]

#define MODEL_MJE in[7]

#define MODEL_CJC in[8]

#define MODEL_VJC in[9]

#define MODEL_MJC in[10]

#define MODEL_RC in[11]

#define TEMP in[12] /* local parameter */
356 Saber® MAST Language User Guide
B-2008.09

Chapter 15: Foreign Routines in MAST
Implementing a MAST Foreign Routine in C
/* Define names for 1st call */

/* work = bjt(1, model, temp) */

#define WORK_P_SIZE out[0]

#define WORK_P_VT out[1]

#define WORK_P_QBE0 out[2]

#define WORK_P_QBC0 out[3]

#define WORK_P_VJE0 out[4]

#define WORK_P_VJC0 out[5]

/* Define names for 2nd and 3rd calls */

/* result = bjt(job, model, work,...) */

#define WORK_V_SIZE in[12]

#define WORK_V_VT in[13]

#define WORK_V_QBE0 in[14]

#define WORK_V_QBC0 in[15]

#define WORK_V_VJE0 in[16]

#define WORK_V_VJC0 in[17]

/* Define names for calculation of base/collector charac. */

/* (iec, qbc) = bjt(2, model, work, vbc) */

#define VBC in[18]

#define IEC out[0]

#define QBC out[1]

/* Define names for calculation of base/emitter charac. */

/* (icc, qbe) = bjt(3, model, work, vbe) */

#define VBE in[18]

#define ICC out[0]

#define QBE out[1]
Saber® MAST Language User Guide 357
B-2008.09

Chapter 15: Foreign Routines in MAST
Implementing a MAST Foreign Routine in C
/* Other defines */

#define K 1.381e-23 /* Boltzmann`s constant */

#define QE 1.602e-19 /* electron charge */

/*---*/

/*The following two include statements are

system-provided files used to declare input/output

channels and the exp() and pow() mathematical functions*/

#include <stdio.h>

#include <math.h>

#include “saberApi.h” /* Specify the complete path here to

 “<install_home>/include/saberApi.h” */

#if defined(_MSC_VER)

#define bjt BJT

#endif

/*The following line works for SunOS 5.5.1 - 5.6 platforms

void bjt_(double*in, long*nin, long*ifl, long*nifl, */

/* The following line works for HP platforms */

void bjt(double*in, long*nin, long*ifl, long*nifl,

double*out, long*nout, long*ofl, long*nolf, double*undef,

long*ier)

{

358 Saber® MAST Language User Guide
B-2008.09

Chapter 15: Foreign Routines in MAST
Implementing a MAST Foreign Routine in C
if (JOB == PARAMETERS) {

/* Calculate thermal voltage and four other quan. */

WORK_P_VT = K * (TEMP + 273.15) / QE;

WORK_P_QBE0 = MODEL_CJE * MODEL_VJE / (1.0 - MODEL_MJE);

WORK_P_QBC0 = MODEL_CJC * MODEL_VJC / (1.0 - MODEL_MJC);

WORK_P_VJE0 = 2.0 * MODEL_VJE / MODEL_MJE;

WORK_P_VJC0 = 2.0 * MODEL_VJC / MODEL_MJC;

/* Define the array size */

WORK_P_SIZE = 5;

}

else if (JOB == BC_CHARACTERISTICS) {

/* Calculation of iec and qbc from vbc */

IEC = MODEL_IS * (exp(VBC / WORK_V_VT) - 1.0);

if (VBC < 0.0) {

QBC=WORK_V_QBC0 *

(1.0 - pow(1.0 - VBC/MODEL_VJC, 1.0 - MODEL_MJC));

}

else {

QBC = MODEL_CJC * VBC * (1.0 + VBC / WORK_V_VJC0);

}

if (MODEL_TYPE == _P) {

IEC = -IEC;

QBC = -QBC;

}

}

Saber® MAST Language User Guide 359
B-2008.09

Chapter 15: Foreign Routines in MAST
Implementing a MAST Foreign Routine in C
else if (JOB == BE_CHARACTERISTICS) {

/* Calculation of icc and qbe from vbc */

ICC = MODEL_IS * (exp(VBE / WORK_V_VT) - 1.0);

if (VBE < 0.0) {

QBE=WORK_V_QBE0 *

(1.0 - pow(1.0 - VBE/MODEL_VJE, 1.0 - MODEL_MJE));

}

else {

QBE = MODEL_CJE * VBE * (1.0 + VBE / WORK_V_VJE0);

}

if (MODEL_TYPE == _P) {

ICC = -ICC;

QBE = -QBE;

}

}

else { /*If the bjt routine is called with an

unrecognized first argument, do the following*/

fprintf(stderr, “Bad job: %f\n”, JOB);

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
bjt.c
360 Saber® MAST Language User Guide
B-2008.09

16
16Time-Domain Modeling

The following examples introduce the MAST capabilities that allow you to
create models that depend on effects in the time domain:
■ Using the MAST delay Function in an Ideal Delay Line -- shows how to

represent a time delay using the intrinsic delay function and how to influence
the time-step algorithm of the simulator from within a template (i.e.,
scheduling)

■ Expanding the Multiple-Output Voltage Source -- shows how to define a val
variable as a function of both time and other val variables

Using the MAST delay Function in an Ideal Delay Line

The MAST delay function can be used in template equations to model ideal
delay. Using delay in an equation has the following general form:

where delayed_value and reference_value are either a val variable, a branch
variable, or a var variable; and time is a parameter that specifies the duration of
the constant delay between delayed_value and reference_value. For example,
suppose a template equation contains the following statement:

This statement has the following meaning:

Solve for a value of output voltage (vout) that has the same amplitude as the
input voltage (vin), but delay the output from the input by the specified value
of delay (dtime).

An example of a template using the delay function is the ideal delay line
template, dline, shown in the figure below, which is equivalent to a voltage-
controlled voltage source with a time delay and a gain

delayed_value = delay (reference_value,time)

iout: vout = delay (vin, dtime)
Saber® MAST Language User Guide 361
B-2008.09

Chapter 16: Time-Domain Modeling
Using the MAST delay Function in an Ideal Delay Line
The dline template description is divided into the following topics:
■ Ideal Delay Line (dline) MAST Template
■ Delayed Sine Wave Transient Analysis
■ Delayed Sine Wave AC Analysis
■ MAST dline Template Summary

e-s(td)

inp

inm

outp

outm

vin vout

+

_

+

_

Ideal delay line
362 Saber® MAST Language User Guide
B-2008.09

Chapter 16: Time-Domain Modeling
Using the MAST delay Function in an Ideal Delay Line
Ideal Delay Line (dline) MAST Template

The dline template is shown as follows:

The delay function in the template equation instructs the simulator to set the
output voltage (across pins outp and outm) to the same value as vdl, but delay
it by time td.

Note that vdl needs to be declared as a val variable because it is an
intermediate variable that depends on the value of the input branch voltage,
vin.

It is allowable to omit vdl altogether by using the following equation:

template dline inp inm outp outm = td, a

electrical inp, inm, outp, outm

number td = 0.0, # ideal delay, with default

a = 1.0 # gain, with default

{

var i iout # current from outp to outm

val v vout, # voltage developed across outp and outm

vin, # controlling voltage

vdl # delayed voltage

values {

vout = v(outp) - v(outm)

vin = v(inp) - v(inm)

vdl = vin * a

}

equations {

i(outp->outm) += iout

iout: vout = delay(vdl, td)

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
dline.sin

iout: vout=delay(vin*a, td)
Saber® MAST Language User Guide 363
B-2008.09

Chapter 16: Time-Domain Modeling
Using the MAST delay Function in an Ideal Delay Line
Including vdl simplifies the template equation and permits the product of gain
and input voltage to be extracted and plotted.

It is incorrect syntax to multiply the delay function by any quantity. For example,
the following template equation would be incorrect:

The delay function cannot be multiplied by the constant a; instead, the constant
a must multiply vin inside the parentheses, as shown in the preceding equation.

Delayed Sine Wave Transient Analysis

The following figure shows the result from a transient simulation of a sine wave
input to the dline template.

incorrect equation...

iout: vout = a*delay(vin, td)

0 200u 400u 600u 800u 1m 1.2m 1.4m
t(s)-1.25

-1

-750m

-500m

-250m

0

250m

500m

750m

1

1.25

 (V)

Delayed sine wave-transient analysis result
364 Saber® MAST Language User Guide
B-2008.09

Chapter 16: Time-Domain Modeling
Using the MAST delay Function in an Ideal Delay Line
 The circuit netlist is shown below:

In this example, the voltage at pin out is the same as the voltage at pin in,
except that it is delayed by 200 ms. During a DC analysis, the delay function
has no effect. Consequently, the voltages at in and out are the same following
a DC analysis.

Delayed Sine Wave AC Analysis

The dline template is also effective for a small-signal AC analysis. If the
multiplier, a, is left at the default value of 1, dline has no effect on the
magnitude of the input signal. However, the phase is shifted as a function of
frequency.

The voltage source (v.in) from the preceding circuit netlist can be modified to
simulate an AC source, as follows:

 The following figure shows the result of an AC analysis. The waveforms show
the magnitude and phase at out, the output of dline.1.

v.in in 0 = tran=(sin=(0,1,1k))

dline.1 in 0 out 0 = td=200u

v.in in 0 = ac=(1,0)

dline.1 in 0 out 0 = td=200u
Saber® MAST Language User Guide 365
B-2008.09

Chapter 16: Time-Domain Modeling
Using the MAST delay Function in an Ideal Delay Line
The negative slope of the phase (in radians) with respect to frequency (in
radians per second) is commonly called group delay. From the graph shown in
the following figure, you can see that this slope for dline.1 is measured as -200
ms, which corresponds to the td=200u specified in the netlist.

MAST dline Template Summary

To summarize, you can conceptualize the MAST delay function as:
■ A zero delay during DC analysis
■ A time delay during transient analysis
■ A constant group delay during a small signal (AC) analysis

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 11k 12k 13k
(rad/s)-2.6

-2.4

-2.2

-2

-1.8

-1.6

-1.4

-1.2

-1

-800m

-600m

-400m

-200m

0
200m
 (rad)

M1

M2

Y1: -1.998843
X1: 9.99422k

Y2: -999.4212m
X2: 4.99711k

SLOPE: -200u

Group Delay—200us

Delayed sine wave-AC analysis (small-signal) result
366 Saber® MAST Language User Guide
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
Expanding the Multiple-Output Voltage Source

A simvar is a built-in variable that interacts with the simulator. Most simvar
variables are set by the simulator, and templates can use them but not alter
them. In effect, they are a “window” into what is happening in the simulator.
Two simvar variables, named time and time_domain, are used in the multi-
purpose voltage source (vsource_2) example, which is described in the
following topics:
■ Overview
■ The vsource_2 MAST Template
■ Header Declarations
■ Union Type Parameters -- shows how to the intrinsic function union_type for

indicating which member of the union has been selected
■ Local Declarations
■ Equations Section
■ Determining Union Elements
■ Assigning Internal Values
■ Performing Calculations (Defining Signals) -- shows how to use the

step_size and next_time simvar variables to communicate information to the
simulator and how to use the sin and exp intrinsic functions

■ Netlist Examples

Two other simvar variables, step_size and next_time, are special, in that
templates can change their values. These simvar variables let templates
communicate to the simulator. The vsource_2 example illustrates their use.

For a description of the simvar variables and their uses, see the MAST
Reference Manual.

A point worth emphasizing is that vsource_2 is a linear template, even though
the definition of tran is nonlinear. The linearity of a template is determined with
respect to other variables, such as voltages or currents. The nonlinearity of tran
in this voltage source example is with respect to time.

Overview

The voltage source (vsource_2) template provides three different, time-varying
outputs. It is similar to vsource_1, but it uses a union parameter type to provide
Saber® MAST Language User Guide 367
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
more flexibility. For more information on unions, refer to the MAST Reference
Manual.

The vsource_2 template is used as a voltage supply or waveform source as
follows:
■ A constant output voltage for all large-signal analyses
■ One of three output waveforms (a sine wave, an exponential signal, or a

step function) for the transient (time-based) analysis

To specify one template for two separate purposes (constant supply or varying
waveform), you must decide how to handle conflicting specifications,
particularly regarding DC analysis. If the voltage source is specified as a
supply, the supply value is obviously the DC value. If the voltage source is
specified as a transient waveform, then the waveform value at time-equal-to-
zero should be used as the DC value. However, if both the supply and transient
specifications are given, only one can be chosen for the DC analysis. In this
example, the transient specification overrides the supply specification by
default. However, a provision is made to allow the template user to override
this default.

Consequently, the template must have the following properties:
■ The value of a transient waveform at time=0 must be able to override the

constant supply voltage value.
■ Although the transient specification must, by default, override the supply

specification, the transient specification must also have an “off” setting that
allows the supply specification to be in effect.
368 Saber® MAST Language User Guide
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
The vsource_2 MAST Template

The template for this voltage source (vsource_2) is listed below.

element template vsource_2 p m = supply, tran

electrical p, m

number supply = 0

union {

number off

struc {number vo, va, f, td;} sin

struc {number v1,v2,tau;} exp

struc {number v1,v2,tstep,tr;} step

} tran = (off = 1)

{

number pi = 3.14159

val v vn, vs

var i is

number td,vo,va,w,ss,v1,v2,tau,tstep,tr,slew

parameters {

define intermediate values, depends on selected output

if (union_type (tran,sin)) {

td = tran->sin->td

vo = tran->sin->vo

va = tran->sin->va

w = 2*pi*tran->sin->f

ss = 0.05/tran->sin->f

}

else if (union_type (tran,exp)) {

v1 = tran->exp->v1

v2 = tran->exp->v2

tau = tran->exp->tau

}

Saber® MAST Language User Guide 369
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
else if (union_type (tran,step)) {

tstep = tran->step->tstep

v1 = tran->step->v1

v2 = tran->step->v2

tr = tran->step->tr

slew = (v2-v1)/tr

}

} # end parameters section

values {

vn = v(p) - v(m)

if (dc_domain|time_domain) {

if (union_type (tran,sin)) {

if (time <= td) {

vs = vo

next_time = td

}

else {

vs = vo + va*sin(w*(time-td))

step_size = ss

}

} # end tran->sin

else if (union_type (tran,exp)) {

vs = v1 + (v2-v1)*(1-exp(-(time/tau)))

} # end tran->exp
370 Saber® MAST Language User Guide
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
Header Declarations

The template header has two arguments, supply (for constant output) and tran
(for time-varying output) as follows:

else if (union_type (tran,step)) {

if (dc_domain|(time < tstep)) {

vs = v1

next_time = tstep

}

else if ((time >= tstep) & (time < tstep+tr)){

vs = v1 + (time-tstep)*slew

next_time = tstep + tr

}

else {

vs = v2

}

}

else vs = supply

} # end dc_domain|time_domain

else vs = 0

} # end values section

equations {

i(p) += is

i(m) -= is

is : vn = vs

} # end equations section

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
vsource_2.sin

1 element template vsource_2 p m = supply, tran
Saber® MAST Language User Guide 371
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
The tran parameter is not a simple type, so there is an example of how to use it
in a netlist entry later in this section.

As always, header declarations declare the names used in the header. These
are the names of the pins p and m, and the arguments supply and tran.

However, the tran argument, which must be able to represent any of three
transient waveforms, cannot be defined simply as a number. It must be
declared as a new type of parameter, the union parameter, which is described
in the following section.

Union Type Parameters

You want to be able to specify any of the following kinds of signals when
choosing the tran argument:
■ Sine Wave Output (sin) Declaration
■ Exponential Wave Output (exp) Declaration
■ Step Function Output (step) Declaration

Each of these is complex enough to require its own list of parameters to define
the signal function. When only one of a list of parameters can be used at a
time, it is best to declare the list as a part of a union. A union is a parameter
type that has multiple members, but each time the union is used, only one of
the members is selected. The general form of a union declaration is:

Notice that this is different than the specification for an enumerated type
(enum). An enum allows the selection of one out of a list of constant values. A
union allows the selection and specification of one out of a group of possible
members. Notice that the union specification is similar to the general form of
the structure declaration. Initial values and defaults (optional) have the same

2 electrical p, m

3 number supply = 0

union {definition} name [= ([initial values])]
372 Saber® MAST Language User Guide
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
meanings for unions as for structures. The following example is from the
vsource_2 template,

The union definition contains a declaration for each member of the union. Each
member may be of any type, even a structure or another union. In this
example, the members are the three signal types defined for tran; sine,
exponential, and step. In addition, there should be a parameter to turn the
entire union (named tran) on and off. When on, this enables the tran parameter
to override the supply argument. When off (tran=(off=1)), the supply argument
is in effect.

As shown above, there are the following four members in this union:

The off parameter is declared a number while sin, exp, and step, each of which
contains other parameters, are declared to be structures. Thus, this union
consists of one number and three structures—selecting any one of these four
in a netlist excludes the other three. The three structures are discussed in the
following topics.

Although off is initialized in the template by setting off=1, this is not a Boolean
function. In other words, the action of explicitly setting off to any value (even
undef or 0) selects it and excludes the other three members of the tran union.

Sine Wave Output (sin) Declaration
The equation for defining a sine wave, as shown in the following figure, is:

4 union {

5 number off

6 struc {number vo, va, f, td;} sin

7 struc {number v1,v2,tau;} exp

8 struc {number v1,v2,tstep,tr;} step

9 } tran = (off = 1)

off disable tran (the only initialized parameter)

sin sine wave output

exp exponential wave output

step step function output
Saber® MAST Language User Guide 373
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
v = vo + va * sin (2πf (time - td))

where:

All of these have numerical values and therefore, are declared as numbers
within the sin structure. In addition, no initial values are assigned. Because time
is a simvar, its value is provided by the simulator and does not need to be
declared.

Thus, the declaration for sin is as follows:

Exponential Wave Output (exp) Declaration
The exponential signal, as shown in the following figure, is defined with the
following equation:

vo the offset value in volts

va the amplitude in volts

f the frequency in hertz

td the delay in seconds

6 struc {number vo, va, f, td;} sin

vo

t = 0

va

td td + 1/f

vo

T = 1/f

voltage

time

Describing a sine wave
374 Saber® MAST Language User Guide
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
v = v1 + (v2 - v1) * (1 - e)

where:

The structure declaration for exp is as follows:

Step Function Output (step) Declaration
The step function, shown in the following figure, is defined as a stepped voltage
from v1 to v2,

v1 the initial voltage

v2 the voltage at time=inf (infinite)

tau the time constant

7 struc {number v1, v2, tau;} exp

-(time/tau)

voltage

time
τ

V2

V1

V1 + (V2 - V1)•(1 - e
(-time/τ)

)

Describing an exponential waveform
Saber® MAST Language User Guide 375
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
where:

The structure declaration for step is as follows:

Initial Values
The default value of off=1, sets the initial choice for tran. This default setting
disables the transient waveforms unless tran is explicitly set to sin, exp, or step,
thereby overriding off. When tran is set to one of these waveforms, it overrides
the supply parameter, which satisfies one of the design considerations stated
earlier.

The arguments of the sin, exp, and step structures are not initialized and have
no default values. Thus, you must specify their values in a netlist entry
whenever you set tran to sin, exp or step. Remember that this template does
not include the parameter checking (out-of-range, divide-by-zero, etc.) that is
incorporated into MAST library templates.

v1 the initial voltage

v2 the step voltage level

tstep the time at which the step begins

tr the transition time from v1 to v2

8 struc {number v1, v2, tstep, tr;} step

voltage

time

V2

V1

tstep

tr

Describing a step function waveform
376 Saber® MAST Language User Guide
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
Also, recall that the declaration syntax of a structure requires that the closing
brace (}) be on a separate line. However, inserting a semicolon (;) has the
same effect as moving to a new line.

The complete set of parameter declarations for vsource_2 is:

The time simvar variable is part of the definition of each of the transient
waveforms. Because it is a reserved word, it does not require a declaration
(although you may define a variable named “time,” which will override the
simvar time).

Netlist Example
Assume you want to specify a sine wave source (overriding any DC supply
characteristics) with instance name input, connected to nodes named in and 0,
and having the following sine wave output characteristics:
■ 0V offset (vo=0)
■ 4.3V amplitude (va=4.3)
■ 1kHz frequency (f=1k)
■ 0s delay (td=0)

The corresponding netlist entry for this would be as follows:

or, specifying argument values without argument names, it would be the
following:

3 number supply = 0

4 union {

5 number off

6 struc {number vo, va, f, td;} sin

7 struc {number v1, v2, tau;} exp

8 struc {number v1, v2, tstep, tr;} step

9 } tran=(off=1)

vsource_2.input in 0 = tran=(sin=(vo=0,va=4.3,f=1k,td=0))

vsource_2.input in 0 = tran=(sin=(0,4.3,1k,0))
Saber® MAST Language User Guide 377
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
Because none of the parameters are initialized in the template, all values of sin
must be assigned in the netlist entry, even those specified as 0.

Local Declarations

The following declarations are required for use throughout the template:
■ pi, the name used to represent the number p, defined here as 3.14159
■ The branch current is
■ The intermediate variables vn and vs, as a val
■ Various numbers used in determining intermediate values

Therefore, the local declarations are:

Equations Section

The template equation is similar for this voltage source as it is for the voltage
source template (vsource_1). The major difference is that here vs is defined
with more options. These are based on which element of the tran union is
specified, plus which simulation analysis is being performed.

11 number pi = 3.14159

12 val v vn, vs

13 var i is

14 number td,vo,va,w,ss,v1,v2,tau,tstep,tr,slew

70 equations { ### FROM vsource_2

71 i(p) += is

72 i(m) -= is

73 is : vn = vs

74 } # end equations section
378 Saber® MAST Language User Guide
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
Determining Union Elements

As in the template vsource_1, several conditional statements are used to
define the output term, vs. In this template, the definition of vs depends on the
following conditions of the tran argument:
■ If the tran argument is not selected (the default condition), then vs=supply
■ If the tran argument is selected, then one of the sin, exp, or step parameters

has been specified. The value of vs then depends on defining the
corresponding waveform.

In doing this, the template must use the values specified for sin, exp, or step,
depending on which one has been specified for a given netlist entry.

However, you cannot use values from sin, exp, or step directly. This is because
they are contained within a union and must be indirectly referenced, just as
members of a structure must be indirectly referenced.

You need to use the structure reference operator (->) for indirectly referencing
a variable inside a union of structures. The general syntax for using this
operator is as follows:

For example,

This assigns the specified value of td (which is contained within sin, which is
contained within tran) to the internal variable, td. (Refer to the MAST Reference
Manual for more information on the structure reference operator, ->).

37 equations { ### FROM vsource_1

38 i(p->m) += is

39 is: v(p)-v(m)=vs # determine current contributed

40 # by source

41 } # end of equations section

union_name->structure_name->variable_name

td = tran->sin->td
Saber® MAST Language User Guide 379
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
Assigning Internal Values

Structure referencing of values from the sin, exp, and step structure
parameters is required so that they can be used to define vs for the appropriate
output waveform. To do this, if-else statements are used along with an intrinsic
MAST function, called union_type. which specifies a member of a union
according to the following syntax:

This is a Boolean function whose value is true when a member of the union has
been defined for a given instance of this template (i.e., whether it has values
passed to it from a netlist). For example, the following statements provide a
true/false indicator for each structure of tran:

As a result, union_type can be used with if-else statements and the structure
reference operator (->) to make values nested within tran available for

union_type (defined_union parameter, member)

union_type (tran, sin)

union_type (tran, exp)

union_type (tran, step)
380 Saber® MAST Language User Guide
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
calculations of vs. These calculations are performed only for the signal (sin,
exp, or step) that has been specified in a netlist.

Note that the sin portion calls an intrinsic function named sin, and the exp
portion calls an intrinsic function named exp. These are functions included with
the Saber Simulator to perform the sine and exponential (e) functions. Many
mathematical functions are available as intrinsic functions (see the MAST
Reference Manual for more information).

Refer also to the MAST Reference Manual for more information on the if-else
statement and the structure reference operator (->).

Performing Calculations (Defining Signals)

The output of the voltage source (vs) is calculated using the values from either
sin, exp, or step, as determined by the value of union_type. Because vs is

17 if (union_type (tran,sin)) {

18 td = tran->sin->td

19 vo = tran->sin->vo

20 va = tran->sin->va

21 w = 2*pi*tran->sin->f

22 ss = 0.05/tran->sin->f

23 }

24 else if (union_type (tran,exp)) {

25 v1 = tran->exp->v1

26 v2 = tran->exp->v2

27 tau = tran->exp->tau

28 }

29 else if (union_type (tran,step)) {

30 tstep = tran->step->tstep

31 v1 = tran->step->v1

32 v2 = tran->step->v2

33 tr = tran->step->tr

34 slew = (v2-v1)/tr

35 }
Saber® MAST Language User Guide 381
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
conditional upon the tran argument, these calculations also use if-else
statements and the union_type function.

These conditions can be defined in the template with the if statement,
according to the following logic:

Substituting from the template, use the union_type function with if statements
to identify the members of the tran union. Thus, the logical statements above
are converted to the following MAST statements:

Each of these logical steps uses the union_type function to select the
appropriate tran choice (sin, exp, step) and then calculate their respective
voltages.

if (the large-signal analysis is selected) {

define vs equal to supply, unless }

if (the sine wave is selected) {

define vs as a sine function}

else if (the exponential is selected) {

define vs as an exponential function}

else if (the step is selected) {

define vs as a step function}

39 if (dc_domain | time_domain) {

40 if (union_type (tran, sin)) {

define vs as a sine wave}

50 else if (union_type (tran, exp)) {

define vs as an exponential wave}

53 else if (union_type (tran, step)) {

define vs as step function}

65 }

66 else vs = supply
382 Saber® MAST Language User Guide
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
Sine Wave Output
The sine wave voltage is defined with respect to time as:

v = vo + va * sin(2*pi*f*(time - td))

where:

You cannot use the vo, va, f, and td values directly; you must reference them
indirectly using the structure reference operator (->). For convenience, this was
done previously in the template for all the tran structures, although it could
have been done here.

If the time is less than or equal to the delay time, the output voltage (vs) is
constrained to the value of the offset voltage, vo. This requires a subsidiary if
statement, written as follows:

The complete sine wave definition then becomes:

vo the offset value in volts

va the amplitude in volts

f the frequency in hertz

td the delay in seconds

41 if (time <= td) {

41 vs = vo

40 if (union_type (tran,sin)) {

41 if (time <= td) {

42 vs = vo

43 next_time = td

44 }

45 else { # if (time > td)

46 vs = vo + va*sin(w*(time-td))

47 step_size = ss

48 }

49 }
Saber® MAST Language User Guide 383
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
Also, notice the use of the assignment to the step_size variable as follows:

The use of the step_size simvar variable allows the template to influence the
size of the time step allowed during the transient simulation. The value of
step_size places an upper bound on the variable step size performed by the
Saber Simulator. In this instance, this is necessary to ensure an adequate
resolution of the output, making it look like a sine wave. Here, step_size is
assigned the value of ss, which was defined previously by the following
statement:

This limits the step size for this example to 5% of the period of the sine wave.
The step_size simvar is one of only two simvar variables that can be assigned
a value in a template. The other is next_time (see the topic titled "Step Function
Output"). Like all other simvar variables, they need not be declared.

Exponential Waveform Output
The exponential waveform uses a similar approach. The equation for the
output voltage with respect to time is:

v = v1 + (v2 - v1) * 1 - e where:

As with the sine wave, you cannot use values for v1, v2, and tau directly; you
must reference them indirectly using the structure reference operator (->). The
complete section for the exponential is as follows:

47 step_size = ss

22 ss = 0.05/tran->sin->f

v1 the initial voltage

v2 the voltage at time=inf (infinity)

tau the time constant

50 else if (union_type (tran,exp)) {

51 vs = v1 + (v2-v1)*(1-exp(-(time/tau)))

52 }

-(time/tau)
384 Saber® MAST Language User Guide
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
Note that exp, the exponential function, is another intrinsic function. Note also
that step_size is not used in the exponential example. Typically, step_size is
not necessary. This is especially true of complex systems, where the
complexity of the system forces the time steps to be small enough to ensure
the desired effect. However, the step_size construct is supplied to give
template writers as much control as they might need.

Step Function Output
A similar approach applies to the step function output. The step function is
defined as a stepped voltage from v1 to v2, where:

The complete step function section is as follows:

Using if statements (if-else) allows you to specify each region of the step
function and determine its voltage appropriately. Before time=tstep, the voltage
should be v1. After time tstep + tr, the voltage should be v2. During the

v1 the initial voltage

v2 the stepped voltage

tstep the start time of the step

tr the transition time from v1 to v2

53 else if (union_type (tran,step)) {

54 if (dc_domain|(time < tstep)) {

55 vs = v1

56 next_time = tstep

57 }

58 else if ((time >= tstep) & (time < tstep+tr)){

59 vs = v1 + (time-tstep)*slew

60 next_time = tstep + tr

61 }

62 else {

63 vs = v2

64 }

65 }
Saber® MAST Language User Guide 385
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
transition from v1 to v2, the voltage should be determined by linear
interpolation between v1 and v2.

It is very important that there be a simulation time step at the exact points
where the transition starts (tstep) and ends (tstep + tr). This prevents the Saber
Simulator from skipping over abrupt changes as functions of time in the step
function—it is forced to go through the transition and use the correct points
between steps.

Consequently, a MAST construct is required to let the model tell the simulator
the time points that must have corresponding simulation time steps. This
construct is the next_time simvar variable, which corresponds to a time at
which the simulator must perform a time step. The next_time simvar variable is
invoked only in an assignment statement. Its effect expires after each time
step, regardless of whether the appropriate time point has been passed.
Although this simvar variable is effective only for the selection of the very next
time step, it works here because this portion of the template will be evaluated at
every time step.

Therefore, the time region that precedes the start of the step transition has a
statement assigning the value of tstep to next_time. Also, the transition region
assigns the value of tstep + tr to next_time (the end of the transition). This
guarantees time steps at the necessary locations.

No tran Output
Although it is possible to specify what occurs if off is selected (in a manner
similar to that for sin, exp, and step), it is not necessary to do so. This is
because the desired effect for off=1 is to leave the value of vs at the voltage
specified by the supply parameter. That automatically occurs when none of the
three if-else conditions are true.
386 Saber® MAST Language User Guide
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
All definitions for vs are as follows:

39 if (dc_domain|time_domain) {

40 if (union_type (tran,sin)) {

41 if (time <= td) {

42 vs = vo

43 next_time = td

44 }

45 else { # if (time > td)

46 vs = vo + va*sin(w*(time-td))

47 step_size = ss

48 }

49 }

50 else if (union_type (tran,exp)) {

51 vs = v1 + (v2-v1)*(1-exp(-(time/tau)))

52 }

53 else if (union_type (tran,step)) {

54 if (dc_domain|(time < tstep)) {

55 vs = v1

56 next_time = tstep

57 }

58 else if ((time >= tstep) & (time < tstep+tr)){

59 vs = v1 + (time-tstep)*slew

60 next_time = tstep + tr

61 }

62 else {

63 vs = v2

64 }

65 }

66 else vs = supply

67 }

68 else vs = 0
Saber® MAST Language User Guide 387
B-2008.09

Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
Netlist Examples

The following examples show how this template could be used in a netlist
entry. For the sake of simplicity, the instance name in all the examples is src,
and connection points are declared to be connected to nodes 1 and 2.

1. To designate a DC source src with a value of 5 volts:

or

2. To assign the following characteristics to the sin structure of the tran union:

Notice that because the argument values in this example are assigned in the
same order in which they are declared in the template, it is not necessary to
specify the name of each argument. If you do not know the order or wish to
write the names for clarity, simply specify the name of the field and an equals
sign (=) to the left of the value, as follows:

vsource_2.a 1 2 = supply=5

vsource_2.b 1 2 = 5

offset voltage vo 0 V

amplitude va 4.3 V

frequency f 1 kHz

delay time td 0 s

vsource_2.c 1 2 = tran=(sin=(0,4.3,1k,0))

vsource_2.d 1 2 = tran=(sin=(vo=0,va=4.3,f=1k,td=0))
388 Saber® MAST Language User Guide
B-2008.09

17
17Modeling Noise

The Saber simulator can perform a noise analysis to include the noise
contributions of a circuit or system element. To do this, the template must
contain information that defines its noise contribution.

The following topics show how noise information is added to the simple resistor
and vsource (voltage source) templates:
■ Adding Noise to a Resistor MAST Template -- shows adding noise

information to a template, and the use of the noise_source statement in the
control section.

■ Adding Noise to a Voltage Source MAST Template
■ Adding Noise to the MAST diode Template

Introduction

In general, a noise source for an electrical element is defined either as a
current or voltage source between two nodes of the element. For a simple
element, such as a resistor, there is a single noise source. For a more complex
element, such as a transistor, there may be several noise sources, as well as
several types of noise: thermal noise, shot noise (due to DC current), and
flicker noise (a frequency-related noise).

Adding noise information to a template is not difficult, and the procedure is the
same for all types of noise. In general, it consists of the following:
■ Define the name of the noise source as a val variable (a local variable).
■ Provide the defining expression for the noise variable (the val variable).
■ In the control section, insert a noise_source statement that supplies one of

the following kinds of information:

• If the noise source is a current source, the statement describes the
location of the noise source in terms of the connection points or internal
nodes.
Saber® MAST Language User Guide 389
B-2008.09

Chapter 17: Modeling Noise
Adding Noise to a Resistor MAST Template
• If the noise source is a voltage source, the statement associates the
name of the noise source with a var variable (a system variable).

If there is more than one noise source, the control section must contain a
separate variable, definition, and statement for each.

Adding Noise to a Resistor MAST Template

For reference, the resistor template without the noise functionality is shown as
follows:

For this example, only the thermal noise through the resistor will be added.
This noise source is defined as a current source in parallel with the resistor, as
shown in the figure below. Note that there is no direction associated with the
current source.

template resistor p m = res

electrical p, m

number res

{

equations {

i(p->m) += (v(p)-v(m))/res

}

}

p m

Defining a noise generator
390 Saber® MAST Language User Guide
B-2008.09

Chapter 17: Modeling Noise
Adding Noise to a Resistor MAST Template
To include thermal noise effects in the template, the following expression is
used to define them:

where:

Note that it is necessary to declare variables for Boltzmann’s constant and
temperature, in addition to the noise source variable. The following resistor_2
template includes the noise functionality:

noise = (abs(4kT/r))

k is Boltzmann’s constant (1.38 * 10 joules/K)

T is the temperature in K

r is the specified resistance

template resistor_2 p m = res

electrical p, m

number res

external number temp #noise-related

{

val ni nsr #noise-related

number k = 1.38e-23 #noise-related

number t #noise-related

parameters {

t = temp + 273.15 #noise-related

}

values {

nsr = sqrt(abs(4.0*k*t/res)) #noise-related

}

control_section {

noise_source (nsr, p, m) #noise-related

}

1/2

-23
Saber® MAST Language User Guide 391
B-2008.09

Chapter 17: Modeling Noise
Adding Noise to a Resistor MAST Template
The following topics describe the resistor_2 template:
■ Header Declarations
■ Local Declarations
■ Expression for Noise
■ Control Section -- shows how to use the noise_source statement in the

control section.

Header Declarations

The variable for simulation temperature (temp, in ×C) is declared in the header
declarations section:

Local Declarations

A unit is provided for thermal noise (ni) generated by a current source, which is
defined in A/÷Hz. By declaring a noise variable as a val variable, you can
assign the unit ni to it. For example, a noise variable named nsr would be
declared as follows:

The constants used to calculate noise must also have local declarations:

equations {

i(p->m) += (v(p)-v(m))/res

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
resistor_2.sin

external number temp #noise-related

val ni nsr

number k = 1.38e-23

number t
392 Saber® MAST Language User Guide
B-2008.09

Chapter 17: Modeling Noise
Adding Noise to a Resistor MAST Template
Because the value defined externally for temp is in ×C, a statement is required
to convert the temperature (t) to kelvins:

Expression for Noise

Using these variable names for the noise generator, insert a statement to
perform the noise calculation as follows:

The statement in the values section uses two intrinsic functions: sqrt, the
square root function, and abs, the absolute value function.

Control Section

A noise_source statement is used in the control section. It identifies the noise
source in relation to the rest of the template. If the noise source is a current
source, as in this template, the statement contains the name of the pins (or
internal nodes) to which the noise generator is connected. If one side of it is
connected to ground, only the other need be listed, in which case the simulator
assumes that the other side is grounded.

In this example, the noise source nsr is connected between pins p and m.
Therefore, the complete control section is as follows:

The noise_source statement adds the noise to p and subtracts it from m.
Alternately, because the noise analysis ignores the sign of the noise source,
the following statement would be an equivalent statement (swapping positions
of m and p):

t = temp + 273.15

values {

nsr = sqrt(abs(4.0*k*t/res)) #noise-related

}

control_section {

noise_source (nsr, p, m) #noise-related

}

noise_source (nsr, m, p)
Saber® MAST Language User Guide 393
B-2008.09

Chapter 17: Modeling Noise
Adding Noise to a Voltage Source MAST Template
For a noise current source, the general form of the noise_source statement in
the control section is as follows:

For a noise voltage source, the form of the statement would be as shown
below, where var_name is the name of a var variable defining the current
through the voltage source.

Adding Noise to a Voltage Source MAST Template

Adding a voltage noise source requires the following three types of statements:
■ Define the name of the noise source as a val variable.
■ Provide the defining expression for the noise variable (the val variable).
■ In the control section, insert a noise_source statement that associates the

name of the noise source with a var variable.

However, because a var variable is required in the noise_source statement for
this template, the var variable must appear in a template equation (as
implemented for the opamp template.

Adding the necessary noise source statements to the vsource template makes
it the vsource_3 template shown below. These statements are indicated with
comments.

noise_source (val_name, pin [, pin])

noise_source (val_name, var_name)
394 Saber® MAST Language User Guide
B-2008.09

Chapter 17: Modeling Noise
Adding Noise to the MAST diode Template
Note that the noise voltage has been made available as an argument (noise),
which is then assigned to the noise val variable, nsv.

Adding Noise to the MAST diode Template

The diode template defines a simplified diode model. In a more fully-defined
diode model, such as the d template in the Standard Template Library, all three
types of noise are defined. However, this template incorporates only the shot
noise from the DC current.

The shot noise is defined as a current source, and it is connected between pins
p and m. The defining equation for shot noise is as follows:

template vsource_3 p m = vs, noise

electrical p, m

number vs, noise # add argument for noise

{

var i i

val nv nsv # (1) declare noise val

values {

nsv = noise # (2) set value of noise val

}

control_section {

noise_source(nsv, i) # (3) associate noise val

} # with var i

equations {

i(p->m) += i

i: v(p)-v(m) = vs

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
vsource_3.sin

nsi = sqrt(2*qe*abs(id))
Saber® MAST Language User Guide 395
B-2008.09

Chapter 17: Modeling Noise
Adding Noise to the MAST diode Template
where qe is the charge on the electron and id is the current through the diode
(both previously defined in the template).

Therefore, only three statements need be added to this template to define shot
noise:
■ Define the name of the noise source as a val:

■ Provide the defining expression for the noise variable:

■ In the control section, insert a noise_source statement that associates the
name of the noise source with a var variable:

From this example, it should be clear that adding noise information is a very
straightforward process, regardless of the complexity of the template. Adding
the other noise information (thermal noise and/or flicker noise) is simply a
matter of defining each necessary variable, adding its defining expression, and
inserting its noise_source statement in the control section of the template.

val ni nsi

nsi = sqrt(2*qe*abs(id))

noise_source(nsi, p, n)
396 Saber® MAST Language User Guide
B-2008.09

18
18Statistical Modeling

Statistical modeling (also known as a Monte Carlo analysis) includes the
features that are described in the following topics:
■ Varying Values in a Simple Voltage Divider
■ Probability Density Functions (PDFs)
■ Cumulative Density Functions (CDFs)
■ Correlating Distributions
■ Modifying Uniform and Normal Default Distributions
■ Parameterized PDF and CDF Specifications
■ The random MAST Function
■ Use of the statistical MAST Simvar Variable
■ Worst-Case Statistical MAST Modeling

These features enable you to define a model with built-in variability. Then the
simulator, running an mc (Monte Carlo) command, uses the model to run a
series of simulations, where each simulation uses a new set of values for the
variable parameters.

Thus, it is possible to use the Saber Simulator in a statistical or non-statistical
(deterministic) environment.

Introduction

Models for a particular component or design are described with equations and
accompanying coefficients (model parameters). In some models the model
parameters are assumed to be constants that characterize the object. This is a
good assumption when the model represents a single sample of a component
or circuit. However, another sample of the same component or circuit might be
better characterized by a slightly different set of model parameters due to the
tolerances of the components.
Saber® MAST Language User Guide 397
B-2008.09

Chapter 18: Statistical Modeling
Varying Values in a Simple Voltage Divider
The topic of statistical modeling introduces the notion that a model parameter
may be best described as a collection of possible values, with each value
having its own likelihood of occurring. Statistical modeling describes the
process of varying model parameters in a precise, yet random, way. This
method defines parameters statistically.

Varying Values in a Simple Voltage Divider

Assume you are designing the simple voltage divider circuit shown in the
following figure, consisting of two resistors and a voltage source.

For simulation, this circuit has the following netlist:

The voltage source is a battery whose voltage varies slightly, depending both
on the lot from which it was produced and its age. Assume the voltage varies
uniformly from 8.9 to 9.1 volts.

The resistors available are 100k resistors with gold outer bands (5% tolerance)
and 470k resistors with silver outer bands (10% tolerance). You do some
measurements and discover that the resistor variation has a normal distribution
around the nominal value. The standard deviation is approximately one third of

v.battery in 0 = 9

r.1 in mid = 470k

r.2 mid 0 = 100k

in

mid

9.0V
v.battery

r.1 470 k

r.2 100 k

Simple voltage divider
398 Saber® MAST Language User Guide
B-2008.09

Chapter 18: Statistical Modeling
Varying Values in a Simple Voltage Divider
the tolerance, so that, for example, ±0.10*470000, would be the tolerance for
the 470k resistor. Statistically, 99.7% of the 470k resistors will actually have
resistances between 423k (470k - 47k) and 517k (470k + 47k).

The goal is to determine the nominal value of the voltage at the mid node,
along with the expected distribution of this voltage based on the distributions of
the battery voltage and resistor values.

A simple DC analysis using this circuit produces the result that the voltage at
mid is 1.5789 volts. To add the variations to this model, include the uniform and
normal intrinsic distribution functions in the netlist:

You can then perform a Monte Carlo DC analysis with this circuit, which
produces many DC analysis results—each one randomly varying all distributed
parameters. If you simulate enough times (the number of simulations is a
Monte Carlo analysis parameter), you can clearly see the distribution of the
voltage at mid (see the figure below). The normal distribution in the figure
below was produced with 300 simulations; the average is near the expected
1.5789 volts.

v.battery in 0 = uniform(9, 8.9, 9.1)

r.1 in mid = normal(470k, 0.1)

r.2 mid 0 = normal(100k, 0.05)
Saber® MAST Language User Guide 399
B-2008.09

Chapter 18: Statistical Modeling
Probability Density Functions (PDFs)
From this analysis, observe that the voltage at mid is likely to vary between
1.45 and 1.7 volts. This information lets you decide either to accept this
variation as being within your design specification or to adjust your design to
compensate for the variation.

Probability Density Functions (PDFs)

The primary tool for describing model parameter variations is the probability
density function (PDF). Among the types of PDFs are the following:
■ Intrinsic Probability Density Functions
■ Uniform Probability Density Function
■ Normal Probability Density Function
■ Piecewise Linear Probability Density Function

The PDF is a continuous function of an independent variable, say x, such that,
for real numbers a and b, the probability that a random value of x will be
between a and b is the area under the PDF curve between a and b. For
example, the following figure shows the distribution of the resistor r.1, which is

1.45 1.5 1.55 1.6 1.65 1.7 1.75
(V)

0

10

20

30

40

50

60

70

80
(counts)

voltage at mid

Histogram of voltages at mid
400 Saber® MAST Language User Guide
B-2008.09

Chapter 18: Statistical Modeling
Probability Density Functions (PDFs)
used in the voltage divider example in the preceding topic. The uniform and
normal intrinsic functions, used in the voltage divider example, are nothing
more than predefined probability density functions.

The X-axis is the value of resistance; the Y-axis is the probability density. The
distribution is normal in this example. The normal distribution has the familiar
bell-shaped curve. The average (also called expected) value of the normal
distribution corresponds to the peak of the curve. This means that the values of
resistance (X-axis values) with the highest probability of occurring (Y-axis
value) are those near the average value. The total area under the curve, from -
infinity to infinity, must equal 1. This means that, for r.1 in the example, the
probability is 1 that the resistance value of a resistor taken from a bin full of
470k resistors will be between-infinity and infinity. This obviously must be true.

Intrinsic Probability Density Functions

The topic titled "Probability Density Functions (PDFs)" on the previous page
introduces two examples of intrinsic PDFs: normal and uniform. Another
intrinsic PDF is the piecewise linear (pwl). All three are discussed in more detail
below.

PDF

423k 470k 517k
Ω

Normal PDF for resistor r.1
Saber® MAST Language User Guide 401
B-2008.09

Chapter 18: Statistical Modeling
Probability Density Functions (PDFs)
It is useful to think of a PDF as follows:
■ Begin with the basic, normalized, distribution, called the prototype

distribution (MAST provides three intrinsic functions: normal, uniform, and
pwl).

■ Use a scaling multiplier (that stretches or compresses the distribution) and
an offset factor (that shifts it right or left) to customize the prototype
distribution for the application. The resulting distribution is called the actual
value distribution.

In other words, you first describe the prototype distribution, then you define the
parameters that modify the prototype into the corresponding actual distribution.

Uniform Probability Density Function

The prototype distribution for the uniform probability density function is
illustrated in the figure below. The default nominal value is 0 and the limits are
1 and -1.

By passing parameters to the uniform function, you can modify the prototype
uniform distribution to shift the nominal value and scale the limits. The uniform
function has several forms, including the following two:

uniform(nominal_value, lower_limit, upper_limit)

uniform (nominal_value, tolerance)

PDF

-1 0 +1

Uniform prototype distribution
402 Saber® MAST Language User Guide
B-2008.09

Chapter 18: Statistical Modeling
Probability Density Functions (PDFs)
where the arguments have the following meanings:

This second form of the uniform function shown above is used if the uniform
distribution is symmetrical with respect to nominal_value.

Regardless of how you specify an actual value uniform distribution from its
corresponding prototype distribution, it must satisfy the following requirements:
■ The nominal_value of the actual value distribution corresponds to the 0

value of the prototype distribution.
■ The lower_limit of the actual value distribution corresponds to the -1 value

of the prototype distribution.
■ The upper_limit of the actual value distribution corresponds to the 1 value of

the prototype distribution.

Note that these correspondences are maintained even if the prototype
distribution is changed.

The battery voltage source example from the topic titled "Varying Values in a
Simple Voltage Divider" illustrates using the uniform distribution:

This means that all values between 8.9 volts and 9.1 volts are equally likely.
The figure below shows this actual value uniform distribution for battery
voltage.

nominal_value the listed, or stated value; often, the intended value

lower_limit the smallest value of the distribution

upper_limit the largest value of the distribution

tolerance a value greater than -1 and less than 1, such that the limits of
the distribution are nominal_value + tolerance*nominal_value
and nominal_value - tolerance*nominal_value

v.battery in 0 = uniform(9, 8.9, 9.1)
Saber® MAST Language User Guide 403
B-2008.09

Chapter 18: Statistical Modeling
Probability Density Functions (PDFs)
The same effect could have been achieved by specifying a tolerance value
rather than limits as follows:

The uniform function can detect that if two arguments are specified, they
indicate the nominal value and the tolerance; whereas three arguments
indicate the nominal, minimum, and maximum values, respectively.

The uniform function can have other arguments as well as described in the
topic titled "Modifying a Uniform Prototype Distribution".

Normal Probability Density Function

The prototype distribution for the normal probability density function is
illustrated in the figure below. The default nominal value is 0 and the limits are
1 and -1. The limits correspond to the 3s and -3s points, respectively, where s
is the normal distribution’s standard deviation.

v.battery in 0 = uniform(9, 0.01111)

PDF

8.9 9.0 9.1

Battery
voltage

Uniform actual value distribution
404 Saber® MAST Language User Guide
B-2008.09

Chapter 18: Statistical Modeling
Probability Density Functions (PDFs)
By passing parameters to the normal function, you can modify the prototype
normal distribution to shift the nominal value and scale the limits. The normal
function has several forms, including the following:

where the arguments have the following meanings:

normal(nominal_value, lower_limit, upper_limit)

normal(nominal_value, tolerance)

nominal_value The listed or stated value; often, the intended value.

lower_limit The -3s value (when using the default) of the distribution,
where s is the standard deviation of the normal distribution.
You may change the multiplier of s from its default of -3.

upper_limit The +3s value of the distribution, where s is the standard
deviation of the normal distribution. You may change the
multiplier of s from its default of 3.

tolerance A value greater than -1 and less than 1, such that the limits of
the distribution are nominal_value + tolerance*nominal_value
and nominal_value - tolerance*nominal_value. The tolerance
specifies the ±3s limit.

PDF

−1 0 +1

Normal prototype distribution
Saber® MAST Language User Guide 405
B-2008.09

Chapter 18: Statistical Modeling
Probability Density Functions (PDFs)
The second form of the normal distribution shown above applies if the normal
distribution is symmetrical with respect to nominal_value.

The normal function automatically detects that if two arguments are specified,
they indicate nominal value and tolerance, whereas three arguments indicate
nominal_value, nominal_value - 3s, and nominal_value + 3s, where the two 3s
values need not be equal. If they are unequal, then the left side of the
distribution is normal with one standard deviation, while the right side is normal
with a different standard deviation.

Regardless of how you specify an actual value normal distribution from the
normal prototype, it must satisfy the following requirements:
■ The nominal_value of the actual value distribution corresponds to the 0

value of the prototype distribution.
■ The lower_limit of the actual value distribution corresponds to the -1 value

of the prototype distribution, which corresponds to the -3s.
■ The upper_limit of the actual value distribution corresponds to the +1 value

of the prototype distribution.

Note that these correspondences are maintained even if the prototype
distribution is changed.

The resistor r.1 from the example in the topic titled "Varying Values in a Simple
Voltage Divider" illustrates the use of the normal distribution:

This means that the resistance values for resistor r.1 follow the normal
distribution, with a nominal value of 470 kOhm and a tolerance of 0.1. Thus, the
-3s limit is 470kOhm - (470kOhm•0.1) = 423kOhm, and the +3s limit is
470kOhm + (470kOhm•0.1) = 517kOhm. Because the 3s value is
470kOhm•0.1 or 47kOhm, then the value of one standard deviation (s) would
be 47kOhm/3 or 15.67kOhm.

The figure below shows the actual value normal distribution. The tolerance
specifies the symmetrical ±3s limits. Using 3s as the tolerance means that,
given a randomly selected resistor from the batch, the probability that its
resistance lies inside the tolerance (i.e., between ±3s) is approximately 0.997.

r.1 in mid = normal(470k, 0.1)
406 Saber® MAST Language User Guide
B-2008.09

Chapter 18: Statistical Modeling
Probability Density Functions (PDFs)
You could have achieved exactly the same effect by specifying limits rather
than a tolerance:

The normal function can have other arguments as well, see the topic titled
"Modifying a Uniform Prototype Distribution".

Piecewise Linear Probability Density Function

The piecewise linear probability density function has no default prototype PDF.
The use of a piecewise linear PDF provides a great amount of flexibility.
Accordingly, its use requires more complex constructs. The following steps are
required to create a piecewise linear PDF:

1. Create a prototype PDF. Because the piecewise linear prototype can be
anything, it must first be defined (unlike the uniform or normal prototype
PDFs, which are uniquely defined).

2. Map actual values to the prototype PDF.

3. Use the resulting actual value PDF in a netlist.

These steps are expanded in the following topics to change the distribution for
r.1 in the example to use a piecewise linear PDF.

r.1 in mid = normal(470k, 423k, 517k)

PDF

423k 470k 517k

resistance
of r.1

Normal actual value distribution
Saber® MAST Language User Guide 407
B-2008.09

Chapter 18: Statistical Modeling
Probability Density Functions (PDFs)
1. Creating a Piecewise Linear Prototype PDF
Creating a piecewise linear prototype PDF requires a structure parameter
similar to the following:

This structure (named p_pwl) declares the local variable that is to hold the
prototype piecewise linear PDF. The pwl intrinsic function, to be used in the
netlist specification, looks for this structure. You can use this structure in a
netlist, as described in the topic titled "3. Using a Piecewise Linear Prototype
PDF in a Netlist", or you can include it in a template using the MAST include
construct (<) and the predefined file named distrib.sin as follows:

The distrib.sin file contains the definition of the p_pwl structure shown above
(as well as other definitions of statistical distributions). Once you make this
definition of p_pwl available, you can use it as a type to declare local variables
of the same type, which you can then modify. A convenient way of doing this is
to use the standard template, which is explained in the following topic.

Using the Standard Template You can declare a variable of type p_pwl by
calling the provided template standard, which already includes the distrib.sin
file (as described above). When referenced, the standard template declares an
argument named p_pwl as the correct type. This allows you to use an argdef
(..) declaration to declare a local variable of this type from standard. Refer to
the MAST Reference Manual for information on the argdef operator. An
example of doing this using a local parameter named ppwl1 is shown below.

Example Consider the triangle-shaped distribution shown in the following
figure:

struc p_pwl {

enum {_pdf,_cdf} type

struc {number x, y;} pwl[*]

}

<distrib.sin
408 Saber® MAST Language User Guide
B-2008.09

Chapter 18: Statistical Modeling
Probability Density Functions (PDFs)
This prototype PDF can be specified with the following declaration in a
template:

The declaration of the p_pwl structure is called from the standard template and
given the local name of ppwl1 for this particular template (i.e., p_pwl and ppwl1
are the same type of parameter).

The type field is initialized to _pdf, indicating that it is a PDF (as opposed to a
cumulative density function, CDF, see the topic titled "Cumulative Density
Functions (CDFs)"). The pwl field is an array of coordinate pairs that
correspond to the points shown on the PDF. This declaration and initialization
of the local variable named ppwl1 completes the creation of the prototype
piecewise linear PDF called ppwl1.

If the type field is _pdf, the ordered pairs (x, y) in the pwl field must satisfy the
following requirements:
■ There must be at least two (x, y) pairs.
■ The x values must be monotonically non-decreasing.
■ The y values must be Š 0.

standard..p_pwl ppwl1=(type=_pdf,pwl=[(1,0),(0,1),(1,0)])

PDF

−1 0 +1

1

Example piecewise linear prototype PDF
Saber® MAST Language User Guide 409
B-2008.09

Chapter 18: Statistical Modeling
Probability Density Functions (PDFs)
■ The first x value (x1) must be <0, and the last (xn) must be > 0. (The
simulator uses these values as truncation bounds when assigning random
values to the distribution.)

■ The integral of the PDF, from x1 to xn, must be positive (not necessarily 1).
Note that this implies that at least one y value must be > 0.

2. Correspondence Between Actual Values and Prototype PDF
Values
Once the prototype piecewise linear PDF is defined, you can use it to create an
actual value piecewise linear PDF. You do this by passing parameters to the
pwl function, which has the following format:

where:

You can specify either nominal_value and tolerance or nominal_value and both
lower_limit and upper_limit. If you specify the tolerance, then you must set
lower_limit and upper_limit to undef. On the other hand, if you specify the
lower_limit and upper_limit, you must set the tolerance equal to undef. You
must identify prototype.

pwl(nominal_value, tolerance, lower_limit, upper_limit,

prototype)

nominal_value the value that the distribution is to have in a deterministic
(non-statistical) environment.

tolerance either undef or a numeric value between -1 and 1—if it is a
numeric value, then the upper and lower limits of the
distribution are nominal_value + tolerance*nominal_value
and nominal_value - tolerance*nominal_value

lower_limit either undef or a numeric value less than nominal_value

upper_limit either undef or a numeric value greater than nominal_value

prototype the name of the prototype piecewise linear PDF
410 Saber® MAST Language User Guide
B-2008.09

Chapter 18: Statistical Modeling
Probability Density Functions (PDFs)
Regardless of how you specify an actual value piecewise linear distribution, it
must satisfy the following requirements:
■ The nominal_value of the actual value distribution corresponds to value 0 of

the prototype distribution.
■ The lower_limit of the actual value distribution corresponds to value -1 of the

prototype distribution.
■ The upper_limit of the actual value distribution corresponds to value 1 of the

prototype distribution.

Note that these correspondences are maintained even if the prototype
distribution is changed.

3. Using a Piecewise Linear Prototype PDF in a Netlist
The following example duplicates the example given at the beginning of the
Statistical Modeling topic with one exception: the resistor r.1 has a piecewise
linear distribution. This is implemented in the netlist as follows (note the
comments):

The above example specifies for the resistor r.1 the actual value PDF by giving
the nominal value (470k, the value used in non-statistical analyses), the
tolerance value (0.1), two undefined values (for the upper and lower bound),
and the name of the prototype distribution (ppwl1). The figure below shows the
resulting actual value PDF for the r.1 resistor.

creates prototype pwl PDF

standard..p_pwl ppwl1=(type=_pdf,pwl=[(-1,0),(0,1),(1,0)])

v.battery in 0 = uniform(9, 8.9, 9.1)

map values from pwl PDF to r.1

r.1 in mid = pwl(470k, 0.1, undef, undef, ppwl1)

r.2 mid 0 = normal(100k, 0.05)
Saber® MAST Language User Guide 411
B-2008.09

Chapter 18: Statistical Modeling
Probability Density Functions (PDFs)
The following is an alternate way of specifying the same distribution:

This example specifies, for the resistor r.1, the actual value PDF by giving the
nominal value (470k), the tolerance (undef), the upper and lower bounds (423k
and 517k, respectively), and the name of the prototype PDF (ppwl1).

Note that in each example either the tolerance or both upper and lower limits
must be undef. It is an error to specify numeric values for all three, even though
all three must have values. The pwl intrinsic function, unlike the uniform and
normal functions, cannot infer the tolerance or the limits from the context of the
calling sequence.

standard..p_pwl ppwl1=(type=_pdf, pwl=[(1,0),(0,1),(1,0)])

same as above

v.battery in 0 = uniform(9, 8.9, 9.1)

r.1 in mid = pwl(470k, undef, 423k, 517k, ppwl1)

alternate method

r.2 mid 0 = normal(100k, 0.05)

PDF

423k 470k 517k

1

resistance
of r.1

Actual value PDF for resistor r.1
412 Saber® MAST Language User Guide
B-2008.09

Chapter 18: Statistical Modeling
Cumulative Density Functions (CDFs)
Cumulative Density Functions (CDFs)

The probability density function (PDF) is a common way of specifying the
statistical variations of a design parameter. However, sometimes it is more
convenient to specify a function of cumulative probability, the cumulative
density function (CDF). Both the PDF and the corresponding CDF describe the
same distribution, but they do so in slightly different ways as shown in the
following figure:

The CDF, like the PDF, is a function of x, where x ranges from -infinity to
infinity. The value of a CDF at x is the integral of the PDF, evaluated between -
infinity and x.

In other words, the CDF at any point x is the probability that a sample from the
distribution has a value less than x. Obviously, at x equals infinity the value of
the CDF function must equal 1, because the probability that a sample from any
distribution will be less than infinity is 1. Correspondingly, the CDF function
must equal 0 at x equals -infinity, because the probability that a sample from
any distribution will be less than -infinity is 0. The figure below shows an
example of a uniform PDF and its corresponding CDF.

PDF

0.5

−1 0 +1

CDF

0.5

−1 0 +1

1

PDF and corresponding CDF
Saber® MAST Language User Guide 413
B-2008.09

Chapter 18: Statistical Modeling
Cumulative Density Functions (CDFs)
Some distributions, such as those with only discrete values, cannot be
described using a PDF. Consider, for example, an experiment that consists of
flipping a coin and assigning value 1 if the coin lands with heads showing and -
1 if it lands with tails showing. This experiment has a binary distribution, with
heads and tails each having probability 0.5. It is not possible to describe this
distribution using a PDF, because the area under the points at 1 and -1 would
each have to be 0.5, but the area under any other point cannot exceed 0.

The CDF for this binary distribution, however, is easily demonstrated in the
following figure:

The cumulative probability that a sampled value will be less than -1 is zero. The
cumulative probability that a sampled value will be less than 1 is 0.5. The
cumulative probability that a sampled value will be less than any number
greater than 1 is 1.

CDF

0.5

-1 0 +1

1

CDF for a binary distribution
414 Saber® MAST Language User Guide
B-2008.09

Chapter 18: Statistical Modeling
Cumulative Density Functions (CDFs)
Intrinsic Piecewise Linear Cumulative Density Function

The only intrinsic CDFs provided are those that correspond to piecewise linear
PDFs. The following steps are required to create a piecewise linear CDF:
■ Create a prototype CDF.
■ Map actual values to the prototype CDF.
■ Use the resulting actual value CDF in a netlist.

These steps are expanded in the following topics to change the distribution for
v.battery in the example to use a piecewise linear CDF. The result is a
specification that produces simulation results identical to those of the uniform
PDF specification used in the topic titled "Uniform Probability Density
Function".

1. Creating a Piecewise Linear Prototype CDF
Creating a piecewise linear prototype CDF requires a structure parameter
similar to the following (the same as for a prototype PDF, explained in the topic
titled "1. Creating a Piecewise Linear Prototype PDF"):

This structure (named p_pwl) declares the local variable that is to hold the
prototype piecewise linear CDF. The pwl function used in the netlist
specification searches for this structure. You can use this structure in a netlist,
as described in the topic titled "3. Using a Piecewise Linear Prototype CDF in a
Netlist", or you can include it in a template using the MAST include construct
(<) and the pre-defined file named distrib.sin:

As explained in the topic titled “Using the Standard Template” for a prototype
PDF, you can use the standard template, which already includes the distrib.sin
file as described above. The standard template declares an argument named
p_pwl as the correct type. You can then use an argdef (..) declaration to

struc p_pwl {

enum {_pdf,_cdf} type

struc {number x,y;} pwl[*]

}

<distrib.sin
Saber® MAST Language User Guide 415
B-2008.09

Chapter 18: Statistical Modeling
Cumulative Density Functions (CDFs)
declare a local parameter of this type referenced from standard. An example of
doing this using a local parameter named cpwl1 is shown below.

Example Consider the uniform prototype distribution shown in the upper
portion of the following figure. It corresponds to the PDF used in the original
v.battery example. The corresponding CDF is shown in the lower portion of the
figure.

You can specify this prototype CDF in a template with the following declaration:

The declaration of the p_pwl structure is called from the standard template and
given the local name of cpwl1 for this particular template (p_pwl and cpwl1 are
the same type of parameter). The type field is initialized to _cdf, indicating that
it is a CDF (as opposed to a PDF). The pwl field is an array of coordinate pairs
that correspond to the points on the CDF shown in the lower portion of the
previous figure. This declaration and initialization of the variable named cpwl1
completes the creation of the prototype piecewise linear CDF called cpwl1.

standard..p_pwl cpwl1 = (type=_cdf, pwl=[(-1,0),(1,1)])

PDF

0.5

-1 0 +1

CDF

0.5

-1 0 +1

1

Prototype uniform PDF (above), corresponding CDF (below)
416 Saber® MAST Language User Guide
B-2008.09

Chapter 18: Statistical Modeling
Cumulative Density Functions (CDFs)
If the type field is _cdf, the ordered pairs (x, y) in the pwl field must satisfy the
following requirements:
■ There must be at least two (x, y) pairs.
■ The x and y values must be monotonically non-decreasing.
■ The y values must be Š 0.
■ The first x value (x1) must be < 0, and the last (xn) must be > 0. The

simulator uses these as truncation bounds when assigning random values
to the distribution.

■ The first y value must equal 0, the last y value must be greater than 0.

2. Correspondence Between Actual Values and Prototype CDF
Values
Once the piecewise linear prototype CDF is defined, you can use it to create an
actual value CDF. You do this by passing parameters to the pwl function, which
has the following format:

where:

You can specify either nominal_value and tolerance or nominal_value and both
lower_limit and upper_limit. If you specify the tolerance, then you must set
lower_limit and upper_limit to undef. On the other hand, if you specify the
lower_limit and upper_limit, you must set the tolerance equal to undef. You
must identify prototype.

pwl(nominal_value, tolerance, lower_limit, upper_limit,
prototype)

nominal_value the value the distribution has in a deterministic environment.

tolerance either undef or a numeric value between -1 and 1—if it is a
numeric value, then the upper and lower limits of the
distribution are nominal_value + tolerance*nominal_value
and nominal_value - tolerance * nominal_value

lower_limit either undef or a numeric value less than nominal_value

upper_limit either undef or a numeric value greater than nominal_value

prototype the name of the piecewise linear prototype CDF
Saber® MAST Language User Guide 417
B-2008.09

Chapter 18: Statistical Modeling
Cumulative Density Functions (CDFs)
Regardless of how you specify an actual value piecewise linear distribution, it
must satisfy the following requirements:
■ The nominal_value of the actual value distribution corresponds to value 0 of

the prototype distribution.
■ The lower_limit of the actual value distribution corresponds to value -1 of the

prototype distribution.
■ The upper_limit of the actual value distribution corresponds to value 1 of the

prototype distribution.

Note that these correspondences are maintained even if the prototype
distribution is changed.

3. Using a Piecewise Linear Prototype CDF in a Netlist
The following example duplicates the example given in the topic titled
"Probability Density Functions (PDFs)", with one exception: the v.battery
voltage source has a piecewise linear cumulative distribution that is equivalent
to the original uniform distribution.

This example specifies the actual value CDF by giving the nominal value (9,
which is the value used in non-statistical analyses), an undefined tolerance
value, the lower and upper values (8.9 and 9.1, respectively), and the name of
the prototype distribution (cpwl1).

create prototype pwl CDF

standard..p_pwl cpwl1 = (type=_cdf,pwl=[(-1,0),(1,1)])

map values from pwl CDF to v.battery

v.battery in 0 = pwl(9, undef, 8.9, 9.1, cpwl1)

r.1 in mid = normal(470k, 0.1)

r.2 mid 0 = normal(100k,0.05)
418 Saber® MAST Language User Guide
B-2008.09

Chapter 18: Statistical Modeling
Cumulative Density Functions (CDFs)
The following is an alternate way of specifying the same distribution:

This method specifies the actual value CDF by giving the nominal value (9), the
tolerance (0.01111), the lower and upper bounds (both undef), and the name of
the prototype CDF (cpwl1).

Note that in each example either tolerance OR both upper and lower limits
must be undef. It is an error to specify numeric values for all three, even though
all three must have values. The pwl intrinsic function, unlike the uniform and
normal functions, cannot infer the tolerance or limits from the context of the
calling sequence.

The following figure shows the resulting actual value PDF and CDF for the
voltage of v.battery.

standard..p_pwl cpwl1 = (type=_cdf,pwl=[(-1,0),(1,1)])

same as above

alternate method of specifying v.battery

v.battery in 0 = pwl(9, 0.01111, undef, undef,

cpwl1)

r.1 in mid = normal(470k, 0.1)

r.2 mid 0 = normal(100k, 0.05)
Saber® MAST Language User Guide 419
B-2008.09

Chapter 18: Statistical Modeling
Correlating Distributions
Correlating Distributions

Sometimes it is desirable to model two or more quantities that tend to vary
together. For example, two resistors may be manufactured on an integrated
circuit. The resistor values may vary a great deal from wafer to wafer, or even
from die to die. However, the resistors on the same die may tend to vary
together. That is, if one resistor is at the high end of its range, others from that
die tend to be at the high end of their ranges as well. When this occurs, the
resistor values are said to be correlated.

Correlation occurs in numerous actual applications. The objective of this topic
is to explain how this kind of variation can be modeled with constructs already
described.

The voltage divider example (in the topic titled "Varying Values in a Simple
Voltage Divider") can be used to show how to correlate two parameters.
Assume that the two resistor values in the voltage divider are uniformly

PDF

0.5

8.9 9.0 9.1

CDF

0.5

8.9 9.0 9.1

1

voltage of
v.battery

voltage of
v.battery

Actual value PDF for v.battery voltage

Actual value CDF for v.battery voltage
420 Saber® MAST Language User Guide
B-2008.09

Chapter 18: Statistical Modeling
Modifying Uniform and Normal Default Distributions
distributed with a tolerance of 10%, and that they correlate with each other
within 0.5%. The following netlist implements these relationships:

The first line declares an arbitrarily named variable called common and uses an
initializer (by invoking the uniform function) to assign a value from a uniform
distribution. This uniform distribution has a nominal value of 1 and a 10%
tolerance. The resistor netlist entries (r.1, r.2) use the common variable as a
multiplier, providing the desired correlation. These resistor netlist entries also
provide a 0.5% correlated variation.

Therefore, each resistor will have values that vary with a 10% tolerance, but
they will vary (relatively, in the ratio 47:10) from each other with only a 0.5%
tolerance.

Modifying Uniform and Normal Default Distributions

If necessary, you can modify the default prototype distributions provided for the
uniform and normal distributions. Modifying these default distributions is similar
to defining piecewise linear distributions.

There are several reasons for changing the default prototype distributions:
■ To create uniform distributions that are asymmetrical about the nominal

value
■ To create uniform distributions with limits that are a multiple of the limits of

a piecewise linear distribution
■ To truncate either side of a normal distribution
■ To change the standard deviation of a normal distribution

Next you will learn the following topics:
■ Modifying a Uniform Prototype Distribution
■ Modifying a Normal Prototype Distribution

number common=uniform(1,0.1)

v.battery in 0 = uniform(9, 8.9, 9.1)

r.1 in mid = normal(common*470k, 0.005)

r.2 mid 0 = normal(common*100k, 0.005)
Saber® MAST Language User Guide 421
B-2008.09

Chapter 18: Statistical Modeling
Modifying Uniform and Normal Default Distributions
Modifying a Uniform Prototype Distribution

To modify a uniform prototype PDF, use a MAST structure parameter such as
the following:

You can implement this in any of the following ways:
■ Use this structure in a netlist
■ Include it in a template preceded by <distrib.sin as described in the topic

“Creating a Piecewise Linear Prototype PDF”
■ Include it in a template as by calling it from the standard template by using

an argdef (..) declaration as described in the topic titled “Using the Standard
Template”

The p_uniform structure defines the uniform prototype distribution. The default
values for min and max are -1 and 1, respectively. Note that the min and max
values are not the values that become associated with the limits named lower
and upper in the following use of the uniform function:

The limits of the function call always map to -1 and 1 in the prototype
distribution. Therefore, if min and max are specified to be other than -1 and 1,
the actual value PDF will have values defined above or below the specified
lower and upper limits.

You can modify the prototype distribution in either of the following ways:

1. Using a variable initializer

2. Modifying, in the template body, variables of the structure defined using the
p_uniform prototype PDF

1. Modifying a Uniform Prototype PDF Using Initializers
It is not necessary to declare a prototype variable when using the default.
However, modifying the default prototype PDF requires a variable declaration.

struc p_uniform {

number min=-1

number max=1

}

uniform(nominal, lower, upper)
422 Saber® MAST Language User Guide
B-2008.09

Chapter 18: Statistical Modeling
Modifying Uniform and Normal Default Distributions
The most direct way is to use initializers when defining the prototype variable
patterned after the p_uniform prototype PDF by including the following in the
template:

The above example produces the same distribution for v.battery as in the
original example (shown below), which was based on the values min=-1 and
max=1:

Note that, in the modified version, the uniform function call requires
specification of all the possible arguments: nominal value (9), tolerance
(undef), lower limit (8.95), upper limit (9.2), and prototype name (punif). The
uniform function has the following general syntax:

where:

When using a non-default prototype function, you must specify all parameters,
with either tolerance set to undef or both lower_limit and upper_limit being set
to undef.

standard..p_uniform punif =(min=-2, max=0.5)

v.battery in 0 = uniform(9, undef, 8.95, 9.2, punif)

v.battery in 0 = uniform(9, 8.9, 9.1)

uniform(nominal_value, tolerance, lower_limit,

upper_limit,prototype)

nominal_value the value that the distribution is to have in a deterministic
(non-statistical) environment.

tolerance either undef or a numeric value between -1 and 1—if it is a
numeric value, then the upper and lower limits of the
distribution are nominal_value + tolerance*nominal_value
and nominal_value - tolerance * nominal_value

lower_limit either undef or a numeric value less than nominal_value

upper_limit either undef or a numeric value greater than nominal_value

prototype the name of the prototype uniform PDF
Saber® MAST Language User Guide 423
B-2008.09

Chapter 18: Statistical Modeling
Modifying Uniform and Normal Default Distributions
Note that producing the symmetry of the original distribution required specifying
asymmetrical limits in the function call. This is because the scaling on the two
sides of the nominal value are different, as shown in the following figure:

The scaling is different because of the mapping between the prototype
distribution and the parameters passed to the uniform function:
■ The parameter value 8.95 maps to the prototype value -1
■ The parameter value 0 maps to the prototype value 0
■ The parameter value 9.2 maps to the prototype value +1

The result is a uniform distribution between 8.9 and 9.1.

PDF

0.4

8.9 9.0 9.1
actual value of x

9.28.95

PDF

0.4

-2 0 0.5
prototype x

1-1

Uniform PDF using non-default prototype
424 Saber® MAST Language User Guide
B-2008.09

Chapter 18: Statistical Modeling
Modifying Uniform and Normal Default Distributions
2. Modifying a Uniform Prototype PDF in a Template
You can obtain the same results as above (using an initializer) by modifying the
prototype PDF in the template body, as follows:

The example just given produces the same distribution for v.battery as the
previous example (reproduced below):

Modifying a Normal Prototype Distribution

Modifying a normal prototype PDF requires the use of a MAST structure similar
to the following:

As shown above for a uniform distribution, you can implement this in any of the
following ways:
■ Use this structure in a netlist
■ Include it in a template, preceded by <distrib.sin, as described in the topic

titled "Creating a Piecewise Linear Prototype PDF"
■ Include it in a template, calling it from the standard template by using an

argdef (..) declaration, as described in the topic titled “Using the Standard
Template”

standard..p_uniform punif

punif->min = -2

punif->max = 0.5

v.battery in 0 = uniform(9, undef, 8.95, 9.2,

punif)

v.battery in 0 = uniform(9, 8.9, 9.1)

struc p_normal {

number mean=0

number std_dev=0.33333333333333

number min=undef

number max=undef

}
Saber® MAST Language User Guide 425
B-2008.09

Chapter 18: Statistical Modeling
Modifying Uniform and Normal Default Distributions
The p_normal structure defines the normal prototype distribution. The default
value for the mean is 0. The default value for the standard deviation is 1/3. The
default values for min and max are both undef, which defines the distribution
from -infinity to infinity. Otherwise, the distribution is truncated at the specified
value.

Note that the min and max values are not the values mapped to the lower and
upper limits in the following call to the normal function:

The limits of the function call always map to -1 and 1 in the prototype
distribution.

The values of min and max are used only to specify the point at which the
distribution becomes truncated. If the values of min and max are left at undef
(the default) then the actual value PDF continues from -infinity to infinity. If the
values of min and max are specified as -1 and 1, then the actual value PDF will
be truncated at the specified limits (lower and upper). If the values of min and
max are specified to be other than -1 and 1, the actual value PDF will be
truncated accordingly. This is shown in the example that follows.

You can modify the prototype distribution in either of the following ways:

1. Using a variable initializer

2. Modifying, in the template body, variables of the structure defined using the
p_normal prototype PDF

1. Modifying a Normal Prototype PDF using Initializers
It is not necessary to declare a prototype variable when using the default.
However, modifying the default prototype PDF requires a variable declaration.
The most direct way is to use initializers when defining the prototype variable
patterned after the p_normal prototype PDF by including the following in the
template:

normal(nominal, lower, upper)

standard..p_normal pnorm = (std_dev=1/4, min=-2, max=2)

r.1 p m = normal(470k, 0.1, undef, undef, pnorm)
426 Saber® MAST Language User Guide
B-2008.09

Chapter 18: Statistical Modeling
Modifying Uniform and Normal Default Distributions
The above example produces a distribution somewhat like that for r.1 in the
original example (shown below):

However, the modified distribution differs by having an actual value distribution
whose standard deviation is (470k•0.1)/4, rather than (470k•0.1)/3. Also,
because the limit of the modified distribution was apecified as min=-2 and
max=2, the upper end is truncated at 564k and the lower end is truncated to
376k. The following figure illustrates this modified distribution.

Note that, in the modified version, the call to the normal function requires
specification of all the possible arguments: nominal value (470k), tolerance
(0.1), lower limit (-2), upper limit (2), and prototype name (pnorm). The normal
function has the following general syntax:

where:

r.1 p m = normal(470k, 0.1)

normal(nominal_value, tolerance, lower_limit,

upper_limit, prototype)

nominal_value the value that the distribution is to have in a deterministic
(non-statistical) environment.
Saber® MAST Language User Guide 427
B-2008.09

Chapter 18: Statistical Modeling
Parameterized PDF and CDF Specifications
When using a non-default prototype function, you must specify all parameters,
and either the tolerance or both limits must be undef.

2. Modifying a Normal Prototype PDF in a Template
You can obtain the same results as above (using an initializer) by modifying the
prototype PDF in the template body, rather than in the initialization of the
variable. This modification (shown below) produces the same distribution for r.1
as does the preceding example.

Parameterized PDF and CDF Specifications

Occasionally, it is useful to be able to change the statistical properties of a
parameter. For example, you might want to turn some parameters on
statistically or turn some off, or both. There are two intrinsic functions for this
purpose, one for PDFs, the other for CDFs. You can call them as follows:

tolerance either undef or a numeric value between -1 and 1—if it is a
numeric value, then the upper and lower limits of the
distribution are nominal_value + tolerance*nominal_value
and nominal_value - tolerance * nominal_value

lower_limit either undef or a numeric value less than nominal_value

upper_limit either undef or a numeric value greater than nominal_value

prototype the name of the prototype normal PDF

standard..p_normal pnorm=()

pnorm->std_dev=1/4

pnorm->min = -2

pnorm->max = 2

r.1 p m = normal(470k, 0.1, undef, undef, pnorm)

parameter = pdf(nominal, tol, bounds,

prototype_pdf)

parameter = cdf(nominal, tol, bounds,

prototype_cdf)
428 Saber® MAST Language User Guide
B-2008.09

Chapter 18: Statistical Modeling
Parameterized PDF and CDF Specifications
The prototype distributions are defined in distrib.sin as follows:

The following example shows how to use a parameterized PDF—using a
parameterized CDF is similar.
■ In the local declarations section of the template, include the declarations to

specify a normal distribution:

■ In the netlist section, place the following entry:

Later, when running the simulator, you could change to a uniform distribution
by entering the following command:

Note that the structure bounds was used to simplify the specification of the two
undefined quantities required by the pdf function call. The parameter pdf1
specifies a normal distribution. Later, when running the simulator, you could
change to a uniform distribution by entering the following command:

union p_pdf {

number off=1

struc p_uniform uniform=()

struc p_normal normal=()

struc {number x,y;} pwl[*]

}

union p_cdf {

number off=1

struc {number x,y;} pwl[*]

}

standard..p_pdf pdf1 = (normal=())

struc {number min, max;} bounds =(undef,

undef)

r.1 a b =pdf(1k, 0.1, bounds, pdf1)

alter pdf1 =(uniform=())

alter pdf1 =(off=1)
Saber® MAST Language User Guide 429
B-2008.09

Chapter 18: Statistical Modeling
The random MAST Function
The random MAST Function

The MAST language includes the random() function, which has no arguments.
The random function returns a pseudo-random number in the interval that
includes 0 and goes up to, but does not include, 1. The pseudo-random
sequence can be seeded when the statistical environment is activated.
Seeding is associated with the mc command.

The random() function is useful if you want to do something with a certain
probability. For example, assume you want to flip a coin (i.e., have a variable
that takes on two discrete values with certain probabilities). Although this could
be described with the pwl distribution, it is simpler to use the random() function.

The following example shows how to set up a parameter that has the value 1K
with probability 0.4, and 2K with probability 0.6:

Use of the statistical MAST Simvar Variable

One of the intrinsic simulation variables is statistical, whose value is 0 if the
simulation environment is deterministic. On the other hand, it is non-zero if the
environment is statistical, such as when you execute the mc command.

When a statistical environment has been established, statistically defined
parameters take on random values according to the distribution functions
defined for them. On the other hand, such parameters take on their nominal
values if the environment is deterministic.

You can use the statistical simvar variable if you want to do different things in
the deterministic and statistical environments. For example, you could use it

number r, value

r = random()

if (r<.4) {

value = 1K

}

else {

value = 2K

}
430 Saber® MAST Language User Guide
B-2008.09

Chapter 18: Statistical Modeling
Worst-Case Statistical MAST Modeling
when the nominal value of the statistical distribution is different from the
deterministic value as follows:

Worst-Case Statistical MAST Modeling

It is sometimes useful to perform what is called a worst-case analysis (WCA)
on a design using Monte Carlo techniques. The MAST language supports this
through the worst_case simvar variable. This simvar variable has a value of 0
except during a Monte Carlo analysis in which the worst_case variable is set to
yes, when it assumes a non-zero value (such as 1).

The worst_case simvar variable interacts with the statistical simvar as follows:

You can use the worst_case simvar variable to do different things in standard
and worst-case Monte Carlo analyses. For example, the statistical distributions

if (statistical) {

resistance = normal(10k, 200)

}

else {

resistance = 8k

}

value of statistical value of worst_case

Deterministic environment 0 0

Statistical environment (Monte
Carlo analysis)

1 0

Worst-case analysis in

statistical environment (Monte
Carlo analysis)

1 1
Saber® MAST Language User Guide 431
B-2008.09

Chapter 18: Statistical Modeling
Worst-Case Statistical MAST Modeling
provided (such as uniform, normal, pwl) change their behavior depending on
the value of the worst_case simvar as follows:
■ If worst_case is 0, these distributions are implemented.
■ If worst_case is 1 (or any non-zero value), these distributions are

implemented as discrete distributions—they return, with equal probability,
only the upper and lower limit values that result after applying the
appropriate prototype distribution.
432 Saber® MAST Language User Guide
B-2008.09

19
19Adding Stress Measures to a MAST Template

A stress measure is a definition of an operating condition for which a safe
operating limit can be specified. The operating condition will typically
correspond to a rating (or SOA) specification for a device in a manufacturer’s
data sheet.

The following steps describe a way to add stress measures to a template for
which stress ratios can then be calculated by a stress analysis.

1. Add stress_measure Statements to Template

2. Determine if Specified Variables are Accessible

3. Add Stress Ratings

4. Add Thermal Resistances (Optional)

5. Add a Way to Disable Stress (Optional)

6. Add a Way to Specify Device Type and Class (Optional)

Add stress_measure Statements to Template

To add the required stress_measure statements to the control section of the
template:

• Place a stress_measure statement for each stress measure you want to
implement in the control section of your template.
Saber® MAST Language User Guide 433
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
Add stress_measure Statements to Template
The following examples show stress_measure statements for a resistor
template:

A stress_measure statement takes the following form:

where

stress_measure (pdmax,power,"Max Power Diss.",

pwrd,winmax,pdmax)

stress_measure (pdavg,power,"Avg Power Diss.",

pwrd,average,pdmax)

stress_measure (tjmax,temperature,"Max Temperature",

tempj,winmax,xtjmax,tempj_tnom)

stress_measure (tjavg,temperature,"Avg temperature",

tempj,average,xtjmax,tempj_tnom)

stress_measure (tjmin,temperature,"Min Temperature",

tempj,min,xtjmin,tempj_tnom)

stress_measure (vmax,voltage,"Max Voltage",

abs(v),max,xvmax)

stress_measure (uid, gid, "name", val,

measure, rating[, ref_rating])

uid stress report formatting - (unique identification) identifies the
stress measure (for example, pdmax). The uid is used as the
value for the smeasurelist variable of the stress command.

gid stress report formatting - (group identification) identifies a type
or grouping of stress measures to which this stress measure
belongs (for example, power)

name stress report formatting - specifies the text to be used to
describe this stress measure in a stress report (for example,
"Max Power Diss."). Limited to 18 characters.
434 Saber® MAST Language User Guide
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
Add stress_measure Statements to Template
val is the name of a variable in the template from which the value
of the stress measure is to be extracted using the measurement
specified in the measure field (e.g., pwrd). See the topic titled
"Determine if Specified Variables are Accessible" for more
information about template variables.

measure specifies the measurement to be made on the template variable
specified in the val field. This measurement provides the
“actual” or “measured” value for the stress ratio calculation.
Possible measurements are one of: peak, max, winmax, min,
winmin, rms, and average.

When winmax or winmin are used (rather than max or min), a
sliding average filter is applied to the waveform before the
maximum or minimum value is determined. The stress
command variable xwindow is used to specify the time constant
of the filter to be applied.

Note that if the value for rating is positive, the peak
measurement is equivalent to the max measurement. If the
value for rating is negative, the peak measurement is
equivalent to the min measurement.

rating is the manufacturer’s rating for the stress measure (e.g., 40,
pdmax). You can enter the actual value of the rating as a
constant in this field, or you can enter a variable. If a variable is
entered, the value can be provided as an argument in the
header of the template (see the topic titled "Add Stress
Ratings"). The rating is a parameter passed into the template
and should not be confused with the uid which may have a
similar name.

ref_rating is an optional single value reference rating. When a reference
rating is specified, the measured and derated values are
referenced to this value rather than to 0 when the stress ratio is
calculated. For example, you may want to use 25××C rather
than 0 as a reference for a temperature-related stress measure
(for example, for tempj_tnom).

The stress measures in templates in the MAST libraries are all
referenced to 0 and do not use the ref_rating variable
Saber® MAST Language User Guide 435
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
Determine if Specified Variables are Accessible
Determine if Specified Variables are Accessible

Determine if the variable specified in the val field of each stress measure is
available in the template and add if needed.

Somewhere in your template, a value must be provided from which the stress
measure can be extracted. The stress measures shown in the topic titled "Add
stress_measure Statements to Template" are obtained by making
measurements on the three variables pwrd, tempj, and v. These values (val
variables) are calculated in the body of the resistor template as shown below:

For examples on using val variables in a template, see Variables and
Arguments on page 97.

Add Stress Ratings

If a rating is not provided directly in a stress statement, it must be passed into
the template as an argument. By convention, ratings are passed in using a
structure parameter. An example of this method is shown below. However, if

v = v(p) - v(m)

.

.

.

power = v*i

pwrd = power

tempj = temp + pwrd*rth_eff
436 Saber® MAST Language User Guide
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
Add Stress Ratings
only one or two stress measures are included in the template, you may prefer
to specify the ratings arguments individually rather than in a structure.

1. In the header declarations section of the template, declare a structure for the
ratings. An example is shown as follows:

2. Add the name of the structure to the template header. In this example,
ratings is the name of the structure. The header is shown as follows:

struc {

number pdmax_ja=undef, # Max. Pwr, no htsnk

pdmax_jc=undef, # Max. Pwr, with htsnk

tjmax=undef, # Max. temperature

tjmin=undef, # Min. temperature

vmax=undef # Max. voltage

} ratings=()

element template r p m = rnom, tc, tnom, nons,

model, l, w, ratings, rth_ja, rth_jc, rth_hs,

part_type, part_class
Saber® MAST Language User Guide 437
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
Add Stress Ratings
3. In the body of the template, define local variables in which to store ratings
after error checking is complete. By convention, a local variable that
corresponds to a rating variable takes the same name as the rating variable
preceded by the character x.

4. Add error checking for ratings. A function called ratingbp is provided that
returns the absolute value specified for the rating and provides standard
error checking and appropriate warning and error messages. The ratingbp
function can be found in install_home/template/function/ratingbp.sin.

In the following example, this function is used to assign the absolute value
of the rating vmax to the variable xvmax and to check the value for errors.

The second part of this section of the example handles the special case of
tjmax and tjmin where a negative value is allowed. It checks for values of
undef (no value provided) and inf (non-applicable value) and determines if

number r, #Final resistance.

g, #Final conductance.

nx, #Noise flag.

xl, #Effective resister length.

xw, #Effective resister width.

dl, #Final value of geometry reduction.

rth_eff, #Final value of thermal resistance.

pdmax, #Final value of power diss. rating.

xvmax, #Final value of max. voltage rating.

xtjmax, #Final value of max temp rating.

xtjmin #Final value of min temp rating.

number tempj_tnom=25 #Ref_rating for temp stress.

xvmax = ratingbp(ratings->vmax,"vmax")
438 Saber® MAST Language User Guide
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
Add Thermal Resistances (Optional)
xtjmax is greater than xtjmin. If tjmax is not greater then tjmin, the message
TMPL_S_REL_VALUE is displayed that states that “the maximum value
should be greater than the minimum value.”

Add Thermal Resistances (Optional)

Thermal resistances are typically passed in as arguments to the template. An
intrinsic function called thermpar can be used to determine the effective

xtjmax = ratings->tjmax

xtjmin = ratings->tjmin

if(xtjmin ~= undef & xtjmin ~= inf) {

if(xtjmax ~= undef & xtjmax~=inf &

xtjmax < xtjmin) {

saber_message("TMPL_S_REL_VALUE",instance(),

"tjmax","tjmin")

 xtjmin = undef

}

}
Saber® MAST Language User Guide 439
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
Add Thermal Resistances (Optional)
thermal resistance and maximum power dissipation from the values that are
passed in.

1. In the header declarations section of the template, add thermal resistance
variables as shown in the example below:

2. Add local variables to the body of the template for thermal resistance and
power dissipation:

number rnom=undef, # Nominal resistance.

tnom=27, # Nominal temperature.

tc[2]=[0,0], # Temperature coefficients.

nons=0.0, # Resistor will be noiseless

if non-zero value.

l=0.0, # Optional length of resistor.

w=0.0, # Optional width of resistor.

rth_ja=undef, # Junction-Ambient Thermal

resistance deg C/W).

rth_jc=undef, # Junction-Case Thermal

resistance (deg C/W).

rth_hs=undef # Heatsink Thermal resistance

(deg C/W).

number r, # Final resistance.

g, # Final conductance.

nx, # Noise flag.

xl, # Effective resister length.

xw, # Effective resister width.

dl, # Final value of geometry reduction.

rth_eff, # Final value of thermal resistance.

pdmax, # Final value of power diss. rating.

xvmax, # Final value of max. voltage rating.

xtjmax, # Final value of max temp rating.

xtjmin # Final value of min temp rating.

number tempj_tnom=25 # Ref_rating for temp stress.
440 Saber® MAST Language User Guide
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
Add a Way to Disable Stress (Optional)
3. Add a statement to the template that determines the effective thermal
resistance rth_eff and the power dissipation pdmax to be used. The
following example makes use of the thermpar function.

Note that the thermpar function has five arguments separated by commas.
The fourth argument contains an if then else condition. The thermpar
function can be found in install_home/template/function/thermpar.sin.

The thermpar function implements the truth table shown as follows:

Add a Way to Disable Stress (Optional)

A mechanism can be implemented in a template to allow you to inactivate the
stress statements in a template when they are not needed. This feature is
useful if a template is to be used as a macromodel building block. Typically, in
a macromodel, an overall value for an operating condition such as power is
calculated by combining values from the building blocks and then stress

(rth_eff,pdmax) = thermpar(rth_ja,rth_jc,rth_hs,

if(ratings->pdmax_ja==undef) then r_pdmax

else ratings->pdmax_ja,

ratings->pdmax_jc)

INPUTS OUTPUTS

rth_ja rth_jc rth_hs rth_eff pdmax

undef undef undef 0 pdmax_ja

undef undef val_hs 0 pdmax_ja

undef val_jc undef val_jc pdmax_jc

undef val_jc val_hs val_jc+val_hs pdmax_jc

val_ja undef undef val_ja pdmax_ja

val_ja undef val_hs val_ja pdmax_ja

val_ja val_jc undef val_ja pdmax_ja

val_ja val_jc val_hs val_jc+val_hs pdmax_jc
Saber® MAST Language User Guide 441
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
Add a Way to Disable Stress (Optional)
measures for the macromodel itself are extracted. In this case, the stress
measures in the individual templates are typically of less use in a stress report.

1. In the header declarations section of the template, add include_stress to the
list of parameters declared as external numbers as shown in the following
example:

The parameter name include_stress is not a MAST reserved word. It is the
name used by convention in MAST templates

Values declared in external statements are found at a higher level in the
hierarchy of a design. The include_stress parameter, for example, is set to
a default value of 1 in the header.sin file.

The header.sin file contains declarations for various global variables such
as temp and include_stress. It is included in the Saber input file (netlist) for
the design when the Saber Simulator is invoked.

external number temp, include_stress,

r_tol, r_pdmax
442 Saber® MAST Language User Guide
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
Add a Way to Specify Device Type and Class (Optional)
2. Place a conditional statement around the stress_measure statements in the
control section of the template to detect if they are to be included in the
simulation. See the following example:

Add a Way to Specify Device Type and Class (Optional)

Information about the type and class of a device provided in the template are
used as sorting criteria for the stress report.

1. Add a device_type statement to the control section of the template as shown
in the following example:

In the previous statement, part_type and part_class could be replaced by
the actual part type and part class of the device. Alternatively, these values
can be passed in as arguments to the template as shown next.

if(include_stress) {

stress_measure(pdmax,power,"Max Power Diss.",

pwrd,winmax,pdmax)

stress_measure(pdavg,power,"Avg Power Diss.",

pwrd,average,pdmax)

stress_measure(tjmax,temperature,

"Max Temperature",tempj,winmax,

xtjmax,tempj_tnom)

stress_measure(tjavg,temperature,

"Avg Temperature",tempj,average,

xtjmax, tempj_tnom)

stress_measure(tjmin,temperature,

"Min Temperature",tempj,min,

xtjmin, tempj_tnom)

stress_measure(vmax,voltage,"Max Voltage",

abs(v),max,xvmax)

}

device_type(part_type,part_class)
Saber® MAST Language User Guide 443
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
Add a Way to Specify Device Type and Class (Optional)
2. In the header declarations section, declare part_type and part_class as
strings and give them default values as shown in the following example:

The part_type string must be limited to 9 characters and the part_class
string to 18 characters to fit into the format of the stress report.

If you are modifying an existing template to add stress measures, device_type,
part_type, and part_class statements may have already been defined in the
template. However, you can alter them to provide part type or part class names
that may be more useful as sorting criteria in your stress reports.

string part_type="resistor",# type of the device

part_class="generic" # class of the device
444 Saber® MAST Language User Guide
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
MAST Example Including Stress Statements
MAST Example Including Stress Statements

A complete listing of the example resistor template is shown below. Stress-
related statements are shown in bold.

#**

Constant resistor (called by: r)

Zero value is not allowed and will generate an error message.

Geometric description is allowed.

#**

#**

This template created by Synopsys, Inc. for exclusive use
with

the Saber Simulator.

Copyright 1987,1988,1989,1993,2005 Synopsys, Inc.

This template may not be reproduced in any way (physically or

electronically) without permission from Synopsys, Inc.

The content of this template is subject to change without

notice. Synopsys does not assume liability for the use of this

template or the results obtained from using it.

#**

element template r p m = rnom,tc,tnom,nons,model,l,w,

ratings,rth_ja,rth_jc,

rth_hs,part_type,part_class

#...declaration of connections:

electrical p,m

process..imodel model = ()# Process model for resistor.
Saber® MAST Language User Guide 445
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
MAST Example Including Stress Statements
#...declaration of arguments (tnom is in degrees celsius)

number rnom=undef, # Nominal resistance.

tnom=27, # Nominal temperature.

tc[2]=[0,0], # Temperature coefficients.

nons=0.0, # Resistor will be noiseless if

non-zero value.

l=0.0, # Optional length of resistor.

w=0.0, # Optional width of resistor.

rth_ja=undef, # Junction-Ambient Thermal

resistance (deg C/W)

rth_jc=undef, # Junction-Case Thermal

resistance (deg C/W)

rth_hs=undef # Heatsink Thermal

resistance (deg C/W)

#...Bring in external numbers

external number temp, include_stress, r_tol, r_pdmax

external standard..pdist pdist

struc {

number pdmax_ja= undef,# Max. power diss. w/out heatsink

pdmax_jc=undef, # Max. power diss. w/ heatsink

tjmax=undef, # Max. temperature

tjmin=undef, # Min. temperature

vmax=undef # Max. voltage

} ratings=()

string part_type="resistor",# type of the device

part_class="generic" # class of the device
446 Saber® MAST Language User Guide
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
MAST Example Including Stress Statements
export val tc tempj # instantaneous junction temperature

export val p pwrd # instantaneous power dissipation

export val i i # instantaneous current

#++

Start the definition

{

#...Quantities useful for output:

val v v

val p power

val ni nsr

val tc temp_case

val rth rth_hs_tjmax

#...Define a group for extraction purposes

group {nsr} noise

group {power,pwrd} pwr
Saber® MAST Language User Guide 447
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
MAST Example Including Stress Statements
#...Define quantities used later

number r, # Final resistance.

g, # Final Conductance.

nx, # Noise flag.

xl, # Effective resister length.

xw, # Effective resister width.

dl, # Final value of geometry reduction.

rth_eff, # Final value of thermal resistance.

pdmax, #Final value of power dissipation rating.

xvmax, # Final value of max. voltage rating.

xtjmax, # Final value of max temp rating.

xtjmin # Final value of min temp rating

number tempj_tnom=25 # Ref_rating for temp stress.

#...Bring in mathematical constants

<consts.sin
448 Saber® MAST Language User Guide
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
MAST Example Including Stress Statements
#++

parameters {

#...Check input parameters.

if ((rnom == undef) & ((model->rsh == 0)|(l == 0)|

((w == 0)&(model->wdf == 0)))) {

Resistance is not specified.

saber_message("TMPL_S_ALT_SPEC", instance(),

"resistance","rnom","model->rsh, l, and w")

}

#...Include temperature effects

if (rnom ~= undef) {

#...Resistor specification.

if (rnom == inf) {

r = inf

}

else {

#...Call function to apply distribution

#...to resistor value

r = distfunc(rnom,r_tol,pdist)

r = r*(1 + tc[1]*(temp-tnom) + tc[2]*((temp-tnom)**2))

}

}

Saber® MAST Language User Guide 449
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
MAST Example Including Stress Statements
else {

#...Process specification.

#...Check input parameters.

if ((model->dl == undef)|(model->dl < 0)) {

dl = 0

}

else {

dl = model->dl

}

if (((w == 0)|(w == undef)) &

((model->wdf == 0)|(model->wdf == undef))) {

saber_message("TMPL_S_ALT_SPEC", instance(),

"resistor width","w","model->wdf")

}

#...Take into account the geometry

#...reduction of the length.

xl = l - dl

if (xl <= 0) {

saber_message("TMPL_S_POS",instance(),

"effective resistor length")

}

#...Take into account the geometry

#...reduction of the width.

if ((w > 0)&(w ~= undef)) {

xw = w - dl

}

else {

xw = model->wdf

}

450 Saber® MAST Language User Guide
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
MAST Example Including Stress Statements
#...Calculate the resistance from

#...the sheet resistance.

if (xw > 0) {

#...Call function to apply distribution

#...to resistor value

r = distfunc(model->rsh*(xl/xw),r_tol,pdist)

r = r*(1 + tc[1]*(temp-tnom) + tc[2]*((temp-tnom)**2))

}

else {

saber_message("TMPL_S_POS",instance(),

"effective resistor width")

}

}

#...Calculate conductance and print message if r=0

if (r == 0) {

saber_message("TMPL_S_RANGE_NE_0",instance(),

"resistance value")

g = 0

}

else if (r < 0) {

#...negative resistance

saber_message("TMPL_W_GE_REL_VALUE",instance(),

"resistance value","zero")

g = 1/r

}

Saber® MAST Language User Guide 451
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
MAST Example Including Stress Statements
else if (r == inf) {

g = 0

}

else {

g = 1/r

}

#...Bulletproofing on ratings

(rth_eff,pdmax) = thermpar(rth_ja,rth_jc,rth_hs,

if(ratings->pdmax_ja==undef) then r_pdmax

else ratings->pdmax_ja,

ratings->pdmax_jc)

xvmax = ratingbp(ratings->vmax,"vmax")

xtjmax = ratings->tjmax

xtjmin = ratings->tjmin

if(xtjmin ~= undef & xtjmin ~= inf) {

if(xtjmax ~= undef & xtjmax~=inf & xtjmax < xtjmin) {

saber_message("TMPL_S_REL_VALUE",instance(),"tjmax",

"tjmin")

xtjmin = undef

}

}

#...Determine the noise "switch" multiplier

if ((nons == 0) & (r > 0)) {

nx = 1

}

else {

nx = 0

}

}

452 Saber® MAST Language User Guide
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
MAST Example Including Stress Statements
#++

values {

#...Definition of output quantities.

v = v(p) - v(m)

i = g*v

If r=0, i=0. The value for i is wrong but a

message has been printed out indicating that r=0.

#...Calculate noise generator

if (freq_domain & nx) {

nsr = sqrt(abs(4.0*math_boltz*(temp + math_ctok)*g))

}

else {

nsr = 0.0

}

#...Determine power term for extraction

power = v*i

pwrd = power

tempj = temp + pwrd*rth_eff

if(rth_jc ~= undef & rth_jc ~= inf & rth_jc > 0) {

if (pwrd ~= 0) {

rth_hs_tjmax = (xtjmax - temp)/pwrd - rth_jc

}

else rth_hs_tjmax = inf

temp_case = tempj - pwrd*rth_jc

}

}

Saber® MAST Language User Guide 453
B-2008.09

Chapter 19: Adding Stress Measures to a MAST Template
MAST Example Including Stress Statements
#++

control_section {

#...device type and class

device_type(part_type,part_class)

#...Specify noise source

noise_source(nsr,p,m)

#...Specify the stress measures

if(include_stress) {

stress_measure(pdmax,power,"Max Power Diss.",

pwrd,winmax,pdmax)

stress_measure(pdavg,power,"Avg Power Diss.",

pwrd,average,pdmax)

stress_measure(tjmax,temperature,"Max Temperature",

tempj,winmax,xtjmax, tempj_tnom)

stress_measure(tjavg,temperature,"Avg Temperature",

tempj,average,xtjmax,tempj_tnom)

stress_measure(tjmin,temperature,"Min Temperature",

tempj,min,xtjmin,tempj_tnom)

stress_measure(vmax,voltage,"Max Voltage",

abs(v),max,xvmax)

}

}

#++

equations {

i(p->m) += i

}

}

454 Saber® MAST Language User Guide
B-2008.09

A
AUnstructured Modeling Approach — Examples

This appendix presents examples that use an unstructured approach to
modeling.

Constant Current Source

The contents of the constant current source template are shown below
modeled in an unstructured format.

Branch Declarations

The following branch declaration identifies the through variable flowing
between pins p and m as a branch current and assigns it to a variable named i:

template isource p m = is

electrical p,m

number is

{

branch i = i(p->m) # branch declaration

i=is # template equation

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
isource.sin

branch i = i(p->m)
Saber® MAST Language User Guide 455
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Constant Current Source
Note:

Although you could omit the branch declaration shown above and just write
the equation as i(p->m) = is, it is not recommended.

Template Equation

The template equation is written to describe the effect of the continuous analog
portion of a template at its connection points.

The source current is enters at pin p and leaves at pin m. That is, if isource is
used in a netlist, the current flowing between the nodes to which pins p and m
are connected is modified by the source current from isource. In the MAST
language, the simplest way to express this is:

The terms in this equation include:

For a constant current source, this means that a current of the amount is
provided between the node connected to pin p and the node connected to pin
m. Because an independent current source is not affected by its branch
voltage, no equations need to be provided for voltage across the source (that
is, the branch voltage becomes whatever is required to maintain the specified
level of branch current, is).

Therefore, the following equation is a complete description of a constant
current source:

where i has been assigned to represent the branch current:

i(p->m) = is

i(p->m) The branch current flowing from the node connected to pin p to
the node connected to pin m. (This current is assigned to the
variable i in the branch declaration, so that i is used in the actual
template equation).

is The user-specified current contributed by the source.

i = is

i(p->m)
456 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Linear Resistor MAST Template
Linear Resistor MAST Template

The un-structured approach to modeling a simple resistor template with MAST
is as follows:

Branch Declarations

This template provides a single branch from p to m. This means that, when p
and m are connected to system nodes, the template models a path for the
through variable (current). Similarly, an across variable (voltage) can be
calculated between nodes to which p and m are connected. The branch
variables for this template are named and declared as:

Branches can be declared in any order within the template body.

Template Equation

Referring to the ideal resistor figure, the voltage across the resistor is given as
the difference between the voltages at its pins:

template resistor p m = res

electrical p,m

number res

{

branch cur=i(p->m) # Branch current

branch vlt=v(p,m) # Branch voltage

cur=vlt/res # Equation for current

through the resistor

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
resistor.sin

branch cur = i(p->m)

branch vlt = v(p,m)

v(p,m) = v(p) - v(m)
Saber® MAST Language User Guide 457
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Linear Capacitor MAST Template
Because both p and m are electrical, v(p) and v(m) are implicitly declared as
system variables (meaning, the simulator supplies their values). To be written
as a MAST equation, the characteristic equation of the resistor must use the
branch variables as they have been declared (above). Therefore, the current
through the resistor is given by:

This is the equation for the resistor template; it defines the amount of current
that the resistor contributes to the current flowing from pin p to pin m.

Linear Capacitor MAST Template

The un-structured approach to modeling a linear capacitor appears as follows:

cur = vlt/res

template capacitor p m = cap # header

electrical p, m # header declarations

number cap

{ # Start template body

branch i = i(p->m)

branch v = v(p,m)

i = d_by_dt(v*cap)

} # End template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
capacitor.sin

v(p)
v(p,m)

v(m)

+ _

p m
res

i(p->m)

Ideal resistor
458 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Linear Capacitor MAST Template
The branch declarations are very similar to those for the isource and the
resistor templates.

Template Equation

The simulator solves for the values of v(p) and v(m) as system variables, so
they are known to the template. Refer to the following figure.

To write the template equation, you need to express the voltage across the
capacitor in terms of these system variables, which is done by the branch
declaration:

Referring to the characteristic equation, the branch current (i) of the capacitor is
given as the time derivative of its charge. In the MAST language, taking the
time derivative of an expression is represented by applying the d_by_dt
operator to the expression.

In this example, this becomes:

The d_by_dt operator can operate on any expression that does not include a
delay operator or another d_by_dt operator. It can appear only in a template
equation, and you can only add terms to it and subtract terms from it.
Therefore, the expression cap*d_by_dt(v), while valid in conventional calculus,
is not valid in the MAST language. Higher order derivatives are implemented
with multiple d_by_dt statements.

branch v = v(p,m)

i = d_by_dt(v * cap)

v(p)
v(p,m)

v(m)

+ _

p m
cap

i(p->m)

Linear capacitor
Saber® MAST Language User Guide 459
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Constant Voltage Source MAST Template
Constant Voltage Source MAST Template

The un-structured approach to modeling a constant voltage source is as
follows:

The following figure illustrates the voltage source; it provides a constant
voltage (vs) across pins p and m. The value of vs is user-specified for an
instance of this template in a netlist; it is therefore an argument for the source
model.

This topic introduces the need for an additional branch declaration to provide
the through variable (current) as a system variable

template vsource p m = vs

electrical p,m

number vs

{

branch i=i(p->m), v=v(p,m)

v = vs

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
vsource.sin

v(m)

p mi(p->m)

v(p) vs
+ _

Voltage source

vsource
460 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Constant Voltage Source MAST Template
Branch Declarations

The value of current through the constant voltage source, i(p->m), cannot be
determined by the source alone. Instead, this current depends upon the system
to which the voltage source is connected (recall that the simulator solves for
system variables, such as the across variables at the pins). The branch current
needs to be declared, as explained below.

Notice that vsource uses branch voltage much the same way as isource uses
branch current—it defines the appropriate branch variable and then sets it
equal to the value of the template argument:

However, there is one important difference: vsource also needs to declare its
branch current as a system variable for use by the simulator, whereas isource
does not need to declare its branch voltage (because the simulator already
finds it as a system variable). Thus, vsource needs to declare two branch
variables, i and v:

However, MAST allows you to combine branch declarations on one line:

Template equation

After the branch declarations described above have been made, the template
equation for this voltage source can be written (similar to that for the current
source):

vsource isource

v=v(p,m) i=i(p->m)

v=vs i=is

branch i = i(p->m)

branch v = v(p,m)

branch i=i(p->m), v=v(p,m)

v=vs
Saber® MAST Language User Guide 461
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Linear Inductor MAST Template
For a constant voltage source, this means that the branch voltage from p to m
is maintained at a value equal to vs. Because an independent voltage source is
not affected by its branch current, no equations have to be provided for current
through the source, as long as that current appears in a branch declaration
(i.e., the branch current becomes whatever is required to maintain the specified
level of branch voltage, vs).

Linear Inductor MAST Template

The un-structured approach to modeling a template describing a linear inductor
is as follows:

Characteristic Equations

The voltage, VL, across an inductor is defined as the derivative of magnetic flux
(f) with respect to time:

VL = df/dt

For a linear inductor, the flux is defined as the product of the inductance, L, of
the inductor and the current (IL) through it:

f = L•IL

Therefore, inductor voltage can be expressed in terms of inductance and
current:

VL = d(LIL)/dt

element template inductor p m = ind

electrical p,m

number ind

{

branch i=i(p->m), v=v(p,m)

v = d_by_dt(ind*i)

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
inductor.sin
462 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Linear Inductor MAST Template
The inductance (L) characterizes each instance of an inductor and is provided
as an argument of the template (ind). The following figure shows the symbol
and the relevant characteristics of a linear inductor, including the branch
variables to be contained in the ideal inductor template.

Setting Up the Template Equation

As with the resistor template, you should try to express the inductor current (the
through variable contribution) as a function of the voltage across the inductor,
which would be:

IL = 1/L VL dt

Although this equation serves as a compact implementation of the model, it
requires the use of an integral, which the MAST language does not support.
Therefore, it is necessary to use a new approach that differs from the one used
to implement the resistor and capacitor templates.

Note:

When you encounter an integral expression as in Equation 4, you need to
differentiate both sides of the equation to eliminate the integral.

As with the constant voltage source (vsource), you need to declare a branch
variable for current through inductor, which can be done on the same line as
the branch voltage:

This allows you to use current in an equation such that you can express voltage
in terms of current. Now you can replace the integration formula for the inductor
current with a differentiation formula for the inductor voltage.

branch i = i(p->m), v=v(p,m)

v(p) v(m)

+ _

p mind

i(p->m)

v(p,m)

Ideal inductor
Saber® MAST Language User Guide 463
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Current-Controlled Voltage Source MAST Template
Taking the derivative of both sides of Equation 4 and multiplying both sides by
L, it becomes:

d(LIL)/dt = VL

which is implemented in the template as (ind is the value of inductance, L,
provided as an argument):

Although this violates a guideline of expressing current as a function of voltage,
it is the only method available.

Current-Controlled Voltage Source MAST Template

The un-structured approach to modeling a template describing a current-
controlled voltage source (CCVS) is as follows:

Characteristic Equation

The characteristic equation for a CCVS is similar to that of a constant voltage
source, except that the output voltage is determined differently.

v = k*ci
choose i such that KVL is satisfied.

v = d_by_dt(ind*i)

template cvt ci p m = k

ref i ci

electrical p, m

number k

{

branch i=i(p->m), v=v(p,m)

v = k*ci

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
cvt.sin
464 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Current-Controlled Voltage Source MAST Template
In this equation, ci is the controlling current, k is the transimpedance
characterizing an instance of the cvt template, v and i are the branch voltage
and current, respectively.

Template Equation and Local Declarations

As with the vsource template, you must declare the branch current i along with
the branch voltage, v, to be able to solve for voltage:

This makes the current through the source (i) available as a system variable,
for which the simulator can now solve. The template equation is as follows:

shows that this voltage source depends on a controlling input current (ci),
which is from another template. This input current is obtained from a different
kind of connection point, the ref.

branch i=i(p->m), v=v(p,m)

v= k*ci

i
p

m

ci k*ci cvt

Current-controlled voltage source
Saber® MAST Language User Guide 465
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Mutual Inductance MAST Template
Mutual Inductance MAST Template

The un-structured approach to modeling a template describing mutual
inductance is as follows:

Setting Up the Template Equations

The template equations for mutind use the equation in the inductor template.
There, the associated equation was essentially the first term shown in
Equations 1 and 2 shown in the topic titled "Characteristic Equations for
Modeling Mutual Inductance" as follows:

V1 = d(L1I1)/dt + d(MI2)/dt
V2 = d(L2I2)/dt + d(MI1)/dt

The mutind template modifies the equation in the inductor template that is
associated with the branch current, i, of the inductor. That is, when used in a
netlist, the mutual inductance template “searches out” the equations of the two
inductors and couples them as specified in the mutind model.

The following MAST construct in a template equation modifies an equation
associated with an explicitly declared system variable such as a branch
current:

system_variable operator expression
where:

element template mutind i1 i2 = m

ref i i1, i2

number m

{

i1 -= d_by_dt(m*i2)

i2 -= d_by_dt(m*i1)

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
mutind.sin

system_variable is the name of a branch variable, var, or a
ref (which is a var from another template)
466 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Mutual Inductance MAST Template
Using this construct, the characteristic equations of mutual inductance yield the
following template equations for mutind:

It is important to understand that d_by_dt(m * i2) is not subtracted from i1, but
rather from the left side of the equation that defines i1 (and, because i1 is a ref
in this template, its defining equation is in the inductor template).

This is illustrated using the following example netlist:

Because the inductor template declares i as a branch current (which makes it a
system variable), its associated equation is:

This corresponds to the first term of either Equation 1 or Equation 2.
Considering inductor.l1, the current from inductor.l2 is passed as ref i2 into the
mutind template, which, in turn, modifies the equation in inductor.l1, using its
branch current, i, and inductance, ind. The effective equation in inductor.l1
would be:

operator is either += or -=, indicating that expression
is added to or subtracted from the left side
of the equation defining system_variable

expression is a MAST expression formed from
variables of different types; mathematical
functions; the algebraic operators +, -, *, /,
and **; parentheses; and the special
operators d_by_dt and delay

i1 -= d_by_dt(m*i2)

i2 -= d_by_dt(m*i1)

inductor.l1 p1 m1 = ind=1

inductor.l2 p2 m2 = ind=2

mutind.1 i(inductor.l1) i(inductor.l2) = \

m=0.98*sqrt(ind(inductor.l1)*ind(inductor.l2))

v = d_by_dt(ind*i)

v-d_by_dt(m*i2) = d_by_dt(ind*i)
Saber® MAST Language User Guide 467
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Flattened Hierarchy MAST Template
which, after algebraic rearrangement, corresponds to Equation 1. A similar
modification is applied to the equation associated with the branch current i and
inductance, ind in inductor.l2. to yield Equation 2. Thus, the mutind template,
together with two instances of the inductor template, provide the inductance
coupling shown in the “Coupled inductors” figure in the topic titled
"Characteristic Equations for Modeling Mutual Inductance" in a previous
chapter.

Flattened Hierarchy MAST Template

The un-structured approach to modeling an RLC template with flattened
hierarchy is as follows:

template rlc2 p m = r,l,c

electrical p,m

number r = 10k, # resistance arg. w/default

l = 1m, # inductance arg. w/default

c = 1u # capacitance arg. w/default

{

electrical x # internal node

branch ipm=i(p->m), vpm=v(p,m) # resistor branch

branch ipx=i(p->x), vpx=v(p,x) # inductor branch

branch ixm=i(x->m), vxm=v(x,m) # cap. branch

template equations

ipm = vpm/r # resistor current

vpx = d_by_dt(ipx*l) # inductor voltage

ixm = d_by_dt(vxm*c) # capacitor current

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
rlc2.sin
468 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Flattened Hierarchy MAST Template
Template Equations

The template equations for the rlc2 template consist of the equations from the
resistor, inductor, and capacitor templates using the variable names from the
rlc2 template. Note that these statements can appear in any order.

Template Body - Local Declarations

The internal node x, because it is a local internal node, must be declared
following the opening brace before it can be used:

Note that there are three branches in this model, one for each element—
resistor, inductor, capacitor. Here, the current and voltage for each branch are
declared and given variable names that are unique within this template:

ipm = vpm/r

vpx = d_by_dt(ipx*l)

ixm = d_by_dt(vxm*c)

{

electrical x

branch ipm=i(p->m), vpm=v(p,m)

branch ipx=i(p->x), vpx=v(p,x)

branch ixm=i(x->m), vxm=v(x,m)
Saber® MAST Language User Guide 469
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Mixed Hierarchy MAST Template
Mixed Hierarchy MAST Template

The un-structured approach to modeling an RLC template with mixed hierarchy
is as follows:

template rlc3 p m = r,l,c

electrical p,m

number r = 10k, # resistance arg. w/default

l = 1m, # inductance arg. w/default

c = 1u # capacitance arg. w/default

{

electrical x # internal node

inductor.l1 p x = l # use inductor template

i(p->m) = v(p,m)/r # res. equation

i(x->m) = d_by_dt(v(x,m)*c) # cap. equation

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
rlc3.sin
470 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
MAST capacitor_1 Template
MAST capacitor_1 Template

The following example shows the un-structured approach to modeling
capacitor_1 such that the voltage across the capacitor and its charge become
available for extraction:

element template capacitor_1 p m = cap, ic

electrical p,m

number cap, ic=undef

{

branch i=i(p->m), vc=v(p,m)

val q qc

qc = vc*cap # charge assignment

control_section {

initial_condition(vc,ic) # initial voltage

} # across capacitor

i = d_by_dt(qc)

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
capacitor_1.sin

v(p)
vc

v(m)

+ _

p m
cap

qc = vc * cap

Linear capacitor
Saber® MAST Language User Guide 471
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
MAST capacitor_1 Template
Local Declarations - Assignment Statements

The syntax of an assignment statement is as follows:

variable = expression

where:

Statements in the template body are both procedural and declarative.
Procedural statements are performed in sequence, so you must order the
statements such that each val is defined before it is used in a statement.
Declarative statements are performed only if the simulator requires the
declared variable (for example, if variable is a val that is to be extracted or is
needed for solution of the system variables).

If variable is not needed, the simulator skips the statement during evaluation,
although it might use certain information provided by a statement during initial
setup. Therefore, including statements that declare vals in a template does not
impose any performance penalties if no variables are extracted.

Note:

Assignment statements can appear anywhere in the template body, but
should not be confused with template equations—the expression on the
right is evaluated and its result is assigned to the variable on the left. They
are evaluated in sequential order, as in a computer program.

Template equations express mathematical equality and are evaluated
simultaneously.

variable is a val, var, branch variable, local parameter, or simvar
(simulator variable). If you declare variable as any of these
(except as a simvar), you must do so in the body of the
template.

expression is a MAST expression defining variable—the value of
expression is assigned to variable (this is not a mathematical
equality). An expression can include variables of different types
(except for through variables); mathematical functions; the +, -,
*, /, **, d_by_dt(), and delay() operators; and parentheses (()).
472 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
MAST capacitor_1 Template
Local Declarations - Declaring a val

One of the stated objectives for this example was to make the voltage across
the capacitor and the charge of the capacitor available for post-processing. The
relationship of these quantities, which are incorporated in the capacitor_1
template are as follows:

Note that the assignment statement defining charge (qc) uses variables that
have been previously declared—vc (branch voltage) in a branch declaration
and cap (template argument) in a header declaration.

Further, the quantity qc is declared as a charge (val q) and is then assigned the
value of the product of vc and cap (the capacitance). As required, the
declaration of qc as a val precedes its assignment statement. The letter q in
this declaration establishes qc as an electrical charge, as defined in the
units.sin file, which is provided with the Saber simulator.

The simulator, by default, includes the units.sin file with each input file (netlist).
The unit for charge (coulomb) is then automatically used when qc is displayed
after simulation in the Scope Waveform Analyzer.

Note:

As with vars and refs, the unit of the val declaration is used only to label
plots. Thus, it is possible to exclude the val declaration (val q qc), and the
rest of the template will function properly as a capacitor model. However,
there will be no units of charge (coulombs) assigned to qc when it is
displayed in Scope.

The declaration of a val appears in the following general form (optional
declarations are enclosed by italicized square brackets, []):

This declares one or more variables to be vals having the specified unit.

You can assign a value to a val only in an assignment statement, as described
above. However, you can use a val variable in the template equation, the
control section, and in when statements.

branch vc = v(p,m)

val q qc

qc = vc*cap

val unit name [,name, name, ...]
Saber® MAST Language User Guide 473
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
MAST capacitor_1 Template
Template Equation

The template equation for capacitor_1 is very similar to the one for capacitor,
except that now the capacitor charge (qc) replaces the quantity of voltage times
capacitance:

The Saber simulator uses the template equation and assignment statements
jointly to set up the system equations. It uses these assignment statements
only to the extent necessary to determine the through variable contribution at
the capacitor pins as a function of the across variables at the pins. It does not,
however, evaluate the assignment statements, except when a user specifies
that certain information is to be extracted—and even then it evaluates only the
equations needed to provide the requested information.

As described earlier, this does not mean that assignment statements are
evaluated to solve the system variables. Rather, the simulator uses certain
information when it sets up the simultaneous equations (from all templates in
the netlist) describing the system. Consequently, the equation that the
simulator solves for this capacitor is identical to the one for the capacitor
template.

i = d_by_dt (qc)
474 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Multiple-Output Voltage Source
Multiple-Output Voltage Source

The following example shows the un-structured approach to modeling
vsource_1, which models a source that provides a constant voltage output,
independent of time and frequency:

element template vsource_1 p m = supply, tran, ac

electrical p, m # header declarations

number supply=0

struc { # start of tran structure

number v1=0, # initial voltage

v2=0, # voltage at time=inf

tau=0 # time constant

} tran=() # end of tran structure

struc { # start of ac structure

number mag=0, # AC magnitude

phase=0 # AC phase

} ac=() # end of ac structure

{ # start template body

branch i=i(p->m), v=v(p,m) # branch declarations

determine output based on analysis being run...

begin large signal (supply or tran)
Saber® MAST Language User Guide 475
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Multiple-Output Voltage Source
Template Body

The branch current needs to be declared because the value of current through
the voltage source, i(p->m), cannot be determined by the source alone.
Instead, this current depends on the system to which the voltage source is
connected (because the simulator solves for system variables, such as the
across variables at the pins). The branch current is declared on the same line
as the branch voltage:

if (dc_domain | time_domain) {

if tran specified, use tran value

if ((tran->v1~=0 | tran->v2~=0) & tran->tau>0) {

vs = tran->v1 + (tran->v2-tran->v1) * (1-exp(-time/tran-
>tau))

}

else { # if tran not specified,

vs = supply # use supply value

}

} # end large signal

else if (freq_mag) { # begin small-signal (ac)

vs = ac->mag # use magnitude value

}

else if (freq_phase) {

vs = ac->phase # use phase value

} # end small-signal (ac)

v = vs # assign value of vs to output, v

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
vsource_1.sin

branch i=i(p->m), v=v(p,m)
476 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Linear Transformer
The remainder of this unstructured example is very similar to the structured
vsource_1 example.

Linear Transformer

The following example shows the un-structured approach to modeling xformer,
which consists of two inductors and their mutual coupling:

This unstructured template is similar to the structured version. The major
changes are that this unstructured template has no local declaration or use of
m and the parameters section in this template is eliminated.

element template xformer p1 m1 p2 m2 = l1, l2, k

electrical p1, m1, p2, m2

number l1, l2, k = 1

{ # start body of template

if (k < -1 | k > 1) {

if arg. value invalid, display message and end simulation

error("%:coupling factor must be between -1 and 1:k=%",

instance(), k)

}

Use following netlist to make a transformer from

two mutually-coupled inductors

inductor.1 p1 m1 = l1 # inductor netlist entry

inductor.2 p2 m2 = l2 # other inductor netlist entry

mutind.12 i(inductor.1) i(inductor.2) = k * sqrt(abs(l1 *
l2))

mutual inductance netlist entry

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
xformer.sin
Saber® MAST Language User Guide 477
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Temperature-Dependent Resistor
Temperature-Dependent Resistor

The following example shows the un-structured approach to modeling
resistor_1. This template can operate at various ambient temperatures, checks
for a value of zero resistance and allows power to be extracted

This unstructured template is similar to the structured version. The major
changes are that this unstructured template has no explicit local declaration of
r, v and i. Also, this template does not use a parameters section, a values
section, or an equations section.

element template resistor_1 p m = res, tc, tnom

electrical p, m

number res, tc[2]=[0, 0], tnom=27

external number temp # use simulation temperature

export val p power # make power available

{

branch i=i(p->m), v=v(p,m)

power = v*i # calculate power

local parameter (calculated from arguments)

r = res * (1 + tc[1]*(temp-tnom) + tc[2]*(temp-tnom)**2)

check for zero resistance, display message, end simulation:

if (r==0) error("%: resistance value is zero",instance())

template equation using calculated r (not res)

i = v/r

}# end of template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
resistor_1.sin
478 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Simple Idealized Op Amp
Simple Idealized Op Amp

The following example shows the un-structured approach to modeling an
opamp. The opamp example introduces a modeling technique that lets you
combine different model equations such that a single equation satisfies all
values of the template parameters. This template allows specifying either finite
or infinite gain.

element template opamp ip im out = a

electrical ip, im, out # header declarations

number a = inf

{ # start of template body

var i iout # local declarations

branch vin=v(ip,im) # input branch voltage

number x1, x2

checking value of gain argument, a

if (a==inf | a==undef) { # if gain is infinite

x1=1; x2=0 # or undefined, then input

} # voltage is 0;

else { # otherwise, output voltage

x1=a; x2=1 # is gain times input voltage

}

equations for output current at one connection point

i(out) += iout # current contribution at output

iout: x1 * vin = x2 * v(out)

equation associated with iout

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
opamp.sin
Saber® MAST Language User Guide 479
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Unstructured MAST clock Template
Unstructured MAST clock Template

The following example shows how to construct a simple clock template using
internal events in the unstructured modeling approach. It also describes
initialization of states.

template clock ckout = freq, duty

state logic_4 ckout

number freq=0, # clock frequency

duty=0.5 # duty cycle (pulse time/period)

{

state nu tick # internal "wake-up" state

number ton=0, # clock on-time

toff=0 # clock off-time

calculate off and on time

if (freq > 0) {

ton = duty/freq

toff = 1/freq - ton

}

when (dc_init) {

schedule_event(time,ckout,l4_0)

}

start clock ticking after delay time

when (time_init) {

if (freq > 0) schedule_event(time,tick,1)

}

480 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Unstructured MAST clock Template
when (event_on(tick)) {

if (driven (ckout)==l4_0) {

turn clock on (set to 1)

if (ton > 0) {

schedule_event(time,ckout,l4_1)

schedule_event(time+ton,tick,1)

}

}

else {

turn clock off (set to 0)

if (toff > 0) {

schedule_event(time,ckout,l4_0)

schedule_event(time+toff,tick,1)

}

}

}

}

Saber® MAST Language User Guide 481
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Modeling a Simple Voltage Limiter
Modeling a Simple Voltage Limiter

The unstructured template for the limiter, vlim, is shown as follows:

element template vlim ip im op om = vmax

template header

electrical ip, im, op, om # header declarations

number vmax

{ # start of template body

branch vin=v(ip,im)

branch vout=v(op,om)

branch iout=i(op->om)

struc {

number bp, inc;

} nvin[*]

number slope = 1u

vmx = abs(vmax)

nvin = [(-vmx,1.9*vmx),(vmx,0)]

control_section {

newton_step(vin,nvin)

}

template equations using conditional expressions

vout = if vin < -vmx then -vmx + slope*(vin + vmx)

 else if vin > vmx then vmx + slope*(vin - vmx)

 else vin

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
vlim.sin
482 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Modeling a Simple Voltage Limiter
Local Declarations

The branch declarations enable the characteristic equations to express the
output voltage (vout) as a function of the input voltage (vin), while finding the
current contribution (iout) required for this to be true.

Although negative values for vmax are allowed, the equations for determining
vout assume vmax is positive. That is, they use the absolute value of vmax,
which is obtained by using abs, the intrinsic absolute value function. This
absolute value of vmax is assigned to the local parameter vmx as follows:

A variable named slope is declared as a local parameter and initialized to 10 .
This is used in the template equations, as explained below.

Template Equations

In the template equations, note that this expression defines three conditions for
the value of vout, although vout is explicitly listed only once. That is, in the first
two lines, the value of vout evaluates to the expression following then. In the
last line, the value of vout evaluates to the value of vin. Also note the use of the
backslash (\) as a line continuation character.

branch vin=v(ip,im),

branch vout=v(op,om)

branch iout=i(op->om)

vmx = abs(vmax)

number slope=1u

-6
Saber® MAST Language User Guide 483
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Modeling a Voltage Divider
Modeling a Voltage Divider

The unstructured template for the voltage divider, vdiv, is shown as follows:

element template vdiv ip1 im1 ip2 im2 op om

template header

electrical ip1, ip2, im1, im2, op, om

{ # start of template body

branch vin1=v(ip1,im1)

branch vin2=v(ip2,im2)

branch iout = i(op->om), vout=v(op,om)

eps = 1e-6

val v onev, vout

onev=if (abs(vin2)<1e-50) then 0 else 1/vin2

struc {

number bp,inc;

} nv2[*]

if(eps <= 0) eps = 1e-15

eps2 = 1 / (eps * eps)

nv2 = [(-2*eps,eps),(2*eps,0)]

control_section {

newton_step(vin2,nv2)

}

template equations

vout = if(abs(vin2) > eps) then vin1*onev \

else vin1 * vin2 * eps2

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
vdiv.sin
484 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Modeling an Ideal Diode
Modeling an Ideal Diode

The following example combines the structured and unstructured modeling
techniques to model the ideal diode:

element template diode p m = is, ic # template header

electrical p, m # header declarations

number is = 1e-16,

ic = undef # initial branch voltage

external number temp

{ # start of template body

branch id=i(p->m), vd=v(p,m)

number k = 1.318e-23, # local declarations

qe = 1.602e-19

struc {

number bp, inc; # Newton steps

} nvd[*] = [(0,.001),(2,0)]

control_section { # start of control section

newton_step (vd,nvd) # Newton steps assigned to vd

initial_condition(vd,ic)

device_type("diode","example")

small_signal(vd,voltage,"p-m voltage", vd)

} # end of control section

vt = k * (temp+273.15) / qe # computation of thermal volt.

id = is * (limexp(vd/vt)-1) # diode current

} # end of template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
diode.sin
Saber® MAST Language User Guide 485
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Ebers-Moll Model for a BJT
Ebers-Moll Model for a BJT

The BJT template (bjt) is shown below using a combination of the structured
and unstructured modeling approach:

element template bjt c b e = model, ic

electrical c, b, e

struc {

enum {_n, _p} type

number is=1e-16, bf=100, br=1, \

cje=0, vje=.75, mje=.33, \

cjc=0, vjc=.75, mjc=.33, rc=0

} model = ()

number ic[2]=[undef,undef]

external number temp

{

declare local param., vals, and extraction groups

number k = 1.381e-23, # Boltzmann's constant

qe = 1.602e-19, # electron charge

vt, qbe0, qbc0, vje0, vjc0

struc {

number bp, inc;

} nv[*] = [(0,.1),(2,0)]

electrical cp # local node
486 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Ebers-Moll Model for a BJT
branch ibe=i(b->e), vbe=v(b,e)

branch ibc=i(b->cp), vbc=v(b,cp)

branch ice=i(cp->e), vce=v(cp,e)

val i iec, icc, iba, ico

val q qbc, qbe

group {vbc,vbe} v # extraction groups

group {iba,ico} i

group {qbc,qbe} q

control_section {

If no collector resistance, collapse nodes c and cp

if(model->rc == 0) collapse(c,cp)

specification of newton steps

newton_step((vbc,vbe),nv)

initial conditions and start value

initial_condition(vbe, ic[1])

initial_condition(vce, ic[2])

start_value (vbe, 0.6)

small-signal parameters

device_type("bjt", "example")

small_signal(ibase,current,"base current",iba)

small_signal(icoll,current,"collector current",ico)

small_signal(vbe,voltage,"base-emitter voltage", vbe)

small_signal(vbc,voltage,"base-collector voltage", vbc)

small_signal(rc,resistance,"collector resistance",\

model->rc)

}

Saber® MAST Language User Guide 487
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Ebers-Moll Model for a BJT
#calculate thermal voltage and 4 functions of model param.

vt = k * (temp + 273.15) / qe

qbe0 = model->cje * model->vje / (1 - model->mje)

qbc0 = model->cjc * model->vjc / (1 - model->mjc)

vje0 = 2 * model->vje / model->mje

vjc0 = 2 * model->vjc / model->mjc

#calculate fundamental quant. for npn and pnp trans.

if(model->type == _n) {

iec = model->is * (limexp(vbc/vt) - 1)

icc = model->is * (limexp(vbe/vt) - 1)

}

else {

iec = -model->is * (limexp(-vbc/vt) - 1)

icc = -model->is * (limexp(-vbe/vt) - 1)

}

calculate base and collector currents

iba = iec/model->br + icc/model->bf

ico = icc - iec - iec/model->br
488 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Ebers-Moll Model for a BJT
calculate charges

if(model->type == _n) {

if(vbc < 0) {

qbc = qbc0 * (1 - ((1 - vbc/model->vjc)**(1-model->mjc)))

}

else {

qbc = model->cjc * vbc * (1 + vbc/vjc0)

}

if(vbe < 0) {

qbe = qbe0 * (1 - ((1 - vbe/model->vje)**(1-model->mje)))

}

else {

qbe = model->cje * vbe * (1 + vbe/vje0)

}

}

else {

if(vbc > 0) {

qbc = -qbc0 * (1 - ((1 + vbc/model->vjc)**(1-model->mjc)))

}

else {

qbc = model->cjc * vbc * (1 - vbc/vjc0)

}

if(vbe > 0) {

qbe = -qbe0 * (1 - ((1 + vbe/model->vje)**(1-model->mje)))

}

else {

qbe = model->cje * vbe * (1 - vbe/vje0)

}

}
Saber® MAST Language User Guide 489
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Ebers-Moll Model for a BJT
template equations (calculate branch currents)

ibe = iba + d_by_dt(qbe)

ibc = d_by_dt(qbc)

ice = ico

current through collector resistor if present

if(model->rc ~= 0) {

i(c->cp) = v(c,cp)/model->rc

}

} # end template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
bjt.sin
490 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Digitally-Controlled, Ideal Switch
Digitally-Controlled, Ideal Switch

This example shows the unstructured version of an ideal, single-pole, single-
throw switch (SPST) controlled by a digital input.

template sw p m cntl = ron, roff

electrical p, m # analog pins

state logic_4 cntl # digital connection

number ron=1, roff=1meg # parameter declaration

{

branch cur=i(p->m), vlt=v(p,m)

state r res # internal state variable

when (event_on(cntl)) { # switch control

if (cntl == l4_1) res = ron

else res = roff

schedule_next_time(time)

}

template equation for analog switch

cur = vlt/res

}
Saber® MAST Language User Guide 491
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Digital-to-Analog (d2a) Interface Model
Digital-to-Analog (d2a) Interface Model

The following template shows the unstructured version of the d2a template:

Integrator (intgr)

Integration in the time domain is identical to division by s in the s-domain, which
could be expressed as follows:

element template d2a d a m = td, ol, oh

electrical a, m

state logic_4 d

number td=0, # input to output time delay

ol=0.5, # output logic low voltage level

oh=4.0 # output logic high voltage level

{

state v vout=ol # output voltage

branch cur=i(a->m), vlt=v(a,m)

process input events

when (event_on(d)) {

if (d==l4_0) { # input low

schedule_event(time+td, vout, ol) # change vout

schedule_next_time(time+td) # force analog step

}

else if (d==l4_1) { # input high

schedule_event(time+td, vout, oh) # change vout

schedule_next_time(time+td) # force analog step

}

}

vlt = vout

}

out = in/(tau*s)
492 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Integrator (intgr)
To implement this as a valid template equation, you need to perform the
following steps:

1. Revise the statement so that it has no denominator. To accomplish this,
simply multiply both sides by tau*s, which yields the following:

2. Replace the s operator with the MAST d_by_dt operator, and move tau
inside the d_by_dt operator. This sets the time derivative of the output
multiplied by a constant (tau, the template argument) equal to the input as
follows:

3. For a template that does not use the equations section (an unstructured
model), insert the keyword make at the beginning of the statement as
follows:

This is required because the lefthand side of #2 above is not a simple output,
but an expression, which means this relation cannot be expressed directly.
Statements such as this must be prefixed with the keyword make so it will be
recognized as a template equation. This kind of a statement is called a
constraint equation.

In an unstructured template, the keyword make is required anytime the output
is an expression. It can also be used (although it is not required) if the lefthand
side is an output (such as for the deriv template in Differentiator on page 219).

The unstructured MAST template for an integrator (intgr) is listed as follows:

tau*s*out = in

d_by_dt(out*tau) = in

make d_by_dt(out*tau) = in

element template intgr in out = tau

input nu in # template input

output nu out # template output

number tau # constant multiplier

{ # solve for the input variable

make in = d_by_dt(out*tau)

}
Saber® MAST Language User Guide 493
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Using MAST Functions - Unstructured bjtm Template
Using MAST Functions - Unstructured bjtm Template

The BJT template (bjtm) is shown below using function calls and a combination
of the structured and unstructured modeling approach:

element template bjtm c b e = model, ic

electrical c,b,e

bjtm_arg..model model = () # use arguments from

"companion" template

number ic[2]=[undef,undef]

external number temp

{ # begin template body

use local parameters from "companion" template

bjtm_arg..work work

struc {

number bp,inc;

} nv[*] = [(0,.1),(2,0)]

electrical cp #...local node

branch ibe=i(b->e), vbe=v(b,e)

branch ibc=i(b->cp), vbc=v(b,cp)

branch ice=i(cp->e), vce=v(cp,e)

val i iec,icc,iba,ico #...declare variables

val q qbc,qbe

group {vbc,vbe} v #...extraction groups

group {iba,ico} i

group {qbc,qbe} q control_section {

 #...If no collector resistance, collapse nodes c and cp

if(model->rc == 0) collapse(c,cp)

#...specification of sample points and newton steps

newton_step((vbc,vbe),nv)

}
494 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Using MAST Functions - Unstructured bjtm Template
The function calls and functions are identical to the bjtm structural model
described in the following topics found in Chapter 4:
■ Function Call Overview - bjtm MAST Template
■ bjtm_arg Declaration Template
■ Local Parameters Function bjtm_pars
■ Calculated Values Function bjtm_values

calculate thermal voltage and 4 funct. of model param.

#... 1’st call to MAST function

work = bjtm_pars(model,temp)

#...calculation of currents and charges

 #...2’nd call to MAST function

(iec,qbc,icc,qbe) = bjtm_values(model,work,vbc,vbe)

#...calculate base and collector currents for extraction

iba = iec/model->br + icc/model->bf

ico = icc - iec - iec/model->br

#...calculation of branch currents

ibe = iec/model->br + icc/model->bf + d_by_dt(qbe)

ibc = d_by_dt(qbc)

ice = icc - iec - iec/model->br

#...current through collector resistor if present

if(model->rc ~= 0) i(c->cp) = v(c,cp)/model->rc

}

Saber® MAST Language User Guide 495
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Ideal Delay Line - Unstructured dline Template
Ideal Delay Line - Unstructured dline Template

The ideal delay line template (dline) is shown below using the delay function
and the unstructured modeling approach:

template dline inp inm outp outm = td, a

electrical inp, inm, outp, outm

number td=0.0, # time delay

 a=1.0 # gain

{

branch iout=i(outp->outm) # output current

branch vin=v(inp,inm), vout= v(outp,outm) # input & output

voltages

val v vdl # delayed voltage

vdl = vin*a

vout=delay(vdl, td)

}
496 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Multiple-Output Voltage Source - Unstructured vsource_2 Template
Multiple-Output Voltage Source - Unstructured vsource_2 Template

The vsource_2 template is a voltage source that provides three different, time-
varying outputs. The following template is modeled using the unstructured
approach:

element template vsource_2 p m = supply, tran

electrical p, m

number supply = 0

union {

number off

struc {number vo, va, f, td;} sin

struc {number v1,v2,tau;} exp

struc {number v1,v2,tstep,tr;} step

} tran = (off=1)

{

number pi = 3.14159

branch is=i(p->m), vn=v(p,m)

val v vs

define intermediate values depending on selected output

if (union_type (tran,sin)) {

td = tran->sin->td

vo = tran->sin->vo

va = tran->sin->va

w = 2*pi*tran->sin->f

ss = 0.05/tran->sin->f

 }

else if (union_type (tran,exp)) {

v1 = tran->exp->v1

v2 = tran->exp->v2

tau = tran->exp->tau

 }
Saber® MAST Language User Guide 497
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Multiple-Output Voltage Source - Unstructured vsource_2 Template
else if (union_type (tran,step)) {

tstep = tran->step->tstep

v1 = tran->step->v1

v2 = tran->step->v2

tr = tran->step->tr

slew = (v2-v1)/tr

}

determine vs, which is set equal to vn in temp. equ.

if (dc_domain|time_domain) {

if (union_type (tran,sin)) {

if (time <= td) {

vs = vo

next_time = td

}

else { # if (time > td)

vs = vo + va*sin(w*(time-td))

step_size = ss

}

} # end tran->sin

else if (union_type (tran,exp)) {

vs = v1 + (v2-v1)*(1-exp(-(time/tau)))

} # end tran->exp
498 Saber® MAST Language User Guide
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Multiple-Output Voltage Source - Unstructured vsource_2 Template
else if (union_type (tran,step)) {

if (dc_domain|(time < tstep)) {

vs = v1

next_time = tstep

}

else if ((time >= tstep) & (time < tstep+tr)){

vs = v1 + (time-tstep)*slew

next_time = tstep + tr

}

else {

vs = v2

}

} # end tran->step

else vs = supply

} # end
dc_domain|time_domain

else vs = 0

template equation...find branch voltage, vn

vn = vs

}
Saber® MAST Language User Guide 499
B-2008.09

Chapter A: Unstructured Modeling Approach — Examples
Multiple-Output Voltage Source - Unstructured vsource_2 Template
500 Saber® MAST Language User Guide
B-2008.09

B
BMaking User Templates Visible for Unix and NT

This chapter describes how to make user templates visible in both Unix and NT
environments.

Making User Templates Visible for Unix

This topic describes the following:

How the Applications Find Files
Using Templates Written in MAST
Using Custom Models From Your Capture Tool
Using C or FORTRAN Routines Called by Templates

How the Applications Find Files

To make your own templates (or any other user files) available to the Saber
simulator or the other applications, you need to do one of the following:
■ Place the files in a directory along the data search path where the

applications will find them. (The data search path is described in this topic.)
■ Use the appropriate environment variable to tell the applications where they

are located as shown in the following table.

The applications look for files containing data they need in directories along the
data search path, as listed in the following table in the order listed.

For example, the first directory to be searched is the working directory.
Saber® MAST Language User Guide 501
B-2008.09

Appendix B: Making User Templates Visible for Unix and NT
How the Applications Find Files
Data Search Path

If there are multiple files with the same name in the data search path, Saber
applications use the first one encountered. Your models will be found as long
as they are in one of the locations listed in the above table. However, if you
have created a library of custom models that you would like to be available for
general use, the proper search path location for your directories is as part of
the original SABER_DATA_PATH environment variable (or AI_SCH_PATH in
the case of Saber Sketch finding symbols).

1. The working directory is the first location that is checked along the data
search path. For quick-test purposes, it can be convenient to place library
items in the current directory. You should not rely on this technique for long-
term storage of your libraries, as the current directory may change
depending on where the Saber application was invoked.

2. Templates and components are found by the Saber simulator using the
SABER_DATA_PATH environment variable. The SABER_DATA_PATH
variable is a colon-separated list of directories. Any custom libraries
intended for use by others at your site should be stored in a directory that is
part of SABER_DATA_PATH.

If such a directory does not exist, you should create one and add its path to
this variable.

The topic titled "Using Templates Written in MAST", describes how to define
or modify a SABER_DATA_PATH environment variable. The
AI_SCH_PATH variable can be modified in a similar way.

Saber Sketch Saber Simulator Description

. . Working directory where the
application was started.

AI_SCH_PATH
(Locates directories
that contain custom
symbols)

SABER_DATA_PATH
(Locates directories that
contain custom templates
and components)

Environment variable that you set
to point to proper location(s)

install_home/config Directory to hold configuration
information specific to an
installation.

Directories and subdirectories in install_home specific to each application
502 Saber® MAST Language User Guide
B-2008.09

Appendix B: Making User Templates Visible for Unix and NT
Using Templates Written in MAST
The topic titled Manually Creating Template Information Files, in the
Managing Symbols and Models Manual, describes how to update custom
templates that do not have the proper permissions for a user. You must be
a site manager with read and write permissions to use this feature.

Never point SABER_DATA_PATH to install_home.

Symbols are found by your schematic capture tool using whichever
mechanism is provided with your particular tool (Saber Sketch, Design
Architect, Artist, or ViewDraw).

Saber Sketch searches the value of the AI_SCH_PATH environment
variable to search for directories containing symbols. The AI_SCH_PATH
variable is a colon-separated list of directories. Any custom symbols
intended for use by others at your site should be stored in a directory that is
part of AI_SCH_PATH. If such a directory does not exist, you should create
one and add its path to AI_SCH_PATH. If AI_SCH_PATH does not exist,
you should create it.

3. The install_home/config directory holds configuration information specific to
an installation. Do not place any libraries in this directory.

4. The last place(s) an application will search are the additional directory(s)
that are appended by the application. These are the homes for the software
supplied data. For the Saber simulator these directories are saber_home/
bin, then saber_home/template/*, then saber_home/component/*/*.

Precompiled files (.sld files) created using the saber -p option are not found by
using the search path shown in the table titled "Data Search Path". They are
found by using the list of directories contained in your path variable. For a
procedure for modifying your path variable, refer to Step 3 in the topic titled
Configuring for the UNIX Environment.

Precompiled (also called preloaded) model files have priority over all other
models.

Using Templates Written in MAST

To use templates written in the MAST modeling language, you need to inform
the software where they are located. The following methods can be used.

Method 1: Place the templates in a directory in the data search path. Once you
have done this, the templates will be found by the applications when they are
needed.
Saber® MAST Language User Guide 503
B-2008.09

Appendix B: Making User Templates Visible for Unix and NT
Using Templates Written in MAST
Method 2: Specify the directory containing the templates in an environment
variable called SABER_DATA_PATH in your user start-up file. To add your
own template library to the SABER_DATA_PATH environment variable,
complete the following procedure.

1. Define or modify the SABER_DATA_PATH environment variable

Edit the appropriate file for your shell as shown in the following table:

In this table, template_directory is the full path name to the directory
containing the templates or where dir1, dir2, and dir3 are full path names to
three different directories.

If a SABER_DATA_PATH environment variable already exists in your
.cshrc or .profile file, you can modify it to include the new directory.

Shell &

File

SABER_DATA_PATH Definition

C

.cshrc

If a SABER_DATA_PATH environment variable does not
exist in your .cshrc file, enter the following line
anywhere in the file:

setenv SABER_DATA_PATH "template_directory"
You may include more than one directory by specifying
a colon separated list as follows:

setenv SABER_DATA_PATH "dir1:dir2:dir3"

Bourne

.profile

If a SABER_DATA_PATH environment variable
does not exist in your .profile file, enter the
following lines anywhere in the file:

SABER_DATA_PATH= "template_directory"

export SABER_DATA_PATH

You may include more than one directory by
specifying a colon separated list as follows:

SABER_DATA_PATH="dir1:dir2:dir3"

export SABER_DATA_PATH
504 Saber® MAST Language User Guide
B-2008.09

Appendix B: Making User Templates Visible for Unix and NT
Using Custom Models From Your Capture Tool
If your SABER_DATA_PATH environment variable includes directories that
are provided with the software, you should remove these directories from
the list. For example, directories containing template or component libraries
provided with the Saber simulator should not be included in the
SABER_DATA_PATH environment variable.

Use care when you use the wildcard (*) character to include directories in
the SABER_DATA_PATH environment variable. If too many directories are
included in the SABER_DATA_PATH environment variable, some files may
not be found by the Saber simulator or the other software applications.

2. Re-initialize your startup file

To re-initialize your startup file, log out and log in to your computer. You do
not need to reboot your system.

Using Custom Models From Your Capture Tool

You must make modifications to allow your schematic capture tool to find your
new symbols. Each schematic capture tool has a different mechanism for
allowing symbols to show-up in its symbol browser. Refer to your schematic
capture tool documentation (Saber Sketch, Design Architect, Artist, or
ViewDraw) for details. If you are using the Saber Sketch design editor use the
following instructions.

Making Symbols Available in Saber Sketch

To make symbols available in Saber Sketch, two steps must be accomplished.

1. Modify AI_SCH_PATH to point to your new symbol directories.

2. Add the part description to the Parts Gallery.

Saber Sketch finds symbols in the same way the Saber simulator finds
templates, except that it uses a different environment variable. You modify
AI_SCH_PATH in the same way you modified SABER_DATA_PATH.

To add a part, you open Saber Sketch and click on the Parts Gallery button (on
the tool bar) to open the Parts Gallery window. From the Parts Gallery window,
you select the Edit pulldown menu, then you select the New Part menu item to
open the Create New Part window. You can browse the Category and Symbol
fields until you have your part set-up the way you want it, then click on the
Create button.
Saber® MAST Language User Guide 505
B-2008.09

Appendix B: Making User Templates Visible for Unix and NT
Using C or FORTRAN Routines Called by Templates
Using C or FORTRAN Routines Called by Templates

It is possible to create MAST templates that call routines written in FORTRAN
or C. Such routines are called foreign routines. A procedure for incorporating
such routines into a template is described in the Guide to Writing MAST
Templates manual, topic titled Foreign Routines in MAST.

To make foreign routines available to the Saber simulator, you complete the
following procedure.

• Compile each foreign routine

You must use one of the supported compilers listed in one of the tables titled
Compatible SUN Compiler Versions, or Compatible HP-UX Operating
System Compiler Versions, to avoid possible dynamic loading problems
when trying to use a foreign routine.

To compile a FORTRAN routine, use the command for your system as shown
in the following table.

Command to Compile a FORTRAN Foreign Routine

Replace filename with the name of the file you are compiling.

To compile a C routine, complete the following steps:

1. To find out if you need to add an underscore to the end of C routine names
on your system, refer to the table titled "Command to Compile a C Foreign
Routine". If a trailing underscore is required, complete the following:

In the file containing the C routine, add an underscore (_) to the end of the
name of the routine in the header line of the routine.

Do not add an underscore to the name of the file or to the name used in the
MAST foreign command in your template to call the routine.

For more information, refer to Foreign Routines in MAST on page 337.

2. Compile the C routine by using the command for your system shown in the
following table.

System Command

Solaris f77 -c -PIC -cg89 -dalign \
-ftrap=%none -xlibmil filename.f

HP-UX f77 -c +Z filename.f
506 Saber® MAST Language User Guide
B-2008.09

Appendix B: Making User Templates Visible for Unix and NT
Using C or FORTRAN Routines Called by Templates
Command to Compile a C Foreign Routine

Replace filename with the name of the file you are compiling.

How to Make a Single Routine Available to the Saber Simulator

Once the subroutine has been created and compiled it must be made available
to the Saber simulator.

1. Make the compiled routine available to the Saber simulator.

Complete one of the following:

• Place the compiled routine in a directory in the data search path. For
more information on the data search path, refer to the topic titled "How
the Applications Find Files".

• Use the procedure described in Step 1 and Step 2 to add the location of
the compiled routine to your SABER_DATA_PATH environment
variable.

2. Invoke the Saber simulator

Invoke the Saber simulator by using the saber command and your usual
command options (if any).

In some cases, the Saber simulator tries to automatically load subroutines
into a simulation upon invocation. This can be the case when subroutines
have been compiled but not linked to a library. If this is the case, the
compiled subroutines will be in a file labeled filename.o, where filename
indicates the original user-assigned subroutine file name. When started

System Command Trailing
Underscore?

Solaris cc -c -K PIC -cg89 \
-dalign -ftrap=%none \

-xlibmil filename.c

yes

HP-UX cc -c +Z filename.c no
Saber® MAST Language User Guide 507
B-2008.09

Appendix B: Making User Templates Visible for Unix and NT
Using C or FORTRAN Routines Called by Templates
under these conditions, the Saber simulator tries to dynamically link the
filename.o files into the simulation by automatically issuing one of the
following UNIX commands:

Multiple subroutine files are indicated by filename.o. Several different
subroutines can be included in this list of file names. The single shared
library file is indicated by filename.so (Sun) and filename.sl (HP).

Making a Library of Routines Available to the Saber Simulator

To make a library of routines available to the simulator:

1. Compile the subroutines using the appropriate compiler.

Refer to the table titled Command to Compile a FORTRAN Foreign Routine.

2. Link the compiled files together into a single shared library file.

Once the subroutines have been compiled, they can be linked together into
a single shared library file.

To link multiple subroutines together, use one of the following UNIX
commands:

Multiple subroutine files are indicated by file1.o and file2.o ... Several
different subroutines can be included in this list of file names. The single
shared library file is indicated by file.so (Sun) and file.sl (HP).

3. Declare the shared library file as global

System Command

Solaris ld -o filename.so -dy -G filename.o

HP-UX ld -o filename.sl -b filename.o

System Command

Solaris ld -o file.so -dy -G file1.o file2.o ...

HP-UX ld -o file.sl -b file1.o file2.o ...
508 Saber® MAST Language User Guide
B-2008.09

Appendix B: Making User Templates Visible for Unix and NT
Making User Templates Visible for NT
When several subroutines are combined to create a single shared library
file, you will need to specify a SABER_GLOBAL variable at the operating
system level. This variable needs to include the shared library file and make
it available anytime the Saber simulator is started. The Saber simulator will
then search the shared library file for any subroutines which are used but
not found by other means.

Create the SABER_GLOBAL variable using the same method you used for
creating the SABER_DATA_PATH variable, which is described in the table
titled "Data Search Path". You need to point the SABER_GLOBAL variable
to the shared library file that was created in However, you must omit the .so
file name extension. For example, if you created a file called
my_lib_routines.so with the ld command, you need to set the
SABER_GLOBAL variable to my_lib_routines.

4. Make the shared library file available to the Saber simulator.

Once you have created a shared library file and referenced it to the
libai_saber.lib file, place the directory containing the shared library file in the
SABER_DATA_PATH path variable, or place the shared library file in a
directory contained in the SABER_DATA_PATH path variable.

5. Re-initialize your startup environment

Reinitialize your start-up file by logging in to the machine (you may need to
log out first).

Making User Templates Visible for NT

This topic describes the following:

How Applications Find Files
Making Symbols Available in Saber Sketch
Using Templates Written in MAST
Using C or FORTRAN Routines Called by Templates (NT)

login login_name
Saber® MAST Language User Guide 509
B-2008.09

Appendix B: Making User Templates Visible for Unix and NT
Making User Templates Visible for NT
To make your own templates (or any other user files) available to the Saber
simulator or other applications, you need to do one of the following:
■ Place the files in a directory along the data search path where applications

will find them. (The data search path is described in this subsection.)
■ Use the appropriate environment variable to tell the applications where they

are located.

Applications look for files containing data they need in directories along the
data search path, as listed in the following table in the order listed.

For example, the first directory to be searched is the working directory.

Data Search Path

If there are multiple files with the same name in the data search path, Saber
applications use the first one encountered. Your models will be found as long
as they are in one of the locations listed in the Data Search Path table above.

However, if you have created a library of custom models that you would like to
be available for general use, the proper search path location for your

Saber Sketch Saber Simulator Description

1 . . Working directory of the design
that the application is invoked on.

2 AI_SCH_PATH
(Locates
directories that
contain custom
symbols.)

SABER_DATA_PATH
(Locates directories that
contain custom templates
and components)

Environment variable that you set
to point to proper location(s).

3 saber_home\config Directory to hold configuration
information specific to a site.

4 Directories and subdirectories in saber_home specific to each application
510 Saber® MAST Language User Guide
B-2008.09

Appendix B: Making User Templates Visible for Unix and NT
Making User Templates Visible for NT
directories is as part of the SABER_DATA_PATH environment variable (or
AI_SCH_PATH in the case of Saber Sketch finding symbols).

1. The working directory is the first location that is checked along the data
search path. For quick-test purposes, it can be convenient to place library
items in the current directory. You should not rely on this technique for long-
term storage of your libraries, as the current directory changes depending
on the location of the design that is being used by the application.

2. Templates and components are found by the Saber simulator using the
SABER_DATA_PATH environment variable. The SABER_DATA_PATH
variable is a semicolon-separated list of directories. Any custom libraries
intended for use by others at your site should be stored in a directory that is
part of SABER_DATA_PATH. If such a directory does not exist, you should
create one and add its path to this variable.

The subsection titled "Using Templates Written in MAST", describes how to
define or modify a SABER_DATA_PATH environment variable. The
AI_SCH_PATH environment variable can be modified in a similar way.

Manually Creating Template Information Files describes how to update
custom templates that do not have the proper permissions for a user. You
must be a site manager with read and write permissions to use this feature.

Note:

Never point SABER_DATA_PATH to saber_home.

Saber Sketch searches the value of the AI_SCH_PATH environment
variable to search for directories containing symbols. The AI_SCH_PATH
variable is a semicolon-separated list of directories. Any custom symbols
intended for use by others at your site should be stored in a directory that is
part of AI_SCH_PATH. If such a directory does not exist, you should create
one and add its path to AI_SCH_PATH. If AI_SCH_PATH does not exist,
you should create it.

3. The saber_home\config directory holds configuration information specific to
a site. Do not place any custom libraries in this directory.

4. The last place(s) an application will search are the additional directory(s)
that are appended by the application. These are the homes for specific-
supplied data. For the Saber simulator these directories are

saber_home\bin, then saber_home\template*, then
saber_home\component**.
Saber® MAST Language User Guide 511
B-2008.09

Appendix B: Making User Templates Visible for Unix and NT
Making Symbols Available in Saber Sketch
Do not place any custom libraries in this directory.

Precompiled files (.sld files) created using the saber -p option are found by
using the list of directories contained in your Path variable. They are not
found by using the search path shown in the "Data Search Path".

Precompiled (also called preloaded) model files have priority over all other
models. For more information on precompiled files, refer to the topic titled
Predefined MAST Declarations.

To check the Path variable setting, do the following:

• Navigate to, and start the System program:

Start > Settings > Control Panel > System > Environment tab

• Look at the System Environment Variable list for the Path variable.

• Add the appropriate directory(s) to the value.

Making Symbols Available in Saber Sketch

To make symbols available in Saber Sketch, two steps must be accomplished.

1. Modify AI_SCH_PATH to point to your new symbol directories.

2. Add the part description to the Parts Gallery.

Saber Sketch finds symbols in the same way the Saber simulator finds
templates, except that it uses a different environment variable. You modify
AI_SCH_PATH in the same way you modified SABER_DATA_PATH.

To add a part, you open Saber Sketch and click on the Parts Gallery button (on
the tool bar) to open the Parts Gallery window. From the Parts Gallery window,
you select the Edit pulldown menu, then you select the New Part to open the
Create New Part window. You can browse the Category, Symbol, and
Template fields until you have your part set-up the way you want it, then click
on the Create button.

Using Templates Written in MAST

To use templates written in the MAST modeling language, you need to inform
the software where they are located. This description specifically refers to the
SABER_DATA_PATH variable. The AI_SCH_PATH variable might also need
512 Saber® MAST Language User Guide
B-2008.09

Appendix B: Making User Templates Visible for Unix and NT
Using Templates Written in MAST
to be set for custom symbols in Saber Sketch using the same procedure. The
following methods can be used:

Method 1: Place the templates in a directory in the data search path. Once you
have done this, the templates will be found by the applications when they are
needed.

Method 2: Specify the directory containing the templates in an environment
variable called SABER_DATA_PATH. To add your own template library to the
SABER_DATA_PATH environment variable, complete the following procedure.

1. Define or modify the SABER_DATA_PATH environment variable

In this example, dir1, dir2, and dir3 are full pathnames to three different
directories.

To check the SABER_DATA_PATH variable setting, do the following:

• Navigate to, and start the System program:

Start > Settings > Control Panel > System > Environment tab

• Look at the System Environment Variable list for the
SABER_DATA_PATH variable.

• If it does not exist, create it and add the appropriate directory(s) to the
value.

If your SABER_DATA_PATH environment variable includes directories that
are provided with the software, you can remove these directories from the
list. For example, directories containing template or component libraries
provided with the Saber simulator should not be included in the
SABER_DATA_PATH environment variable.

• Use care when you use the wildcard (*) character to include directories
in the SABER_DATA_PATH environment variable. If too many
directories are included in the SABER_DATA_PATH environment
variable, some files may not be found by the Saber simulator or other
applications.

2. Re-initialize your startup environment

To re-initialize your startup environment, log out and log in to your computer.
You do not need to reboot your system.

SABER_DATA_PATH="dir1;dir2;dir3"
Saber® MAST Language User Guide 513
B-2008.09

Appendix B: Making User Templates Visible for Unix and NT
Using C or FORTRAN Routines Called by Templates
Using C or FORTRAN Routines Called by Templates

It is possible to create MAST templates that call routines written in FORTRAN
or C. Such routines are called foreign routines. A procedure for incorporating
such routines into a template is described in the topic titled Foreign Routines in
MAST.

To make foreign routines available to the Saber simulator on a Windows NT
system you must do the following:
■ Insert the proper code in the header of each foreign routine
■ Compile the routine on the Windows NT system
■ Link multiple-compiled files into one file
■ Set up environment variables so that the Saber simulator can find the linked

files

The C Language Header

If the C programming language is being used to create foreign routines for use
with MAST and the Saber simulator, the routine header must appear exactly as
follows (substitute your foreign routine name for CROUTINE):

The __declspec statement is important for Windows NT since it indicates that
the routine is exported from the Dynamic Link Loader and can be found by the
Saber simulator.

The CROUTINE string must be entered in upper-case characters.

The FORTRAN Language Header

If the FORTRAN programming language is being used to create foreign
routines for use with MAST and the Saber simulator, the routine header must

declspec(dllexport) void CROUTINE(double* inp,long*

ninp,long* ifl,long* nifl,double* out,long* nout,long* ofl,

long* nofl,double* aundef,long* ier)

{

}

514 Saber® MAST Language User Guide
B-2008.09

Appendix B: Making User Templates Visible for Unix and NT
Using C or FORTRAN Routines Called by Templates
appear exactly as follows (substitute your foreign routine name for
FROUTINE):

The ATTRIBUTES statement is important for Windows NT since it indicates
that the routine is exported from the Dynamic Link Loader and can be found by
the Saber simulator.

The FROUTINE string must be entered in upper-case characters.

How to Make a Single Routine Available to the Saber Simulator

Once the subroutine has been created, it must be compiled to create the
executable Dynamic Link/Load Library (DLL) file and then referenced to the
Saber library. Both operations can be taken care of using the same command.
The compiling and referencing operations are part of the C or FORTRAN
language compilers and can be version-dependent.

One-Step Dynamic Library Linking
In some cases, the Saber simulator tries to automatically load subroutines into
a simulation upon invocation. This can be the case when subroutines have
been compiled but not linked to a library. If this is the case, the compiled
subroutines will be in a file labeled filename.obj, where filename indicates the
original user-assigned subroutine file name. When started under these
conditions, the Saber simulator tries to dynamically link the filename.obj files
into the simulation by automatically issuing the following command:

link /DLL /OUT:filename.dll filename.obj
 saber_home\lib\libai_saber.lib
 saber_home\lib\libai_analogy.lib

where saber_home is the software location. In a standard installation this is:

C:\<filename>\SaberDesigner5.2

subroutine
FROUTINE(inp,ninp,ifl,nifl,out,nout,ofl,nofl,aundef,ier)

!MS$ATTRIBUTES DLLEXPORT :: FROUTINE

integer ninp,nifl,nout(2),nofl,ifl(*),ofl(*),ier

real*8 inp(*),out(*),aundef
Saber® MAST Language User Guide 515
B-2008.09

Appendix B: Making User Templates Visible for Unix and NT
Using C or FORTRAN Routines Called by Templates
This dynamic linking process, however, may not work if there are libraries
which need to be included but are not part of libai_saber.lib or libai_analogy.lib.
If this is the case, refer to the following sections titled “One-Step C Language
Compiling and Linking"and "One-Step FORTRAN Language Compiling and
Linking" depending on the programming language being used.

One-Step C Language Compiling and Linking
When the C programming language is used to create a subroutine, the
following command must be used:

cl /LD filename.c saber_home\lib\libai_saber.lib

saber_home\lib\libai_analogy.lib

Where saber_home is the software location. In a standard installation this is:

C:\<filename>\SaberDesigner5.2

where the name of the actual subroutine file, without extensions, is substituted
for filename, and filename indicates the original user-assigned subroutine file
name. The /LD command indicates a DLL file will be created. The resulting DLL
file will be named filename.dll. For example, if the original C file was called
adder.c, the resulting DLL file would be called adder.dll.

One-Step FORTRAN Language Compiling and Linking
When the FORTRAN programming language is used to create a subroutine,
the following command must be used:

fl32 /LD filename.f

saber_home\lib\libai_saber.lib

saber_home\lib\libai_analogy.lib

where saber_home is the software location. In a standard installation this is:

C:\<filename>\SaberDesigner5.2

Where the name of the actual subroutine file, without extensions, is substituted
for filename, and filename indicates the original user-assigned subroutine file
name. The /LD command indicates a DLL file will be created. The resulting DLL
file will be named filename.dll. For example, if the original FORTRAN file was
called adder.f, the resulting DLL file would be called adder.dll. The
%SABER_HOME% string is a path variable, set during the Saber software
installation, which points to the location of the Saber program and its
associated files.
516 Saber® MAST Language User Guide
B-2008.09

Appendix B: Making User Templates Visible for Unix and NT
Using C or FORTRAN Routines Called by Templates
How to Compile and Link Libraries of Routines

There may be situations where it is desirable to link several subroutines into a
single DLL file, and then reference this file to a Saber library as shown in the
following steps:

1. Compile the subroutines using the appropriate compiler.

Compiling subroutines is a language-dependent operation.

You must use one of the supported compilers listed in the topic titled
Compatible Compiler Versions, to avoid possible dynamic loading problems
when trying to use a foreign routine.

2. Link the compiled files together into a single DLL file.

Once the subroutines have been compiled, they can be linked together into
a single DLL file. To link multiple subroutines together, use the following
command:

where saber_home is the software location. In a standard installation this is:

The /OUT:dllname.dll command assigns a user-specified name to the
resulting DLL file. Multiple subroutine files are indicated by filename1.obj
and filename2.obj. Several different subroutines can be included in this list
of file names.

3. Declare the DLL file as global.

When several subroutines are combined to create a single DLL file, it is
necessary to specify a SABER_GLOBA variable at the operating system
level. This variable will point to the combined DLL file and make it available
anytime the Saber simulator is started. The Saber simulator will then search
the combined DLL file for any subroutines which are used but not found by
other means.

link /DLL /OUT:dllname.dllfilename1.obj filename2.obj
saber_home\lib\libai_saber.lib

saber_home\lib\libai_analogy.lib

C:\<filename>\SaberDesigner5.2
Saber® MAST Language User Guide 517
B-2008.09

Appendix B: Making User Templates Visible for Unix and NT
Using C or FORTRAN Routines Called by Templates
Set the SABER_GLOBAL variable as follows:

Navigate to, and start the System program:
Start > Settings > Control Panel > System > Environment tab

• Set the variable as follows:

The Value entry field contains the name of the DLL file assigned in Step 2,
but does not contain the .dll extension. More than one DLL file can be
assigned to the Value by using a comma-separated list of file names. For
example:

4. Make the combined DLL file available to the Saber simulator.

Once a DLL file has been created and referenced to the libai_saber.lib and
libai_analogy.lib files, the directory containing the DLL file must be placed in
the SABER_DATA_PATH path variable, or the DLL file must be placed in a
directory contained in the SABER_DATA_PATH path variable. Use the
following procedures to check and edit the SABER_DATA_PATH variable.

Check or edit the SABER_DATA_PATH variable as follows:

Navigate to, and start the System program:
Start > Settings > Control Panel > System > Environment tab

• In either the System or User environment variable list box, an entry for
SABER_DATA_PATH may appear. If it does not appear, create it. Enter
the path(s) to the directory(s). If there is more than one path, list them
and separate by colons.

5. Re-initialize your startup environment

To re-initialize your startup environment, log out and log in to your computer.
You do not need to reboot your system.

Variable: SABER_GLOBAL

Value: dllname

Variable: SABER_GLOBAL

Value: dllname1, dllname2, dllname3
518 Saber® MAST Language User Guide
B-2008.09

Index

A
A MAST Analog-to-Digital (a2d) Interface Model

194
A MAST Digital-to-Analog (d2a) Interface Model

198
A Netlist Example - MAST AND Gate Template 169
A Typical Event Queue 158
Add a Way to Disable Stress (Optional) 441
Add a Way to Specify Device Type and Class

(Optional) 443
Add Stress Ratings 436
Add stress_measure Statements to Template 433
Add Thermal Resistances (Optional) 439
Adding Noise to a Resistor MAST Template 390
Adding Noise to a Voltage Source MAST Template

394
Adding Noise to the MAST diode Template 395
Adding Your Own Include File 237
Altering an External Parameter 140
Analog-to-Digital and Digital-to-Analog Summary

203
Assigning Internal Values 380

B
Basic Model Equations 281
Basic Versus Advanced Modeling xx
Behavioral Level of Modeling Abstraction 9
bjtm_arg Declaration Template 326
Branch 26

C
Calculated Values Function bjtm_values 330
Calling the Foreign Routines 348
Characteristic Equation 266
Characteristic Equation For a Constant Current

Source 44
Characteristic Equation for a Constant Voltage

Source 63

Characteristic Equation for a Current-Controlled
Voltage Source 74

Characteristic Equation for a Linear Capacitor 60
Characteristic Equation for a Linear Inductor 67
Characteristic Equation for a Linear Resistor 54
Characteristic Equations 146, 244
Characteristic Equations for Modeling Mutual

Inductance 79
Combining Elements - MAST pid Template 227
Comparison and Summary of Linearization

Techniques 305
Complete BJT C Routine 356
Connection Points 154
Connection Points for Control System MAST

Templates 208
Constant Current Source 455
Constant DC Supply Output 107
Constant Voltage Source MAST Template 460
Continuous Analog Systems - Hydraulic Network 4
Control Section 103, 296, 308, 393
Control Section—Newton Steps 249
control system modeling 207
Correlating Distributions 420
Creating a MAST System Variable 28
Creating Basic Control System MAST Templates

209
Creating Your Own Include Files 238
Cumulative Density Functions (CDFs) 413
Current Contribution for Each Pin 145
Current-Controlled Voltage Source MAST Template

464

D
DC Initialization 184, 191
Declaring and Calling the Routine From a Template

341
Default Sample Points 316
Defining Conflict Resolution in a MAST Template

168
519

Index
E

Defining Template Arguments 350
Delayed Sine Wave AC Analysis 365
Delayed Sine Wave Transient Analysis 364
Density of Sample Points 315
Determine Characteristic Equations 32
Determine if Specified Variables are Accessible

436
Determining Union Elements 379
device_type - MAST Small Signal Parameter

Statement 272
Differentiator 219
Digital Terminology 154
Digitally-Controlled, Ideal Switch 491
Digital-to-Analog (d2a) Interface Model 492

E
Ebers-Moll MAST Model for the Bipolar Transistor

274
Ebers-Moll Model for a BJT 486
Electrical Network 3
Equation and Values Sections 260
Equation Implementation 34
Equation Section 68
Equations Section 51, 57, 61, 92, 102, 137, 150,

299, 308, 378
Equations Section and Local Declarations 64, 75
Error Checking and Message 139
Error Reporting 130
Event Queue 158
Events 157
Expanding the Multiple-Output Voltage Source 367
Export a Variable 141
Expression for Noise 393
External Variable for Temperature 136

F
First Call—Setting Up Return Parameters 352
Five Fields

- small_signal Statement 273
Flattened Hierarchy - MAST Template with

Equations 89
Flattened Hierarchy MAST Template 468
Four Fields

- small_signal Statement 273
Frequency-Dependent, AC Output 121

Full-Featured Source - MAST multisrc Template
211

Function Call Overview - bjtm MAST Template 323

G
General Approach 311
General Foreign Function Call Syntax 347
General MAST Conventions 39
General Modeling Concepts 9
General Modeling Process Overview 2
Guide to Writing MAST Templates 1
Guidelines for Splitting a MAST Template into

Separate Functions 319

H
Header and Header Declarations 69, 75, 81, 91,

100, 127, 135, 147, 244
Header Declarations 87, 163, 174, 181, 188,

196, 200, 255, 267, 283, 371, 392
How the Applications Find Files 501

I
Ideal Delay Line - Unstructured dline Template 496
Ideal Delay Line (dline) MAST Template 363
Implementing a MAST Foreign Routine in C 349
Initial Conditions 270
Initialization and Internal Events - MAST clock

Template 172
Initialization Example 185
Initializing a Structure - Method 1 Using vsource_1

111
Initializing a Structure - Method 2 Using vsource_1

111
Initializing Connection Points - Digital MAST

Modeling 160
Initializing Internal Variables - Digital MAST

Modeling 160
Initializing the AND Gate MAST Template 166
Integrator 221
Intermediate Calculations 292
Intrinsic Piecewise Linear Cumulative Density

Function 415
Intrinsic Probability Density Functions 401
Introduction 337, 389, 397
introduction to control system modeling 207
520

Index
J

Introduction to MAST Element Templates 93
Introduction to MAST ref Connection Points 73
Introduction to MAST Variables and Arguments 97
Introduction to Modeling Hierarchical Systems 83
isource - MAST Header Declarations 49
isource Netlist Example 48

J
Junction Capacitance 291

L
Linear Capacitor MAST Template 458
Linear Inductor MAST Template 462
Linear Transformer 477
Local Declaration of Local Parameters 147
Local Declarations 103, 128, 163, 175, 181, 188,

378, 392
Local Declarationse 200
Local Parameters 287
Local Parameters Function bjtm_pars 327

M
Making Symbols Available in SaberSketch 512
Making User Templates Visible for NT 509
Making User Templates visible for Unix 501
MAST AND Gate Model Logic States 163
MAST capacitor_1 Template 471
MAST Connection Points 21
MAST Control System Example Results 230
MAST Declarations 21
MAST dline Template Summary 366
MAST Equation Modifications 32
MAST Example Including Stress Statements 445
MAST Interface Models and Foreign Simulators

203
MAST Model Verification and Testing 35
MAST Modeling Concepts using Electrical

Elements 42
MAST Modeling Examples - Electrical Elements 41
MAST Modeling Modularity and Hierarchy 11
MAST Modeling Modularity and Hierarchy

Summary 16
MAST Parameters 22
MAST Reference Node 30

MAST Sections - Optional but Recommended 23
MAST System Variables 26
MAST Template Body 21
MAST Template Conflict Resolution - the driven

Function 166
MAST Template Description 19
MAST Template Equations 23
MAST Template Extraction Groups 240
MAST Template File 19
Mixed Hierarchy - MAST Template with Netlist and

Equations 92
Mixed Hierarchy MAST Template 470
Model Implementation Using the MAST Language

32
Modeling a Constant Current Source 43
Modeling a Constant Voltage Source with MAST 62
Modeling a Current-Controlled Voltage Source with

MAST 73
Modeling A Digitally-Controlled, Ideal Switch with

MAST 186
Modeling a Linear Capacitor with MAST 58
Modeling a Linear Inductor with MAST 66
Modeling a Linear Resistor with MAST 54
Modeling a Linear Transformer with MAST 125
Modeling a Simple Voltage Limiter 482
Modeling a Simple Voltage Limiter with MAST 242
Modeling a Temperature-Dependent Resistor with

MAST 133
Modeling a Voltage Comparator with MAST 179
Modeling a Voltage Divider 484
Modeling a Voltage Divider with MAST 251
Modeling a Voltage Squarer - MAST vsqr Template

306
Modeling an AND Gate - MAST Template 161
Modeling an Ideal Diode 485
Modeling an Ideal Diode with MAST 263
Modeling an Idealized Op Amp with MAST 144
Modeling Digital Systems 153
Modeling Extractable Capacitor Voltage and

Charge with MAST 98
Modeling Multiple-Mode Voltage Source with MAST

104
Modeling Mutual Inductance with MAST 78
Modeling Nonlinear Devices with MAST 263
Modeling Objectives 16
Modeling Temperature 267
521

Index
N

Modeling the Bipolar Transistor Using Foreign
Routines 342

Modeling the Bipolar Transistor Using MAST
Functions 318

Modifying a Normal Prototype Distribution 425
Modifying a Uniform Prototype Distribution 422
Modifying the BJT Template to Use a Foreign

Routine 344
Modifying Uniform and Normal Default Distributions

421
Modular (hierarchical) MAST System Descriptions -

Summary 95
Modular vs. Non-Modular MAST System

Descriptions 95
Multiple-Output Voltage Source 475
Multiple-Output Voltage Source - Unstructured

vsource_2 Template 497
Multiplier - MAST mply Template 217
Mutual Inductance MAST Template 466

N
Netlist Example for the Ideal Switch 192
Netlist Examples 388
Netlist Section 88, 127
Newton Step Parameters 257
Newton Steps 268
Nonlinear Elements 241
Non-Modular (flat) MAST System Descriptions -

Summary 96
Normal Probability Density Function 404

O
Overview 367

P
Parameter Section 149
Parameterized PDF and CDF Specifications 428
Parameters Section 128
Parameters Section - MAST vdiv Template 256
Parameters Section and Local Declarations 139
Performing Calculations (Defining Signals) 381
Piecewise linear approximation (Method 2) 303
Piecewise Linear Evaluation (Method 3) 304
Piecewise Linear Probability Density Function 407
Post-Simulation Calculation 34

Preparing to Write the MAST bjt Template 282
Preserving Hierarchy - MAST Template with Netlist

85
Pre-Simulation Calculations and Error Checking 34
Probability Density Functions (PDFs) 400
Properties of MAST Element Templates 94
Purpose of Newton Steps 247

S
Saber Simulator Include Files 235
Saving Your Include File Set 239
Scheduling With the when Statement 157
Schematic Entry Versus Netlist xxi
S-Domain Modeling Using the MAST d_by_dt

Operator 218
Second and Third Calls—Performing Calculations

353
Selecting Names for a MAST Linear Capacitor

Template 58
Selecting Names for a MAST Linear Resistor

Template 55
Setting up the Equations Section 80
Setting Up Your Own MAST Include Files 237
Simple DC Source 210
Simple Idealized Op Amp 479
Simulation Concepts 2
Simulation Efficiency of Hierarchical Systems 84
Simulation Linearization Techniques 302
Simulation of Continuous Analog Systems 3
Simulation of Data Flow Systems 7
Simulation of Event-Driven Systems 6
Simulation Techniques for Evaluating Nonlinearities

301
Small Signal AC Analysis Results 232
small_signal - MAST Small Signal Parameter

Statement 272
Small-Signal Conditional Statements 124
Small-Signal Parameters 271
Small-Signal simvar Variables 122
Small-Signal Structure Type Parameter 122
Solving for Across Variables at a System Node 70
Specific Approach (voltage squarer) 312
Specifying Sample Points 313
SPICE-Compatible Pre-Loaded Templates 236
Splitting Functionality Between a MAST Template

and a Foreign Function 342
522

Index
T

ss_partial - MAST Small Signal Parameter
Statement 274

Starting the isource MAST Template 45
Starting Value 270
Step Load Transient Analysis Results 233
Stress Measure, adding to a template 433
Summary of Structure Initializers 112
Syntax Guidelines for isource Template 53

T
Taking the Slope (Method 1) 302
Temperature Dependence of the Resistance Value

137
Temperature-Dependent Resistor 478
Template Body 51, 112
Template Body with Local Declarations 92
Template Equation 132, 190, 270
Template Equations 197
Template Header 20, 47, 86, 307
Template Header and Header Declarations 56, 59
The bjtm Template 321
The bjtm Template Architecture Using MAST

Functions 319
The random MAST Function 430
The Saber Netlist Overview 12
The schedule_next_time Function 190
The vsource_2 MAST Template 369
The when Statement in the MAST AND Gate

Template 164
Thermal Voltage 291
Three-Pin Topology 146
Time 155
Time-Dependent, Exponential Output 108
topic modeling "Modeling" 41
Two-input Summer - MAST sum2 Template 215
Two-Pole Transfer Function 224

U
Understanding Sample Points 310
Uniform Probability Density Function 402

Union Type Parameters 372
Unstructured MAST clock Template 480
Use of the statistical MAST Simvar Variable 430
Using a CCVS Template 77
Using a FORTRAN Function in a MAST Template

338
Using a MAST Function Instead of a Foreign

Routine 317
Using C or FORTRAN Routines Called by

Templates 506, 514
Using Custom Models From Your Capture Tool 505
Using Interface Models in Mixed Analog-Digital

Simulation 193
Using MAST Element Templates 94
Using MAST Functions - Unstructured bjtm

Template 494
Using MAST System Variables Between Models 73
Using Templates Written in MAST 503, 512
Using the MAST delay Function in an Ideal Delay

Line 361
Using the Mutual Inductance (mutind) MAST

Template 82
Using the Standard Template 408

V
Values 155
Values and Equations Sections 245
Values Section 100, 307
Varying Values in a Simple Voltage Divider 398

W
Walkthrough of a Simple MAST Template 35
What This Manual is About xix
What You Need to Know to Use This Manual xix
When Statement 189, 200
When Statements 176, 182, 196
Worst-Case Statistical MAST Modeling 431

Writing the FORTRAN Routine 339
523

Index
W

524

	Contents
	What You Need to Know to Use This Manual
	What This Manual is About
	1 Fundamental Modeling Concepts
	Guide to Writing MAST Templates
	General Modeling Process Overview
	Simulation Concepts
	Simulation of Continuous Analog Systems
	Electrical Network
	Continuous Analog Systems - Hydraulic Network

	Simulation of Event-Driven Systems
	Simulation of Data Flow Systems

	General Modeling Concepts
	Behavioral Level of Modeling Abstraction
	MAST Modeling Modularity and Hierarchy
	The Saber Netlist Overview
	MAST Modeling Modularity and Hierarchy Summary

	Modeling Objectives

	2 MAST Overview
	MAST Template Description
	MAST Template File
	Template Header
	MAST Declarations
	MAST Connection Points
	MAST Template Body
	MAST Parameters
	MAST Template Equations
	MAST Sections - Optional but Recommended
	Variable Types in MAST Sections

	MAST System Variables
	Branch
	Explicit Declaration
	Implicit Declaration

	Creating a MAST System Variable
	Case 1
	Case 2
	Case 3
	Case 4

	MAST Reference Node
	Model Implementation Using the MAST Language
	Determine Characteristic Equations
	MAST Equation Modifications
	Pre-Simulation Calculations and Error Checking
	Equation Implementation
	Post-Simulation Calculation
	MAST Model Verification and Testing

	Walkthrough of a Simple MAST Template
	Line 1: Template Header
	Lines 2 and 3: Connection Points
	Line 4: Argument Declaration
	Line 5: Opening Brace
	Line 6 - Un-Structured: Branch Through Variable
	Line 6 - Structured: Equation Section
	Line 7 - Un-Structured: Branch Across Variable
	Line 7 - Structured: Characteristic Equation
	Line 8 - Un-Structured: Characteristic Equation
	Line 8 - Structured: Closing Brace
	Line 9: Closing Brace

	General MAST Conventions

	3 Basic Modeling
	MAST Modeling Examples - Electrical Elements
	MAST Modeling Concepts using Electrical Elements

	Modeling a Constant Current Source
	Concepts Introduced Using this Example
	Characteristic Equation For a Constant Current Source
	Starting the isource MAST Template
	Template Header
	isource Netlist Example
	isource - MAST Header Declarations

	Template Body
	Equations Section
	Syntax Guidelines for isource Template

	Modeling a Linear Resistor with MAST
	Characteristic Equation for a Linear Resistor
	Selecting Names for a MAST Linear Resistor Template
	Template Header and Header Declarations
	Equations Section

	Modeling a Linear Capacitor with MAST
	Selecting Names for a MAST Linear Capacitor Template
	Template Header and Header Declarations
	Characteristic Equation for a Linear Capacitor
	Equations Section

	Modeling a Constant Voltage Source with MAST
	Constant Voltage Source Topics
	Characteristic Equation for a Constant Voltage Source
	Equations Section and Local Declarations

	Modeling a Linear Inductor with MAST
	Linear Inductor Topics
	Characteristic Equation for a Linear Inductor
	Equation Section
	Header and Header Declarations

	Solving for Across Variables at a System Node

	4 Using System Variables Between Models
	Introduction to MAST ref Connection Points
	Modeling a Current-Controlled Voltage Source with MAST
	Characteristic Equation for a Current-Controlled Voltage Source
	Equations Section and Local Declarations
	Header and Header Declarations
	Using a CCVS Template

	Modeling Mutual Inductance with MAST
	Characteristic Equations for Modeling Mutual Inductance
	Setting up the Equations Section
	Header and Header Declarations
	Using the Mutual Inductance (mutind) MAST Template

	5 Modeling Hierarchical Systems
	Introduction to Modeling Hierarchical Systems
	Simulation Efficiency of Hierarchical Systems

	Preserving Hierarchy - MAST Template with Netlist
	rlc1 Template Topics
	Template Header
	Header Declarations
	Netlist Section

	Flattened Hierarchy - MAST Template with Equations
	rlc2 Template Topics
	Header and Header Declarations
	Equations Section
	Template Body with Local Declarations

	Mixed Hierarchy - MAST Template with Netlist and Equations
	Introduction to MAST Element Templates
	Properties of MAST Element Templates
	Using MAST Element Templates

	Modular vs. Non-Modular MAST System Descriptions
	Modular (hierarchical) MAST System Descriptions - Summary
	Non-Modular (flat) MAST System Descriptions - Summary

	6 Variables and Arguments
	Introduction to MAST Variables and Arguments
	Modeling Extractable Capacitor Voltage and Charge with MAST
	Header and Header Declarations
	Values Section
	Equations Section
	Local Declarations
	Control Section
	Initial Conditions

	Modeling Multiple-Mode Voltage Source with MAST
	Constant DC Supply Output
	Template Header and Header Declarations

	Time-Dependent, Exponential Output
	Characteristic Equation
	Header Declaration Using a Structure Type Parameter
	Initializing a Structure - Method 1 Using vsource_1
	Initializing a Structure - Method 2 Using vsource_1
	Summary of Structure Initializers
	Template Body

	Frequency-Dependent, AC Output
	Small-Signal Structure Type Parameter
	Small-Signal simvar Variables
	Small-Signal Conditional Statements

	Modeling a Linear Transformer with MAST
	Header and Header Declarations
	Netlist Section
	Local Declarations
	Parameters Section

	Error Reporting
	Template Equation

	Modeling a Temperature-Dependent Resistor with MAST
	Header and Header Declarations
	External Variable for Temperature

	Temperature Dependence of the Resistance Value
	Equations Section
	Parameters Section and Local Declarations
	Error Checking and Message

	Altering an External Parameter
	Export a Variable
	Example

	Modeling an Idealized Op Amp with MAST
	Current Contribution for Each Pin
	Three-Pin Topology
	Characteristic Equations
	Header and Header Declarations
	Local Declaration of Local Parameters
	Parameter Section
	Equations Section

	7 Modeling Digital Systems
	Digital Terminology
	Connection Points
	Time
	Values
	Events
	Scheduling With the when Statement
	Event Queue
	A Typical Event Queue

	Initializing Connection Points - Digital MAST Modeling
	Initializing Internal Variables - Digital MAST Modeling

	Modeling an AND Gate - MAST Template
	MAST AND Gate Model Logic States
	Header Declarations
	Local Declarations
	The when Statement in the MAST AND Gate Template
	Initializing the AND Gate MAST Template
	MAST Template Conflict Resolution - the driven Function
	Defining Conflict Resolution in a MAST Template

	A Netlist Example - MAST AND Gate Template

	Initialization and Internal Events - MAST clock Template
	Header Declarations
	Local Declarations
	When Statements
	Initialization

	8 Modeling Mixed Analog-Digital Systems
	Modeling a Voltage Comparator with MAST
	comparator Gate Topics
	Header Declarations
	Local Declarations

	When Statements
	DC Initialization
	Initialization Example

	Modeling A Digitally-Controlled, Ideal Switch with MAST
	Header Declarations
	Local Declarations
	When Statement
	Template Equation
	The schedule_next_time Function
	DC Initialization
	Netlist Example for the Ideal Switch

	Using Interface Models in Mixed Analog-Digital Simulation
	A MAST Analog-to-Digital (a2d) Interface Model
	Header Declarations
	Local Declarations
	When Statements
	Template Equations

	A MAST Digital-to-Analog (d2a) Interface Model
	Header Declarations
	Local Declarations
	When Statement
	Template Equation

	Analog-to-Digital and Digital-to-Analog Summary

	MAST Interface Models and Foreign Simulators

	9 Control System Modeling
	Connection Points for Control System MAST Templates
	Creating Basic Control System MAST Templates
	Simple DC Source
	Full-Featured Source - MAST multisrc Template
	Two-input Summer - MAST sum2 Template
	Example

	Multiplier - MAST mply Template

	S-Domain Modeling Using the MAST d_by_dt Operator
	Differentiator
	Integrator
	Two-Pole Transfer Function
	Combining Elements - MAST pid Template

	Ideal Delay
	MAST Control System Example Results
	Small Signal AC Analysis Results
	Step Load Transient Analysis Results

	10 Predefined MAST Declarations
	Saber Simulator Include Files
	SPICE-Compatible Pre-Loaded Templates
	Setting Up Your Own MAST Include Files
	Adding Your Own Include File
	Creating Your Own Include Files
	Saving Your Include File Set

	MAST Template Extraction Groups

	11 Modeling Piecewise-Defined Behavior
	Nonlinear Elements
	Modeling a Simple Voltage Limiter with MAST
	Characteristic Equations
	Header and Header Declarations
	Values and Equations Sections
	Requirements For If Expressions
	Purpose of Newton Steps
	Control Section-Newton Steps
	Newton Step Example

	Modeling a Voltage Divider with MAST
	Header Declarations
	Parameters Section - MAST vdiv Template
	Newton Step Parameters

	Equation and Values Sections

	12 Modeling Nonlinear Devices
	Modeling an Ideal Diode with MAST
	diode Template Topics
	Characteristic Equation
	Header Declarations
	Modeling Temperature
	Newton Steps
	Newton Steps Example - MAST diode Template

	Template Equation
	Initial Conditions

	Starting Value
	Small-Signal Parameters
	Small-Signal Parameters Report
	Small-Signal Parameter Statements

	Ebers-Moll MAST Model for the Bipolar Transistor
	Basic Model Equations

	Preparing to Write the MAST bjt Template
	Header Declarations
	Transistor Type
	Collector Resistance
	Initial Conditions

	Local Parameters
	Temperature
	Junction Capacitance
	Newton Steps Declaration - MAST bjt Template
	Local Node - MAST bjt Template
	Intermediate Current and Charge Variables
	Defining Groups For Extraction - MAST bjt Template

	Thermal Voltage
	Junction Capacitance
	Intermediate Calculations
	Fundamental Quantities - MAST bjt Template
	Currents
	Charges

	Control Section
	Collapse Node
	Newton Steps
	Initial Conditions in Control Section
	Starting Value
	Small-Signal Parameters

	Equations Section

	13 Modeling Nonlinearities
	Simulation Techniques for Evaluating Nonlinearities
	Simulation Linearization Techniques
	Taking the Slope (Method 1)
	Piecewise linear approximation (Method 2)
	Piecewise Linear Evaluation (Method 3)
	Comparison and Summary of Linearization Techniques

	Modeling a Voltage Squarer - MAST vsqr Template
	vsqr Template Topics
	Template Header
	Values Section
	Equations Section
	Control Section
	Understanding Sample Points
	Considerations for Selecting Sample Points

	Specifying Sample Points
	Sample Point Statement Syntax
	Sample Point Values

	Density of Sample Points

	Default Sample Points

	14 MAST Functions
	Using a MAST Function Instead of a Foreign Routine
	Modeling the Bipolar Transistor Using MAST Functions
	Guidelines for Splitting a MAST Template into Separate Functions
	The bjtm Template Architecture Using MAST Functions
	The bjtm Template

	Function Call Overview - bjtm MAST Template
	bjtm_arg Declaration Template
	Local Parameters Function bjtm_pars
	Function Header
	Header Declaration
	Function Body

	Calculated Values Function bjtm_values
	Function Header
	Header Declaration

	Function Body

	15 Foreign Routines in MAST
	Introduction
	Using a FORTRAN Function in a MAST Template
	Writing the FORTRAN Routine
	Declaring and Calling the Routine From a Template

	Modeling the Bipolar Transistor Using Foreign Routines
	Splitting Functionality Between a MAST Template and a Foreign Function
	Modifying the BJT Template to Use a Foreign Routine
	General Foreign Function Call Syntax
	Calling the Foreign Routines

	Implementing a MAST Foreign Routine in C
	Defining Template Arguments
	First Call-Setting Up Return Parameters
	Second and Third Calls-Performing Calculations
	Complete BJT C Routine

	16 Time-Domain Modeling
	Using the MAST delay Function in an Ideal Delay Line
	Ideal Delay Line (dline) MAST Template
	Delayed Sine Wave Transient Analysis
	Delayed Sine Wave AC Analysis
	MAST dline Template Summary

	Expanding the Multiple-Output Voltage Source
	Overview
	The vsource_2 MAST Template
	Header Declarations
	Union Type Parameters
	Sine Wave Output (sin) Declaration
	Exponential Wave Output (exp) Declaration
	Step Function Output (step) Declaration
	Initial Values
	Netlist Example

	Local Declarations
	Equations Section
	Determining Union Elements
	Assigning Internal Values
	Performing Calculations (Defining Signals)
	Sine Wave Output
	Exponential Waveform Output
	Step Function Output
	No tran Output

	Netlist Examples

	17 Modeling Noise
	Introduction
	Adding Noise to a Resistor MAST Template
	Header Declarations
	Local Declarations
	Expression for Noise
	Control Section

	Adding Noise to a Voltage Source MAST Template
	Adding Noise to the MAST diode Template

	18 Statistical Modeling
	Introduction
	Varying Values in a Simple Voltage Divider
	Probability Density Functions (PDFs)
	Intrinsic Probability Density Functions
	Uniform Probability Density Function
	Normal Probability Density Function
	Piecewise Linear Probability Density Function
	1. Creating a Piecewise Linear Prototype PDF
	2. Correspondence Between Actual Values and Prototype PDF Values
	3. Using a Piecewise Linear Prototype PDF in a Netlist

	Cumulative Density Functions (CDFs)
	Intrinsic Piecewise Linear Cumulative Density Function
	1. Creating a Piecewise Linear Prototype CDF
	2. Correspondence Between Actual Values and Prototype CDF Values
	3. Using a Piecewise Linear Prototype CDF in a Netlist

	Correlating Distributions
	Modifying Uniform and Normal Default Distributions
	Modifying a Uniform Prototype Distribution
	1. Modifying a Uniform Prototype PDF Using Initializers
	2. Modifying a Uniform Prototype PDF in a Template

	Modifying a Normal Prototype Distribution
	1. Modifying a Normal Prototype PDF using Initializers
	2. Modifying a Normal Prototype PDF in a Template

	Parameterized PDF and CDF Specifications
	The random MAST Function
	Use of the statistical MAST Simvar Variable
	Worst-Case Statistical MAST Modeling

	19 Adding Stress Measures to a MAST Template
	Add stress_measure Statements to Template
	Determine if Specified Variables are Accessible
	Add Stress Ratings
	Add Thermal Resistances (Optional)
	Add a Way to Disable Stress (Optional)
	Add a Way to Specify Device Type and Class (Optional)
	MAST Example Including Stress Statements

	A Unstructured Modeling Approach - Examples
	Constant Current Source
	Branch Declarations
	Template Equation

	Linear Resistor MAST Template
	Branch Declarations
	Template Equation

	Linear Capacitor MAST Template
	Template Equation

	Constant Voltage Source MAST Template
	Branch Declarations
	Template equation

	Linear Inductor MAST Template
	Characteristic Equations
	Setting Up the Template Equation

	Current-Controlled Voltage Source MAST Template
	Characteristic Equation
	Template Equation and Local Declarations

	Mutual Inductance MAST Template
	Setting Up the Template Equations

	Flattened Hierarchy MAST Template
	Template Equations
	Template Body - Local Declarations

	Mixed Hierarchy MAST Template
	MAST capacitor_1 Template
	Local Declarations - Assignment Statements
	Local Declarations - Declaring a val
	Template Equation

	Multiple-Output Voltage Source
	Template Body

	Linear Transformer
	Temperature-Dependent Resistor
	Simple Idealized Op Amp
	Unstructured MAST clock Template
	Modeling a Simple Voltage Limiter
	Local Declarations
	Template Equations

	Modeling a Voltage Divider
	Modeling an Ideal Diode
	Ebers-Moll Model for a BJT
	Digitally-Controlled, Ideal Switch
	Digital-to-Analog (d2a) Interface Model
	Integrator (intgr)
	Using MAST Functions - Unstructured bjtm Template
	Ideal Delay Line - Unstructured dline Template
	Multiple-Output Voltage Source - Unstructured vsource_2 Template

	B Making User Templates Visible for Unix and NT
	Making User Templates Visible for Unix
	How the Applications Find Files
	Using Templates Written in MAST
	Using Custom Models From Your Capture Tool
	Making Symbols Available in Saber Sketch

	Using C or FORTRAN Routines Called by Templates
	How to Make a Single Routine Available to the Saber Simulator
	Making a Library of Routines Available to the Saber Simulator

	Making User Templates Visible for NT
	Making Symbols Available in Saber Sketch
	Using Templates Written in MAST
	Using C or FORTRAN Routines Called by Templates
	The C Language Header
	The FORTRAN Language Header
	How to Make a Single Routine Available to the Saber Simulator
	One-Step Dynamic Library Linking
	One-Step C Language Compiling and Linking
	One-Step FORTRAN Language Compiling and Linking

	How to Compile and Link Libraries of Routines

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	S
	T
	U
	V
	W

