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Preface

What You Need to Know to Use This Manual

This manual is for Saber users who are familiar with netlists and plan to write 
their own models for simulation. It is largely tutorial in its approach and 
assumes no prior experience with the MAST modeling language. It does 
assume that you know how to use a MAST template with the Saber simulator. 
Some programming experience would be helpful, though not absolutely 
necessary. 

This manual also assumes that you are familiar with the following: 
■ How to view the contents of a file.
■ How to use a text editor to create a file or edit the contents of a file.
■ How to delete files. 
■ How to create or delete a directory. 
■ How to list the contents of a directory. 
■ How to move from one directory to another. 

If you are not familiar with these procedures, consult the user’s guide for your 
operating system. 

What This Manual is About

This manual shows how to use the MAST modeling language by presenting a 
small number of concepts at a time, with each presentation based on a 
modeling example. 

It has two objectives: 
■ To describe some general purpose modeling techniques. 
■ To show how to use the MAST language to implement simple models of 

systems or subsystems for use by the Saber simulator. 

The models described in the beginning chapters are kept simple. As the model 
complexity increases with succeeding chapters, every effort has been made to 
Saber® MAST Language User Guide xix
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keep the conceptual “jumps” manageable. Most examples start by listing the 
template of the model and describing the characteristic equations. 

Because the MAST language has the features and capabilities of an Analog 
Hardware Description Language (AHDL), it is suited for the diverse and 
complex modeling requirements of simulation in general. This manual is not 
meant to serve as a textbook on modeling—it is intended to be a survey (by 
example) of MAST capabilities. Therefore, achieving full MAST expertise 
requires time and practice in addition to reading this manual. Fortunately, for 
immediate use, you need only learn the portions that apply to your own 
simulation, which is not so difficult. 

This manual explains not only what, but why. The MAST Language Reference 
Manual also explains what, but in greater detail—it provides more detailed 
information on topics that are introduced in this manual. 

Basic Versus Advanced Modeling

This manual presents a sequence of graduated examples that demonstrate 
how to incorporate many commonly-used features of the MAST modeling 
language. These example templates are presented in order of increasing 
complexity to introduce advanced features. They have been selected to 
provide the following: 
■ An easy starting point (the first two examples are models for a current 

source and a resistor)
■ Simplified models
■ Balanced length—short enough to read and scan, but long enough to 

demonstrate significant features and capabilities
■ Moderate differences from one example to the next 
■ Modularity of chapters, to minimize having to read “cover-to-cover” 

Note:   

Most of the templates used as examples are simplified versions of 
templates that already exist in the Saber libraries. Be aware that, for 
simplicity, these example templates do not include the error-checking 
features contained in the library templates. 
xx Saber® MAST Language User Guide
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Schematic Entry Versus Netlist

As stated above, one objective of this manual is to show how to implement a 
mathematical model in the MAST modeling language—how to write a template. 
Some of the constructs and requirements for doing this are based on using a 
template in a netlist (which is a textual description of your design provided as 
input to the simulator). Consequently, explanations sometimes refer to topics 
and procedures that are related to a netlist. 

If you are using a schematic entry program, information in this manual 
regarding netlists still applies to writing a MAST template. This is because a 
schematic entry program still produces a Saber netlist—this type of program is 
basically an interface that lets you avoid having to edit a netlist directly. In 
general, such information is not extremely detailed and is easily applied to 
using a schematic entry program. 

For example, specifying a template in a netlist is effectively the same as 
placing a symbol in a Saber Sketch schematic and specifying its properties, 
from which a netlist is created. There is no difference in simulation. 
Saber® MAST Language User Guide xxi
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1
1Fundamental Modeling Concepts

This chapter presents an overview of the MAST modeling processes, and 
explores essential topics in computer simulation and modeling.

Guide to Writing MAST Templates

MAST is a description language for use by modelers as a way to describe the 
behavior and structure of hardware in mathematical terms. Hardware can 
range from discrete devices to complete system designs. Among the types of 
devices that can be modeled are electronic devices such as resistors and 
mechanical devices such as hydraulic valves. A design can be a combination 
of more than one functional block to comprise a complete system.

Designers can create their own MAST models or rely on a comprehensive 
library of pre-existing MAST models. 

Once a device or design has been described with MAST, the behavior of the 
model can be simulated with the Saber simulator.

MAST provides two different styles for creating models: structured and 
unstructured. 

The structured approach divides the model into sections. Each section contains 
specific model functionality. This modeling style is recommended for 
complicated models. Most models fall into this category.

The unstructured modeling style is beneficial for use with simple models and 
can be created with less lines of code. Although the term “unstructured” implies 
a lack of model structure, this is not the case. The model’s structure is made 
simpler by eliminating the need to partition different model functionality into 
specific model sections.
Saber® MAST Language User Guide 1
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Chapter 1: Fundamental Modeling Concepts
General Modeling Process Overview
The following topics describe general modeling and simulation concepts:

General Modeling Process Overview
Simulation Concepts
General Modeling Concepts

General Modeling Process Overview

The process of replacing a system with a simplified model and then 
investigating its properties by controlled experiments is called simulation. In 
order to obtain meaningful simulation results, the model must accurately 
represent the original system within the constraints of those experiments. 
Beyond that, the model and the original system may exhibit completely 
different behavior. This means that a system can be represented by a variety of 
different models, each having a specific purpose and a set of related 
limitations. 

In computer simulation, the model typically consists of a mathematical 
description of the system properties, and each controlled experiment is an 
analysis of a particular type. For example, a transient analysis is typically used 
to investigate the response of the system to a time-dependent excitation. To 
yield meaningful simulation results for all types of excitation, the system model 
must include accurate descriptions (such as nonlinearities and time constants) 
of the system's dynamic properties. On the other hand, a linear approximation 
of the system (if it exists) can be sufficiently accurate for feasibility studies. 
Most simulators also use a linearized model for small-signal AC analysis to 
determine the frequency response of the system. They generate such a model 
by linearizing a more accurate nonlinear model about the operating point of the 
system. 

Among the different modeling languages, the MAST modeling language can 
represent a model in terms of linear or nonlinear algebraic or integro-differential 
equations. The Saber simulator can then use these models to perform 
simulation analyses. The interaction of the MAST language and the Saber 
simulator provides a powerful method of investigating systems containing a 
wide variety of models. 

Simulation Concepts

To create a model for computer simulation, you must understand a few basic 
concepts about computer simulation, especially how a simulator operates and 
2 Saber® MAST Language User Guide
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Simulation Concepts
how it uses a model in a system. These concepts are universal and therefore 
independent of the Saber simulator. Other concepts apply only to the Saber 
simulator, which is unique in that it supports continuous analog, event-driven 
(including digital), and data flow (control system) models. 

Simulation of Continuous Analog Systems

When simulating continuous analog systems, a simulator repeatedly solves a 
set of simultaneous nonlinear differential equations. These equations represent 
the system being simulated—they are the model of the system. The system 
model consists of ordinary differential equations if it can be represented by 
lumped elements. 

In electrical systems, examples of such elements are resistors, capacitors, or 
transistors. The elements are connected at the nodes of the system. There is a 
voltage and a current associated with each node in the system. The voltage is 
measured at the node with respect to the reference node; the current flows 
through each element connected to the node. 

Electrical Network
For example, consider the following simple network, which consists of a current 
source, a resistor, a diode, and a capacitor. The text to the right of the diagram 
is known as a netlist—it specifies the models to be used in the system and how 
they are connected to each other. A netlist is usually provided as an input file to 
a simulator.

Io

1 R 2

C

0

D

i.in 0 1 = Io

r.12 1 2 = R

c.2 2 0 = C

d.2 2 0 = Is

Sample network and its netlist
Saber® MAST Language User Guide 3
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Simulation Concepts
The following equations represent resistor current, capacitor current, and diode 
current in this circuit: 

R:       IR = V/R 
C:      IC = d/dt(CV) 

D:      ID = IS(e  -1) 

Using these equations, it is straightforward to apply Kirchhoff’s Current Law 
(KCL) to nodes 1 and 2 (i.e., the sum of all currents entering a node equals the 
sum of all currents leaving that node): 

i(1):         (v(1)-v(2))/R - I0 = 0 

i(2):      -(v(1)-v(2))/R + d(v(2)*c)/dt + IS*(e  - 1) = 0 

where v(1) and v(2) are the voltages at nodes 1 and 2, with respect to the 
reference node. IS is the diode saturation current and Vt is the thermal voltage. 
These equations describe the behavior of the network completely. That is, they 
are a complete mathematical model of the circuit shown in the previous 
diagram. 

Although it is possible to describe this system directly using the above 
equations, it is preferable to provide a model for each system element, together 
with a netlist describing their interconnections.

That way, the simulator obtains the equations from these models and sets 
them up according to how the netlist describes their interconnections. It then 
solves the equations for the unknowns, which are the system variables v(1) 
and v(2)—the voltages at nodes 1 and 2 with respect to the reference node (“0” 
in this netlist). It may do so repeatedly, in order to determine the system 
variables as a function of time or frequency. 

Continuous Analog Systems - Hydraulic Network
Now consider the simple hydraulic system in the following figure. It consists of 
a pump delivering a constant water flow through a pipe into a reservoir. A valve 
protects the reservoir from excess pressure. 

V/Vt

V(2)/Vt
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Assuming that the valve opens gradually with exponential behavior and that no 
water spills at the ends (1 and 2) of the pipe, the equations describing the 
dynamics of the system are:

flow(1):         (p(1)-p(2))/pipe_res  - pump_flow = 0

flow(2):      -(p(1)-p(2))/pipe_res + d(p(2)*rsvr_cap)/dt + vlv_lkg*(e  - 1) 
= 0

where p(1) and p(2) are the pressures at the two ends of the pipe, and P0 is a 
reference pressure. You can see that Equations 6 and 7 are mathematically 
equivalent to Equations 4 and 5 of the electrical network. In the hydraulic 
system, the pressures p(1) and p(2) are the system variables for which the 
simulator has to solve. 

The similarities between these two examples illustrates that the fundamental 
concepts used in continuous analog simulation are not restricted to electrical 
networks—they apply equally to a variety of other types of physical systems, 
including hydraulic, mechanical, and magnetic.

Each discipline has its own type of system variables, but there is no 
requirement for a system model to be purely electrical or purely hydraulic. The 
simulator simply determines the system variables (which can be any 
combination of voltages, pressures, torques, or system variables of other 
disciplines) by solving the simultaneous nonlinear differential equations 
describing the system.

It is important to note that, despite analogous similarities between disciplines, 
the Saber simulator does not require a non-electrical, continuous analog model 
to be written in terms of equivalent electrical elements. 

1

2
pump

pipe

reservoir

valve

p(2)/P0
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For example, it can simulate a model of the system shown in the previous 
figure directly—there is no need to convert flow to current, pressure to voltage, 
pump to current source, etc.

Simulation of Event-Driven Systems

The simulation of a continuous analog system described by differential 
equations yields accurate waveforms for the system variables, provided that 
the system model is accurate. In many applications, a rough approximation of 
the waveforms may be sufficient. A typical example is the timing simulation of a 
digital system, where the waveform for the transition from one logic level to 
another is much less important than the time when the transition occurs.

Consider the simple inverter chain shown in the following figure. In a timing 
simulation, the logic levels at nodes a, b, c, and d are of interest, as well as how 
a change at node a propagates through the chain, given a particular delay t for 
each inverter. 

Using binary logic, assume that the system's initial state is LOW, HIGH, LOW, 
HIGH for nodes a, b, c, and d respectively. A transition to HIGH at node a 
causes node b to go LOW after the inverter delay of t. After another delay of t, c 
will go HIGH, because its input changed. Finally, after the third delay of t, d will 
go LOW, and the system will have settled.

Because the state of the system responds to a change in input only at multiples 
of t, there is no need to simulate the complete system between the changes; 
and even then only the parts that change require attention.

Systems like the chain of inverters are called event-driven. During a simulation, 
each part of the system (here each inverter) simply monitors its inputs; it is 
otherwise inactive. A part becomes active only when there is an event, such as 
a transition, on one of its inputs. It then processes the event, which may involve 
scheduling another event (a transition) on one of its outputs, either at the same 

1 2 3
a b c d

Chain of inverters
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time or in the future. Once the event is processed, the system part becomes 
inactive again and continues monitoring its inputs. 

Consider the following chain of events:

1. For the inverter chain in the previous figure, the pulse source schedules the 
level of node a to change to high at a certain time. 

2. Inverter 1 is monitoring this node and becomes active when the event time 
arrives. This inverter recognizes that node a went HIGH, and schedules 
node b to go LOW after a delay of t. 

3. Inverter 1 then becomes inactive, and returns to monitoring node a. 

4. After the delay time has elapsed, inverter 2 becomes active to process the 
event at its input, node b. Because node b went LOW, inverter 2 schedules 
node c to go HIGH after a delay of t and then becomes inactive. 

5. Finally, inverter 3 becomes active and schedules its output to go LOW after 
another delay period. The system settles after node d goes LOW, because 
node d is not monitored. 

Event-driven systems differ from continuous analog systems in several 
respects:
■ They are always time-based, whereas continuous analog systems can be 

simulated in either the time or frequency domain.
■ Models of event-driven systems (Strictly event-driven models—excepting 

Hypermodel analog/digital interface templates) must have clear distinctions 
between inputs and outputs. That is, the models always have a direction. 
Although such distinctions are possible in continuous analog models, none 
are required.

■ Event-driven models, by nature, are discontinuous in time. 
■ An event-driven simulator is basically an event manager that activates 

selected parts of the system sequentially, in order to process events at their 
inputs. In contrast, a simulator for continuous analog systems is a solver of 
simultaneous differential equations.

Simulation of Data Flow Systems

A third kind of system, the data flow system, has some characteristics of both 
the continuous analog system and the event-driven system.
Saber® MAST Language User Guide 7
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Data flow systems have the following characteristics:
■ They can be simulated in either the time or frequency domain.
■ Models of data flow systems distinguish clearly between inputs and outputs. 

That is, the models always have a direction.
■ Data flow models, by nature, are continuous.
■ Data flow models do not require conservation of through and across 

quantities (such as current and voltage)
■ A data flow simulation involves the solution of simultaneous differential 

equations. However, because through and across quantities are not 
conserved, data flow simulation presents the system of equations in a 
different form than do continuous analog systems.

The following diagram shows a data flow representation for the circuit shown in 
the topic titled "Electrical Network". 

The resulting differential equations for the network and the data flow are 
identical. Only the manner in which they are presented is different. It is difficult 
to make a one-to-one correspondence between the functional blocks in the 
data flow representation and the related circuit diagram. It is even more difficult 
to derive the data flow schematic given the circuit diagram. If the current source 
were changed to a voltage source, the data-flow schematic would change 
completely. It is apparent that the continuous analog approach presented in the 
topic titled "Electrical Network" is a more natural way to describe the electrical 

+

–

+
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Data flow representation of electrical schematic
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system application. However, there are many systems where the data flow 
approach is more natural (e.g., describing control systems using data-flow 
schematic diagrams).

The diagram shown in the topic titled "Behavioral Level of Modeling 
Abstraction" represents a schematic for a system that uses models written with 
data flow constructs. 

General Modeling Concepts

A model of a system is “good” only if it accomplishes the specific purposes for 
the person using the model. Some keys to good modeling are to create models 
that:
■ Accurately reproduce the effects of interest 
■ Do not waste time with effects that are not of interest 
■ Provide flexibility to allow the modeler to change his or her mind about the 

effects that are of interest 

A good model answers a suitable number of the “right” questions. A modeling 
system that just solves differential equations does not answer enough of the 
right questions. A good modeling system must be able to manipulate input 
quantities to form the right differential equations, solve the differential 
equations, and manipulate the results. 

Behavioral Level of Modeling Abstraction

In general, most models are behavioral models. With VHDL, a model could 
describe a design structure (structural description). Although at some level of a 
design hierarchy, the behavior of each structural piece must be defined. All 
MAST models are behavioral.

A behavioral model is one that describes an observed behavior with an 
appropriate set of equations and coefficients. These characteristics are shared 
by all mathematical models—the distinction between different models in a 
system lies in the levels of detail that they model.
Saber® MAST Language User Guide 9
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For example, you can model a bipolar transistor as a switch, with an off and on 
resistance. The resistance model lets you observe current and voltage effects 
at the external pins of the transistor. If you need more accuracy, it is available 
in the Gummel-Poon model. The Gummel-Poon model lets you observe more 
accurate current and voltage effects at the pins, as well as letting you observe 
internal voltages, charges, and currents. 

If you need still more accuracy, you can use a finite-element device model. 
This type of model lets you observe even more accurate current and voltage 
effects at the pins and more accurate internal voltages, charges, and currents. 
In addition, you can observe internal three-dimensional electric field 
distributions and temperature gradients. All of these models describe behavior 
with equations. You could go to lower levels still with quantum mechanical 
descriptions of the transistor materials. There appears to be no real limit. In 
practice, however, there are always approximations and simplifications that you 
must make, regardless of the depth of detail. 

What is the appropriate level of abstraction to use? That depends on two 
things:
■ What questions are to be answered using this model?
■ What information is available to fit the real device to the model?

For example, if you are trying to optimize the emitter efficiency of a bipolar 
transistor design, then the finite-element model might be appropriate. If, 
however, you are trying to verify the functionality of a large logic block on a 
digital integrated circuit implemented with bipolar transistors, then the finite-
element model is clearly excessive. At most, you would use the Gummel-Poon 
model, and you might even find the switch model to be sufficient. A good model 
doesn't take the time to provide information that isn't required. That is, it is not 

+
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appropriate to worry about three-dimensional electric field distributions when 
the goal is to verify logic design. 

A behavioral description includes the algebraic and differential equations 
needed to describe the physical system, as well as values for the equation 
coefficients (also called model parameters). An accurate model requires both 
accurate equations and accurate parameters. For example, if you want to 
model a bipolar transistor and all you have is a power supply and an ohmmeter 
to measure its characteristics, it is better to use a resistor model than a finite-
element model. Simulation results based on a well-characterized resistor 
model will be more accurate than results based on a poorly-characterized 
finite-element model, even though the finite-element model is capable of more 
accurate results.

Finally, a model implemented with a high level of behavioral abstraction is not 
necessarily less accurate than one implemented with a lower level of 
abstraction. For example, a complicated integrated circuit, such as an analog-
to-digital converter, uses hundreds or thousands of transistors to implement a 
very well-defined input-to-output functionality. If you use one of these devices 
in your design, you typically would not care about internal node voltages and 
currents, but only about the external ones. The external behavior can be 
implemented much more efficiently, without losing accuracy, by a “behavioral” 
model that considers only external behavior. Integrated circuit designers, in 
fact, increase internal complexity to make external functionality even simpler 
and more ideal, making external modeling even more attractive, as compared 
to internal modeling. 

MAST Modeling Modularity and Hierarchy

A “good” model not only implements the appropriate level of abstraction. It is 
constructed so that it can easily be replaced with a model of either higher or 
lower abstraction. You can achieve this flexibility by using modularity and 
hierarchy. Central to the notion of modularity is the concept of the netlist.

Many physical systems can be described as a network of connected 
components. This applies to electrical systems, but it applies equally to many 
other systems as well. The following examples illustrate this concept.
Saber® MAST Language User Guide 11
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In all such systems, the elements can be considered to have through and 
across variables, where the through variable is the quantity conserved at a 
given connection (or node). Generally, the across variable is the driving force 
and the through variable is the driven force. 

For example, in electrical networks, voltage is the driving force and current flow 
results. In a hydraulic network, pressure is the driving force and fluid flow 
results. In a thermal network, temperature is the driving force and heat flow 
results. A mechanical network, on the other hand, uses force as the driving 
force that is the through variable (position is the across variable). However, 
regardless of whether it is the driving or driven force, the through variable must 
sum to zero at each node. Consequently, models operating in such systems 
are often called conservation models. 

Because of the convenience of describing conservation models with through 
and across variables, the MAST language provides special constructs to make 
implementing such models easier (see the topic titled "MAST System 
Variables".

The Saber Netlist Overview
The following figure shows a network and its corresponding netlist—a list that 
represents a network of models functioning as a system. 
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This list is provided as an input file to the simulator. There is a one-to-one 
correspondence between the elements in the network and the entries (lines) in 
the netlist. 

A netlist entry consists of the following parts:
■ the name of the model
■ a period (.)
■ the name of the instance of that model (this name is often called a reference 

designator) 
■ the names of the nodes to which this model instance is connected
■ an equals sign (=) (Not necessary in a netlist entry where user-specified 

parameter values are omitted.)
■ values for the model parameters

The objective of this manual is to illustrate how to create MAST models for use 
in netlists. Refer to the Analyzing Designs manual, the “Saber Netlister 
Command Reference” appendix for more information on creating netlists from 
Saber. 

Note:   

If you use a schematic capture/entry program such as Saber Sketch, 
generally, you will not be aware of netlists. However, all such schematic 
programs create netlists, because nearly all simulators use some kind of 
netlist to describe the system. 

The template is a text file containing the MAST description of the model of a 
system element (although it can also contain the description of an entire 

Io

1 R 2

C

0

D

i.in p:0 m:1 = Io

r.12 p:1 m:2 = rnom = R

c.2 p:2 m:0 = C

d.2 p:2 m:0 = Is

Sample network and its netlist
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system or of several system elements). It is the basic unit of modularity—there 
is a MAST template that describes each element in every netlist. Each netlist 
entry has a corresponding template with which it is associated. Conversely, 
any given template can be used in any number of netlist entries; each such use 
of a template in a netlist entry is called an instance of that template.

Because it is a unit of modularity, a template can also be composed of further 
netlist entries, which introduces the concept of hierarchy. If you are familiar with 
SPICE, you should realize that, although a MAST template is similar to a 
subcircuit (.SUBCKT), a template can also be extended to contain algebraic 
and differential equations directly—a profound distinction. 

Consider, for example, the string of resistors shown in the following diagram. 
This circuit can be represented with the netlist shown below, consisting of five 
entries. Four of the entries (r.1, r.2, r.3, r.4) are instances of the r template and 
one entry (v.1) is an instance of the v template. 

Alternatively, the following diagram shows the same circuit with the first two 
resistors combined into an instance of a template named two_r. The second 

v.1 p:A m:0 = dc = 5

r.1 p:A m:B = rnom = 10

r.2 p:B m:C = rnom = 20

r.3 p:C m:D = rnom = 30

r.4 p:E m:0 = rnom = 40

+

-

B C D

v.1 5V 

A

0

r.1 r.2 r.3 r.4

10 20 30 40

Example 1: String of Resistors
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pair of resistors combined into another instance of the two_r template. This is 
an example of hierarchy. 

The following two_r template provides a model of two resistors in series:

The first line of this template lists two arguments (ra, rb) by which you can 
specify the resistance for each of the series resistors; thus, the two_r template 
can replace two resistor instances in series. The circuit in Example 2 uses two 
instances of the two_r template, as shown in the following netlist:

Simulation results for the implementation of Example 2 would be identical to 
those for the implementation of Example 1. This example actually shows three 
levels of hierarchy, since the resistor is implemented with a template, r. 

 template two_r a b = ra, rb

number ra, rb

{

r.ra p:a m:middle = rnom = ra

r.rb p:middle m:b  = rnom = rb 

} 

v.2 p:A m:0 = dc = 5

two_r.1 a:A b:C = ra=10, rb=20

two_r.2 a:C b:0 = ra=30, rb=40

+

-v.2 5V 

A

0

two_r.1 two_r.2

ra=10

C

rb=20 ra=30 rb=40

Example 2: Using hierarchy to create resistor pairs
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In addition to simplifying implementation, hierarchy can provide increased 
computational efficiency. The numerical methods used by the Saber simulator 
to solve systems of equations can take advantage of extra information in the 
specification of a hierarchical design. The internal matrix representation of the 
system of equations preserves and exploits the hierarchy. The efficiency 
benefits can be substantial, especially in large, highly-repetitive systems. 

By contrast, some simulators do allow the hierarchical specification of a netlist, 
but then they “flatten” the netlist before simulation. This means that the internal 
matrix representation of the set of differential equations is the same as if the 
design were entered in a one-level netlist with no hierarchy.

MAST Modeling Modularity and Hierarchy Summary
The use of modularity and hierarchy are good modeling practices. Just as in 
writing software, it breaks a large problem into small, easily-identifiable pieces. 
The use of modularity and hierarchy has several advantages:
■ Ease of reuse in other designs 
■ Ease of replacing one model with another of different behavioral abstraction
■ Ease of debugging when there is a problem 
■ Ease of top-down design
■ Ease of partitioning design tasks 

Modeling Objectives

The objective of modeling is to answer specific questions—a good modeling 
system must do more than just implement systems of equations. It must be 
able to convert inputs into appropriate forms, solve the resulting equations, and 
manipulate the results to produce the information required.

The implementation of the model must include the mathematical description of 
the system. However, it should also include any additional information that the 
model writer may happen to possess. For example, the writer of a diode model 
(such as the model shown in the topic titled "Electrical Network" may know that 
the vt model parameter should never be negative. (The model is invalid if vt is 
negative.) The model writer could then include parameter-checking in the 
model, to prevent a user-specified negative value from being used. 

In the example of the reservoir model shown in the topic titled "Continuous 
Analog Systems - Hydraulic Network", you may not know the exact meaning of 
“reservoir_capacity.” The writer of this model can require a user to provide the 
16 Saber® MAST Language User Guide
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reservoir’s cross-sectional area, fluid density, and gravitational acceleration. 
Once the model has this data, it can calculate the resulting reservoir capacity 
automatically.

A user of a model may wish to use simulation results to perform further 
calculations. For example, a user of the reservoir model may be interested in 
finding out how high the level in the reservoir gets when subjected to the 
conditions shown with the reservoir model. The user may not know (or even 
care) that the height can be calculated only after the pressure is determined. In 
a good modeling system, the modeler can design the model to provide the 
information for calculating the height from the system solution (pressure).

In another example, a user may wish to calculate the power dissipated in the 
resistor in the diode model. The power dissipation does not have to be 
calculated explicitly in order to solve the system of equations. However, it is 
quite reasonable for a user to request its calculation. In a good modeling 
system, the modeler can include the power dissipation calculation in the 
resistor model to be provided upon the user's request. 

A modeling system answers questions by performing the following functions:
■ Before simulation—check for errors and convert parameters. 
■ During simulation—apply suitable algorithms to the design (such as solving 

equations repetitively or by processing events). 
■ After simulation—manipulate simulation results for additional information 

that is not directly available from the simulation. 
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2
2MAST Overview

The following topics describe some of the specific constructs used to write 
models in the MAST modeling language: 
■ MAST Template Description
■ Model Implementation Using the MAST Language
■ Walkthrough of a Simple MAST Template
■ General MAST Conventions

MAST Template Description

The basic unit of modularity for a MAST implementation of a model is the 
template. A template is the mathematical description of a subsystem and is 
contained in a "MAST Template File". The characteristic equations 
implemented in a template can be any combination of linear or non-linear 
algebraic or differential equations. No integral expressions are allowed; 
however, by differentiating both sides of an integral equation, you can convert it 
into a differential equation. 

MAST Template File

A template is a MAST model contained in a text file that generally has the same 
name as the template, plus the extension .sin. This enables the Saber 
simulator to find the file upon invocation. Although the distinction is subtle, 
there is a difference between a template and the file in which it resides. That is, 
the template is the contents and the file is the container. Unless otherwise 
indicated, the term template refers to a model and the term template file to refer 
to the file containing the template. 

For more information on using a template file, see the MAST Reference 
Manual. 
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Note:   

The template files for all example templates in this manual are provided in 
the following directories: 

saber_home/example/MASTtemplates/structured or
saber_home/example/MASTtemplates/unstructured

Template Header

The first line of a template is known as the header, which appears in the 
following general form:

where template is a reserved word that identifies the contents of this file as a 
template, templatename is the “official” name of the template for use in a circuit 
description (i.e., a netlist), connectionpoints are the names of connections to 
the template, and arguments are the names of user-specifiable parameters. 
The actual names given to templatename, connectionpoints, and arguments 
are all selected by the writer of the template using MAST identifier and string 
rules. 

In the following two_r template:

■ two_r is the templatename 
■ a, b are the connectionpoints
■ ra, rb are the arguments

template templatename connectionpoints = arguments 

template two_r a b = ra, rb

number ra, rb

{

r.ra p:a m:middle = rnom = ra

r.rb p:middle m:b  = rnom = rb 

} 

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/two_r.sin
20 Saber® MAST Language User Guide
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MAST Declarations

Most variables within a template must be explicitly identified so that they can be 
recognized by the simulator—this is called declaring a variable. Variables 
include the template name, arguments, connection points, and other variables 
described in subsequent chapters.

MAST Connection Points

There are several different kinds of models that the Saber simulator uses: 
■ Simulation of Continuous Analog Systems (physical systems)
■ Simulation of Event-Driven Systems (such as digital)
■ Simulation of Data Flow Systems (control) 

Typically, each category of model has its own type of connection point (event-
driven uses states, for example), which communicates the characteristics of 
that type of model to the rest of the system. Note that it is possible to combine 
model types within a template, thus a template can have different types of 
connection points (digital and analog, for example). 

Note:   

The terms “pins” and “connection points” are often used interchangeably. In 
the MAST language, pins are a specific type of connection point (i.e., not all 
connection points are pins). Refer to the MAST Reference Manual for more 
information on connection points. 

MAST Template Body

The template body is a mandatory partition in all example templates; the body 
must be explicitly begun with an opening brace ({) and ended with a closing 
brace (}). It is recommended to place each brace on its own separate line as 
shown in the following example. The body contains all template statements, 
Saber® MAST Language User Guide 21
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sections, and declarations, except for the header and header declarations that 
precede it. 

MAST Parameters

For a model of a physical system, coefficients of the characteristic equation are 
called the parameters of the model. Parameters for models of other types of 
systems provide similar functions—they fill in information that the model 
requires for a specific simulation (which may or may not appear in a 
characteristic equation). An argument (such as ra or rb) is a parameter whose 
value can be specified by a user in a netlist. Other parameters are local—the 
template uses them as it does arguments, but their values are not specified in a 
netlist.

Each parameter in a template (and thus each argument) must be declared as a 
particular type. The simplest parameter type is a number, which can assume 
the value of either an integer or a real number. Other parameter types 
introduced in later chapters are strings, structures, arrays, and unions. 

template two_r a b = ra, rb

number ra, rb

{ # Template body starts here

r.ra p:a m:middle = rnom = ra

r.rb p:middle m:b  = rnom = rb 

} # Template body ends here

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/two_r.sin

template two_r a b = ra, rb

number ra, rb # Parameters of type number

{

r.ra     a    middle  = ra

r.rb    middle     b  = rb 

}

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/two_r.sin
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MAST Template Equations

Template equations are the characteristic equations of the model, as 
implemented in a template. Some templates may require additional 
modifications to get the equations into a usable form, as described in the topic 
titled "MAST Equation Modifications". 

MAST Sections - Optional but Recommended

The template body may be further partitioned into various sections that contain 
statements providing specific functionality. 

With the exception of the control section, declaring sections within the template 
body is optional—it is most often done for clarity within large, complicated 
templates. The use of sections is recommended with most models. Using 
sections in a model is called the “structured” modeling approach. Sections help 
document the template by identifying segments where specific tasks are 
isolated. 
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The following example shows the general form of a template that uses 
sections. 

The sections required vary depending on the model. Template sections can be 
in any order (except for the local declarations section, which must appear first).

Sections can also be used to optimize simulation efficiency. 

Note:   

One situation where you must use one of these explicit sections (the 
equations section) is explained in the topic "Modeling an Idealized Op Amp 
with MAST" which is an operational amplifier template with one output pin. 

template header

header declarations

{

local declarations - must appear first

parameters {

parameter assignments and argument testing

}

netlist components

values {

value assignments

}

control_section {

simulator-dependent control statements 

for non-linearities

}

equations {

equations describing behavior

}

when (expression) {

event-dependent assignments and scheduling

}

}
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Variable Types in MAST Sections
The MAST language has several types of constants and variables. The table 
below summarizes the different types, showing where in the template they may 
be declared, where their values can be assigned (left side of assignment 
statement), and where their values can be referenced (right side of assignment 
statement). 

*Simvar variables step_size and next_time can be assigned in Values section.

Type of Variable Section Declared Section 
Assigned

Section Referenced

number

enum

struc

array

union

string

Header declaration

or

Local declarations

Parameter

(if declared 
locally)

Parameters

Netlist

when statement

Values

Control

Equations

val Local declaration Values when statement

Values

Control

Equations

var

ref

Header declaration (var 
and ref)

or

Local declarations

(var only)

none

(determined by 
the

simulator)

Netlist

when statement

Values

Control

Equations

simvar none none* when statement

Values

Equations

state Header declaration

or

Local declarations

when statement Netlist

when statement

Values

Equations
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MAST System Variables

The concept of through and across variables makes it possible to specify 
network systems in the convenient form of a netlist, as shown in the electrical 
network sample. Without this concept, the system could be specified only in a 
much less convenient form, as shown in the following figure. 

Through and across variables are also instrumental for an efficient 
implementation of continuous analog systems using the MAST language. 

The across variable in an electrical system is the voltage at each node with 
respect to the reference node. Similarly, the through variable is the current 
flowing through each element connected to each node. The simulator solves 
the simultaneous equations for the system variables, which include the across 
variables of the system. It does this based on the conservation of through and 
across variables, which, for electrical systems, are Kirchhoff’s Current Law 
(KCL) and Kirchhoff’s Voltage Law (KVL), respectively. 

Branch

A conservation model (such as an electrical model that observes KCL and 
KVL) provides a branch when the model can connect between two nodes in a 
system and model a path from one node to the other. 

For example, the model of an electrical resistor (having two pins) provides a 
single branch in a circuit—from p to m. Similarly, the model of a bipolar 

v

+

–

+

+ v2

0I

rV di= R ir

1

=Is• (e v2/vt -1) ∫v2 = 1/C ic dt

ic

• 

Data flow representation of electrical schematic
26 Saber® MAST Language User Guide
B-2008.09



Chapter 2: MAST Overview
MAST System Variables
transistor (having three pins) provides three branches—from base to emitter, 
from base to collector, from collector to emitter.

This concept of branch from electrical circuit theory can be generalized to any 
conservation model and used as a MAST construct for templates. The use of 
branches is referred to as part of the unstructured modeling approach. 

When writing a template for a conservation model, you can define the through 
and across variables for each branch, either explicitly or implicitly, as explained 
in the following topics:

Explicit Declaration
The explicit specification of a branch consists of the following: 

1. The reserved word branch. 

2. The branch name, which is either a through branch or an across branch. 

3. The declaration of either the through or the across variable. 

4. The names of the two pins defining this branch, which must match the pin 
names in the header declaration. For a through variable, pin names are 
separated by the combination of a hyphen and a right angle bracket (->). For 
an across variable, pin names are separated by a comma. 

For example, the branch current and branch voltage of a resistor might be 
declared as shown below. Each number refers to the list given above. 

Branches may be declared in any order within the template body. You may 
combine branch declarations on one line, separated by a comma: 

branch ir=i(p->m), vr=v(p,m) 

Given this declaration, you could then use branch variables ir and vr in a 
template equation, as shown below. 

ir = vr/res 
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Implicit Declaration
Although not recommended, you can omit the word branch and the local name 
of the branch variable and just use the branch through or across variable along 
with the corresponding pins. 

For example, in the following resistor template, the branch declarations:

could be omitted and the following template equation could be used:

i(p->m) = v(p,m)/res 

Note:   

Using i(p->m) or v(p,m) in this way more than once in the same template 
would define a different branch each time; therefore, it is recommended to 
use the explicit declaration method instead. 

Creating a MAST System Variable

From the perspective of a template, the across variables are “given” and can 
be used to compute the through variables (e.g., branch currents).

Note:   

For optimum template efficiency, you should algebraically rearrange the 
characteristic equations so that the through variables are expressed as 
explicit functions of the across variables.

Case 1
A resistor template should implement the following characteristic equation: 

I = V/R (rather than  V = I•R )
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This is done using branch declarations as follows:

 In the third line, res is the template argument. It assumes the value of 
resistance specified by the user in a netlist. 

Case 2
Unfortunately, the choice shown in "Case 1" is not always available—a 
template equation may not be able to express the through variable as a 
function of the across variable. 

Two basic examples of this are the unstructured examples for the voltage 
source and inductor models.

Case 3
It is possible for a conservation model to have a pin that does not define a 
branch. This is a situation where the through variable cannot be declared as a 
branch, but it is still needed in the characteristic equation. This is done by 
declaring the through variable as a var variable (see the MAST Reference 
Manual for more information). 

A var variable is a local declaration that is required for the following conditions: 
■ The simulator cannot determine the through variable explicitly as a function 

of the across variable, and 
■ The through variable cannot be declared as branch variable

This technique is described more completely in the template for a simple, ideal 
operational amplifier with two input pins (ip, im) and a single output pin (out). 
Because no branch characteristic is modeled between the output pin and either 
input, the output connection does not constitute a branch. Thus, the current at 
out cannot be declared as a branch current. 

The remedy for this situation is to declare a local variable for current at the 
output pin (iout) as a var variable and use it in the equations section. This 
declaration would be made as:

branch ir=i(p->m) 

branch vr=v(p,m) 

ir = vr/res 

var i iout 
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where iout is the name of the variable and i identifies it as a current (for display 
units). 

Case 4
The Saber simulator can solve simultaneous algebraic or differential equations 
that are internal to the template (i.e., equations that are not necessarily 
characteristic equations for a particular model). For example, the simulator can 
solve the following simultaneous equations, which are not specific to any 
model: 

The preceding set of equations can appear in a MAST template (or as a 
template by itself), as follows: 

The line var nu y declares y as a var variable with no units (nu). You can 
perform a DC analysis or transient analysis on this template, and the simulator 
will solve the equations to find that x=1 and y=7. You can use this technique 
whenever you need to solve a system of simultaneous algebraic or differential 
equations. 

MAST Reference Node

The topic titled "The Saber Netlist Overview" describes conservation models 
and provides a simple example of using templates containing such models in a 
netlist (a string of resistors and a voltage source). The following diagram of this 
netlist, lists the names of the nodes of this simple circuit: A, C, and 0. 

x = (y - 4)/3

y = 4x + 3 

var nu y 

x = (y-4)/3 

y = 4*x + 3 
30 Saber® MAST Language User Guide
B-2008.09



Chapter 2: MAST Overview
MAST Reference Node
Note that the node connected to circuit ground is named “0”. This conforms to a 
convention that is used by the Saber simulator, as described below. 

One of the requirements of a conservation template is that, when used in a 
design, the value of the across variable at any of its pins must be measurable 
with respect to some reference value in the design. This reference value is 
provided by a node in the design whose across value is always zero—the 
reference node of the design. 

In electrical designs (circuits), the reference node is usually referred to as the 
ground node. However, the requirement of a reference node extends to all 
designs that have conservation templates (electrical, mechanical, magnetic, 
etc.); it serves as a generalized source/sink for all through variable quantities 
(current, torque, flux, etc.). Although templates of event-driven or data flow 
models do not have this requirement, the Saber simulator makes sure that 
every design has a reference node, as follows: 
■ If there are conservation templates in the netlist, and a node has been 

explicitly assigned the name 0, then it is used as the reference node. 
■ If there are conservation templates in the netlist, but no node has been 

explicitly assigned the name 0, then the Saber simulator arbitrarily selects a 
node to be used as the reference node. In addition, a warning message is 
displayed that this has been done. 

■ If there are no conservation templates in the netlist, then the Saber simulator 
automatically adds a reference node named 0 (without displaying warning 
message). Note that it is not possible (or necessary) to add this reference 
node yourself—it is just done for the convenience of programming. 

+

-
v.1 5V 

A

0

two_r.1 two_r.2

ra=10

C

rb=20 ra=30 rb=40

An electrical circuit with a reference node
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Model Implementation Using the MAST Language

The following topics summarize some essential principles of implementing a 
MAST model, indicating the appropriate MAST constructs for each task: 

1. Determine Characteristic Equations

2. MAST Equation Modifications

3. Pre-Simulation Calculations and Error Checking

4. Equation Implementation

5. MAST Model Verification and Testing

Determine Characteristic Equations

The most difficult aspect of writing a template is determining the appropriate 
characteristic equations. Once you have a satisfactory set of equations, the 
MAST implementation is relatively straightforward. Bear in mind that the 
objective of a large number of technical papers is to produce equations that 
describe the operation of some process or device—someone else may have 
already developed some or all of the equations you need. Conducting a search 
of the literature is usually preferable to developing and deriving the equations 
yourself.

MAST Equation Modifications

Once you have a basic set of equations, you may have to make some 
modifications to get the equations into a usable form.

1. Select the appropriate through and across variables. Although this is often 
easy, it can sometimes require some thought. The across variable of an 
element is the one that, when a connection point of the element is 
connected to a connection point of another element, has to have the same 
value at both connection points. 

For example, when two resistors are soldered together, their voltages are 
the same at the connection node. Therefore, voltage is the across variable. 
The through variable is the one that sums to zero at any node. In the resistor 
example, this is the current, so current is the through variable.
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2. Rearrange the equations so that each through variable is expressed as an 
explicit function of the across variables. If only an implicit relationship can 
be expressed, then it is necessary to declare the through variable as a 
branch or to add one or more equations, with the through variable declared 
as a var variable for each new equation (see the topic titled "MAST System 
Variables". 

3. Examine the equations for pitfalls:

• Avoid potential singularities (division by zero). In particular, avoid 
division as much as possible and check denominators carefully when 
they do occur.

• Avoid taking the difference of two large numbers. Digital computers can 
run out of resolution when taking the difference of large numbers.

• Watch out for functions that are not well behaved, especially around 
zero. Troublesome functions can often be rewritten or approximated 
with a truncated series around unstable points. 

4. Replace non-time derivatives with time derivative equivalents, because the 
time derivative is the only available derivative function. For example: 

can be replaced with 

5. Consider whether the equations can be characterized. Many promising 
models fail because their parameters are impossible to determine. A simple 
model that can be accurately characterized is better than a complex model 
that cannot. Complete the characterization phase before starting the 
implementation phase. 

y = dm
dh

y =

dm
dt
dh
dt
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Pre-Simulation Calculations and Error Checking

The next step in implementing a MAST model is to check the equations for 
quantities that can be calculated before the simulation begins. For example, if 
your equations use the square of an argument value, it is better to square it 
once, rather than each time it is used during the simulation. You can do this by 
declaring a local parameter of type number and setting it equal to the square of 
the argument. The squared value is then used in the model evaluation, which 
improves the computational efficiency of your model. 

You can also perform other calculations that precede the simulation, such as 
unit conversions or characterization functions.

You can also examine input arguments and check for range errors when you 
write the model by using instance (), error (), and warning (), message 
functions. This way the model itself can catch these types of violations and 
report them to the screen.

Equation Implementation

In the simplest situations, the characteristic equations of the model can be 
implemented directly as a template equation. However, model equations may 
require the results of if-else statements, which you can specify separately from 
the template equations and then have them refer to the if-else values, so this 
requirement causes no difficulties. 

If the model has discrete or event-driven characteristics, then you must use at 
least one when statement in the template.

Post-Simulation Calculation

It is often desirable to calculate some quantities after the simulation is 
complete. For example, the power dissipated by a resistor is easily calculated 
from the solution of the equations involving the resistor, even though the value 
of power dissipation is not required in the solution of the system. To obtain this 
value using the MAST language, it is declared as a local variable (a val 
variable) and calculated accordingly. You can do this for any val variable, var 
variable, parameter, state, etc.—the value is calculated after the simulation is 
complete, but only if requested, so it doesn't cost extra to define it in the 
template. 
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MAST Model Verification and Testing

A model is not complete until it has been tested and its accuracy and 
functionality verified. A common mistake in template development is to develop 
several new templates as a batch and then throw them all together to see if 
they work. It is much more productive to test each template individually and 
verify it before proceeding. In fact, it is often appropriate to develop each 
template in stages, implementing the bare essence of functionality first, and 
then proceeding with additional features, testing each one before going on to 
the next. 

Walkthrough of a Simple MAST Template

This topic provides the actual contents of the file for a template that models an 
electrical resistor. The same model is shown twice, once using the structured, 
and once using the non-structured modeling approach. It is provided as a 
“walkthrough” to illustrate the most common principles of writing a MAST 
template and to briefly contrast the two modeling approaches.

The following text shows two MAST descriptions of the same resistor model. 
Either of these modeling approaches can be used to create a template that is 
used by the Saber simulator.

By convention, the text of one of these models would be in a file called 
resistor.sin, so that the Saber simulator can find the file upon invocation. 

Un-Structured Structured

1 

2 

3 

4 

5 

6

7

8

9

template resistor p m = res

electrical p 

electrical m 

number res 

{ 

branch cur=i(p->m) 

branch vlt=v(p,m) 

cur=vlt/res 

} 

template resistor p m = res

electrical p 

electrical m

number res

{ 

equations { 

i(p->m)+= (v(p)-v(m))/res 

} 

} 
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Note:   

It is often possible to combine declarations of multiple arguments, 
connection points, and branches on a single line (separated by commas). 
For the sake of explanation, this has not been done here. 

Line 1: Template Header

The word resistor determines the “official” name of the template for use in a 
circuit description (i.e., a netlist). The letters p and m identify the connection 
points for the system variables used by the model. The equals sign (=) 
separates connection points from the arguments. The word res is the name of 
the single argument for this template. 

Thus, when the simulator encounters resistor in a netlist entry, it takes the rest 
of the information in that entry and applies it to the model described in the 
template file named resistor.sin. 

Lines 2 and 3: Connection Points

The word electrical implicitly defines the connection points as “pin-type”, which 
means they use the through and across variables of a physical system (in this 
case, an electrical circuit uses current and voltage). This word automatically 
defines the units (amperes and volts) that will be displayed in CosmosScope 
for these variables. There are a number of other physical systems that have 
corresponding words similarly defined in the units.sin file that is automatically 
loaded when the Saber simulator is invoked. See the MAST Reference Manual 
for information on the units.sin file. For example, the words magnetic, thermal, 
rotational_vel, and rotational_ang in this file define through and across units for 
magnetic, thermal, and mechanical systems. 

The letters p and m are the names of the points at which the current and 
voltage for this resistor model are provided to/from the rest of the circuit. In an 
implicit netlist, these are actually mnemonic placeholders that will be assigned 
the names of circuit nodes in a netlist. An explicit netlist uses these names.

Note that lines 2 and 3 are usually combined into one line, as follows: 

electrical p, m 
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Line 4: Argument Declaration

The word number defines the type of parameter that follows. See the MAST 
Reference Manual for information on parameter types. In this case, the 
parameter can assume real numerical values. The word res is the name of the 
argument to the template. An argument is a parameter whose value can be 
specified in a netlist. This user-specified value is used by the template to 
evaluate its characteristic equation. 

Line 5: Opening Brace

This character is the required syntax for beginning the body of the template. 

Line 6 - Un-Structured: Branch Through Variable

Branch through variable—The keyword branch is a MAST term for the 
characteristics of a conservation model between two connections in a circuit 
(system). In this case, the model of an electrical resistor is a single branch in a 
circuit. The definition of electrical connection points (declared in Lines 2 and 3) 
includes current, i, as the through variable for the branch between p and m. 

The word cur following branch is the name of the branch variable. The equals 
sign (=) signifies that a definition of this branch variable is to follow. The i 
following the equals sign defines the branch variable as current. The hyphen 
followed by a right angle bracket, ->, is the notation for the through variable 
(current) from one pin (p) to another (m). The indicated positive direction of the 
variable is from p to m.

Line 6 - Structured: Equation Section

The keyword equations is used at the start of an equations section, followed by 
an opening brace. The equations section contains the terminal (connection 
point) equations of the model. Relationships involving the through and across 
variables must be defined in this section.

Line 7 - Un-Structured: Branch Across Variable

As with the through branch, the definition of electrical connection points 
(declared in Lines 2 and 3) includes voltage, v, as the across variable for the 
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branch between p and m. The word vlt following branch is the name of the 
branch variable. The equals sign (=) signifies that a definition of this branch 
variable is to follow. 

The v following the equals sign defines the branch variable as a voltage. The 
comma separating p and m is the notation for the across variable (voltage) 
between one pin (p) and another (m). 

Line 7 - Structured: Characteristic Equation

This equation describes the relationship between the through and across 
variable.

Note:   

For the simplicity of this example, no provision was made to check for res=0. 
This is called parameter checking and is explained in a subsequent chapter. 

Line 8 - Un-Structured: Characteristic Equation

This is an expression of the terminal (connection point) equations as the 
relationship of the through and across branch variables. The through variable 
(cur) should be computed as a function of the across variable (vlt) whenever 
possible. 

Thus, the characteristic equation for this resistor template is

instead of 

Note:   

For the simplicity of this example, no provision was made to check for res=0. 
This is called parameter checking. 

Line 8 - Structured: Closing Brace

This character is the required syntax for ending the equations section. 

cur=vlt/res 

vlt=cur*res 
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Line 9: Closing Brace

This character is the required syntax for ending the template body, indicating to 
the simulator that it has reached the end of template. 

General MAST Conventions

■ All across variables are determined with respect to a reference value. In a 
netlist, the MAST convention for specifying the reference point is the special 
node name 0. For more information, see the topic titled "MAST Reference 
Node". 

■ The Saber simulator solves the system of equations such that the through 
variables at every node sum to zero (KCL is a special case of this). It is 
important, therefore, to know what the Saber simulator considers to be a 
positive contribution and a negative contribution to the through variable of a 
node. The convention is that the through variable contribution is positive 
when it goes into a template and negative when it comes out of a template. 

■ Typically, each template is contained in its own file that has the same name 
as the template (as it appears in the header). However, the file name must 
be followed by a .sin extension so that the simulator will automatically find 
and include the template whenever it finds a reference to it in a netlist. 

For example, the file containing the two_r template should be named 
two_r.sin (although the file could be named something like twores.sin and it 
would still work). 
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■ When possible, it is a good idea to define connection points in the header of 
a template such that the inputs (if any) to the model are specified first, 
followed by the outputs. This is not absolutely necessary, but it helps make 
the templates more intuitive for most people. 

■ The Saber simulator is capable of simulating continuous analog, event-
driven, and data flow models (i.e., it is not restricted to electrical models). 
Generally, you can look at the declaration of connection points in a template 
to determine which type of model it is. The units.sin file specifies units for 
several types of connection points. 

For example, 

The word electrical preceding a connection point name means that it is a 
pin-type connection with current and voltage as through and across 
variables, respectively. 

The words rotational_vel or rotational_ang preceding the connection point 
name means that it is a pin-type connection with torque or angular velocity 
as through and across variables, respectively. 

The word state preceding a connection point name means that it is an event-
driven connection (no through and across variables). There is also a unit 
declaration following the word state, such as nu (no units) or logic_4 (4-state 
logic units), defining the unit of the state for display in Saber Sketch. 
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The topics in this chapter introduce concepts of the MAST modeling language. 
Templates of electrical elements are used as examples to introduce new 
concepts. The topics are ordered so that the first one introduces concepts that 
the later topics build on. The later topics add new concepts. 

MAST Modeling Examples - Electrical Elements

The MAST Template Library includes templates for most of the functionality 
modeled in these examples.
■ Modeling a Constant Current Source (isource) 
■ Modeling a Linear Resistor with MAST (resistor) 
■ Modeling a Linear Capacitor with MAST (capacitor) 
■ Modeling a Constant Voltage Source with MAST (vsource) 
■ Modeling a Linear Inductor with MAST (inductor) 
■ Modeling a Current-Controlled Voltage Source with MAST (cvt) 
■ Modeling Mutual Inductance with MAST (mutind) 
■ Preserving Hierarchy - MAST Template with Netlist (rlc1) 
■ Flattened Hierarchy - MAST Template with Equations (rlc2) 
■ Mixed Hierarchy - MAST Template with Netlist and Equations (rlc3) 
■ Modeling Extractable Capacitor Voltage and Charge with MAST 

(capacitor_1) 
■ Modeling Multiple-Mode Voltage Source with MAST (vsource_1) 
■ Modeling a Linear Transformer with MAST (xformer) 
■ Modeling a Temperature-Dependent Resistor with MAST (resistor_1) 
■ Modeling an Idealized Op Amp with MAST (opamp) 
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For simplicity, some of these templates model ideal elements that ignore 
certain types of information (such as noise or temperature effects) that might 
otherwise be included.

MAST Modeling Concepts using Electrical Elements

Some of the concepts introduced in one or more of the templates listed in the 
previous topic titled "MAST Modeling Examples - Electrical Elements" are as 
follows:
■ Starting the isource MAST Template -- shows the general form of a template
■ isource Netlist Example -- shows the correspondence between the template 

header and an instance of the template in a netlist (netlist entry)
■ Characteristic Equation for a Linear Resistor -- describes selecting a 

template equation so that the through variable (current) is computed as a 
function of a system variable (voltage) 

■ Equations Section -- describes the time derivative operator, d_by_dt, used 
in the template equation

■ Equations Section and Local Declarations -- describes the local 
declarations section of a template, describes explicitly declaring var 
variables, a new system variable type, and describes assigning an equation 
to a var variable, where there must be exactly one equation for each var 
variable in the equations section of a template

■ Equation Section -- shows how to use a var variable to change an 
integration formulation into a differentiation formulation

■ Solving for Across Variables at a System Node -- provides an example that 
is intended to clarify why a template equation should express the through 
variable in terms of the across variable

■ Using MAST System Variables Between Models -- provides two examples 
to show how a template can use the value of a system variable from another 
template without an explicit pin connection between them by using a ref 
connection point

■ The chapter on Modeling Hierarchical Systems -- introduces the following 
examples:

• Preserving Hierarchy - MAST Template with Netlist -- refers to the 
previously-created resistor, capacitor, and inductor templates
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• Flattened Hierarchy - MAST Template with Equations -- describes the 
whole system by its equations, which results in a flat description of the 
system

• Mixed Hierarchy - MAST Template with Netlist and Equations -- 
describes element templates and their properties and describes rules 
for deciding whether a template should be an element template or an 
ordinary template

•  Modular vs. Non-Modular MAST System Descriptions -- provides a 
summary of the characteristics of the hierarchical system and the flat 
system

■  The chapter on Variables and Arguments -- offers topics describing ways 
of using internal variables and writing arguments to provide more template 
versatility. They also demonstrate how to check the validity of argument 
values, use message functions, and improve template performance by 
precalculating expressions.

Modeling a Constant Current Source

The example for a source of constant current (or of any “through” variable) is 
one of the simplest analog templates that can be written in the MAST 
language. The following figure shows the symbol used for the constant current 
source, as well as the variable names used in the template.

v(p,m) v(m)

p m

is

(rest of system)

v(p)

Constant current source
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The contents of the constant current source template are shown below, 
followed by an explanation of the contents.

Concepts Introduced Using this Example

The description of the constant current source template (isource) introduces 
the following concepts: 
■  Characteristic Equation For a Constant Current Source
■ Starting the isource MAST Template, shows the general form of a template
■  Template Header
■  isource Netlist Example, shows the correspondence between the template 

header and an instance of the template in a netlist (netlist entry)
■ isource Header Declarations, which include  “Declaring Connection Points” 

in the isource MAST Template and  “Declaring Arguments in the isource 
MAST Template"

■ Template Body
■ Equations Section
■ Syntax Guidelines for isource Template

Characteristic Equation For a Constant Current Source

As shown in the following figure, the current is enters the current source at 
connection point p and leaves the source at connection point m. The value of is 
is user-specified for an instance of this template in a netlist; it is therefore an 

template isource p m = is 

electrical p,m 

number is 

{ 

equations {

i(p->m) += is

}

} 

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/isource.sin
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argument for the source model. That is, if isource is used in a netlist, the 
current flowing between the system nodes to which pins p and m are 
connected is determined by the value of current specified for is. 

In an ideal constant current source, the current supplied is independent of the 
voltage across the connections. A current source model expresses this 
relationship as follows:
■ Let is = constant
■ Choose v(p,m) such that Kirchhoff’s Current Law is satisfied. (That is, the 

current between nodes p and m has a value of is).

Starting the isource MAST Template

You create the template file using a text editor that can create an unformatted 
text file. You should give the file the same name as the template it contains, 
with the addition of the .sin extension. Because the name of this template is to 
be isource, this file must be named isource.sin. 

Giving the file the same name as the template is a convention, not a 
requirement. Using this convention provides the following significant 
advantage: 

When the Saber simulator encounters a reference to a previously undefined 
template x, it tries to find the template in a file named x.sin and, if successful, 
automatically includes the template. If you do not follow this convention, you 
may need to include the name of the file containing template x in the netlist.

This topic develops the parts of the template in the order shown below, to 
clarify the use of declarations. 

The syntax for this template appears in the following sequence.

v(p,m) v(m)

p m

is

(rest of system)

v(p)

Constant current source
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When the simulator reads a template, it ignores white space (spaces, tabs, and 
blank lines), except when the white space separates two names. In that case, it 
replaces any amount of white space with a single space. 

When you write a template, you must give each variable (including connection 
points) a unique name that is not a reserved word. Such variable names are 
local to a template; they distinguish the constituent parts of a template, but they 
do not have semantic meaning to the simulator (for example, you could name a 
voltage variable current). It is therefore good practice to choose variable names 
that reflect variable usage. 

As shown in the isource template, the following names are used:

isource name of the template

p the plus connection point

m the minus connection point

is the argument specifying the constant current

template header

header declarations

equations 

(statements describing behavior 
at the analog pins)
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Template Header

The template header declares the name of the template, connection points, 
and any arguments through which particular characteristics can be assigned to 
the template in a netlist. 

The form of the standard template header is:

where template is a required reserved word, templatename is the name you 
give the template, connectionpoints are the names you give the connection 
points, and arguments are names of parameters to which you can assign 
specific values (arguments must be separated from connectionpoints by an 
equals sign, =). Note that arguments and connectionpoints are optional, 
although all templates in this manual have at least one of each. 

The name of this template is isource, and the names of its connection points 
are p and m. It has only one argument, is, which is the user-specified value of 
current to be provided by the source. 

Therefore, the template header for the template isource is:

On the left-hand side of the equal sign (=), space separate all names. (An 
alternative is to use commas to separate connection point names.) On the 
right-hand side of the equal sign (=), commas must separate all names. For 

template isource p m = is 

electrical p,m 

number is 

{ 

equations {

i(p->m) += is

}

} 

template template_name connectionpoints = arguments

template isource p m = is 
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example, if two arguments were to be used in the template, such as is and tc, 
the header would be:

The template header tells how the template can be used in a system, as 
defined by a template instance. A template instance is a specific usage of a 
template by the simulator, as specified in a netlist. A template instance defines 
which argument values to use and where to place the connection points in the 
design. 

isource Netlist Example
Suppose a system description (netlist) contains an instance of this constant 
current source template, isource, specified as follows: 

The following statement, a netlist entry, places this instance of the isource 
template into the system description (design), naming both the nodes to which 
it is connected and its argument value: 

isource.i1 a b = is=2 

Note the correspondence between this netlist entry for the isource template 
and its template header:

The netlist entry designates this instance of isource as i1, connects pin p of the 
template to node a, connects pin m to node b, and specifies the value of is as 
2. 

template isource p m = is, tc 

unique identifier i1

connected to nodes a, b 

argument value (amperes) 2

template isource p m = is

isource.i1 a b = is=2

template header

netlist entry
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isource - MAST Header Declarations
The header declarations section is where you declare all the names used in the 
template header, except the template name. For the isource template, the two 
kinds of declarations in the header declarations section are: 
■ connection points, p and m 
■ argument, is

Declaring Connection Points in the isource MAST Template The 
connection points (or pins) of a template are of a particular type. Depending on 
the system being modeled, the type of pin could be mechanical, thermal, 
electrical, etc., or any combination thereof. Because the current source is an 
electrical model, declare its pins to be electrical, using the following statement 
(comma-separated names of the same type can appear in the same 
statement):

The pin type (electrical) appears first, followed by the pin names (p, m). The 
word electrical is a pin definition provided in the units.sin file that identifies the 
type of node to which these pins may be connected. This is an “include” file that 
is automatically used by the Saber simulator upon invocation. Included in this 
definition are the through and across variables that the simulator solves for at 
this type of node, along with their respective units. In this case, the through 
variable for an electrical node is defined as current in amperes; the across 
variable is defined as voltage in volts. 

The across variables are those system variables that are equalized by the 
simulator when two or more pins are connected to the same node. An across 
variable adheres to a generalization of Kirchhoff’s Voltage Law: the sum of 
across variables (e.g., voltage) around a closed loop is zero. The simulator 
makes the voltage v(p) at pin p and the voltage v(m) at pin m available (or 
“known”) inside the template. 

template isource p m = is # Template Header

# Header declarations - connection points

# Header declarations - argument declarations

{ 

#equations section

}

electrical p, m 
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The through variables are those system variables that are conserved at a node, 
adhering to a generalization of Kirchhoff’s Current Law: the sum of through 
variables (e.g., current) flowing out of a node is zero. The current i(p) at pin p 
and the current i(m) at pin m are not available inside the template, which can 
only define current contributions to these nodes. In this example, the source 
current contributes to both i(p) and i(m). 

Declaring Arguments in the isource MAST Template According to the 
isource characteristic equation, this constant current source has one parameter 
(is) that can be assigned a value each time it appears in a netlist. By including 
is in the template header and declaring it in the header declarations, it 
becomes an argument of the current source template. 

Template arguments are parameters that can receive values when the 
template is used in a netlist statement. This distinguishes them from 
parameters that are declared locally in templates. The topic titled "Modeling an 
Idealized Op Amp with MAST" introduces local parameters.

Each parameter in a template (and thus each argument) must be declared as a 
particular type. Because the source current in this example (is) is a single 
numerical value, its type is declared as number. This is the simplest parameter 
type—the simulator does not distinguish between integers and real numbers. 
Other parameter types are introduced in later chapters. For a complete 
description of all types and how to use them in declarations, refer to the MAST 
Reference Manual. 

Thus, is is declared as an argument as follows:

In this declaration, no default value has been assigned to is (although there 
could be one). Consequently, whenever isource appears in a netlist entry, the 
value of the is argument must be specified. 

The following lines of this template have been covered so far:

number is 

template isource p m = is # template header

electrical p, m # pin declarations

number is # argument declaration
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Template Body

All MAST templates in this manual contain a template header, header 
declarations, and a body. The body is begun with an opening brace, {, and 
ended with a closing brace, }. In this template, the body contains the equations 
section: 

Equations Section

The next step is to express the characteristic equation of the constant current 
source using the constructs of the MAST language. This is done with the 
template equation, which describes the effect of the continuous analog portion 
of a template at its connection points. 

In the constant current source figure, the source current is enters at pin p and 
leaves at pin m. That is, if isource is used in a netlist, the current flowing 
between the nodes to which pins p and m are connected is modified by the 
source current from isource. In the MAST language, the simplest way to 
express this is:

 The terms in this equation include: 

template isource p m = is 

electrical p,m 

number is 

{ # Beginning of Template Body

# equation

# section

# goes here

} # End of Template Body

i(p->m) += is 

i(p->m) the current flowing from the node connected to pin p to the 
node connected to pin m.

is the user-specified current contributed by the source. 
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A general form of a template equation expressing terminal characteristics is 
shown as follows:

through(pin1->pin2) = operator expression 

This statement has the following interpretation:

The value of the variable flowing through the template between the node 
connected to pin1 and the node connected to pin2 becomes equal to the 
amount specified by expression.

For a constant current source, this means that a current of the amount is is 
provided between the node connected to pin p and the node connected to pin 
m. Because an independent current source is not affected by its branch 
voltage, no equations need to be provided for voltage across the source (i.e., 
the branch voltage becomes whatever is required to maintain the specified 
level of branch current, is). 

+= a MAST language operator meaning “is added to”. Its 
counterpart is -=, which means “is subtracted from”

through is the name of through variable associated with pin1 and 
pin2, depending on their declaration (for instance, i 
(current) is the through variable for pins declared as 
electrical). 

pin1->pin2 is the notation for the through variable of the branch from 
pin1 to pin2. 

operator is either += or -=

expression is a MAST expression that specifies the through variable 
of the branch. See the MAST Reference Manual for more 
information on expressions. The expression can include 
variables of different types (usually arguments and 
parameters), mathematical functions, the algebraic 
operators +, -, *, /, and ** (for addition, subtraction, 
multiplication, division, and exponentiation, 
respectively), parentheses (()), and, with restrictions that 
are described in subsequent chapters, the special 
operators d_by_dt (time derivative) and delay (ideal 
delay). 
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Therefore, the following equation is a complete description of a constant 
current source:

Syntax Guidelines for isource Template

When putting a template together in final form, remember the following general 
syntax guidelines:
■ Use extra spaces, indentation, and blank lines at will. 
■ Use comments. Comments begin with a pound sign (#) and continue to the 

end of the line. They can begin anywhere on a line. 
■ Place complete statements on separate lines. 
■ Place the body of the template (all sections below the header declarations) 

between braces. 

With these rules in mind, the current source template is repeated below, with a 
comment on each line following the # sign. 

equations {

i(p->m) += is 

}

template isource p m = is

electrical p,m 

number is

{

equations {

i(p->m) += is

}

}
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Modeling a Linear Resistor with MAST

This topic defines a simple resistor template as shown below: 

The description of the resistor template is divided into the following topics:
■ Characteristic Equation for a Linear Resistor -- describes selecting a 

template equation so that the through variable (current) is computed as a 
function of a system variable (voltage) 

■ Selecting Names for a MAST Linear Resistor Template 
■ Creating the template header and template header declarations 
■ Equations Section 

Characteristic Equation for a Linear Resistor

The voltage, VR, across an ideal resistor is equal to the current through the 
resistor (IR) multiplied by the value of resistance, R. Thus, the characteristic 
equation of an ideal resistor is that of Ohm’s law, namely:

The resistance, res, characterizes each instance of a resistor and is therefore 
written as an argument of the template. The following figure shows the 
variables contained in the resistor template.

template resistor p m = res

electrical p,m

number res

{

equations  {

i(p->m) += (v(p)-v(m))/res

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/resistor.sin

Vr = Ir * res
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The equation would be expressed in terms of these template variables as: 

where:

However, because the value of the across variable at the system node is 
known inside the template, this equation should be written in the template such 
that the current is a function of the voltage, namely:

Selecting Names for a MAST Linear Resistor Template

In this example, the following names have been chosen for the user-specifiable 
items in the template: 

vlt = cur * res 

vlt is the voltage across the resistor (from p to m -- v(p)-v(m))

cur is the current through the resistor (from p to m-- i(p->m)) 

res is the non-zero resistance value, the template argument

cur = vlt/res 

resistor template name

p plus pin

m minus pin

v(p)
vlt

v(m)

+ _

p m
res

cur

Ideal resistor
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Template Header and Header Declarations

The template header and declarations for the resistor template are similar to 
those for the isource template, the current source template, as shown below:

res argument (resistance)

template resistor p m = res

electrical p,m

number res

{

 # equations section here

}

Resistor Template

template resistor p m = res

electrical p,m

number res

{

 # equations section here

}

Current Source Template

template isource p m = is

electrical p,m

number is

{

# equations section here

}
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Equations Section

The equations section contains the characteristic equation of the resistor 
written as a MAST template. Referring to the following Ideal resistor figure, the 
voltage across the resistor is given as the difference between the voltages at its 
pins:

Because both p and m are electrical, v(p) and v(m) are implicitly declared as 
system variables. That is, the simulator supplies their values. Therefore, the 
current ir through the resistor is given by:

This is the amount of current that the resistor contributes to the current flowing 
from pin p to pin m. (From now on, this manual uses this form, rather than the 
more complicated, but exact statement: the current flowing from the node 
connected to pin p to the node connected to pin m.)

Thus, the equations section of the template is:

vr = v(p) - v(m)

cur = (v(p) - v(m))/res

equations  {

i(p->m) += (v(p)-v(m))/res

}

v(p)
vlt

v(m)

+ _

p m
res

cur

Ideal resistor
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Note:   

For simplicity, no provision was made in this example to check for res=0. 
This is done with conditional statements in the resistor_1 template in the 
topic "Modeling a Temperature-Dependent Resistor with MAST".

Modeling a Linear Capacitor with MAST

The template for a linear capacitor uses the same sections as the current 
source and resistor templates. The capacitor template appears as follows:

The description of the capacitor template is divided into the following topics:
■ Selecting Names for a MAST Linear Capacitor Template 
■ Template Header and Header Declarations
■ Characteristic Equation for a Linear Capacitor
■ Equations Section -- describes the time derivative operator, d_by_dt, used 

in the template equation

Selecting Names for a MAST Linear Capacitor Template

In this example, the following names have been chosen for the user-specifiable 
items in the capacitor template: 

template capacitor p m = cap

electrical p,m

number cap

{

equations  {

i(p->m) += d_by_dt(cap*(v(p)-v(m)))

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/capacitor.sin

capacitor template name
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Template Header and Header Declarations

The template header and declarations for the capacitor template are similar to 
those for the isource template (the current source template) and the resistor 
template as shown below:

p plus pin

m minus pin

cap argument (capacitance)

template capacitor p m = cap

electrical p,m

number cap

{

# equations section here

}

Capacitor Template

template capacitor p m = cap

electrical p,m

number cap

{

# equations section here

}

Current Source Template

template isource p m = is

electrical p,m

number is

{

# equations section here

}
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Characteristic Equation for a Linear Capacitor

The current, Ic, through any capacitor is defined as the derivative of the charge 
(Qc) on the capacitor with respect to time:

Ic = dQc/dt 

For a linear capacitor, the charge is defined as the product of the capacitance, 
C, of the capacitor and the voltage (Vc) across it:

Qc = C•Vc 

Therefore, capacitor current can be expressed in terms of capacitance and 
voltage: 

Ic = d(CVc)/dt 

The capacitance (C) in Equations 2 and 3 characterizes each instance of a 
capacitor and is therefore provided as an argument of the template (cap). The 
following figure shows the symbol and the relevant characteristics of a linear 
capacitor, including the variables to be included in the ideal capacitor template. 

Resistor Template

template resistor p m = res

electrical p,m

number res

{

 # equations section here

}

v(p)
vc

v(m)

+ _

p m
cap

qc = cap * vc

Linear capacitor
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Equations Section

To write the equations section of the template, you need to express the voltage 
across the capacitor in terms of system variables. Because both p and m are 
electrical pins, this becomes:

The simulator solves for the values of v(p) and v(m) as system variables, so 
they are known to the template. 

Referring to the characteristic equation, the current (ic) of the capacitor is given 
as the time derivative of its charge. In the MAST language, taking the time 
derivative of an expression is represented by applying the d_by_dt operator to 
the expression. 

In this example, this becomes:

The d_by_dt operator can operate on any expression that does not include a 
delay operator or another d_by_dt operator. It can appear only in a template 
equation, and you can only add terms to it and subtract terms from it. 
Therefore, the expression cap * d_by_dt(v(p) - v(m)), while valid in 
conventional calculus, is not valid in the MAST language. Higher order 
derivatives are implemented with multiple d_by_dt statements. 

With the contribution of the capacitor template to the current flowing from pin p 
to pin m, the equations section is as follows:

It is sometimes useful to specify, in the equations section, the current 
contribution of a component to each pin individually, rather than to a current 
flowing between two pins. Using the equations section of the capacitor as an 
example, the statement:

vc = v(p) - v(m)

ic = d_by_dt(cap * (v(p) - v(m)))

equations  {

i(p->m) += d_by_dt(cap*(v(p)-v(m)))

}

i(p->m) += d_by_dt(cap * (v(p) - v(m)))
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can also be interpreted as the following:
■ Add the current defined by the expression to the current at pin p

AND
■ Subtract the current defined by the expression from the current at pin m

The MAST language lets you express these two facts separately:

For the Saber simulator, these two statements are equivalent to the single 
statement above in every respect, including the amount of work it must do to 
set up and solve the equations. Which formulation you use usually depends 
only upon your personal preferences. The single-statement formulation 
automatically guarantees that current is conserved in the template. The pin-
oriented formulation places this burden on the template writer. On the other 
hand, the pin-oriented formulation provides more flexibility, which can be 
important in advanced cases.

Modeling a Constant Voltage Source with MAST

The template describing a constant voltage source is as follows:

i(p) += d_by_dt(cap * (v(p) - v(m)))

i(m) -= d_by_dt(cap * (v(p) - v(m)))

template vsource p m = vs

electrical p, m

number vs

{

var i ivs

equations  {

i(p->m) += ivs

ivs: v(p) - v(m) = vs

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/two_r.sin
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Constant Voltage Source Topics

The description of the vsource template is divided into the following topics:
■ Characteristic Equation for a Constant Voltage Source
■ Equations Section and Local Declarations - describes the local declarations 

section of a template, describes explicitly declaring var variables, a new 
system variable type, and describes assigning an equation to a var variable, 
where there must be exactly one equation for each var variable in the 
equations section of a template

Characteristic Equation for a Constant Voltage Source

In an ideal constant voltage source, the voltage supplied is independent of the 
current passing through the connections. The following figure illustrates the 
voltage source; it provides a constant voltage (vs) across pins p and m. The 
value of vs is user-specified for an instance of this template in a netlist; it is 
therefore an argument for the source model. 

A voltage source model expresses this relationship to the simulator as follows:

Let vs = constant. 
Choose ivs such that Kirchhoff’s Voltage Law is satisfied, meaning the 
voltage between nodes p and m has a value of vs.

The first statement defines the vs parameter as characterizing the voltage 
source; it is declared as an argument to the template. The second statement 
recognizes that ivs cannot be determined by the source template alone. 

v(m)

p mivs

v(p) vs
+ _

Voltage source

vsource
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Instead, its value depends upon the system to which the constant voltage 
source is connected.

That is, if vsource is used in a netlist, the voltage across pins p and m is held at 
the value specified. Because there is no dependency between current and 
voltage in an independent voltage source, a provision must be made for the 
current through the source. 

Equations Section and Local Declarations

Given the following figure and characteristic equation: 

Let vs = constant. 
Choose i(p->m) such that Kirchhoff’s Voltage Law is satisfied, meaning the 
voltage between nodes p and m has a value of vs.

The equations for the connection points are as follows:

One piece is missing with just these two lines. The simulator needs to know 
that it must solve for ivs such that Kirchhoff’s Voltage Law (KVL), the second 
equation, is satisfied. This means that ivs must be a system variable. The 
simulator solves for system variables, such as the across variables at the pins.

i(p->m) += ivs

ivs: v(p) - v(m) = vs

v(m)

p mivs

v(p) vs
+ _

Voltage source

vsource
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Do this with the following statement in the local declarations section of the 
vsource template:

In general, the statement:

declares one or more system variables with the specified unit.

Many such units are provided in the Saber simulation environment. You can 
define additional units for your own application (refer to the MAST Reference 
Manual, “Unit Definition”). Units are currently used only to ensure consistency 
of connection points and for the labeling the axes of graphs. In addition, they 
help you to associate simulation results with physical interpretations.

A var variable is a system variable, much like implicitly declared system 
variables. When you declare pin p to be electrical, this implies that there is a 
system variable v(p). In particular, a var variable can be used anywhere an 
implicitly-declared system variable can be used. The important difference 
between implicitly-declared system variables and var variables (which are 
declared explicitly) is that the template writer must tell the simulator which 
equation to use to solve for the var variable. The simulator uses KCL to solve 
for implicitly declared system variables.

The syntax for associating an equation with a var variable is as follows:

where:

var i ivs

var unit name[, name ...]

var_variable : expression1=expression2 

var_variable is the name of a var variable declared earlier in the template 
in a var variable declaration.

expression1

expression2

are two expressions formed from variables of different types 
(but not through variables); mathematical functions; the 
algebraic operators +, -, *, /, and **; parentheses (()); and the 
special operators d_by_dt and delay
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The simulator interprets this statement as the following:

Find the value of var_variable such that expression1 equals expression2.
For the constant voltage source, the statement associating an equation with ivs 
is as follows:

which is declarative and means:

Find ivs such that the voltage across the voltage source equals the specified vs 
value.

This now specifies the voltage source equation completely, and the equations 
section is as follows:

Modeling a Linear Inductor with MAST

The template describing a linear inductor is as follows:

ivs: v(p) - v(m) = vs

equations  {

i(p->m) += ivs

ivs: v(p) - v(m) = vs

}

template inductor p m = ind

electrical p, m

number ind

{

var i il

equations  {

i(p->m) += il

il: v(p) - v(m) = d_by_dt(ind*il)

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/inductor.sin
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Linear Inductor Topics

The description of the inductor template is divided into the following topics:
■ Characteristic Equation for a Linear Inductor
■ Equation Section -- shows how to use a var variable to change an 

integration formulation into a differentiation formulation
■ Header and Header Declarations

Characteristic Equation for a Linear Inductor

The voltage, VL, across an inductor is defined as the derivative of magnetic flux 
(f) with respect to time (Faraday’s Law): 

VL = df/dt 

For a linear inductor, the flux is defined as the product of the inductance, L, of 
the inductor and the current (IL) through it:

f = L•IL 

Therefore, inductor voltage can be expressed in terms of inductance and 
current: 

VL = d(LIL)/dt 

The inductance (L) characterizes each instance of an inductor and is provided 
as an argument of the template (ind). The following figure shows the symbol 
and the relevant characteristics of a linear inductor, including the variables to 
be contained in the ideal inductor template. 

v(p) v(m)

+ _

p mind

il

vl

Ideal inductor
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Equation Section

As with the resistor template, you should try to express the inductor current (the 
through variable contribution) as a function of the voltage across the inductor, 
which would be:

il = 1/ind  vl dt 

Although this equation serves as a compact implementation of the model, it 
requires the use of an integral, which the MAST language does not support. 
Therefore, it is necessary to use a new approach that differs from the one used 
to implement the resistor and capacitor templates. 

Note:   

When you encounter an integral expression as in the previous equation, you 
need to differentiate both sides of the equation to eliminate the integral. 

As with the constant voltage source, create a new system variable by declaring 
a var variable as follows:

You do this in the local declarations section of the template.

In the equations section, the equation associated with il is the characteristic 
equation of the inductor, shown as follows:

var i il

il: v(p) - v(m) = d_by_dt(ind*il)

v(p) v(m)

+ _

p mind

i(p->m)

v(p,m)

Ideal inductor
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This statement can be interpreted as follows:

The current through the inductor, il, is to be such that the voltage drop is the 
derivative of ind*il, this flux.

Consequently, by introducing another system variable, you replace the 
integration formulation for the inductor current with a differentiation formulation 
for the inductor voltage.

In the equations section, you must still define the contribution of the inductor 
branch current. With il as a var variable that receives this value, you can use 
the following statement:

The entire equations section of this template is as follows:

Header and Header Declarations

The template header and the header declarations are very similar to those in 
other templates (ind has been chosen as the name for the user-specifiable 
value of inductance): 

Note that the word element has been inserted as the first word of the header. 
This has been done to make the branch current available for mutual 
inductance. Additional reasons for using the word element in a template header 
are explained in the topic titled "Using MAST Element Templates".

i(p->m) += il

equations  {

i(p->m) += il

il: v(p) - v(m) = d_by_dt(ind*il)

}

element template inductor p m = ind 

electrical p,m 

number ind 
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Solving for Across Variables at a System Node

This topic provides an example that is intended to clarify why a template 
equation should express the through variable in terms of the across variable. 
Basically, it results from the principle shown as follows:
■ The simulator calculates the value of an across variable at a system node 

and makes this value available to templates connected to that node—This 
is not done for the through variable.

■ The known across value (voltage) at the system node is then “internalized” 
by the template to solve for the through value (current).

Consider node N1 of the simple circuit shown in the following figure, consisting 
of the isource and resistor. The characteristic equation for the resistor template 
is written to express current as a function of voltage: 

IR = VR/R 

This is done although it would be equally valid to express the same relationship 
with voltage as a function of current: 

VR = IR•R 

However, it is Equation 7 that defines the through variable contribution of each 
resistor model to the circuit shown in the figure above. This is the optimum 
representation for use by the Saber simulator. Why is this so? 

isource.I1in 0 N1 = 1
resistor.R1 N1 0 = 1
resistor.R2 N1 0 = 1

Circuit showing through and across variables

Vin

N1

iin R1 R2

i1 i2
0
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Examining node N1, the system must observe Kirchhoff’s Current Law (KCL) 
as follows: 

S i = 0    or     iin + (-i1) + (-i2) = 0 

Therefore, the simulator is solving the following problem:

Find Vin such that iin - i1 - i2 = 0 

It is extremely important to note that, because i1 = Vin/R1 and 
i2= Vin/R2, the simulator makes the following substitution for i1 and i2 in 
Equation 9: 

iin - (Vin/R1) - (Vin/R2) =0 

That is, to observe KCL at N1, the simulator solves an equation for Vin (by 
rewriting to obtain Equation 11). Notice that i1 and i2 are no longer in the 
equation—the solution to Equation 11 produces only the across variable, Vin, at 
node N1.

Simplified view of how the simulator solves for through variables only

Substitute

Rewrite

Equation 9

Equation 10

Equation 11

iin + (-i1) + (-i2) = 0 

iin - (Vin/R1) - (Vin/R2) =0 

Vin = iin 

1/R1 + 1/R2
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This results in the following conclusions: 

1. The across variables in the system (such as Vin) can be treated as “known” 
in the resistor template (or any other template connected to N1)—where it 
is provided as the voltage at p (abbreviated as v(p)). Thus, Vin is referred to 
as a system variable because it is known at system node N1. 

2. The through variables in the system (such as i1 and i2) cannot be treated as 
known in the resistor template (or any other template connected to N1). The 
current at p (abbreviated as i(p)) is not provided, because the simulator 
doesn’t solve for it. 

Note:   

The values for the through variables i1 and i2 can be calculated from the 
across variable, Vin However, this is a post-simulation process (i.e., 
these currents are not calculated unless explicitly requested). 

Because Equation 10 is linear, Vin can be determined directly. In general, 
however, the simulator solves multiple nonlinear equations by making iterative 
guesses at values for the across variables. 

The following figure summarizes the relationships among voltages, currents, 
and connection points for electrical templates. 

Pin Connection point 

Electrical
v — across
i — through

System variables

Simulator uses system variables

declarationspecification

ACCESSIBLE 
within 
template

ACCESSIBLE 
within 
template

NOT

IMPORTANT!

to solve KCL at p and m

Relating across and through variables

v(p), v(m)

at pins p, m
i (p->m)

current 

Electrical

p, m
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The topics in this chapter explain how a template can use the value of a system 
variable from another template without an explicit pin connection between them 
by using a ref connection point:
■ Modeling a Current-Controlled Voltage Source with MAST
■ Modeling Mutual Inductance with MAST

Introduction to MAST ref Connection Points

When a template declares a through variable as a system variable, it is made 
available to other templates in the system. One way that these other templates 
can then use this variable is to declare a new kind of connection point called a 
ref variable. A ref variable connection point allows the template declaring it to 
“import” the through variable directly, without using pin connections. 

Modeling a Current-Controlled Voltage Source with MAST

Declaring a pin implicitly declares a through variable and an across variable, 
according to the type of the pin (for example, an electrical type of pin implicitly 
declares current and voltage). The MAST language also lets you declare other 
types of connection points in a template besides pins. This section introduces 
one such type of connection point by using a current-controlled voltage source 
(CCVS), also called a current-to-voltage transducer (CVT). 
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The template describing a CCVS is shown as follows:

The description of the cvt template is divided into the following topics:
■ Characteristic Equation for a Current-Controlled Voltage Source
■ Equations Section and Local Declarations
■ Header and Header Declarations -- describes how to dealer a ref variable, 

which refers to a var variable defined elsewhere
■ Using a CCVS Template

Characteristic Equation for a Current-Controlled Voltage 
Source

The characteristic equation for a CCVS is similar to that of a constant voltage 
source, except that the output voltage is determined differently. 

v = k*ci 
choose i such that KVL is satisfied.

In this equation, ci is the controlling current, k is the transimpedance 
characterizing an instance of the cvt template, v and i are the output voltage 
and current, respectively. 

template cvt ci p m = k

ref i ci

electrical p, m

number k

{

var i i

equations  {

i(p->m) += i

i: v(p)-v(m) = k*ci

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/cvt.sin
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Equations Section and Local Declarations

The equations section differs only slightly from that of the template for the 
constant voltage source, vsource. 

Similarly, you must make i a system variable by adding the following statement 
in the local declarations section:

This statement declares i to be a var variable with unit i. (The first i is the unit 
name, and the second is the name of the var variable.)

Header and Header Declarations

Because the controlling current (ci) comes from elsewhere in the system to 
which the cvt template is connected, the simulator must determine it. That is, ci 
is a system variable that is declared in some other template in the circuit, either 
as a branch current or as a var variable. See the MAST Reference Manual for 
more information on var variables and ref variables. The cvt template brings in 
the value of this current to its ref variable connection point, which is specified 

equations  {

i(p->m) += i

i: v(p)-v(m) = k*ci

}

var i i

i
p

m

ci k*ci cvt

Current-controlled voltage source
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as the node name in a netlist. However, unlike node names for pins, this type of 
node name consists of two parts: 
■ The name of the branch current or var variable from the external template 
■ The instance name of that external template 

The ref variable declaration declares ci as a system variable with unit i (current, 
a through variable). Its purpose is to declare current as a system variable that 
this template refers to. Both refs and vars require declaration in any template 
that uses them. The difference is that a var variable is defined in the same 
template in which it is declared. That is, the equations that the simulator uses to 
determine the value of a var variable must reside in the template containing the 
declaration of the var variable. On the other hand, if a variable is declared as a 
ref variable in a template, then its defining equation(s) must reside in another 
template (where it is declared as a var variable and probably has a different 
name).

The name of this ref variable connection point (ci) is included in the header just 
like the names of pin connection points: 

This reinforces the fact that ci, like the across variable at pins p and m, 
provides a connection for a system variable. As with pins p and m, the ref 
variable declaration appears with the header declarations. 

Thus, the three connection points (ci, p, m) for cvt are declared as:

The declaration of the template argument (k) is similar to previous examples:

The argument k models the transimpedance of the source, so that when its 
value is multiplied by the controlling input current (ci), the product is an output 
voltage (i.e., A•W = V). 

template cvt ci p m = k 

ref i ci 

electrical p, m 

number k 
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Using a CCVS Template

You could use the cvt template in a netlist as follows:

The v template in the Standard MAST Template Library declares its branch 
current i as a var variable. Therefore, i(v.1) is a var variable that can be passed 
to the cvt template, where it is given as a value the ref variable connection 
point, ci. Note that i(v.1) serves as the node name to which ci is connected, just 
like a and b are the node names to which pins p and m are connected. As 
stated earlier, this node name, i(v.1), consists of two parts: 
■ i, the name of the var variable in the external template 
■ v.1, the instance name of that external template 

Also note that, in this example, you cannot use vsource, the constant voltage 
source template. You must use the v template instead, because the current, i, 
is not available outside of the vsource template. The next chapter shows how 
to make this current available to other templates in the system (by declaring 
vsource as an element template). 

cvt.1 i(v.1) a b = 1k 

v.1 c d = 5 
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Modeling Mutual Inductance with MAST

This example shows how a template can modify the equation associated with a 
branch variable or var variable from another template in the same design. The 
template describing mutual inductance (mutind) is as follows:

This template can be used in a netlist to provide electromagnetic coupling 
between two inductors as shown in the following example:

 where inductor.l1 and inductor.l2 are two instances of the inductor template, 
with inductance values of 1H and 2H, respectively. Notice that the mutind 
template is not electrically connected to this circuit.  

The description of the mutind template is divided into the following topics:
■ Characteristic Equations for Modeling Mutual Inductance
■ Setting up the Equations Section -- shows that a template with a ref variable 

connection can modify the equation associated with the current to which it 
refers (usually in another template)—this current must be a branch current 
or a var variable. 

template mutind i1 i2 = m

ref i i1, i2

number m

{

equations  {

i1 -= d_by_dt(m*i2)

i2 -= d_by_dt(m*i1)

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/mutind.sin

inductor.l1 p:p1 m:m1 = ind=1 

inductor.l2 p:p2 m:m2 = ind=2 

mutind.1 i1:il(inductor.l1) i2:il(inductor.l2) = \

m=0.98*sqrt(ind(inductor.l1)*ind(inductor.l2)) 
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■ Header and Header Declarations
■ Using the Mutual Inductance (mutind) MAST Template -- shows that an 

element template is required when providing current to a ref variable of 
another template.

Characteristic Equations for Modeling Mutual Inductance

Mutual inductance does not exist on its own. Instead, it describes how two 
inductors are coupled by a magnetic field, which transfers energy from one 
inductor to the other. The figure below shows two mutually coupled inductors 
and the variables that pertain to this example. 

The two equations below describe this system of two coupled inductors:

V1 = d(L1I1)/dt + d(MI2)/dt 

V2 = d(L2I2)/dt + d(MI1)/dt 

The first term in each equation is the self-inductance term—it is equivalent to 
the characteristic equation of a single, simple inductor. The second term in 
each equation is the mutual inductance term—the contribution of the mutual 
inductance template of this example. 

Mutual inductance, represented here as m, is given by the expression:

m = k•  

where L1 and L2 are the inductance values for the respective inductors and k is 
their coupling factor (where -1 £ k £ 1). 

M
p1 i1 p2i2

v1 v2

m1 m2

l1 l2

Coupled inductors
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Setting up the Equations Section

The template equations for mutind use the equation in the inductor template. 
There, the associated equation was essentially the first term shown in 
Equations 1 and 2 as follows:

V1 = d(L1I1)/dt + d(MI2)/dt 

V2 = d(L2I2)/dt + d(MI1)/dt 

The mutind template modifies the equation in the inductor template that is 
associated with the var variable, i, of the inductor. That is, when used in a 
netlist, the mutual inductance template “searches out” the equations of the two 
inductors and couples them as specified in the mutind model. 

The following MAST construct in the equations section modifies an equation 
associated with an explicitly-declared system variable (i.e., a var variable):

system_variable      operator      expression

where:

Using this construct, the characteristic equations of mutual inductance yield the 
following equations section for mutind:

system_variable is the name of a branch variable, var variable, or a ref 
variable (which is a var variable from another template)

operator is either += or -=, indicating that expression is added to or 
subtracted from the left side of the equation defining 
system_variable

expression is a MAST expression formed from variables of different 
types; mathematical functions; the algebraic operators +, 
-, *, /, and **; parentheses; and the special operators 
d_by_dt and delay 

equations  {

i1 -= d_by_dt(m*i2)

i2 -= d_by_dt(m*i1)

}
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It is important to understand that d_by_dt(m * i2) is not subtracted from i1, but 
rather from the left side of the equation that defines i1 (and, because i1 is a ref 
variable in this template, its defining equation is in the inductor template). 

This is illustrated using the following example netlist: 

Because the inductor template declares il as a var variable, its associated 
equation is:

This corresponds to the first term of either Equation 1 or Equation 2. 
Considering inductor.l1, the current from inductor.l2 is passed as ref variable i2 
into the mutind template, which, in turn, modifies the equation in inductor.l1, 
using its var variable, il, and inductance, ind. The effective equation in 
inductor.l1 would be:

 which, after algebraic rearrangement, corresponds to Equation 1. A similar 
modification is applied to the equation associated with the var variable il and 
inductance, ind in inductor.l2 to yield Equation 2. Thus, the mutind template, 
together with two instances of the inductor template, provide the inductance 
coupling shown in the “Coupled inductors” figure, shown previously, under the 
topic titled "Characteristic Equations for Modeling Mutual Inductance". 

Header and Header Declarations

The mutind template has mutual inductance, m, as its only argument. The 
connection points of this template are the currents from the two coupled 

inductor.l1 p:p1 m:m1 = ind=1 

inductor.l2 p:p2 m:m2 = ind=2 

mutind.1 i1:il(inductor.l1) i2:il(inductor.l2) = \

m=0.98*sqrt(ind(inductor.l1)*ind(inductor.l2))

il: v(p)-v(m) = d_by_dt(ind*i) 

il: v(p)-v(m)-d_by_dt(m*i2) = d_by_dt(ind*i) 
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inductors, which you must declare as refs. Template header and header 
declarations, therefore, are as follows:

Note that the word element has been inserted as the first word of the header, 
as was done for the inductor template. This was done for mutind to make its 
reference current available for the transformer template (xformer).

Using the Mutual Inductance (mutind) MAST Template

Using the mutind template in a netlist is demonstrated using the following 
example netlist: 

Note, however, that in order to use the inductor template with the mutind 
template, the branch current had to be made available outside of the inductor 
template. This was done by declaring inductor to be an element template, 
which is explained in more detail in the topic titled "Using MAST Element 
Templates" in a subsequent chapter. 

element template mutind i1 i2 = m 

ref i i1, i2 

number m 

inductor.l1 p1 m1 = ind=1 

inductor.l2 p2 m2 = ind=2 

mutind.1 i(inductor.l1) i(inductor.l2) = \

m=0.98*sqrt(ind(inductor.l1)*ind(inductor.l2)) 
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The following topics describe four ways to use the MAST language to model 
hierarchical systems:
■ Preserving Hierarchy - MAST Template with Netlist -- refers to the 

previously-created resistor, capacitor, and inductor templates
■ Flattened Hierarchy - MAST Template with Equations -- describes the whole 

system by its equations, which results in a flat description of the system
■ Mixed Hierarchy - MAST Template with Netlist and Equations -- uses a 

combination of the first two methods
■ Modular vs. Non-Modular MAST System Descriptions-- provides a 

summary of the characteristics of the hierarchical system and the flat 
system

Introduction to Modeling Hierarchical Systems

The topic titled "MAST Modeling Modularity and Hierarchy" introduces the 
concept of system hierarchy. The topic "The Saber Netlist Overview" in the 
earlier chapter, “Fundamental Modeling Concepts”, Example 2, shows a simple 
resistor network (the two_r template), which illustrates the concept of hierarchy. 

The topics in this chapter expands this idea of using the MAST language to 
describe hierarchical systems using a simple RLC circuit as an example as 
shown in the following figure. This circuit has two external connection points (p 
and m), and one internal node (x). 
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The rlc1, rlc2, and rlc3 examples also introduce the following new concepts:
■ Modular system description
■ Element templates
■ Internal nodes
■ Default values for arguments
■ Modular description and hierarchy as different concepts. In particular, it is 

possible to have a modular description that is flat

Simulation Efficiency of Hierarchical Systems

Unlike other simulators that flatten a hierarchical system description, the Saber 
simulator exploits system hierarchy when it solves the system equations. Thus, 
the computational effort to simulate a hierarchical system grows sublinearly 
with increasing system size—with most other simulators, the growth rate is 
close to quadratic. Therefore, hierarchical system descriptions generally 
improve simulation efficiency. 

This rule, however, is not absolute. If a subsystem described hierarchically is 
very small, the overhead required to handle the hierarchy may exceed the 
benefit of having hierarchy. It is best to model such systems without introducing 
a new level of hierarchy. 

vpm

ipm

r1

l1 c1

p m
x

+ _

ipx ixm

+ _ + _vpx vxm
The RLC network
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In the MAST language, you can do this by declaring the template to be an 
element template. The following convention is recommended: 

You should declare a template to be an element template if the number of 
its connection points is greater than the number of system variables (local 
pins, vars, additional branches) declared in the template.

Preserving Hierarchy - MAST Template with Netlist

With resistor, inductor, and capacitor templates already defined, the simplest 
way to describe an RLC circuit is by creating a template that consists primarily 
of an internal netlist of other templates. Each reference in this netlist creates an 
instance of the corresponding template and gives values to its arguments. 
Thus, the netlist section is identical to a top-level system template that just 
refers to other templates (i.e., they are circuit netlists with no additional 
modeling information).

The following template describes the RLC network in terms of the resistor, 
capacitor, and inductor templates to preserve the hierarchy in the system: 

The rlc1 template uses a netlist for the circuit shown in the following figure:

template rlc1 p m = r,l,c

number r = 10k, # resistance arg. w/default

l = 1m, # inductance arg. w/default

c = 1u # cap. arg. w/default

{

resistor.r1  p m = r

inductor.l1  p x = l

capacitor.c1 x m = c

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/rlc1.sin
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rlc1 Template Topics

The description of the rlc1 template is divided into the following topics:
■ Template Header -- shows implicit declarations of connection points and the 

use of an internal node, thereby implicitly declaring its type
■ Header Declarations -- shows the assignment of default values to template 

arguments
■ Netlist Section

Template Header

This template named rlc1 provides two connection points to an external circuit: 
p and m. The template has three arguments: r, l, and c, which represent the 
values of the internal elements. When rlc1 is used in a circuit netlist, any values 
that a user would specify for these arguments are passed to the arguments of 
the internal templates (see the topic titled "Netlist Section"). 

Therefore, the template header becomes: 

Note that, on the right-hand side of the equals sign (=), the multiple arguments 
are separated by commas. 

template rlc1 p m = r, l, c 

vpm

ipm

r1

l1 c1

p m
x

+ _

ipx ixm

+ _ + _vpx vxm
The RLC network
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The header declaration typically includes the declaration of the pins and the 
arguments. However, in this case it is sufficient to declare only arguments, 
because the simulator can determine from the usage of p and m that their pin 
type is electrical. This is because they are nodes of r1, l1, and c1—the 
simulator finds this information in the resistor, inductor, and capacitor 
templates. 

Thus, the following rule applies to references to connection points in templates:

If, in a template, the first reference to a connection point is as a node in an 
internal netlist, then the simulator implicitly declares the type of that 
connection point. It will be of the same type as found in the netlist template.

The same is true of an internal node, such as x in this template. It needs to be 
declared only if the simulator cannot determine its type from its usage in a 
netlist entry. In this example, x is implicitly declared to be electrical by its use as 
a node between an inductor and a capacitor. In general, it is good practice to 
declare all nodes even if declaration is not required. 

Header Declarations

Declaring the arguments for this template introduces the idea of providing 
initializers as default values. An initializer is a value assigned to an argument in 
the header declarations. It becomes the value of that argument if none is 
explicitly specified in a netlist entry. 

For this template, all arguments are of type number, so their declarations 
(including initializers) are as follows: 

The commas at the end of the first two lines are used to separate the 
arguments and to provide line continuation. If a line ends with a comma, that 
indicates that the line is incomplete, and the next line is automatically 
interpreted as a continued line. (For a complete list of the line continuation 
characters, see the topic titled "MAST Line Continuation" in the MAST 
Reference Manual.) This declaration could be written on a single line, as 
follows (note the commas): 

number r = 10k,

l = 1m,

c = 1u

number r=10k, l=1m, c=1u 
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Netlist Section

The netlist section of a MAST template consists of one or more netlist entries, 
each describing an instance of an internal template. Internal templates are 
sometimes referred to as components. However, this term is not used here 
because we also provide a Component Library.

The general form of a netlist entry is:

templatename.refdes node_list [= argument_list] 

where:

The rlc1 template should be designed such that it can be used in many places. 
Therefore, it does not assign numerical values to the arguments of “internal” 

templatename is the name of a template describing the model to 
which this netlist entry refers. 

refdes is the reference designator of this template 
instance—thus, templatename.refdes is the full 
name of the template instance (note the period as 
separator). This full name should be unique in the 
netlist, although the same reference designator 
may be used for different templates.

node_list lists the names of the nodes to which the 
connection points of the template instance are 
connected. This list is separated by spaces. Note 
that the names of these nodes correspond to the 
connection point names of the top-level template 
(e.g., the rlc1 template). 

= separates node_list from argument_list.

argument_list lists the values characterizing this template 
instance. The simulator assigns these values to 
the arguments of templatename. Depending upon 
the template, the argument_list and the equals 
sign (=) may be optional.
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templates in its netlist section. Instead, the argument names of the rlc1 
template (r, l, c) are assigned to the argument_list of each internal template: 

Thus, any value assigned to an rlc1 argument in a netlist will be passed to the 
corresponding argument in one of its internal templates. In other words, to 
override the default values assigned to these internal templates, you specify an 
instance of rlc1 in a netlist and provide appropriate argument values there. 

Flattened Hierarchy - MAST Template with Equations

Another method for defining an RLC template is to include all the equations for 
solving the network without referring to any other templates. This approach 
requires the model descriptions from the resistor, inductor, and capacitor 
templates to be defined in one template. In addition, their relationships to one 

resistor.r1 p m = r 

inductor.l1 p x = l 

capacitor.c1 x m = c 
Saber® MAST Language User Guide 89
B-2008.09



Chapter 5: Modeling Hierarchical Systems
Flattened Hierarchy - MAST Template with Equations
another and their relationships to the pins must also be included. The template 
that does this (rlc2) is shown as follows:

This template contains a flat description of the RLC circuit shown in the 
following figure:

template rlc2 p m = r,l,c

electrical p, m

number r = 10k, # resistance arg. w/default

l = 1m, # inductance arg. w/default

c = 1u # capacitance arg. w/default

{

electrical x # internal node x

var i il

equations  { # current through r, l, c

i(p->m) += (v(p)-v(m))/r 

i(p->x) += il

i(x->m) += d_by_dt((v(x)-v(m))*c)

# tell simulator how to find il

il: v(p)-v(x) = d_by_dt(il*l)

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/rlc2.sin
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rlc2 Template Topics

The description of the rlc2 template is divided into the following topics:
■ Header and Header Declarations
■ Equations Section -- shows multiple equations that can appear in any order
■ Template Body with Local Declarations -- shows the declaration of a local 

node

Header and Header Declarations

The template header is declared the same as rlc1, but with the name rlc2:

Giving the same default values to the header arguments as in rlc1, the header 
declarations are: 

Here you must explicitly declare the connection points p and m, because they 
are used only in the equations section, so there is no way for the simulator to 
determine their type (i.e., they do not appear elsewhere in a netlist entry). 

template rlc2 p m = r, l, c 

electrical p, m 

number r = 10k, l = 1m, c = 1u 

vpm

ipm

r1

l1 c1

p m
x

+ _

ipx ixm

+ _ + _vpx vxm
The RLC network
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Equations Section

The template equations for the rlc2 template consist of the equations from the 
resistor, inductor, and capacitor templates described in previous chapters, 
using the variable names from the rlc2 template. Note that these statements 
can appear in any order. 

Template Body with Local Declarations

As with the connection points p and m, you must explicitly declare internal node 
x because there is no way for the simulator to determine its type (i.e., it does 
not appear elsewhere in a netlist entry). Node x it is a local internal node. It 
must be declared following the opening brace before it can be used in the 
equations section: 

The variable il is declared to handle the inductor current.

Mixed Hierarchy - MAST Template with Netlist and Equations

Another approach for modeling an RLC network is to create a template that 
contains equations for some of the elements and netlist entries for other 
elements—a mixture of the methods used in the rlc1 and rlc2 templates. For 

ipm = vpm/r 

vpx = d_by_dt(ipx*l) 

ixm = d_by_dt(vxm*c) 

{ 

electrical x 

var i il
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instance, you can define the capacitor and the resistor by their equations, but 
reference the inductor template in a netlist entry.

The equations for the inductor branch are described in the inductor template. 
Note that you could have omitted the declaration of connection point p; its type 
(and the type of x) can be determined from the inductor template in the netlist 
entry. Because the inductor template is included in an internal netlist, rlc3 is 
hierarchical. It could be made flat by making inductor an element template. 

Element template is described in the following topics:
■ Introduction to MAST Element Templates
■ Properties of MAST Element Templates
■ Using MAST Element Templates

Introduction to MAST Element Templates

It is preferable to model small subsystems so that they do not introduce a new 
level of hierarchy into the system description. 

template rlc3 p m = r,l,c

electrical p,m

number r = 10k, # resistance arg. w/default

l = 1m, # inductance arg. w/default

c = 1u # capacitance arg. w/default

{

inductor.l1 p x = l # use inductor template

equations {

i(p->m) += (v(p)-v(m))/r

i(x->m) += d_by_dt((v(x)-v(m))*c)

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/rlc3.sin
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Note:   

A subsystem is “small” when the number of connection points is greater than 
the number of its locally-declared system variables (local nodes, branch 
declarations, and var variable declarations).

This definition is satisfied by most templates containing equations for a single 
element (such as a resistor or a capacitor) and some templates containing 
netlists (such as rlc2). In particular, all templates given as examples in previous 
chapters are “small.”

The MAST language contains a construct for specifying that a template should 
not introduce a new level of hierarchy. This construct declares it to be an 
element template, rather than a template, in the template header. For example, 
the inductor template would have the following header: 

Properties of MAST Element Templates

An element template flattens the hierarchy locally. This has three main 
consequences when referencing an element template in an internal netlist: 
■ An element template does not introduce a new level of hierarchy. 
■ The simulator merges the equations of the internal element template with 

that of the calling (containing) template, for the purpose of solving the 
simultaneous differential equations. 

■ Any vars and branch through variables declared in the element template 
become available in the calling template. 

The third consequence is the key to using the voltage source template (v) with 
the current-controlled voltage source, and to using the inductor template with 
the mutual inductance template. Because v and l are declared as element 
templates, their currents become available to a calling template; they can be 
passed as refs to the current-controlled voltage source template (cvt) and 
mutual inductance template (mutind), respectively. 

Using MAST Element Templates

You can use element templates in the same way you use regular templates. 
Therefore, if the resistor, capacitor, and inductor templates had been declared 
as element templates, then the rlc1 and rlc3 templates, which contain netlist 

element template inductor p m = ind 
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references to those templates, would describe flat subsystems. In other words, 
rlc1 and rlc3 would not be hierarchical to the simulator, even though they 
reference other templates internally. 

This demonstrates that you cannot determine, by looking at a netlist, whether it 
represents a flat or hierarchical system—you must look at each template 
referenced in the netlist. 

Modular vs. Non-Modular MAST System Descriptions

You can decide whether to model a system or subsystem hierarchically, based 
on the number of local pins and additional branches. Further, you also can 
choose between a modular description (like rlc1), a completely local description 
(like rlc2), or a combination of the two (like rlc3). A comparison of the 
characteristics of each are described in the following topics:
■ Modular (hierarchical) MAST System Descriptions - Summary
■ Non-Modular (flat) MAST System Descriptions - Summary

Modular (hierarchical) MAST System Descriptions - Summary

The characteristics of modular system descriptions are:
■ Modular descriptions are easier to develop and maintain
■ Modular descriptions provide a library of building-block templates that can 

be reused in other designs
■ Modular descriptions can be hierarchical or flat (by using element 

templates)
■ Improvements in one of the templates referenced in a modular description 

become available immediately
■ Changes in one of the templates in a modular description may require 

updating the system description
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Non-Modular (flat) MAST System Descriptions - Summary

The characteristics of non-modular system descriptions are:
■ Non-modular descriptions are always flat
■ In a non-modular description, it is simpler to extract a variable (such as the 

inductor current) in the system using Saber’s extract command
■ Modeling a system in a non-modular way may duplicate some efforts spent 

to model another system (e.g., repeating the entire model description for a 
resistor instead of calling the resistor template). 
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The following topics describe ways of using internal variables and writing 
arguments to provide more template versatility. They also demonstrate how to 
check the validity of argument values, use message functions, and improve 
template performance by precalculating expressions: 
■ Modeling Extractable Capacitor Voltage and Charge with MAST -- shows 

how to obtain charge in a capacitor, which is not available in a template as 
a system variable; it also shows how to write arguments that provide a 
nonzero voltage across the capacitor at DC (initial condition). 

■ Modeling Multiple-Mode Voltage Source with MAST -- shows how to use 
conditional statements (if-else) to describe a voltage source that can be 
used as both a constant supply and a variable-input stimulus. 

■ Modeling a Linear Transformer with MAST -- shows how to create a 
transformer by using the inductor template and the mutind template. 

■ Modeling a Temperature-Dependent Resistor with MAST -- shows how to 
check for a value of zero for the resistance argument and issue an error 
message when it happens. 

■ Modeling an Idealized Op Amp with MAST -- demonstrates a three-pin 
operational amplifier.

Introduction to MAST Variables and Arguments

The Saber simulator solves (i.e., finds values of the system variables for) the 
simultaneous nonlinear differential equations that are given by the system 
description. In electrical systems, system variables are typically node voltages, 
except for models such as inductors and voltage sources, in which case current 
is the system variable. 

During simulation, certain information about the system (such as system 
variables) is automatically extracted from the raw simulation results and made 
available for display. The amount of such information is typically controlled by 
the siglist variable of the simulation command.
Saber® MAST Language User Guide 97
B-2008.09



Chapter 6: Variables and Arguments
Modeling Extractable Capacitor Voltage and Charge with MAST
After simulation, you can extract this information from raw simulation results 
using the extract command (also known as extraction). 

The example templates, isource through rlc3, in the chapter “Basic Modeling”, 
topic titled "MAST Modeling Examples - Electrical Elements", have the 
following two characteristics in common:
■ Argument values are assumed to be valid
■ Arguments are used directly in the template equation(s) 

In general, a template should be prepared to handle invalid argument values. 
For example, the resistor template should check for res=0 to prevent division 
by 0. In addition, if template arguments are not directly usable by the model, 
the template has to convert them to appropriate local parameters. The topics in 
this chapter explain how to use local variables and conditional statements to 
accomplish these tasks. These constructs are incorporated into templates such 
as resistor and opamp.

Modeling Extractable Capacitor Voltage and Charge with MAST

The capacitor template directly expresses the characteristic equation of the 
capacitor. This topic describes how to modify the capacitor template (now 
called capacitor_1, listed below) such that the voltage across the capacitor and 
its charge become available for extraction.
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The description of the capacitor_1 template is divided into the following topics:
■ Header and Header Declarations -- shows how to write arguments that 

provide a nonzero voltage across the capacitor at DC (initial condition).
■ Values Section -- describes how to define variables that can be extracted
■ Equations Section -- describes how the equations section works with the 

values section
■ Local Declarations
■ Control Section -- shows how to insert a statement that allows an initial 

conditions argument

element template capacitor_1 p m = cap, ic

electrical p, m

number cap, ic=undef

{

val q qc

val v vc

values  {

vc = v(p) - v(m) # voltage across cap.

qc = vc * cap # charge stored in cap.

}

control_section{

initial_condition(vc,ic)

}

equations  {

i(p->m) += d_by_dt(qc)# current through cap.

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/capacitor_1.sin
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Header and Header Declarations

The template header declares capacitor_1 to be an element template. This 
means that the capacitor_1 template does not introduce a new level of 
hierarchy into the system description. 

It also contains a new argument, ic, that allows you to specify an initial voltage 
across the capacitor when a DC analysis is performed (instead of being set to 
0). 

The default value for ic has the initializing value undef, a special numeric 
constant representing an undefined value in the MAST language. You can 
assign it as a value to a template parameter (such as ic=undef). However, you 
should not use it as a value in an expression (such as qc=undef/6), although 
you can use it in a conditional statement to test equivalence (such as if 
(ic==undef)).

This is because the results of evaluating the expression are unpredictable if the 
simulator has to operate on undefined values (i.e., any parameter set to undef 
should be given a numerical value when the template is used). However, in this 
case, ic=undef means that ic is ignored.

Values Section

While the MAST language can describe the characteristic equations of most 
physical systems in a template, you can use the values section for the 
following:
■ Define a variable (called a val) specifically for use with the extract command 

or the siglist variable. A val variable is usually used as an intermediate 
variable; you can assign expressions to it. Once a val variable is declared 
and defined, it is available for extraction—even if it does not appear in a 
template equation.

■ Simplify other template sections. You can use vals not only in the values 
section, but also in the equations section, the control section, and when 
statements.

element template capacitor_1 p m = cap, ic 

electrical p, m 

number cap, ic=undef
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■ Call foreign routines that return more than one value
■ Define the values of noise sources

The values section consists of assignment statements and conditional 
statements. The syntax of a assignment statement is as follows:

variable = expression

where:

The values section is both procedural and declarative. Because it is 
procedural, it must be able to execute its statements in sequence, so you must 
order the statements such that each variable is defined before it is used. 
Because it is declarative, each of its statements might be executed only if the 
simulator requires variable, for example if a variable is a val variable that is to 
be extracted or is needed for solution of the system variables.

If variable is not needed, the simulator skips the statement during evaluation of 
the values section, although it might "absorb", during initial setup, certain 
information provided by a statement. Therefore, including a values section in a 
template does not impose any performance penalties if no variables are 
extracted. This means that a values section should be part of almost every 
structured template.

One objective stated earlier was to make the voltage across the capacitor and 
the charge of the capacitor available for post-processing. The following figure 
shows the relationship of these quantities 

variable is a val variable

expression is a MAST expression defining variable—the value of 
expression is assigned to variable (this is not a mathematical 
equality). An expression can include variables of different 
types (except for through variables); mathematical functions; 
the +, -, *, /, **, and parentheses (()).
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The following values section expresses the relationship of the voltage across 
the capacitor and the charge of the capacitor:

The quantity vc is defined as the difference of the across variables at pins p 
and m; qc is the product of vc and the capacitance value. As required, the 
definition of vc precedes the definition of qc.

Equations Section

The following equations section for the capacitor_1 template is very similar to 
the capacitor template, except that now the capacitor charge is available as a 
val variable from the values section: 

The Saber simulator uses the equations and values sections jointly to set up 
the system equations. It uses the values section only to the extent necessary to 
determine the through variable contribution at the resistor pins as a function of 
the across variables at the pins. It does not, however, evaluate the values 
section, except when simulator users specify that certain information is to be 

values  {

vc = v(p) - v(m) # voltage across cap.

qc = vc * cap # charge stored in cap.

}

equations  {

i(p->m) += d_by_dt(qc)# current through cap.

}

v(p)
vc

v(m)

+ _

p m
cap

qc = vc * cap

Linear capacitor
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extracted, and even then it evaluates only the equations needed to provide the 
requested information.

This does not mean that the values section is evaluated for solution of the 
system variables. Rather, the simulator "absorbs" certain information when it 
sets up the simultaneous equation describing the system. Consequently, the 
equation that the simulator solves for with the capacitor_1 template is identical 
to the one for the capacitor template.

Local Declarations

It is required that all variables defined in the values section must be declared 
among the template's local declarations. Both vc and qc are vals. These two 
vals, the voltage vc and the charge qc, are declared as follows: 

The declaration of a val variable is similar to that of a var variable. The 
statement:

This declares one or more variables to be vals having the specified unit. 

You can assign a value to a val variable only in a values section of a template 
or an assignment statement in the local declarations section of an unstructured 
template. However, you can use a val variable in the template equation, the 
control section, and in when statements. 

There is a collection of predefined units in the units.sin file, which is provided 
with the Saber simulator. The simulator, by default, includes the units.sin file 
with each system description. 

Control Section

The control section of a template provides the simulator with information that is 
specific to the system being analyzed but is not directly part of the component 
model. An example of such information is the initial voltage across the 
capacitor. This is implemented by using the initial_condition statement within 
the control section. 

val q qc

val v vc

val unit name [,name, name, ...] 
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The control section consists of the keyword control_section, followed by a 
sequence of control section statements, enclosed between braces, { }.

Such statements are special in the sense that they can occur only in an 
explicitly-declared control section. A complete list of these statements is given 
in the MAST Reference Manual. Here, only an initial_condition statement for 
the voltage across the capacitor (v) is used. 

When you specify a value for the argument ic, that value is used by the branch 
voltage, vc, when a DC analysis is performed (using either the dc or dctr 
command).

Initial Conditions
For some templates, you may want to specify the initial condition of a system 
variable or difference of two system variables. The initial_condition statement 
allows you to assign a value or values to such system variables (for instance, 
by means of a template argument). The general form for this statement in the 
control section is as follows:

where variable is a system variable or difference of system variables (such as 
across branch variables), and value is the name of the initial condition 
parameter (i.e., variable=value at time=0). 

If there are multiple system variables to receive initial conditions, each one 
must have a separate initial_condition statement in the control section. In this 
template, value is named ic. It is provided as an argument to the template and 
assigned the value of undef. However, other implementations are possible, and 
it is up to the writer of the template to select from them (including assigning 
names). 

Modeling Multiple-Mode Voltage Source with MAST

The vsource template models a source that provides a constant voltage output, 
independent of time and frequency. Such voltage sources are common, but 

control_section { 

initial_condition(vc,ic) 

} 

initial_condition (variable, value) 
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many systems have voltage sources with waveforms that are time- or 
frequency-dependent. The purpose of this example is to show how to use 
conditional statements (if-else) to describe a voltage source (vsource_1, listed 
below) that can be used as both a constant supply and a variable-input 
stimulus. 

This voltage source can model the following:
■ A constant voltage, to be used as a supply.
■ An exponential voltage, as a simple example of a time-dependent 

waveform. This overrides the constant voltage if both are specified.
■ A frequency-dependent AC signal, to be used for frequency-domain (small-

signal) analyses. 

The following topics describe how to activate each of these outputs, depending 
on the analysis being run. An extended version of this voltage source (which 
provides several additional waveforms using these same techniques) is 
described in the vsource_2 template. 

element template vsource_1 p m = supply, tran, ac

electrical p, m # header declarations

number supply=0

struc { # start of tran structure

number v1=0, # initial voltage

v2=0, # voltage at time=inf

tau=0.000001 # time constant

} tran=() # end of tran structure

struc { # start of ac structure

number   mag=0, # AC magnitude

phase=0 # AC phase

} ac=() # end of ac structure
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{ # start template body

var i is # local declarations

val v vs

values {

if (dc_domain | time_domain) { # If large signal

if ((tran->v1~=0 | tran->v2~=0) & tran->tau>0){

# If waveform is defined

vs=tran->v1 + (tran->v2-tran->v1) *(1-exp(-time/tran-
>tau))

} # source voltage = waveform

# at current time

else { # otherwise

vs=supply # source voltage = supply

}

}

else if (freq_mag) { # or if source is ac magnitude

vs=ac->mag #   source voltage = magnitude

}

else if (freq_phase) { # or if source is ac phase

vs=ac->phase #   source voltage = phase

}

}# end of values section

equations { # start of equations section

i(p->m) += is # add current contributed by source

is: v(p)-v(m)=vs # determine current contributed

# by source

} # end of equations section

} # end of template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
vsource1.sin
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The description of the vsource_1 template is divided into the following topics:
■ Constant DC Supply Output -- shows the header and header declarations
■ Time-Dependent, Exponential Output -- shows the characteristic equation 

and introduces the declaration of a structure parameter, which is further 
described in the following topics:

• Initializing a Structure - Method 1 Using vsource_1

• Initializing a Structure - Method 2 Using vsource_1

• Summary of Structure Initializers

• Template Body - shows the template body, which include the following 
concepts:

Introduction to MAST Simulator Variables (simvars)

Introduction to MAST Conditional Statements

Using simvars and Conditional Statements

Using a Structure Reference

Completing the Values Section for tran

Equations Section
■ Frequency-Dependent, AC Output -- shows how to model the small-signal 

analysis behavior for the vsource_1 template using the following topics:

Small-Signal Structure Type Parameter

Small-Signal simvar Variables

Small-Signal Conditional Statements

Constant DC Supply Output

Template Header and Header Declarations
Because this voltage source models three different output functions, the 
template header contains three arguments (supply, tran, ac), one for each 
function. It is also declares vsource_1 as an element template.

1 element template vsource_1 p m = supply, tran, ac 
Saber® MAST Language User Guide 107
B-2008.09



Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
In the header declarations, connection points (p and m) are declared as 
electrical pins and supply is declared as a simple number parameter. To make 
vsource_1 operate as a constant DC supply, the argument supply replaces the 
argument vs (but is used the same way). Further, supply is assigned an 
initializer (0), which becomes the default value if no value is specified for it in a 
netlist: 

This default value of 0 causes the voltage source to act as a short circuit 
between p and m for a DC analysis. 

Time-Dependent, Exponential Output

Characteristic Equation
The exponential waveform to be modeled by the voltage source template is 
shown in the following figure and is defined by the following equation:

Vout = V1 + (V2 - V1)•(1 - e ) 

where the following quantities are specifiable arguments to the template: 

3 number supply = 0 

V1 the initial voltage (at time=0)

V2 the voltage at time = infinity

t the time constant (t > 0) of the 
exponential function 

(-time/τ )
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Note that the three arguments (v1, v2, tau) that characterize the exponential 
waveform do not appear in the template header. They are declared in the 
template as part of the argument tran, which does appear in the template 
header. This is a commonly-used arrangement. 

Header Declaration Using a Structure Type Parameter
To emphasize that they belong together, the three arguments used in the 
characteristic equation (v1, v2, tau) are declared so that the exponential 
waveform can be referred to by a single name (tran). In the MAST language, 
you do this by declaring this name as a structure parameter, which is an 
ordered list of member parameters (here, v1, v2, tau). Each structure member 
may be a number, an enum, another structure (which would then make a 
nested structure), or any of the other types that a parameter can be. See the 
MAST Reference Manual for more information.

In its most general form, the syntax for declaring a structure is (optional 
declarations are enclosed by italicized square brackets, [ ]): 

struc [structurename] { 

member

[member]

[...] 

} id [=initial_value] [,id=initial_value, ...] 

voltage

time
τ

V2

V1

Exponential waveform

(-time/τ )V1 + (V2 - V1 )• ( 1 - e )
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where:

You can declare the exponential waveform using a structure declaration in 
various ways. Two possible methods are described in the following topics, both 
initializing the structure (whose id is tran) so that all of its members are 0—
unless otherwise specified in a netlist entry:
■ Initializing a Structure - Method 1 Using vsource_1
■ Initializing a Structure - Method 2 Using vsource_1

struc is a required keyword that declares the structure.

structurename is an optional name identifying the structure. For 
information about how to use this, see the MAST 
Reference Manual.

member is the declaration of a structure member—a 
“subordinate” parameter whose declaration is 
identical to what it would be if it were outside of a 
structure. This declaration can include initializing 
values, as described in the topic titled "Initializing 
a Structure - Method 1 Using vsource_1". 

id is the name of a variable having the type 
described by the structure. There can be multiple 
ids, separated by commas, that declare duplicate 
versions of this particular structure with different 
names. 

initial_value is an optional initializer for the structure. It 
interacts with the initializers for the structure 
members, depending on the initialization method 
selected.
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Initializing a Structure - Method 1 Using vsource_1
Specify the initializer for each structure member separately from the structure 
initializer:

This declares a parameter named tran to be a structure consisting of number 
type parameters v1, v2, and tau. Each of these members is initialized to 0. The 
initializer for the structure is simply a pair of parentheses preceded by an 
equals (=) sign. This means that, in a netlist entry referring to vsource_1, if the 
tran structure is not defined, then its members take on the values specified by 
their initializers. If this initializer for the structure (tran=( )) were missing, the 
structure would have to be defined (given a value) in a netlist entry, even 
though the individual members have initializers. 

Initializing a Structure - Method 2 Using vsource_1
Specify initializers for structure members within the structure initializer:

Again, this declares tran to be a structure consisting of three members and 
initializes them to a value, so it is not necessary to specify tran in a netlist entry 
because it is initialized in its declaration. 

In a netlist entry referring to the vsource_1 template, these two declarations of 
the tran structure are equivalent under the following conditions: 
■ The tran structure is not specified in a netlist entry. This initializes two of the 

structure members to 0. 
■ The tran structure is specified in a netlist entry, and values are specified for 

all three structure members. This initializes all three structure members to 
their specified values.

5 struc { 

6 number v1 = 0,

7 v2 = 0, 

8 tau = 0.000001 

9 } tran= () 

struc { 

number v1, v2, tau 

} tran = (0, 0, 0.000001) 
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These two methods behave differently when the tran structure is only partially 
defined in a netlist entry. Suppose, for example, that a netlist entry specifies 
values for v1 and v2 but not for tau. Then v1 and v2 take on the specified 
values in both structure declarations. On the other hand, tau takes on the value 
0 in the first case but is undefined in the second. 

Summary of Structure Initializers
The following summarizes how structure initializers, member initializers and 
values defined in a netlist entry interact to define the value for the structure 
members:
■ A structure receives initializing values either from a structure initializer or 

from values provided in a netlist entry. If both are present, the simulator 
ignores the structure initializer and uses the values from the netlist entry. If 
neither is provided, an error message is displayed. 

■ Each member of a structure takes on the value provided for it in the structure 
initializer or netlist entry (whichever applies, as described above). If no value 
is provided, the structure member is set to the value specified in the member 
initializer. If the member initializer is missing, its value is undefined. 

A structure initializer has the following form:

The member initializers in the vsource_1 template are v1=value, v2=value, and 
tau=value.

Considering these differences, the first method of declaring the exponential 
waveform is recommended, so that all of its members will always be defined. 
The example in the topic titled "Modeling Extractable Capacitor Voltage and 
Charge with MAST" shows how to check for undefined parameters or invalid 
values. 

Template Body
To summarize, the three arguments of this template—supply, tran, ac—are 
provided to allow a user to select whether the output will be a constant voltage, 
an exponential voltage, or an AC signal. 

id = (valuelist)
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It is important at this point to distinguish between large-signal and small-signal 
responses of a system:
■ A large-signal response, such as that obtained from a DC or transient 

analysis, incorporates all nonlinearities of the system. Except for the DC 
response (i.e., the operating point of the system), which is not related to time 
or frequency, large-signal responses are typically evaluated in the time 
domain. 

■ A small-signal response, such as that obtained from an AC analysis, 
assumes a linearization of the system about its operating point. It is a first-
order approximation of the large-signal response at that operating point and 
is typically evaluated in the frequency domain. Modeling this functionality is 
further described in the topic titled "Frequency-Dependent, AC Output".

Note:   

The vsource_2 template extends this voltage source to provide a large-
signal sinusoidal waveform. This is not to be confused with the small-
signal sinusoid provided for a small-signal, AC analysis. 

Given these distinctions, the constant and exponential voltages are to be used 
for large-signal analyses (DC and transient analyses), while the AC voltage is 
to be used for small-signal analyses (such as an AC analysis). Therefore, the 
template must obtain, from the simulator, information about the simulation 
being used. 

Once the template has this information, it has to define the output voltage 
according to the logic illustrated in the following figure:

large-signal? waveform output=exponential waveform

output=DC supply

output=small-signal 

YES

NO

at present time

supply 

tran 

ac 

YES

NO

(DC or Transient)

Selecting an output

 defined?

AC value
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In order to provide these multiple modes, the vsource_1 template must have 
the following capabilities: 
■ Information from the simulator regarding the kind of analysis being 

performed
■ Based on that information, the ability to decide which argument is assigned 

to the output 

These capabilities are provided by simulator variables and conditional 
statements, which are described in the following topics:
■ Introduction to MAST Simulator Variables (simvars)
■ Introduction to MAST Conditional Statements
■ Using simvars and Conditional Statements
■ Using a Structure Reference
■ Completing the Values Section for tran

Introduction to MAST Simulator Variables (simvars) To pass analysis 
information from the simulator to a template, the MAST language supports 
what are called simvars (simulator variables). A simvar is a predefined MAST 
variable that does not need to be declared. Simvars provide information about 
the nature of the analysis being carried out, various stages of the analysis, the 
present simulation time or frequency, and the present mathematical 
environment (deterministic or statistical). They also let a template interact with 
the simulator’s integration algorithm. With two exceptions simvars cannot be 
modified by a template. 

A complete list of simvars is given in the MAST Reference Manual. In 
vsource_1, only the simvars related to the nature of the analyses and 
simulation time are necessary. 

Simvars used by tran in the vsource_1 template are: 

dc_domain has a non-zero value when a DC analysis or DC 
transfer analysis is being carried out. It is equal to 
0 otherwise.

time_domain has a non-zero value when a transient analysis is 
being carried out. It is equal to 0 otherwise.
114 Saber® MAST Language User Guide
B-2008.09



Chapter 6: Variables and Arguments
Modeling Multiple-Mode Voltage Source with MAST
Introduction to MAST Conditional Statements The following logic diagram 
illustrates the decisions that the vsource_1 template makes in defining its 
output voltage based on simvar information. It makes these decisions using 
conditional statements.

In the MAST language, conditional statements are implemented as if-else 
constructs, as follows:

where:

time contains the current simulation time when a time-
domain analysis is being done. It is equal to 0 
otherwise.

if (condition1) statement1

else if (condition2) statement2

...

else statementN 

if, else are MAST keywords 

condition is a MAST expression that is false if its value is 0 
or true if its value is not 0 

statement is either a simple MAST statement or a group of 
MAST statements enclosed in braces ({}) 

large-signal? waveform output=exponential waveform

output=DC supply

output=small-signal 

YES

NO

at present time

supply 

tran 

ac 

YES

NO

(DC or Transient)

Selecting an output

 defined?

AC value
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When processing an if, else if,..., else compound statement, the simulator 
evaluates the conditions in the order given. When it finds a true condition, then 
it executes the associated statement and ignores the rest of the compound 
statement. When all conditions are false, it executes the statement associated 
with the last else keyword, if there is one. If there is no else keyword, it ignores 
the entire compound statement. 

In if statements, you can build conditions using the following building blocks:
■ Arithmetic expressions, such as the expressions that can be on the right-

hand side of an assignment statement, with the restriction that the 
expression must return a single value. An arithmetic expression is true if it 
has a non-zero value.

■ Relational expressions, which consist of two expressions separated by one 
of the relational operators listed below. The value of such an expression is 
1 if the relation is true. It is 0 otherwise. 

■ The complement of an expression, that is, the ~ (tilde) operator followed by 
an expression. If expression is true, then ~expression equals 0. Otherwise, 
~expression equals 1.

■ A compound expression, that is, two expressions separated by a logical 
operator (& for “and”, | for “or”): 

• expression1 & expression2 has a value of 1 if both expression1 and 
expression2 are not equal to 0. Otherwise, expression1 & expression2 
has a value of 0.

• expression1 | expression2 has a value of 1 if either expression1 or 
expression2 (or both) is not equal to 0. Otherwise, 
expression1|expression2 has a value of 0.

== equal to

~= not equal to

> greater than

>= greater than or equal to

< less than

<= less than or equal to
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It is important to understand that the condition in an if statement can include 
system variables and vals that depend upon system variables. 

Using simvars and Conditional Statements Values Section

The following figure shows a partial implementation of the outline shown in the 
previous figure by using the information just presented on simvars and 
conditional statements. The following figure numbers each of the blocks and 
provides statements beneath them that describe how the conditional portions 
of the template associate decision Blocks 1 and 2 with output Blocks 3, 4, and 
5. These statements use a val variable named vs that represents whichever 
output is selected for vsource_1. 

Following the figure are descriptions of each correspondingly-numbered block. 

3

Selecting an output (continued)

large-signal? waveform output=exponential waveform

output=DC supply

output=small-signal 

YES

NO

at present time

supply 

tran 

ac 

YES

NO

(DC or Transient)  defined?

AC value

21

4

5

# Block 1 if (dc_domain | time_domain) {
if (waveform defined) {

vs = waveform at current time
} 
else (if waveform not defined) {

vs = supply
} 

# Block 2
# Block 3

# Block 4

} 
elseif (freq_mag) {

vs = magnitude of complex value
} 

# Block 5

elseif (freq_phase) {

vs = phase of complex value
} 
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1. The first condition is true if dc_domain or time_domain is true (i.e., if a either 
a DC or a transient analysis is being performed). See Block 2.

The first condition is false if the simulator is executing a small-signal 
analysis. See Block 5.

2. The second condition is true if the waveform is defined. See Block 3. (The 
waveform is considered defined if either v1¼0 or v2¼0 (see the figure that 
refers to the exponential waveform) and the value of tau is positive.) 

The second condition is false if the members of tran have not been 
specified. See Block 4.

3. The output of vsource_1 (vs) is given the waveform value, tran. 

4. The output of vsource_1 (vs) is given the constant DC value, supply. 

5. If the simulator is performing an AC analysis, it asks for either the magnitude 
(freq_mag) or the phase (freq_phase) of the complex value specified by ac. 
In such cases (the else if cases), the simulator takes the appropriate action, 
depending on the values of freq_mag and freq_phase. 

Using a Structure Reference To convert the following conditional 
statements to those actually appearing in the template, it is necessary to gain 
access to the parameter within the ac and tran structures. 

# Block 1 if (dc_domain | time_domain) {
if (waveform defined) {

vs = waveform at current time
} 
else (if waveform not defined) {

vs = supply
} 

# Block 2
# Block 3

# Block 4

} 
elseif (freq_mag) {

vs = magnitude of complex value
} 

# Block 5

elseif (freq_phase) {

vs = phase of complex value
} 
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In the MAST language, the “structure reference” operator (->) is used to do this, 
as follows:

Refer to Section 3.4.4 of the MAST Reference Manual for more information on 
the structure reference operator. 

Here, the structure named name1 contains a member parameter named 
name2. For example, the three parameters within the tran structure are 
indicated by: 

The type of name1->name2 is the same as the type declared for name2. 
Therefore, because v1 is a number parameter within the tran structure, tran-
>v1 is also a number, which you can use just like any number parameter. 

Completing the Values Section for tran By using simvars, conditional 
statements, and structure references, the template can now define the tran 
argument in such a way that it activates the exponential waveform output for 
either a DC or transient analysis. 

First, the members of tran are evaluated to see if they have defined the 
waveform. The waveform is considered defined if an instance of vsource_1 (in 
a netlist) has set the value of tau > 0 and either v1¼0 or v2¼0. If these 
conditions are met, tran will override the constant value specified by supply. 
This ensures continuity in the waveform at time 0. 

Second, the waveform must be expressed as a function of time. The MAST 
language provides a collection of mathematical and other functions that you 
can use in expressions. The MAST Reference Manual lists all such functions. 
This example requires the exponential function ex, which is implemented in the 
MAST language by exp(x). 

The resulting expression is:

name1->name2 

tran->v1 

tran->v2 

tran->tau

v1 + (v2 - v1)*(1 - exp(-time/tau)) 
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where time is a simvar. Note that time is set to the current simulation time 
during a transient analysis and to 0 during a DC analysis.

Third, the conditional statements of the vsource_1 template use simvars (time, 
dc_domain, time_domain, freq_mag, freq_phase) and the structure reference 
operator (->) to decide whether the conditions for tran are satisfied. Compare 
the actual condition testing of whether the waveform is defined (from the values 
section, below) with the informal versions which follow it. Also, compare the 
final statements defining vs (below) with the informal versions.

18 values {

19 if (dc_domain | time_domain) { # If large signal

20 if ((tran->v1~=0 | tran->v2~=0) & tran->tau>0){

21 # If waveform is defined

22 vs=tran->v1 + (tran->v2-tran->v1) *(1-exp(-time/tran-
>tau))

23 } # source voltage = waveform

24 # at current time

25 else { # otherwise

26 vs=supply # source voltage = supply

27 }

28 }

29 else if (freq_mag) { # or if source is ac magnitude

30 vs=ac->mag #   source voltage = magnitude

31 }

32 else if (freq_phase) { # or if source is ac phase

33 vs=ac->phase #   source voltage = phase

34 }

35 }# end of values section
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Equations Section The template equation describes how the model that the 
template represents interacts with the rest of the system. The voltage source 
modifies the current at its pins p and m by its contribution is. The is current 
contribution is to be determined by the simulator such that the voltage drop 
across the source equals the specified source value. As with the vsource 
template, you must declare the source current as a var variable. The resulting 
equations section is as follows: 

Frequency-Dependent, AC Output

The definition for the ac argument is very similar to that of the tran argument. 
Simvar variables, conditional statements, and the structure reference operator 
(->) are used to define conditions for which the ac argument determines the 
output. The principal difference is that ac defines a small-signal response, such 

36 equations { # start of equations section

37 i(p->m) += is # add current contributed by source

38 is: v(p)-v(m)=vs # determine current contributed

39 # by source

40 } # end of equations section

Informal Presentation of Condition Testing

# Block 1 if (dc_domain | time_domain) {
if (waveform defined) {

vs = waveform at current time
} 
else (if waveform not defined) {

vs = supply
} 

# Block 2
# Block 3

# Block 4

} 
elseif (freq_mag) {

vs = magnitude of complex value
} 

# Block 5

elseif (freq_phase) {

vs = phase of complex value
} 
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as that obtained from an AC analysis, which assumes a linearization of the 
system about its operating point. It is a first-order approximation of the large-
signal response at that operating point and is typically evaluated as function of 
frequency. 

The following topics describe how the small-signal functionality is modeled in 
the vsource_1 template:
■ Small-Signal Structure Type Parameter
■ Small-Signal simvar Variables
■ Small-Signal Conditional Statements"

Small-Signal Structure Type Parameter
The ac argument represents a complex number specified by magnitude and 
phase. Because the MAST language does not include complex arguments and 
parameters, you declare this argument as a structure consisting of two real 
numbers (which represent magnitude and phase) and initialize them both to 0, 
as follows:

Note that this corresponds to Method 1 of initializing a structure described for 
the tran argument (see the topic titled "Initializing a Structure - Method 1 Using 
vsource_1"). It declares a parameter named ac to be a structure consisting of 
number type parameters mag and phase, each of which is initialized to 0. 

The initializer for the structure is simply a pair of parentheses preceded by an 
equals (=) sign. This means that, in a netlist entry referring to vsource_1, if the 
ac structure is not defined, then its members take on the values specified by 
their initializers (here, 0 for each). If the structure’s initializer were missing, the 
structure would have to be defined (given a value) in a netlist entry, even 
though the individual members have initializers. 

Small-Signal simvar Variables
Recall that the three arguments of the vsource_1 template—supply, tran, ac—
are provided to allow a user to select whether the output will be a constant 
voltage, an exponential voltage, or an AC signal. The supply and tran 

11 struc { 

12 number mag=0, 

13 phase=0 

14 } ac = () 
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arguments provide output voltages that are to be used for large-signal analyses 
(DC and transient analyses), while the ac argument provides an AC voltage for 
small-signal analyses (AC analysis). Therefore, the template must obtain, from 
the simulator, information about the simulation being used. 

As with the tran argument, the ac argument uses simvars to determine whether 
or not the simulator is performing an AC analysis. The ones used by ac are: 

freq_mag has a non-zero value when a small-signal (frequency 
domain) analysis is being carried out and the simulator 
is requesting the magnitude of a complex number. It is 
equal to 0 otherwise

freq_phase has a non-zero value when a small-signal (frequency 
domain) analysis is being carried out and the simulator 
is requesting the phase portion of a complex number. It 
is equal to 0 otherwise.

18 values {

19 if (dc_domain | time_domain) { # If large signal

20 if ((tran->v1~=0 | tran->v2~=0) & tran->tau>0){

21 # If waveform is defined

22 vs=tran->v1 +(tran->v2-tran->v1) *(1-exp(-time/tran-
>tau))

23 } # source voltage = waveform

24 # at current time

25 else { # otherwise

26 vs=supply # source voltage = supply

27 }

28 }

29 else if (freq_mag) { # or if source is ac magnitude

30 vs=ac->mag #   source voltage = magnitude

31 }

32 else if (freq_phase) { # or if source is ac phase

33 vs=ac->phase #   source voltage = phase

34 }

35 }# end of values section
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Small-Signal Conditional Statements
The if else statements for the ac argument check to see whether the simulator 
is requesting the magnitude of a complex number (i.e., whether freq_mag ¼ 0). 
If so, then the output of vsource_1 (vs) is assigned the value of mag within the 
ac structure by using the structure reference operator: 

If freq_mag =0, the template checks to see whether the simulator is requesting 
the phase of a complex number (i.e., whether freq_phase ¼ 0). If so, then the 
output of vsource_1 (vs) is assigned the value of phase within the ac structure 
by using the structure reference operator: 

30 vs = ac->mag

33 vs = ac->phase 

18 values {

19 if (dc_domain | time_domain) { # If large signal

20 if ((tran->v1~=0 | tran->v2~=0) & tran->tau>0){

21 # If waveform is defined

22 vs=tran->v1 + (tran->v2-tran->v1) *(1-exp(-time/tran-
>tau))

23 } # source voltage = waveform

24 # at current time

25 else { # otherwise

26 vs=supply # source voltage = supply

27 }

28 }

29 else if (freq_mag) { # or if source is ac magnitude

30 vs=ac->mag #   source voltage = magnitude

31 }

32 else if (freq_phase) { # or if source is ac phase

33 vs=ac->phase #   source voltage = phase

34 }

35 }# end of values section
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Modeling a Linear Transformer with MAST

In general, a transformer is modeled as two or more magnetically-coupled 
inductors. The linear transformer template (xformer, listed below) consists of 
two inductors and their mutual coupling, as shown in the following figure. 

The xformer template uses the inductor and mutind templates in a netlist 
section. The arguments of xformer are the two inductance values and their 

M
p1 i1 p2i2

v1 v2

m1 m2

l1 l2

Coupled inductors
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coupling factor, whose user-specified values are passed to inductor.1, 
inductor.2, and mutind.12.

The description of the xformer template is divided into the following topics:
■ Header and Header Declarations
■ Netlist Section
■ Local Declarations

element template xformer p1 m1 p2 m2 = l1, l2, k

electrical p1, m1, p2, m2

number l1, l2, k = 1

{ # start body of template

number m # local declaration

parameters { # start parameters section

if (k < -1 | k > 1) {

error("%:coupling factor must be between -1 and 1:k=%",

instance(), k) # if error, display message

#  and terminate simulation

}

else {

m = k * sqrt(abs(l1 * l2))

# otherwise, compute mutual

#  inductance

}

}

# Use following netlist to make a transformer from 

# two mutually-coupled inductors

inductor.1 p1 m1 = l1 # inductor netlist entry

inductor.2 p2 m2 = l2 # other inductor netlist entry

mutind.12 i(inductor.1) i(inductor.2) = m

# mutual inductance netlist entry

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
xformer.sin
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■ Parameters Section
■ Error Reporting
■ Template Equation

Header and Header Declarations

Three values characterize a model of a linear transformer: two self inductances 
and a mutual inductance. However, from a user’s point of view, it is more 
convenient to supply a mutual coupling factor, k (which has a value between -1 
and 1) instead of a mutual inductance (which must be calculated from k and the 
two inductance values). Each inductance is connected between a pair of 
electrical pins, so the template header and header declarations are:

Note that the arguments are declared such that k has a default of 1, while l1 
and l2 have no default values. Thus, when xformer appears in a netlist, its l1 
and l2 values must be specified, whereas k defaults to 1 (which models ideal 
coupling, so k need not be specified if this is acceptable).

Netlist Section

This transformer template uses an internal netlist to connect instances of the 
inductor and the mutind templates, which have been declared as element 
templates: 

element template xformer p1 m1 p2 m2 = l1, l2, k 

electrical p1, m1, p2, m2 

number l1, l2, k=1 

inductor.1 p1 m1 = l1 

inductor.2 p2 m2 = l2 

mutind.12 i(inductor.1) i(inductor.2) = m 
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It is important to understand that this netlist can work correctly only if both the 
inductor and mutind templates are element templates. The reasons are as 
follows:
■ If the inductor template is not an element template, the inductor branch 

currents (which are vars) are not available outside the template. Thus, 
declaring them as refs in the mutind template would not be sufficient to 
provide access to them. 

■ The mutind template must be declared an element template because it 
modifies the equations associated with the inductor currents, and this is 
possible only at the same level of hierarchy.

Local Declarations

The only item that requires local declaration is the mutual inductance m, which 
is a numeric parameter:

number m

In general, local declarations of parameters are very similar to argument 
declarations. They can take on the same types as arguments and they can 
have initializing values. The following statement:

type name [=initial_value] 

declares the parameter name as type type and, if the optional part of the 
statement is present, sets its value to the specified initial_value. If initial_value 
is not present, name has the initializing value undef, a special numeric constant 
representing an undefined value in the MAST language. You can use this 
constant wherever you can use a numeric constant, although the results are 
unpredictable if the simulator has to operate on undefined values.

If an initial value of a local parameter is specified, you can alter it from the 
Saber simulator, using the alter command. You cannot alter a local parameter 
that has no initializer. Note that you cannot alter the value of a local parameter-
-you can alter only its initializer. This is because you can modify parameters in 
the parameters section.

Parameters Section

The parameters section of a template is useful for manipulating parameters, 
such as template arguments, that are variables or structures that do not 
change during simulation.
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The parameters section is used primarily for the following purposes:
■ Validating template arguments
■ Converting template arguments into parameters needed by a model
■ Specifying, for statistical analysis, correlation between parameters
■ Setting up static information, such as sample points, that depends upon 

template arguments

The xformer template example addresses only the first two points. 

The parameters section is a procedural section--meaning that, when executed, 
its statements are executed in the sequential order. It consists of the keyword 
parameters followed by a sequence of statements between braces ({}).

The simulator executes the parameters section as follows:
■ Once during initialization of the system description
■ Once for each alter command (including alter commands generated by the 

vary command), but only for the template instances affected by the alter 
command

■ Once for each Monte Carlo run, but only for the template instances having 
statistical distributions

Statements in the parameters section follow the same syntactical rules as 
values section statements, except that the operations can involve only 
parameters, that is, template arguments and parameters declared locally in the 
template. There are also several routines, most for error reporting, that you can 
use only in the parameters section and in when statements.

Template arguments and parameters declared locally in a template are 
collectively called parameters. They can assume the same types (numbers, 
structures, etc.), can take on the same values, and can be used identically in a 
template, except that a template argument cannot be changed inside a 
template. That is, it is not possible to assign a value to a template argument in 
an assignment statement. 

The parameters section in the xformer template checks to see if the user-
specified value for coupling factor, k, lies between -1 and 1:

Note the opening brace at the end of the line; it introduces the error reporting 
statements that follow, as explained in the topic titled "Error Reporting".

if (k < -1 | k > 1) { 
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The else clause is used, when there is no error detected, to compute the 
mutual inductance and assign the result to m, which is later used in the netlist 
section.

Error Reporting

If a user has specified invalid argument values to a template instance in a 
netlist, there should be a clear error message to indicate the situation. In the 
xformer template, you should report an error if the user-specified value for 
coupling factor, k, does not lie between -1 and 1, because such a factor 
represents a physically impossible situation. 

parameters { # start parameters section

if (k < -1 | k > 1) {

error("%:coupling factor must be between -1 and 1:k=%",\

instance(), k)# if error, display message

#  and terminate simulation

}

else {

m = k * sqrt(abs(l1 * l2))

# otherwise, compute mutual

#  inductance

}

}
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The MAST language supports a set of functions that can be included in a 
template that will inform the user which instance has the bad value, what the 
bad value is, and what must be done to correct the problem: 
■ The instance( ) function returns a string containing the full pathname of the 

template instance, describing its exact position in the design hierarchy. 
■ The error(format [, argument...] ) function reports error conditions that the 

template cannot correct. It issues an error message specified by the 
arguments of the function, which are:

Calling the error() function causes the condition causing the error to be 
discarded. If this happens during simulator start-up, the simulator quits. If it 
happens because of an alter statement, the alter statement is discarded. 

■ The warning(format [, argument...]) function is for reporting an abnormal 
condition that the template can correct. It issues a warning message, where 
format and argument are as described for the error() function, above. 
Calling the warning() function has no effect on simulator operation. 

■ The message(format [, argument...]) function is for debugging and for 
printing out general information. It simply issues the message described by 
format and argument. Calling the message() function has no effect on 
simulator operation.

It is typical to use these functions with conditional statements, although you can 
also use them in when statements. 

For the xformer template, the error() function is required, because the template 
cannot correct a user-specified argument value. The resultant message should 

format a string holding the message text and, optionally, placeholders 
for information that is can vary, such as the instance name. A 
string is a sequence of characters enclosed between quotation 
marks (" ") but not including quotation marks. Percent signs (%) 
in the string are interpreted as placeholders, unless preceded by 
a backslash (\). In the printed message, they are replaced with 
the remaining arguments of the error() function.

argument an optional numeric or string quantity, such as a parameter or 
function value. When the error message prints, the i’th argument 
replaces the i’th placeholder in format. If the i’th argument is a 
variable of type structure, the whole structure is printed in place 
of only the i’th placeholder. There must be as many arguments as 
there are placeholders in the format string.
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display the current instance, the bad value, and the range of valid values for the 
user to correct. This message is implemented as follows:

Note that the format string has two placeholders (the percent (%) signs), which 
are filled in with the instance name and the value of k, respectively. 

For example, the following netlist entry specifies an invalid coupling factor of 2:

This would result in the following error message:

Template Equation

The xformer template combines existing models (inductor and mutind) into one 
template and provides some error checking—it has no characteristic equation 
of its own. However, it does compute the mutual inductance value (to be used 
by mutind) from the arguments of coupling factor (k) and the two inductance 
values (l1, l2). 

The mutual inductance value is given by the equation:

m = k•  

This is implemented in the template as:

m = k* sqrt(abs(l1*l2)) 

where m is the argument of the mutind template instance, sqrt is the square 
root function, and abs is the absolute value function. The sqrt and abs functions 
are intrinsic to the MAST language (sqrt requires a non-negative argument). 
Although you could use conditional statements to restrict l1 and l2 to positive 
values, it is more efficient to use the abs function and take the square root of 
their absolute value. 

Thus, this statement assigns a value to m resulting from an expression using 
the xformer arguments k, l1, and l2. 

error("%:coupling factor must be between -1 and 
1:k=%",instance(),k)

xformer.bad a b c d = 1m, 2m, 2 

** ERROR "TEMPLATE_ERROR" ** xformer.bad:coupling factor must be between -
1 and 1:k=2 
132 Saber® MAST Language User Guide
B-2008.09



Chapter 6: Variables and Arguments
Modeling a Temperature-Dependent Resistor with MAST
Modeling a Temperature-Dependent Resistor with MAST

Materials used in electronic components often change their characteristics with 
temperature variations. You can distinguish two different causes of 
temperature-related effects: 
■ Operation at an ambient temperature different from the nominal one
■ Self-heating effect in a component 
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The template in this section models a resistor that can operate at various 
ambient temperatures. This template, called resistor_1, also checks for a value 
of zero resistance and allows power to be extracted, is listed below:

element template resistor_1 p m = res, tc, tnom

electrical p, m

number res, tc[2]=[0, 0], tnom=27

external number temp

export val p power # make power available

{

number r # local declaration

val v v

val i i

parameters {

r = res * (1 + tc[1]*(temp-tnom) + tc[2]*(temp-tnom)**2)

# computation of resistance

if (r==0) error("%: resistance value is zero",instance())

# message returned if error

}

values {

v = v(p,m)

i = v/r

power = v*i # calculate power

}

equations {

i(p->m) += i # current based on res.

}

}
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The description of the resistor_1 template is divided into the following topics:
■ Header and Header Declarations -- shows how to declare, initialize, and use 

arrays

• External Variable for Temperature
■ Temperature Dependence of the Resistance Value
■ Equations Section
■ Parameters Section and Local Declarations

• Error Checking and Message
■ Altering an External Parameter
■ Export a Variable

Header and Header Declarations

The arguments of the resistor template are the nominal resistance, the 
temperature coefficients, and the nominal temperature:

Note that this template declares all arguments on the same line, shown as 
follows:

The nominal resistance, res, is not initialized and must be specified by the user. 
Temperature coefficients, tc, are contained in an array of length 2; its entries 
are both initialized to 0. The nominal temperature, tnom, is initialized to 27×C. 

It is preferable to have just one argument, tc, for the temperature coefficients, 
by declaring it to be an array of length 2. An array is an ordered set of 
parameters that are all of the same type. 

The elements of an array need not be number parameters, although they are 
here. Array elements can be of any valid parameter type, such as structures or 
enums. Arrays can be of fixed size, as in this example, or of unbounded size, 
which you can specify by declaring them with an asterisk (*), for example, as in 

element template resistor_1 p m = res, tc, tnom 

electrical p, m

number res, tc[2]=[0, 0], tnom=27

number res, tc[2] = [0,0], tnom=27
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tc[*]. If not declared otherwise, array subscripts run from 1 to the array size. 
The i’th element of array is array[i]. For information about multi-dimensional 
arrays and subscripts not starting at 1, refer to the MAST Reference Manual. 

For the resistor_1 template, if both array elements tc[1] and tc[2]are left at 0, 
the resistance value is independent of temperature. 

Note the following use of initializers for template arguments:
■ res has no initializer, so anyone using the resistor_1 template must specify 

a resistance value. 
■ tc[1], tc[2], and tnom have initializers or default values that are satisfactory 

in most cases, because temperature effects are rarely used. 

The topic titled "Export a Variable" describes how to use power, which is 
declared as an export variable in the header declarations:

External Variable for Temperature
In order to compute the actual resistance value (see the topic “Temperature 
Dependence of the Resistance Value”), you need to use the value of the 
ambient simulation temperature, temp. This is a “global” variable that is used 
by all templates; it is specified in the provided header.sin file. The Saber 
simulator, by default, includes the contents of this file at the top of each system 
description. (For more information on which files are automatically activated by 
the Saber simulator, see the topic “Information Common to all Generic 
Templates” in the Saber online documentation.) Therefore, a template can 
refer to the value of temp by declaring it external in the header declarations 
section: 

This ambient temperature is initialized in header.sin to a suitable value, 27×C.

In general, a parameter declared as external is declared as a type that is found 
elsewhere in the design (not necessarily within the same template). If a 
template instance, say x.y, refers to an external parameter in a hierarchical 
design, the simulator resolves the external reference by “walking up” the 
hierarchy from x.y, going first to the “parent” of x.y, then to its “grandparent,” 
and so on. This is continued until either the specified name is found or until the 
top level of the design is reached. If the simulator finds the name, it uses its 

export val p power 

external number temp 
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value in x.y. Otherwise, it reports an error. This mechanism for resolving 
external references allows you to have different values for the same variable in 
different parts of the design. Refer to the MAST Reference Manual for a more 
extensive example of this resolution process. 

By declaring a variable as external in the header declarations section, you can 
change its value for any instance of that template in a design—as if the variable 
were an argument for that template. For example, the netlist entry listed below 
changes the value of temp for resistor_1.r1 to 58×C; all other templates in the 
design (including other instances of resistor_1) use the value of temp specified 
in the header.sin file (27×C). 

Note:   

You cannot modify the value of an external variable from within a template. 

Temperature Dependence of the Resistance Value

This model implements first-order and second-order temperature dependence 
according to the following: 

R = Rnom • [1 + K1(T - Tnom) + K2(T - Tnom) ] 

where K1 is the linear coefficient and K2 is the quadratic temperature 
coefficient. The nominal resistance value, Rnom, is assumed to have been 
measured at the nominal temperature, Tnom. 

The actual resistance value, R, is therefore a function of the difference between 
the actual simulation temperature, T, and Tnom. 

Note that Equation 3 is not the characteristic equation of the template—it is 
only a modification of the user-specifiable nominal resistance, Rnom; however, 
the result of this modification (R) is used in the characteristic (template) 
equation. 

Equations Section

The equation for the resistor_1 template is similar to the one used in the 
resistor template, except that it uses the calculated resistance value (r) from 

resistor_1.r1 n1 b10 = 5k, temp=58 

2

Saber® MAST Language User Guide 137
B-2008.09



Chapter 6: Variables and Arguments
Modeling a Temperature-Dependent Resistor with MAST
the equation shown in the topic titled "Temperature Dependence of the 
Resistance Value", rather than the argument value (res).

Refer to the highlighted sections in the following code:

element template resistor_1 p m = res, tc, tnom

electrical p, m

number res, tc[2]=[0, 0], tnom=27

external number temp

export val p power # make power available

{

number r # local declaration

val v v

val i i

parameters {

r = res * (1 + tc[1]*(temp-tnom) + tc[2]*(temp-tnom)**2)

# computation of resistance

if (r==0) error("%: resistance value is zero",instance())

# message returned if error

}

values {

v = v(p,m)

i = v/r

power = v*i # calculate power

}

equations {

i(p->m) += i # current based on res.

}

}
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Parameters Section and Local Declarations 

The resistor_1 example shows how to compute the actual resistance value (by 
modifying the nominal resistance with temperature effects) and report an error 
if this value is 0. This prevents division by 0 in the template equation. 

With access to the actual temperature established, the equation shown in the 
topic titled "Temperature Dependence of the Resistance Value", is 
implemented in the template as shown highlighted in the following parameters 
section:

where array elements tc[1] and tc[2] correspond to temperature coefficients K1 
and K2, respectively. This is a direct translation into the MAST language of the 
equation describing the temperature dependence of the resistor (note the 
exponentiation operator, **). The actual resistance value is assigned to a local 
parameter r—you cannot simply modify res, because a template cannot 
change the value of an argument.

Error Checking and Message
A conditional expression (beginning with if) is included to test whether the 
actual resistance value (r) is 0. Using a relational expression in an if statement 

number r # local declaration

# ...

parameters {

r = res * (1 + tc[1]*(temp-tnom) + tc[2]*(temp-tnom)**2)

# computation of resistance

if (r==0) error("%: resistance value is zero",instance())

# message returned if error

}
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to check whether a variable is equal to a number requires that the double 
equals sign (= =) be used as shown highlighted in the following example:

If r is calculated to be 0, an error is returned using the error() and instance() 
functions. These indicate the erroneous value and the template instance in 
which it occurred. Note that the error() function call is on the same line as the if 
statement. 

Altering an External Parameter

You can include an alter command within a netlist file to change a value of a 
declared parameter that is available at the same level of hierarchy. The altered 
parameter must be initialized and available locally. It may be declared within 
any of the following: 
■ a template in the netlist (e.g., within resistor_1)
■ a template not in the netlist but that is automatically included when the 

Saber simulator is invoked (e.g., within header.sin) 
■ the netlist itself (e.g., by including a line such as number von=5)

The most useful occurrence of this is to alter the default temperature of the 
system (temp, which is declared within header.sin) at the top of a netlist. 

In that case, you cannot simply change the initializer on the declaration, 
because you have no local access to the declaration in header.sin. However, in 
the netlist, you can specify one of the following and change the default 
temperature in the system for that simulation. With the first method, the value 
of temp in the alter statement overrides the value of temp in header.sin. With 

number r # local declaration

# ...

parameters {

r = res * (1 + tc[1]*(temp-tnom) + tc[2]*(temp-tnom)**2)

# computation of resistance

if (r==0) error("%: resistance value is zero",instance())

# message returned if error

}
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the second method, you specify a temperature instance-by-instance in a netlist 
as shown in the following example: 

Export a Variable

As was done for charge of the capacitor_1 template, you can specify the power 
dissipation of the resistor_1 template as a val variable. Like charge, power is a 
quantity that is not required by the model, but the simulator can provide it with 
no performance penalty. 

This is normally done by declaring a val variable named power in the template 
header and then calculating it as a function of other template variables (i, v) 
that have been previously declared. The computation for i, v and power is done 

alter temp=37

r.load 0 aout = rnom=1k, tc=[0.4, 0.5]

. . . 

or

r.load 0 aout = rnom=1k, tc=[0.4, 0.5], temp=37
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in a values section. Refer to the highlighted statements in the following 
example:

The letter p in the declaration establishes the variable named power as power 
in watts, as defined in the units.sin file, which is provided with the Saber 
simulator. The simulator, by default, includes the units.sin file with each system 
description (netlist). (For more information on which files are automatically 
activated by the Saber simulator, see the topic “Information Common to all 

element template resistor_1 p m = res, tc, tnom

electrical p, m

number res, tc[2]=[0, 0], tnom=27

external number temp

export val p power # make power available

{

number r # local declaration

val v v

val i i

parameters {

r = res * (1 + tc[1]*(temp-tnom) + tc[2]*(temp-tnom)**2)

# computation of resistance

if (r==0) error("%: resistance value is zero",instance())

# message returned if error

}

values {

v = v(p,m)

i = v/r

power = v*i # calculate power

}

equations {

i(p->m) += i # current based on res.

}

}
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Generic Templates” in the Saber online documentation.) The unit for power 
(watt) is then automatically used when power is displayed in the Scope 
Waveform Analyzer after simulation. 

However, you can make this value of power available to another template 
hierarchically above an instance of the resistor_1 template, such as rlc1. (See 
the Example subtopic, below). This is done by declaring power as an export 
variable in the header declarations section of resistor_1: 

An export variable is simply a val variable, a var variable, or a branch whose 
declaration appears in the header declarations and is preceded by the keyword 
export. This makes the value of the export variable upwardly available in a 
hierarchy. That is, it can be used by a “parent” template at the next higher level 
in the hierarchy (i.e., a template that calls an instance of resistor_1). However, 
an export variable cannot be passed to other templates at the same level of 
hierarchy (i.e., within the same circuit). 

The main restrictions on an export variable are the following:
■ An export variable can be used only by the parent template (however, it can 

be exported upward from the parent template using another export 
declaration). 

■ An export variable cannot be used in the template equation of another 
template. 

■ An export variable must be declared in the header declarations section. 

Example 
Consider the rlc1 template, which uses hierarchy by including an internal netlist 
of three templates. Suppose resistor_1 were specified within rlc1, instead of 
resistor. Then rlc1 could declare a val variable that used the value of power 
from resistor_1. 

This is shown as follows, using pwrd as the name of the val variable in rlc1: 

Of course, if the capacitor and inductor templates within rlc1 had also declared 
power as an export variable, the power from capacitor.c1 and inductor.l1 would 

export val p power 

val p pwrd # hypothetically in rlc1

pwrd = power(resistor_1.r1) # hypothetically in rlc1
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also be available to rlc1. You could then write an expression within rlc1 to add 
the power from all three of these subordinate templates. This sum could then 
be specified in a signal list for display in Scope. 

Modeling an Idealized Op Amp with MAST

The template for this operational amplifier is shown as follows:

The description of the opamp template is divided into the following topics:
■ Current Contribution for Each Pin -- shows a modeling technique that lets 

you combine several apparently different model equations into one, so that 
altering a parameter value does not change the topology of the system

■ Three-Pin Topology
■ Characteristic Equations

element template opamp ip im out = a

electrical ip, im, out # header declarations

number a = inf

{ # start of template body

var i iout # local declarations

number x1, x2

parameters {

if (a==inf | a==undef) { # if gain is infinite

x1=1; x2=0 # or undefined, then input

} # voltage is 0;

else { # otherwise, output voltage

x1=a; x2=1 # is gain times input voltage

} # end of parameters section

equations { # start of equations section

i(out) += iout # current contribution at output

iout: x1 * (v(ip) - v(im)) = x2 * v(out)

# equation associated with iout

} # end of equations section

}
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■ Header and Header Declarations -- shows the use of the special MAST 
constant inf

■ Local Declaration of Local Parameters -- shows how to declare local 
parameters, along with how to initialize and alter them 

■ Parameter Section -- shows how to put multiple statements on the same 
line, separated by semicolons (;)

■ Equations Section

Current Contribution for Each Pin

It is sometimes necessary to specify the current that a template contributes to 
each pin individually, rather than to specify the current flowing between two 
pins (i.e., the branch current). This is the case for the opamp template. 

For example, the equation from the capacitor template can be expressed in a 
single line as follows: 

This can be interpreted as a consolidation of the following instructions:
■ Add the current defined by the expression to the current at pin p
■ Subtract the current defined by the expression from the current at pin m

In the MAST language, you can express these two instructions separately, pin-
by-pin: 

For the Saber simulator, these two statements are equivalent to the single 
statement above in every respect—including the processing required to set up 
and solve the equations. The single-statement formulation guarantees that 
current is conserved in the template. The pin-by-pin formulation places this 
responsibility on the template writer, but it provides more flexibility. This is 
important in advanced or exceptional cases, such as the opamp template. 

Which formulation to use is largely a matter of personal preference.

i(p->m) += d_by_dt(v(p,m)*cap) 

i(p) += d_by_dt(v(p,m)*cap) 

i(m) -= d_by_dt(v(p,m)*cap) 
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Three-Pin Topology

An important concept in simulation is the topology of the system to be 
simulated. Simply put, this is a description of how the through variables depend 
upon the across variables at each pin. In this context, the complexity of the 
dependence (linear, nonlinear, etc.) is irrelevant. All that matters is that there is 
dependence. The Saber simulator obtains this information from the template 
equations of all template instances connected to a node when it sets up the 
system equations. After that, the topology is fixed and may not be changed 
without exiting and restarting the simulation. 

There are cases where the model equations change depending upon a model 
parameter, yielding different topologies for different values of that parameter. In 
such cases, you can modify the parameter using the alter command only in a 
value range that would not change the topology.

The opamp example introduces a modeling technique that lets you combine 
different model equations such that a single equation satisfies all values of the 
template parameters. This template allows specifying either finite or infinite 
gain. 

This example uses different constructs than those of the other electrical 
element examples. The most notable distinction is the fact that this model 
provides a two-terminal input and a one-terminal output, which means that 
current iout cannot be found as a branch current—it must be declared as a var 
variable. Because of this, the template equation uses the pin-oriented 
formulation described in the topic titled "Current Contribution for Each Pin".

Characteristic Equations

An idealized op amp (shown in the figure below) is modeled as a voltage-
controlled voltage source, whose output voltage satisfies the following 
equation: 

Vout = A•Vin 

where A is the gain. If the gain is infinite, it is more appropriate to use the form:

Vin = Vout /A 

which immediately yields the result that, for an ideal op amp having infinite 
gain, the input voltage is 0. There is an additional equation, just as in any 
model having a voltage output—select the output current such that KVL is 
satisfied (i.e. Equations 4 and 5). 
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Header and Header Declarations

This op amp model is a three-terminal device with gain, a, as its only argument. 
The template models an ideal op amp with a default value of infinite gain. 
Therefore, the template header and header declarations are as follows:

Note that the third line initializes a to inf, a special numerical constant in the 
MAST language (similar to undef) that can be used to indicate an infinite value 
in the template. Although the Saber simulator does not use an infinite value for 
inf, you can assign inf as a value to a template parameter (such as a=inf). 
However, you should not use it as a value in an expression (such as x2=inf/6), 
except in a conditional statement to test equivalence (such as if (a==inf) ). 

Local Declaration of Local Parameters

The following equations describe the voltage relations in this op amp. The first 
equation is valid for all values of A except infinity; the second equation is valid 
for all values of A except 0. 

element template opamp ip im out = a 

electrical ip, im, out 

number a = inf 

Vout = A*Vin 

Vin = Vout/A 

ip

vin

im

V

iout

out

+

_

Simple, idealized operational amplifier
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This is a typical situation, in the sense that implementing just one of these 
equations does not completely describe the model. 

For example, a naive implementation would incorporate the first equation for all 
values of A except infinity. It would treat A=infinity as a special case and set 
Vin=0 explicitly. This means that for most values of A, Vout depends on Vin, 
while for A=infinity, no such dependency exists. Therefore, by the definition of 
topology, altering A from a finite value to infinity changes the topology of the 
system. This is not a valid implementation, as explained at the beginning of the 
topic “Three-Pin Topology”. 

You can combine the two equations into one by introducing two auxiliary (local) 
variables x1 and x2, with values that depend on the value of A (the template 
argument, a): 

Because x1 and x2 depend only upon the template argument, a, they can be 
defined as local parameters:

In general, a local parameter is declared in much the same way that an 
argument is declared. A local parameter can be any of the same types as 
arguments and they can have initializing values. The generalized form of a 
declaration:

declares the parameter name as type type and sets its value to initial_value, if 
present. If initial_value is not present, name has the initializing value undef, a 
special numeric constant representing an undefined value in the MAST 
language. 

The main reason for using undef is that if an initial value of a local parameter is 
specified, you can alter it from the Saber simulator, using the alter command. 
You cannot alter a local parameter that has no initializer. Note that you cannot 
alter the value of a local parameter—you can alter only its initializer. This is 
because you can directly modify a parameter value in the template.

x1 * vin = x2 * vout 

number x1=1, x2=0 

type name  [=initial_value] 
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Also, the output current must be declared as a var variable instead of as a 
branch current because the template has only one output pin (out):

Declaring iout as a var variable allows it to be used as a system variable in the 
template equations. 

Parameter Section

The following if-else statement in the parameters section expresses the 
dependency of x1 and x2 on the value of the argument, a:

The “|” character in the if statement denotes an OR condition—if a is specified 
as inf OR undef, then use the following values of x1 and x2: x1=1; x2=0. 

Inserting the values of x1 and x2 into the equation:

and comparing it with the characteristic equations of the op amp, you can see 
that this single equation is valid for all values of the gain a. 

Note that each of the lines listed below contains two statements that are 
separated with a semicolon (;). The semicolon marks the logical end of a line, 
so using one to separate two statements has the same effect as placing the 
statements on different lines.

var i iout 

parameters {

if (a==inf | a==undef) { 

 x1=1; x2=0 

} 

else {

x1=a; x2=1 

} 

}

x1 * vin = x2 * vout 

x1=1; x2=0 

x1=a; x2=1 
Saber® MAST Language User Guide 149
B-2008.09



Chapter 6: Variables and Arguments
Modeling an Idealized Op Amp with MAST
Also, changing the value of the gain from a finite value to infinity does not 
change the topology of the system. This is because vin depends on vout in 
both cases (although for infinite gain, the dependence has zero value). 

Equations Section

The following equations describe the voltage relations in this op amp. The first 
equation is valid for all values of A except infinity; the second equation is valid 
for all values of A except 0.

The += operator is used to add the current of the system variable, iout, to the 
current at the output pin of the op amp, i(out):

The simulator has to determine the value of iout in order to satisfy the voltage 
gain equation. 

Consequently, to express Vin and Vout in terms of the across variables at the 
pins, the template equation becomes:

Thus, apart from describing the characteristic equations of the op amp, there 
are two additional facts of note: 
■ There is no need to specify explicitly that there is no current between pins 

ip and im, although you could write i(ip->im) += 0. The default contribution 
of a template to the through variable at a pin is 0. 

■ There is no need to specify the contribution of a through variable to the 
reference (ground) node, 0. The way the current contribution of the template 
is specified implies that the current flows to ground. In general, if the 
contribution of a through variable is not balanced, it is assumed to flow into 
or out of the reference node. 

Vout = A*Vin 

Vin = Vout/A 

i(out) += iout 

iout: x1 * (v(ip) - v(im)) = x2 * v(out) 
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The complete equations section is as follows:

equations { # start of equations section

i(out) += iout # current contribution at output

iout: x1 * (v(ip) - v(im)) = x2 * v(out)

# equation associated with iout

} # end of equations section
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7
7Modeling Digital Systems

Many models are written with the assumption that time-domain analyses are 
continuous. This means that the Saber simulator chooses the size of a time 
step to be as large or as small as necessary for accuracy. However, later topics 
shows that it is possible to limit time steps using the next_time and step_size 
simvar variables—this is done for the step output of the vsource_2 template. 

Digital modeling also uses this ability of a template to schedule the exact time 
for variables to take on new values. Further, systems of digital models are 
concerned primarily with the occurrence of transitions from one logic level or 
state to another at connection points. A change of state on a connection point 
is known as an event. Thus, a digital model does not need to account for all 
continuously changing analog information; it needs only to schedule 
transitional events. As a result, scheduling can dramatically speed up 
simulation, because the simulator has to check effects of state changes only at 
scheduled times, instead of after each time step. 

This process, known as discrete time simulation, enables you to create digital 
models in a way that is an extension of time-domain modeling. The key to 
discrete time simulation with MAST is the when statement. In addition, digital 
modeling optimizes simulation speed without sacrificing simulation accuracy. 

The following topics defines the terminology and some concepts of discrete 
time simulation:
■ Digital Terminology
■ Connection Points
■ Time
■ Values
■ Events
■ Scheduling With the when Statement
■ Event Queue
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The following topics describe the special approach to initialization with digital 
modeling:
■ Initializing Connection Points - Digital MAST Modeling
■ Initializing Internal Variables - Digital MAST Modeling 

The following topics provide examples of digital modeling techniques: 
■ Modeling an AND Gate - MAST Template
■ Initialization and Internal Events - MAST clock Template 

Digital Terminology

Digital models often employ (but are not limited to) logic functions defined in 
terms of Boolean algebra. These functions are mathematical ways of 
representing propositional conditions based on binary choices referred to as 
logic states (or levels). There are several equivalent ways of expressing a pair 
of logic states: 
■ true—false 
■ HIGH—LOW 
■ on—off 
■ closed—open 
■ 1—0 

For example, the Boolean AND function specifies two inputs and an output with 
the following conditions: if both inputs are HIGH (or 1, or true, etc.), then the 
output is also HIGH. Otherwise, the output is LOW. 

The MAST language provides constructs to model these types of propositions, 
define logical levels, and track changes in logic levels. However, the capability 
for digital modeling incorporates a different approach to simulation from that 
used for analog models. Consequently, this requires a closer look at 
terminology. 

Connection Points

In previous chapters, connection points have been declared as electrical. 
When connection points are declared as an electrical type, it is implied that 
they are pin-type (i.e., electrical is a specific kind of analog, pin-type connection 
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point). Pin-type connection points define associated through and across 
variables for the simulator to solve as part of a continuously changing analog 
system. 

Digital modeling uses a different type of connection point, called state, which 
does not define through or across variables. A state connection point is 
restricted to a finite set of values, which are assigned only at discrete times. 

The terms connection points and pins are often used interchangeably. 
However, a pin is a specific kind of connection point that implicitly declares 
through and across variables for a model. 

Time

A digital model does not need to account for all continuously changing analog 
information. A digital model only needs to account for scheduling transitions 
from one logic level, or state, to another. For digital models, the simulator has 
to check only the effects of state changes and only at scheduled times. As a 
result, the differences between analog and digital models lie within two 
fundamental quantities: 
■ time—continuous for analog; discontinuous for digital
■ values—continuous for analog; discrete for digital

A state connection point declares that the values at those points change 
discontinuously in time. Such points have no through and across variables 
associated with them—there are no quantities that must “sum to zero.” They 
are simply connection points that allow state transitions (see the topic titled 
"Events") to pass between templates. A state connection point establishes a 
discrete time model, for which the simulator has to check effects of state 
changes only at scheduled times instead of after each time step.

Note:   

It is possible to declare states for a continuous-valued (analog), but event-
driven model. 

Values

In addition to declaring connection points to be discrete in time (by using the 
term state), a digital model also declares them to assume only discrete values. 
This is done by providing an additional term in the declaration that defines a set 
of values the connection points can assume. Two such sets are provided in the 
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units.sin file: logic_4 and logic_3. The logic_4 set contains MAST values for 
logic states 0, 1, X, Z; logic_3 contains MAST values for 0, 1, X. The available 
values for logic_4 and logic_3 are user-definable, just as those for electrical are 
user-definable within the units.sin file. 

The default values for the set named logic_4 has the following MAST values 
(shown with their boolean interpretations):

Thus, a connection point declaration for a digital model appears in the header 
with two terms (such as state and logic_4) that declare discrete time and 
discrete values, respectively. For example, 

This differs from the one-word declarations, such as electrical, used in template 
examples from previous chapters. 

The definition for logic_4 is contained in the units.sin file and is expressed as 
follows: 

Each line gives, respectively, a value that these pins can assume, the Boolean 
equivalent of the value, how the value appears when printed, and how the 
value appears when displayed graphically (as with the Scope Waveform 
Analyzer). The name of the unit is logic_4 and the default value is l4_x. Such 
unit constructs are documented in more detail in the Mast Reference Manual.

l4_0 Logic 0 

l4_1 Logic 1

l4_x Logic X, unknown state

l4_z Logic Z, high impedance state

state logic_4 cp1, cp2,...

unit state {l4_0, "0", "0", "low.1",

l4_1, "1", "1", "high.1",

l4_x, "x", "x", "middle.1",

l4_z, "x", "z", "middle.1"} logic_4=l4_x
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Events

An event occurs at a connection point when the value changes from one state 
value to another, at a scheduled time. It is very important to note that the mere 
occurrence of a state transition does not constitute an event—it must be 
scheduled.

An event is the result of associating a change in discrete value with a 
scheduled discrete time—if this change is not scheduled, it is not an event.

Because digital templates are concerned only with events on their connection 
points, they do not have through and across quantities to calculate (that is, they 
do not contain template equations). Thus, they do not need to be declared as 
element templates.

Scheduling With the when Statement

Scheduling an event at a connection point is absolutely necessary for the 
Saber simulator to perform discrete time simulation with a circuit (or system) of 
digital models. That is, you need to schedule events to “kick off” discrete time 
simulation among templates—if no transitions (events) are scheduled, there is 
no propagation of information from one digital template to the next. 

Scheduling an event requires using the when statement, which is used in 
conjunction with the following intrinsic, event-driven functions:
■ schedule_event 
■ handle 
■ event_on 
■ deschedule 

The combination of the when statement with one or more of these functions is 
the basis of digital modeling, as shown in the examples in the topics titled 
"Modeling an AND Gate - MAST Template" and "Initialization and Internal 
Events - MAST clock Template". For reference information on the when 
statement and its intrinsic functions, see the MAST Reference Manual. 

It is not always necessary to use a when statement to specify a value for a 
state variable. In the case of an internal (locally declared) variable, you can just 
use an assignment statement as follows: 

int_state = l4_1
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However, the assignment of this value will not be propagated externally (that is, 
to other templates) as a scheduled event.

It is possible to change state values without scheduling them (by using 
assignment statements in the template). However, these changes will not be 
propagated externally to other templates that are waiting for scheduled events.

As a general rule, use the when statement to schedule state values of 
connection points; use an assignment statement to specify state values of 
internal variables.

Event Queue

The distinguishing characteristic of discrete time simulation is the ability to 
detect and schedule events at connection points. The Saber simulator 
performs discrete-time analyses based on an event queue rather than on time 
steps. This event queue is simply the result of the Saber simulator 
automatically ordering scheduled events from all digital templates that need to 
be evaluated. During simulation, the simulator places events into the queue in 
a temporal sequence, moves them up, and executes them in that order when 
they reach the front of the queue.

The importance of the event queue is that the when statement —the principal 
MAST construct for discrete time simulation—depends entirely upon events 
being in the event queue.

The following topic titled shows a simplified representation of how an event 
queue works at the time of simulation.

A Typical Event Queue
The following table indicates that the Saber simulator has determined that 
there is a sequence of 227 events from all the digital templates in the circuit to 
be processed (for example, “#1: at time 3ms, the value at node out1 changes 
from its present value to l4_0; #2: at time 4ms, the value at connection point 
out3 changes...”). Once the Saber simulator executes an event, the simulator 
shifts all unexecuted events up one position until all events in the queue have 
been executed. 

event # node name time value

1 out1 3ms l4_0
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The contribution of a digital template to the event queue is determined by using 
the when statement and intrinsic event-driven functions. For instance, 

1. Event #1 was placed in the queue by including either of the following 
statements in a template:

2. Once in the queue, event #1 was detected with the following when 
statement in the template:

3. Event #1 can be removed from the queue with the following statement in the 
template:

4. Event #1 will not be placed in the queue with an assignment statement in 
the template, such as: 

The MAST Reference Manual and the examples in topics titled "Modeling an 
AND Gate - MAST Template" and "Initialization and Internal Events - MAST 
clock Template" provide more details on the syntax of the when statement.

2 out3 4ms l4_1

3 in1 6ms l4_0

...

227 in2 261ms l4_x

schedule_event(3u,out1,l4_0)

handle = schedule_event(3u,out1,l4_0)

when (event_on(out1))

deschedule (handle)

out1 = l4_0

event # node name time value
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Note:   

Multiple events scheduled at the same time are executed in an order that is 
not user controllable. 

Initializing Connection Points - Digital MAST Modeling

A digital model is mainly concerned with changes in discrete values of state 
variables (events) occurring on its connection points. An analog model is 
concerned with changes in continuous values of through and across system 
variables. Because of this, the digital model requires a different approach to 
initialization than that of an analog model. 

The functional difference between these approaches is that nodes of an analog 
circuit do not require explicit initialization by the constituent templates, whereas 
nodes of a digital circuit do.

If you want to initialize a connection point of a digital template to a value other 
than l4_x, you must use the when statement to schedule an event.

Initializing Internal Variables - Digital MAST Modeling

Digital templates often use internal state variables. These can be initialized in 
one of two ways: 

1. With a when statement—schedule an event to set the desired value

2. In the variable declaration—use an initializer to set the desired value

Note that the first method places the initialization of the internal variable in the 
event queue—which is not always necessary. Recall that setting the value of a 
state variable needs to be scheduled only if it is necessary to be in the event 

analog: A circuit consisting of analog templates is initialized by setting 
all nodes to a DC voltage of 0, treating all capacitors as open, 
and all inductors as shorts. The simulator then performs a DC 
analysis to find the resulting node voltages (operating point).

digital: A circuit consisting of digital templates is initialized by first 
setting all nodes to a logic_4 value of l4_x (undetermined X 
state) and then checking templates to see which connection 
points have scheduled a value other than l4_x. The simulator 
then performs a DC analysis and executes the event queue.
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queue (that is, if other templates are “looking for” scheduled events). For 
internal state variables, this is often not the case—you can use the second 
method above to set their values. 

The examples in topics titled "Modeling an AND Gate - MAST Template" and 
"Initialization and Internal Events - MAST clock Template" demonstrate the 
initialization of connection points and internal variables. 

Modeling an AND Gate - MAST Template

The AND gate used in this example has two inputs and one output. The output 
is the logical (Boolean) AND of the two inputs, as shown in the following figure. 

in1

in2

out

Logical AND Gate 
Saber® MAST Language User Guide 161
B-2008.09



Chapter 7: Modeling Digital Systems
Modeling an AND Gate - MAST Template
The and template (shown below) implements the AND gate in the MAST 
language. The characters “|” means OR, “&” means AND, “~=” means “is not 
equal to.”

The AND gate template description is divided into the following topic:
■ MAST AND Gate Model Logic States
■ Header Declarations
■ Local Declarations
■ The when Statement in the MAST AND Gate Template - shows how to 

schedule and detect digital events and how to use a local variable to 
internally hold a logic_4 value for further event scheduling

■ Initializing the AND Gate MAST Template
■ MAST Template Conflict Resolution - the driven Function - show how to use 

the driven(out) statement and the l4cnfr subroutine
■ A Netlist Example - MAST AND Gate Template

template and in1 in2 out = td         

state logic_4 in1, in2, out # state connection points

number td=0  

{

state logic_4 out_state # internal state declaration

when (event_on(in1) | event_on(in2)) {

if ((in1==l4_1) & (in2==l4_1)) { # AND logic

out_state = l4_1

}

else out_state = l4_0

if (driven(out)~=out_state) { # update AND gate output

schedule_event(time+td, out, out_state) 

}

}

} 

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/and.sin
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MAST AND Gate Model Logic States

The following table shows how an AND gate determines the output at pin out, 
according to the input at pins in1 and in2. The model provides the Boolean 
AND function as indicated in the truth table. In addition, it incorporates a non-
negative delay parameter named td for delay between input and output.

This truth table shows that discrete states appear at the in1, in2, and out 
connection points. This implies a fundamental difference from the analog 
electrical pins in other examples. 

Header Declarations

The first indication of the major difference between analog and digital models 
appears in the following header declarations of the and template:

It is important to note that the word state declares that the input and output 
connection points assume discrete state variables (for discrete time 
simulation). The term logic_4 declares the units for discrete values that these 
connection points will assume. The word state is reserved, while logic_4 is 
user-definable. 

Local Declarations

The only local declaration for this template is out_state, which is a state 
variable (state) that can assume discrete values (logic_4):

in1 in2 out

0 0 0

0 1 0

1 0 0

1 1 1

2 state logic_4 in1, in2, out

5 state logic_4 out_state
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This declaration creates a local state variable that can be assigned logic_4 
values in a when statement (see below). 

The form of this declaration is identical to the declarations of the connection 
points in the header. 

The when Statement in the MAST AND Gate Template

The when statement is a fundamental construct for digital modeling. It provides 
the primary means of detecting and scheduling events on state connection 
points and state variables. 

A when statement can be used in a netlist (at the top level of hierarchy) as well 
as in a template. 

The syntax for the when statement is as follows:

The above syntax means, “When condition occurs, execute the following 
statements.” The power of this construct comes from the full set of simulator 
variables, conditional statements, and intrinsic (built-in) functions that are part 
of the MAST language. Refer to Section 5.4 of the Mast Reference Manual for 
more information on event-driven functions. 

The following when statement from the and template illustrates its usage in 
digital modeling:

when (condition) { 

statements

} 

6 when (event_on(in1) | event_on(in2)) { 

7 if ((in1==l4_1) & (in2==l4_1)) { 

8 out_state = l4_1 

9 } 

10 else out_state = l4_0 

11 

12 if (driven(out)~=out_state) { 

13 schedule_event(time+td, out, out_state) 

14 } 

15 } 
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This means that when at least one of the inputs to the AND gate changes, then 
the output state might need to change. The event_on intrinsic function detects 
any change in the value at either input at the time of the change.

Examine the following lines:

This statement uniquely determines the next output state and specifies that it 
be stored in a local variable called out_state. Its logic can be interpreted as 
follows: 

If in1 has value logic 1 and input in2 has value logic 1, then the next output 
state will be logic state 1; otherwise, the next output state will be logic 0. 

 Examine the following lines:

This statement means that the result of the AND between in1 and in2, as 
computed by the previous if-else statement, is propagated to the output only if 
the output has changed. Its logic can be interpreted as follows:

If the output pin (out) has been scheduled by this template to have a value 
not equal to the value of out_state, then schedule an event on the output pin 
at the present time plus the delay time, td. The value of the scheduled event 
is out_state.

For example, if the two inputs to the AND gate were logic 1 and 0, respectively, 
then the output would be logic 0. If the inputs had changed to logic 0 and 0, the 
output would be still be 0 and it would not be necessary to use the 
schedule_event function to change the output of the template.

The general form of the schedule_event intrinsic function is: 

7 if ((in1==l4_1) & (in2==l4_1)) { 

8 out_state = l4_1 

9 } 

10 else out_state = l4_0 

12 if (driven(out)~=out_state) { 

13 schedule_event(time+td, out, out_state) 

14 } 

schedule_event (schedule_time, state, value) 
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where:

Initializing the AND Gate MAST Template

In this example, in1, in2, out_state, and out are not explicitly initialized by the 
template—they are allowed to remain at l4_x, as set by the simulator. Note that 
the internal state variable, out_state, serves as an intermediate placeholder 
whose value is established by the if-else statements regarding in1 and in2.   

The remainder of the when statement schedules a logic_4 value to be assigned 
to the connection point out, but only if there is a change in out_state resulting 
from events on in1 and/or in2. 

The MAST Reference Manual lists several simvar variables that are used in 
initializing a digital model before DC, DC Transfer, and Transient analyses. 
These simvar variables were not used in this example because the template 
uses the fact that in1, in2, out_state, and out are initialized to l4_x by default 
(i.e., no event scheduling is required to determine that they are initialized to 
l4_x). 

In the example “Initialization and Internal Events - MAST clock Template”, 
however, two of these simvar variables (dc_init, time_init) are used to schedule 
an event to override the default initialization value of l4_x. 

MAST Template Conflict Resolution - the driven Function

It would seem that the following code: 

schedule_time is the time at which the event is to occur

state is the state variable whose change-of-state constitutes 
the event

value is the new value to which state is to change

if (driven(out)~=out_state) {

schedule_event(time+td, out, out_state)

} 
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could have been accomplished with:

What was the purpose of the driven intrinsic function? The driven function is 
necessary because it is possible for a pin to be driven by more than one gate. 

The following figure shows two logic gates driving the same node. The output 
of one gate is logic 1 and the output of the other is logic 0. What is the correct 
value at that node? It’s ambiguous. It might be 1, it might be 0, and it might be 
something in between. This conflict is resolved by the conflict resolution 
mechanisms discussed in the topic titled "Defining Conflict Resolution in a 
MAST Template". The value of out may be different from the value of 
driven(out). 

The driven function lets you proceed without having to worry about what is 
happening outside the template.

The value of out reflects the value to which the output pin is finally set, whereas 
the value of driven(out) reflects the most recent value that the template has 
scheduled for the connection point, out. 

if (out~=out_state) {

schedule_event(time+td, out, out_state)

} 

1

1

1

0

1

0

?

Conflict at a digital node
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Defining Conflict Resolution in a MAST Template
When two templates drive a single pin, there is potential for conflict. The 
following mechanism is provided to resolve this conflict:

A resolving subroutine is defined for each type of logic units declared (e.g., 
l4cnfr is defined for logic_4). When the simulator detects conflict, it 
automatically passes all conflicting values to this subroutine. The subroutine 
automatically resolves conflicting values on a pairwise basis and returns the 
results.

The subroutine that resolves conflicts is declared together with the state unit to 
which it applies (such as logic_4). Typically, this is in the units.sin file, which is 
automatically included for simulation. The declaration for the logic_4 state unit 
looks something like the following: 

This declares that the conflict resolution subroutine is a foreign function named 
l4cnfr. This subroutine is called to resolve any conflicts that occur at logic_4 
state connections. The l4cnfr subroutine is provided to the Saber simulator in 
the same manner as any other foreign subroutine.

The conflict resolution subroutine l4cnfr selects the first two template output 
pins (logic 0 and another logic 0). For logic_4, the resolution of these two is 
defined as logic 0, so the subroutine determines a logic 0 to be paired with the 
next output. Thus, the result of the first conflict resolution (logic 0) is paired with 
the output of the third template (logic Z). For logic_4, the resolution of logic 0 
with logic Z is logic 0. (The high impedance state is like an identity operator 
when used in conflict resolution.) Therefore, the final result of conflict resolution 
is logic 0, which is returned to that node.

For example, suppose that three different templates with logic_4 connections 
have their outputs connected to a single pin. Suppose further that the output of 
the first template is logic 0, that of the second is logic 0, and that of the third is 
logic Z (high impedance). The conflict resolution mechanism would then 
proceed as follows to determine the correct value of the node. 

unit state {l4_0, “0”, “0”, “low.1”

l4_1, “1”, “1”, “high.1”,

l4_x, “x”, “x”, “middle.1”,

l4_z, “x”, “z”, “middle.1”} logic_4=l4_x\

{CONFLICT_RESOLUTION:foreign l4cnfr}
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The body of the following table shows the resultant logic_4 value when a state 
along the left appears simultaneously with a state along the top. This is the 
truth table for conflict resolution for logic_4 unit states.

A Netlist Example - MAST AND Gate Template

The following netlist example shows two netlist instances of an AND template 
whose outputs are connected to the same node, as shown in the figure that 
follows. 

l4_0 l4_1 l4_x l4_z

l4_0 l4_0 l4_x l4_x l4_0

l4_1 l4_x l4_1 l4_x l4_1

l4_x l4_x l4_x l4_x l4_x

l4_z l4_0 l4_1 l4_x l4_z

and.1 in11 in12 out = td=10n

and.2 in21 in22 out = td=10n

when (dc_init) {

schedule_event(time, in11, l4_0)

schedule_event(time, in12, l4_0)

schedule_event(time, in21, l4_0)

schedule_event(time, in22, l4_0)

}

when (time_init) {

schedule_event(1u, in11, l4_1)

schedule_event(2u, in12, l4_1)

schedule_event(3u, in21, l4_1)

schedule_event(4u, in22, l4_1)

} 
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The netlist also uses multiple when statements to generate delayed inputs to 
the AND gates, as shown in the following figure.

1

1

1

0

1

0

?

Conflict at a digital node

l4_0

l4_1

in11

in12

in21

in22

out
l4_0

l4_x
l4_1

1us 2us 3us 4us 5us

1us 2us 3us 4us 5us

inputs

output

Inputs and output of netlist example
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Note:   

Multiple when statements are allowed in a netlist; however, they cannot be 
nested. 

Alternatively, the AND templates could be driven with event-generating 
templates such as the clock template in the topic titled "Initialization and 
Internal Events - MAST clock Template". The outputs of the AND gates are tied 
together to exercise the conflict resolution function.

Note that the when statement can be used in a netlist as well as in a template. 
The when (dc_init) statement initializes all of the inputs to logic 0 (l4_0), for the 
DC analysis. The when (time_init) statement schedules l4_1 as events, starting 
at 1ms and proceeding through the inputs at 1ms intervals. These events are 
scheduled at the beginning of the transient simulation (using time_init), but do 
not become active until their scheduled times in the transient simulation. 
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Initialization and Internal Events - MAST clock Template

The following clock template shows the use of internal events and also shows 
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the initialization of states.

template clock  ckout  =  freq, duty

state logic_4 ckout

number freq=0, # clock frequency

duty=0.5 # clock duty cycle (time pulsed/period)

{

state nu tick # internal "wake-up" state

number ton=0, #clock on-time

toff=0 #clock off-time

parameters  { # calculate off and on time

if (freq > 0) {

ton  = duty/freq

toff = 1/freq - ton

}

}

when (dc_init)  {

schedule_event(time,ckout,l4_0)

}

# start clock ticking after delay time

when (time_init) {

if (freq > 0) schedule_event(time,tick,1)

}

when (event_on(tick))  {

if (driven (ckout)==l4_0)  {

# turn clock on (set to 1)

if (ton > 0) {

schedule_event(time,ckout,l4_1)

schedule_event(time+ton,tick,1)

}

}
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The clock template description is divided into the following topics:
■ Header Declarations
■ Local Declarations - shows the use of a local variable to serve as an internal 

counter for generating clock pulses
■ When Statements1 - shows the use of multiple when statements in a 

template, shows the use of digital modeling simvar variables (dc_init, 
time_init) to initialize a template

Header Declarations

The header and declarations of clock are as follows: 

This template has only one connection point (ckout), providing the clock’s 
output. This type of connection point is declared as a logic_4 state. The freq 
parameter determines clock frequency; the duty parameter determines the 
fraction of the clock cycle that the clock signal is at logic 1 (l4_1) for each 
period. 

else { # turn clock off (set to 0)

if (toff > 0) {

schedule_event(time,ckout,l4_0)

schedule_event(time+toff,tick,1)

}

}

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
clock.sin

1 template clock  ckout  =  freq, duty

2 state logic_4 ckout

3 number freq=0, # clock frequency

4 duty=0.5 # clock duty cycle (time pulsed/period)
174 Saber® MAST Language User Guide
B-2008.09



Chapter 7: Modeling Digital Systems
Initialization and Internal Events - MAST clock Template
Local Declarations

The first local declaration for this template is the internal variable, tick as 
follows:

This local variable is declared as a state with no units (nu). It is not being used 
to assign a logic state to a connection point (as is the case for out_state in the 
and template). In this template, tick serves as an internal counter to propagate 
clock pulses. Thus, there is no need for it to assume a logic_4 value. 

The values of ton and toff are based on the values specified for the arguments 
freq and duty as follows:

These values for on time and off time are then used in the when statements to 
determine the scheduling of each portion of the clock cycle. Note that the when 
(time_init) statement will not allow template operation unless you specify freq > 
0. 

Note:   

For simplicity, this template does not include error checking for duty > 1 or 
duty < 0.

6 state nu tick 

8 number ton=0, 

9 toff=0
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When Statements

This template contains the following three when statements: 

Note:   

Multiple when statements are allowed in the template, but they cannot be 
nested. 

#1---------------------------------------------- 

17 when (dc_init)  {

18 schedule_event(time,ckout,l4_0)

19 }

#2---------------------------------------------- 

20 # start clock ticking after delay time

21 when (time_init) {

22 if (freq > 0) schedule_event(time,tick,1)

23 }

#3---------------------------------------------- 

24 when (event_on(tick))  {

25 if (driven (ckout)==l4_0)  {

26 # turn clock on (set to 1)

27 if (ton > 0) {

28 schedule_event(time,ckout,l4_1)

29 schedule_event(time+ton,tick,1)

30 }

31 }

32 else { # turn clock off (set to 0)

33 if (toff > 0) {

34 schedule_event(time,ckout,l4_0)

35 schedule_event(time+toff,tick,1)

36 }

37 }

38 } 
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Initialization
The Mast Reference Manual lists several simvar variables that are used in 
initializing a digital model before DC, DC Transfer, and Transient analyses. 
Two of them are used here to schedule an event to override the default 
initialization value of l4_x: 
■ The dc_init simvar variable in the first when statement becomes true at the 

start of DC analyses, that is, at the start of DC operating point analysis (dc), 
DC transfer analysis (dt), and the DC operating point analysis portion of the 
combined DC operating point and transient analysis (dctr). 

■ The time_init simvar variable in the second when statement becomes true 
at the start of transient analysis. It does not become true when a transient 
analysis is re-started from a previous transient analysis.

The three when statements listed above have the following functions: 

1. when (dc_init)—DC analysis initialization. This uses the dc_init simvar 
variable, which initializes the template at the start of a DC operating point 
analysis. The result is that ckout is assigned an initial value of l4_0 (because 
using schedule_event puts this assignment in the event queue). 

2. when (time_init)—Transient analysis initialization. This uses the time_init 
simvar variable, which initializes the template at the start of the transient 
analysis. This enables timing for the clock template so that it can use the 
simvar time variable to synchronize with simulation timing and the internal 
counter, tick, to begin generating multiple clock cycles. Again, using 
schedule_event puts time and tick in the event queue. 

3. when (event_on(tick))—Clock pulse propagation. Because ckout has been 
initialized to l4_0 and tick has been initialized to 1, the transient analysis can 
begin to generate clock pulses. The first if statement checks the present 
value of ckout—if it is l4_0 (off), it turns the clock on (ckout==l4_1). 
Otherwise, it yields to the else statement, which turns the clock off. The 
event_on function then schedules another event for tick and the process is 
repeated for the duration of the transient analysis.
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8Modeling Mixed Analog-Digital Systems

The following topics combine time-domain analog modeling with digital 
modeling—mixing analog and digital models in the same system:
■ Modeling a Voltage Comparator with MAST -- shows the use of the 

threshold intrinsic function to detect threshold crossings of analog signals 
■ Modeling A Digitally-Controlled, Ideal Switch with MAST -- shows how to 

schedule analog time steps with the schedule_next_time intrinsic function 
and describes issues about reconsidering the DC analysis 

■ Using Interface Models in Mixed Analog-Digital Simulation -- describes the 
use of interface models to connect analog and digital templates

• A MAST Analog-to-Digital (a2d) Interface Model

• A MAST Digital-to-Analog (d2a) Interface Model

• Analog-to-Digital and Digital-to-Analog Summary
■ MAST Interface Models and Foreign Simulators -- shows how to use 

interface models to connect analog and discrete subsystems in mixed-
simulator applications

Modeling a Voltage Comparator with MAST

The comparator (shown in the figure below) used in this example has two 
inputs and one output. 
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This model compares the instantaneous analog voltage at the two input nodes 
and produces a digital output of logic 1 if the voltage at p is greater than the 
voltage at m, and logic 0 otherwise. A time delay parameter, td, specifies a 
delay between the time the input voltage changes polarity to the time the output 
changes state.

The text for this simple voltage comparator template (comparator) is listed 
below:

element template comparator p m  out = td # header

electrical p, m # pin declarations

state logic_4 out # pin declaration

number td=0 # argument declaration

{

state nu before, after # local variables

when (dc_init) { # DC initialization

schedule_event(time, out, l4_0)

when (threshold(v(p), v(m), before, after)) { # comparison

if (after >= 0)   schedule_event(time+td, out, l4_1)

else              schedule_event(time+td, out, l4_0)

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
comparator.sin

p

m

outAnalog Digital 
inputs output

Voltage comparator
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comparator Gate Topics

The AND gate template description is divided into the following topic:
■ Header Declarations
■ Local Declarations
■ When Statements - shows how to detect threshold crossings of analog 

signals with the threshold intrinsic function
■ DC Initialization - shows DC analysis considerations, particularly DC 

initialization

• Initialization Example

Header Declarations

The header declarations show that this voltage comparator template has two 
analog inputs and one digital output. 

This portion of the template indicates that it is a mixed analog-digital template, 
because the input pins are analog (electrical) and the output connection is 
digital (state logic_4). The input pins are analog and electrical; the digital output 
is a discontinuous state type. Thus, the output of the comparator template 
could be used as an input to the and template. The time delay parameter is 
also similar to the one introduced for the and template. 

Local Declarations 

The local variables for this template are before and after, declared as follows:

These variables determine which direction the input voltage is going after 
crossing the threshold of 0 volts. They are simultaneously state variables and 
analog variables, as mentioned the topic titled "Time". As analog variables, 
they are not limited to a discrete set of values—they can take on any real-
numbered values. As state variables, they can change their values 

electrical p, m  

state logic_4 out 

state nu before, after
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discontinuously in time. This type of variable is known as event-driven analog 
(or analog state). 

The units of before and after are declared as nu, which stands for no units. In 
general, the units for analog state variables can be any of those in units.sin (or 
its equivalent)—the same way a val or var variable can assume these units. 
The topic titled "Modeling A Digitally-Controlled, Ideal Switch with MAST" 
shows an example of an ideal switch example that has an analog state variable 
(res) whose unit type is resistance (r). 

The before and after variables must be of type state because their values are 
set in a when statement. Any variable that is set in a when statement (either by 
an assignment statement or by schedule_event) must be of type state. 

When Statements

In this template, there are two when statements. The first is for DC initialization 
(described in the topic titled "DC Initialization"); the second detects the crossing 
of the two input voltages, which is described below. 

The following when statement from the comparator template detects the 
crossing of the two input voltages:

This when statement means the following:

When the voltage at p crosses the voltage at m, set the values of before and 
after to their appropriate values (as described below), and execute the if-
else statements that follow.

The threshold intrinsic function is simply stated but powerful—it pinpoints the 
exact time when two changing quantities become equal and it provides 
information about the past and the future of those quantities. In this instance, it 
monitors the voltages at connections p and m, then triggers an event during the 
simulation at the precise time that the voltages become equal to each other. 
This functionality is independent of analog time steps. (Refer to the MAST 
Reference Manual for more information on the threshold function.) 

when (threshold(v(p), v(m), before, after)) {
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This threshold checking sets the values of before and after according to the 
following (see the table below): 
■ If the first argument of the threshold statement, v(p), is crossing the second 

argument, v(m), from negative to positive, then before is set to -1 and after 
to +1.

■ If the first argument of the threshold statement is crossing the second from 
positive to negative, then before is set to +1 and after to -1. 

■ If v(p) and v(m) remain equal after becoming equal, then after is set to 0.

Now that there is a way to find the voltage crossing point, completion of the 
comparator function is simple. Checking the after variable lets you determine 
whether v(p) is crossing positive or negative. If the crossing is positive, then 
out, the output pin, is scheduled to be l4_1 (after time delay td). Otherwise, out 
is scheduled to be l4_0. 

Note:   

It is possible to implement conflict resolution for this model using the driven 
function (see the topic titled "MAST Template Conflict Resolution - the 
driven Function"), which was omitted here for simplicity. 

before after meaning

-1 0 v(p) rose from below v(m) to equal v(m)

+1 0 v(p) fell from above v(m) to equal v(m)

0 -1 v(p) fell from equal to v(m) to below v(m)

0 +1 v(p) rose from equal to v(m) above v(m)

+1 -1 v(p) fell  from above v(m) to below v(m)

-1 +1 v(p) rose from below v(m) to above v(m) 

-1 -1 v(p) rose to equal v(m) then fell below v(m)

+1 +1 v(p) fell to equal v(m) then rose above v(m)
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DC Initialization

Using the threshold function, you can implement the comparator model for 
transient simulation. However, for DC analysis there are further considerations. 
The purpose of the DC analysis is to determine the quiescent values of all of 
the system’s internal variables and states. The interactions between these 
quantities can be complex. The algorithm used by the Saber simulator for a DC 
analysis is specifically designed to manage these complexities. 

One of the major problems that arises is that it is not always possible to find a 
stable solution. A good example of a system that has no single stable operating 
point is a ring oscillator. When the DC algorithm detects an oscillation, it 
arbitrarily selects a state at a node and allows the unsatisfied scheduled events 
to occur during the transient simulation. 

To understand these state interactions, it is necessary to look at the DC 
algorithm as it pertains both to the scheduling and detection of events and to 
the use of the threshold function. For a detailed description of the DC 
algorithm, refer to the MAST Reference Manual. 

A simplified description of the DC algorithm is the following:

1. The simulator sets all analog system variables to zero, all event-driven 
analog states to the initial values defined by their initializers, and all digital 
states to the initial values defined by their unit declarations (e.g., logic_4 
defines l4_x). Refer to topic titled "Initializing Connection Points - Digital 
MAST Modeling". 

2. It executes when (dc_init) statements in all templates, propagating all 
events according to dependencies. It executes all when (dc_start) 
statements in all templates. 

By default, all uninitialized state logic_4 connection points are set to l4_x.

3. The effects of the analog subsystem on the discrete subsystem are found 
by observing all threshold conditions, as analog signals go from zero to their 
final DC values. For any threshold conditions that become satisfied, the 
statements portion of the corresponding when statement is executed. The 
simulator again propagates all events within the discrete subsystem 
according to dependencies. 

4. Repeatedly, the simulator finds the solution of the analog subsystem 
solution and propagates all events within the discrete subsystem, until the 
system stabilizes. 
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Initialization Example
Consider the DC initialization provided by the first when statement in the 
comparator template: 

If this were not included in this template, the output could potentially be 
incorrect at the end of a DC analysis. Given the circuit shown in the figure 
below, if v(p) is 2 volts, v(m) is 2 volts, and the previous when (dc_init) 
statement is omitted, then the DC algorithm would proceed as follows: 

1. Start off with 0 volts at p and m and with the state of the output pin out at its 
initial value of l4_x (logic X—unknown state). 

2. Execute all when (dc_init) statements. (Assuming that the when (dc_init) 
statement is absent, there is no action here—out remains at l4_x.) 

3. As v(m) and v(p) increase together from 0 (the initial values) to 2 volts (the 
source voltage), the threshold is not crossed, and the output remains at 
l4_x. This is the value at out at the end of the DC analysis, which is 
erroneous. The expected output would be logic 0 (l4_0), because v(m) is 
equal to v(p). However, by this algorithm, the output pin out was set to logic 
X and would remain there. 

when (dc_init) { 

schedule_event(time, out, l4_0) 

} 

v(p)

v(m) out
+2V

+2V

Comparator DC analysis

comparator.1 p m out = td=10n
v.p p 0 = 2
v.m m 0 = 2 
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Adding the DC initialization section shown above alleviates this problem by 
setting the output pin out to logic 0. 

If v(p) is set to a DC value greater than v(m), then the threshold will take care of 
producing the correct DC value for the output, because the value of v(p) would 
cross the value of v(m) in step 3 of the algorithm (above). 

The following paragraph is a generalization of the threshold function and 
dc_init statement:

A when (threshold()) statement should be accompanied by a when (dc_init) 
statement that establishes the appropriate conditions, assuming that all 
node voltages and system variables are 0. If the threshold is crossed, then 
the conditions established by the when (dc_init) statement are overridden 
and produce the expected result.

Modeling A Digitally-Controlled, Ideal Switch with MAST

This model of an ideal SPST switch demonstrates another aspect of the mixing 
of analog and digital concepts. As shown in the following figure, a digital event 
comes to the template through the cntl input pin. If the cntl pin is logic 1, then 
the switch is closed. If the cntl pin is logic 0, logic X, or logic Z, then the switch 
is open. The resistance between the electrical pins p and m is equal to roff 
when the switch is open; the resistance equals ron when the switch is closed. 
The resistance changes instantaneously when the event occurs on the cntl pin. 

out

cntl

in

Ideal switch
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The following sw template describes the switch functionality:

Note:   

For simplicity, this template does not include error-checking, specifically for 
a zero-valued denominator in the template equation. Therefore, the values 
of ron and roff must be non-zero.

The sw template description is divided into the following topics:
■ Header Declarations
■ Local Declarations
■ When Statement -- shows the difference between using an assignment 

statement and the schedule_event intrinsic function, to change the value of 
a state 

■ Template Equation

template sw p m cntl = ron, roff # template header

electrical p, m # analog pins

state logic_4 cntl # digital connection

number ron=1, roff=1meg # parameter declaration

{

state r res # internal state variable

when (event_on(cntl)) { # switch control

if (cntl == l4_1) res = ron

else              res = roff

schedule_next_time(time)

}

equations { # switch analog equations

i(p->m) += (v(p) - v(m))/res

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
sw.sin
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■ The schedule_next_time Function -- shows how to schedule analog time 
steps with schedule_next_time; shows the difference between 
schedule_next_time and the next_time simvar variable; and shows the 
independence between discrete event time points and analog simulation 
time steps

■ DC Initialization -- shows how to assign a default value to a state (for DC 
analysis)

■ Netlist Example for the Ideal Switch

Header Declarations

The header shows that this ideal switch template has two electrical pins, one 
digital connection point, and arguments for on and off resistances. These are 
declared as: 

This is a mixed analog-digital template, because some connection points are 
analog pins (electrical) and others are digital states (state logic_4). The 
template arguments, ron and roff, are initialized to default values of 1ohm and 
1Mohm, respectively. Thus, you do not have to assign values to ron and roff to 
use this template. 

Local Declarations

Local declaration defines the analog state variable res, written as follows:

The variable named res has the units of resistance, r. This variable contains 
the present value of resistance, whose value changes discontinuously. It can 
be assigned the value of a passed-in argument. It cannot be assigned 
anywhere except in a when statement, but it can be referenced anywhere that 
state references are permitted. In this example, the value of res is referenced in 
the template equation. 

electrical p, m 

state logic_4 cntl 

number ron=1, roff=1meg

state r res 
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The variable res must be of type state, because its value is set in a when 
statement. This is true for any variable whose value is set in a when statement, 
either by assignment or by a schedule_event function call.

When Statement

A when statement is used to implement the digital portion of the model as 
follows:

The event_on function is used in the when statement to determine at what time 
the state of the switch changes from open to closed, or vice-versa. When an 
event occurs at cntl, it is a simple matter to check and see whether it has 
changed to logic 1 (l4_1) or logic 0 (l4_0). If it is l4_1, then the local state 
variable for resistance, res, is set to the argument value for the on resistance, 
ron. Otherwise, the res is set to roff.

There is a difference between assigning a value to a state variable (first 
statement, below) and scheduling an event on a state variable (second 
statement, below). The value resulting from the assignment statement is not 
placed in the event queue.

Either of these two constructs would work for the sw template. Because there is 
no need to detect an event (such as a change in the value of res), it is more 
efficient to use the assignment statement. If, for some reason, you wanted to 
detect the changing of the resistance value, you would have to use 
schedule_event. This would allow you to detect the change by using a when 
statement with the event_on function, as follows:

when (event_on(cntl)) {

if (cntl == l4_1) res = ron

else res = roff

schedule_next_time(time)

} 

1 if (cntl == l4_1) res = ron

2 if(cntl == l4_1)schedule_event(time, res, ron) 

when (event_on(res)) {...
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The general rule for scheduling an event is described in the following 
paragraph:

If you need to detect a change (with a when statement and an event_on 
function), then you must use the schedule_event function to change the 
value of the state. This is especially true if the change affects a connection 
point. If you just need to use the value of a state in a another section of the 
template, use an assignment statement to change its value.

It is essential to understand the significance of the next portion of this particular 
when statement (as explained in the topic titled "The schedule_next_time 
Function”):

Template Equation

The template equation for the sw template is straightforward, as shown below 
(remember that res must be non-zero):

The current from p to m is the result of dividing the voltage across the nodes to 
which they are connected by res, the present resistance value. This resistance 
happens to be a state variable whose value is determined by events at the 
control pin cntl. As a result, the value of res is changing discontinuously in time. 
This does not generally cause a problem, because schedule_next_time 
restarts the integration algorithm with each event, using the value of res from 
the previous event as an initial point. However, it is best practice to provide 
continuity. Refer to the sw1_l4 template (in the Saber online documentation) for 
an example of how to provide this type of continuity in a template. 

The schedule_next_time Function

Normally, analog time steps are determined by the analog simulation time-step 
algorithm, which uses variable time steps and an integration algorithm to 
ensure that the time-steps are as big as possible, without causing too much 
error in the solution at any given time. 

schedule_next_time(time) 

equations { # switch analog equations

i(p->m) += (v(p) - v(m))/res

}
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It is important to note the following:

The analog subsystem time points are completely independent of the 
discrete subsystem time (event) points. The threshold function lets the 
analog subsystems influence events in the discrete subsystems. On the 
other hand, the schedule_next_time(time) function forces an analog time 
step when a transient simulation reaches time.

Therefore, it is important to include schedule_next_time in the when statement, 
as follows:

The fact that an event occurred on the cntl pin does not mean that there will be 
an analog time step when res changes value. Instead, you must force an 
analog time step to occur at that time by scheduling it with schedule_next_time. 
This lets the new value of res affect the analog network at the right point in 
time.

Note that there are some subtle usage differences between the 
schedule_next_time function and the next_time simvar variable. They both 
have the same objective—to force a time step in the analog simulation, but 
they apply in different contexts:
■ The schedule_next_time function is used in a when statement (generally, 

when modeling a mixed analog-digital system). It is invoked as a function 
call. Once scheduled, it stays in effect until either it is descheduled or the 
time point has been reached. 

■ The next_time simvar variable is used in an assignment statement when 
modeling an analog-only system. Its effect expires after each time step, 
regardless of whether the appropriate time point has been passed.

DC Initialization

This simplified template relies on detecting an event coming into the template 
during the DC analysis. The value of res is undefined until an event appears on 

when (event_on(cntl)) {

if (cntl == l4_1) res = ron

else res = roff

schedule_next_time(time)

} 
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cntl. To ensure that res has a value when the transient analysis begins, you 
could give it a default value:

For simple use, a when (dc_init) statement is generally not required, although 
you could use one to initialize res. However, if you wanted to use the vary 
command, you would need to use a when (dc_init|tr_start) statement to 
initialize the value of res before each transient simulation (recall that the “|” 
operator means “or”). You would then insert the following statement to do this: 

Refer to the MAST Reference Manual for more information on using these 
initialization simvar variables. 

Netlist Example for the Ideal Switch

The following netlist example demonstrates the use of the sw template with a 
voltage source and a resistor as seen in the figure below. The when statements 
in the netlist provide an appropriate stimulus for controlling the switch at node 
gt. 

state r res=roff 

when (dc_init|tr_start) { 

res = roff

} 

sw.1 in mid gt 

r.1 mid 0 = 47k 

v.in in 0 = 5

when (dc_init) {

schedule_event(time, gt, l4_0)

}

when (time_init) {

schedule_event(1u, gt, l4_1)

schedule_event(2u, gt, l4_0)

} 
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Using Interface Models in Mixed Analog-Digital Simulation

Mixed analog-digital simulation generally requires interface models to connect 
analog pins to digital connection points. Typically, an interface model has one 
input port and one output port. The objective of the interface model is to convert 
information from one form on the input port to another form on the output port. 
That is, it can convert a transition between digital states to a transition between 
analog voltage levels or vice versa. 

A library of advanced interface models, called Hypermodel analog/digital 
interface templates, has been developed. These Hypermodel templates use 
the same basic modeling concepts presented in this section, but they 
incorporate additional features. For more information on Hypermodel, search 
the Saber online help index.

In many ways, the comparator and switch examples given in this chapter are 
supersets of what needs to be in an interface model. However, interface 
models can model very complicated effects. For example, a interface model 
might be used in the modeling of a TTL (transistor-transistor logic) device in the 
following way:

Most of the TTL devices could be modeled with strictly digital logic. An interface 
model could be inserted at any digital connection of the TTL device that 
connected to analog pins. All of the complex impedance characteristics and 
fan-out properties of the TTL totem-pole output stage would be present for the 

gt 

in mid

r.1  47 k 

sw.1
v.in
5V

+

_

0

when statements
open and close
the switch

Digitally-controlled switch in an analog circuit
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analog circuitry, while the convenience and speed of a digital description would 
be maintained for the greater portion of the model. 

Two very simple analog-to-digital and digital-to-analog interface models are 
presented in the following examples:
■ A MAST Analog-to-Digital (a2d) Interface Model
■ A MAST Digital-to-Analog (d2a) Interface Model

A MAST Analog-to-Digital (a2d) Interface Model

This example of an analog-to-digital interface template (a2d) has two analog 
input pins, a and m, and a digital output pin, d. The digital output is defined to 
be HIGH (logic 1) when the analog input voltage (between a and m) is above 
the value specified for input high voltage, ih. The digital output is defined to be 
LOW (logic 0) when the analog input voltage is below the value specified for 
input low voltage il. The output state remains at its previous state while the 
input voltage is between ih and il. 

The following figure shows a schematic representation of an analog-to-digital 
interface model. 

a d

m

logic_4
digital pin

analog
pins

a2d

Analog-to-digital interface model
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The a2d template is as follows:

template a2d a m d = td, il, ih

electrical a, m

state logic_4 d

number td=0, # input/output time delay

il=0.8, # input low voltage

ih=2.4 # input high voltage

{

state nu before, # variables for threshold 

after # direction

when (dc_init) { # dc initialization

schedule_event(time, d, l4_0)

}

# threshold crossing low

when (threshold(v(a)-v(m), il, before, after)) {

if ((after<0) & (driven(d)~=l4_0)) {

schedule_event(time+td, d, l4_0)

}

}

# threshold crossing high

when (threshold(v(a)-v(m), ih, before, after)) {

if ((after>0) & (driven(d)~=l4_1)) {

schedule_event(time+td, d, l4_1)

}

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
a2d.sin
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This a2d example description is divided into the following topics:
■ Header Declarations
■ Local Declarations
■ When Statements
■ Template Equations

Header Declarations
The a2d template has an analog input pin a, a digital output pin d, and an 
analog reference pin m as shown in the following code example. The input 
parameters are time delay (td) from input threshold crossing to output digital 
event, input logic low threshold (il), and input logic high threshold (ih). Input 
parameters are initialized to reasonable values for TTL. 

Local Declarations
The local states before and after are declared with no units (nu) to provide the 
variables needed by the threshold function. 

When Statements
The a2d template is very similar to the comparator example from the topic titled 
"Modeling a Voltage Comparator with MAST" — they both accept an analog 
input across two input pins, and they both provide a logic_4 value based on 
that input to a state connection point. The when (dc_init) statement initializes 
the output to a known value, l4_0, at the beginning of a DC analysis. The other 
two when statements detect the crossing of the analog input voltage with the 
specified logic thresholds. They schedule a logic event on the output if the 

template a2d a m d = td, il, ih 

electrical a, m 

state logic_4 d 

number td=0, 

il=0.8, 

ih=2.4 

state nu before,

after
196 Saber® MAST Language User Guide
B-2008.09



Chapter 8: Modeling Mixed Analog-Digital Systems
Using Interface Models in Mixed Analog-Digital Simulation
appropriate threshold has been crossed and the output logic level changed 
accordingly. 

Even though it may be tempting to put the following statement inside the when 
(threshold) statements above, you should resist this temptation: 

The implementation of the threshold function guarantees that an event will 
occur at the point of the threshold crossing. Because when (threshold) is 
independent of the time step algorithm, it is generally not necessary to use the 
schedule_next_time statement with it.

Template Equations
Although the a2d template has analog pins, it does not contain template 
equations. When there are no equations in a template with analog pins, the 
current contribution to each analog pin is assumed to be 0. In this example, this 
corresponds to infinite input impedance for the analog pins.

when (dc_init) {           # dc initialization

schedule_event(time, d, l4_0)

}

# threshold crossing low

when (threshold(v(a)-v(m), il, before, after)) {

if ((after<0) & (driven(d)~=l4_0)) {

schedule_event(time+td, d, l4_0)

}

}

# threshold crossing high

when (threshold(v(a)-v(m), ih, before, after)) {

if ((after>0) & (driven(d)~=l4_1)) {

schedule_event(time+td, d, l4_1)

}

}

schedule_next_time(time)
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In other words, the digital output of the a2d template is not affected with input 
current—it is only concerned with input voltage levels that determine a logical 
output level. 

The analog-to-digital interface template (a2d) has two analog input pins, a and 
m, and a digital output pin, d. The digital output is defined to be HIGH (logic 1) 
when the analog input voltage (between a and m) is above the value specified 
for input high voltage, ih. The digital output is defined to be LOW (logic 0) when 
the analog input voltage is below the value specified for input low voltage il. 
The output state remains at its previous state while the input voltage is 
between ih and il. 

A MAST Digital-to-Analog (d2a) Interface Model

The following digital-to-analog interface template (d2a) has a digital input pin, 
d, and two analog output pins, a and m. When the state of the digital input pin 
changes, the analog output voltage (between a and m) changes to a 
corresponding value, as determined by the template input parameters. 

When the input logic level is l4_1, the output voltage assumes the value 
specified for output high voltage, oh. When the input logic level is l4_0, the 
output assumes the value specified for output low voltage, ol. The delay from 
input logic event to output voltage change is specified by td. The initial output 
voltage is set to ol. Inputs of l4_x and l4_z are ignored. 

Because the analog output changes only in response to the event-driven digital 
input, this interface model produces discontinuous analog quantities.

logic_4
digital pin

d d2a

m
analog
pins

a

Digital-to-analog interface model
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Be aware that this template is intended only to demonstrate certain MAST 
features. The library d2a Hypermodel templates (e.g., id_d2a) include a 
mechanism to provide a continuous analog output. However, including that 
level of detail here would obscure the more basic principles being illustrated. 

The MAST template for this interface model (d2a) is listed below.

element template d2a d a m = td, ol, oh # template header

electrical a, m

state logic_4 d

number td=0, # input to output time delay

ol=0.5, # output logic low voltage level

oh=4.0 # output logic high voltage level

{

var i i # unknown branch current

state v vout=ol # output voltage

# process input events

when (event_on(d)) {

if (d==l4_0) { # input low

schedule_event(time+td, vout, ol) # change vout

schedule_next_time(time+td) # force analog step

}

else if (d==l4_1) { # input high

schedule_event(time+td, vout, oh) # change vout

schedule_next_time(time+td) # force analog step

}

}

equations {

i(a->m) += i # analog branch current 

i: v(a)-v(m) = vout # equation for branch current

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
d2a.sin
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The d2a template description is divided into the following topics:
■ Header Declarations
■ Local Declarations
■ When Statement
■ Template Equation

Header Declarations
The d2a template has a digital input pin, d, an analog output pin, a, and an 
analog reference pin, m. The input parameters are td, the time delay from input 
event to output voltage; ol, the output logic low level; and ol, the output logic 
high level. Input parameters are initialized to reasonable values.

Local Declarations
Local declarations include the variable i for branch current and the state 
variable, vout, which receives ol as its initial value.

When Statement
The when statement evaluates the digital input events and performs two tasks:

1. Schedule a change in the output voltage after time delay td.

2. Schedule an analog time step at the exact time that the output voltage is to 
change.

element template d2a d a m = td, ol, oh # template header

electrical a, m

state logic_4 d

number td=0, # input to output time delay

ol=0.5, # output logic low voltage level

oh=4.0 # output logic high voltage level

var i i # unknown branch current

state v vout=ol # output voltage
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The statement is as follows:

It would be tempting to use an assignment statement to set the value of vout, 
as follows (note the two commented lines):

This would almost work, but the simulator would force the output branch 
voltage, v(a) - v(m), to become equal to vout at the very next analog time step. 
Although there will be a time step at time+td, there is no guarantee that some 
other template won’t schedule a time step between time and time+td. 
Therefore, the output voltage might change before the time time+td. The 

# process input events

when (event_on(d)) {

if (d==l4_0) { # input low

schedule_event(time+td, vout, ol) # change vout

schedule_next_time(time+td) # force analog step

}

else if (d==l4_1) { # input high

schedule_event(time+td, vout, oh) # change vout

schedule_next_time(time+td) # force analog step

}

}

when (event_on(d)) {

if (d==l4_0) {

vout = ol    # vout assigned instead of scheduled

schedule_next_time(time+td)

}

else if (d==l4_1) {

vout = oh    # vout assigned instead of scheduled

schedule_next_time(time+td)

}  

} 
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following statement prevents this problem, so that the value of vout doesn’t 
change until you want it to.

Template Equation
The template equation of the d2a template is very similar to that of a simple 
voltage source. In fact, this d2a template is nothing more than an event-driven 
voltage source. 

The vout variable is scheduled to have the discrete values ol and oh whenever 
the state of the input pin changes. This does not generally cause a problem 
because schedule_next_time restarts the integration algorithm each time it is 
used, using the values from the previous time point as an initial point. However, 
some problems may result from the discontinuous change. Refer to the id_d2a 
template for an example of how to provide this type of continuity in a template. 

schedule_event(time+td,vout,ol) 

equations {

i(a->m) += i # analog branch current 

i: v(a)-v(m) = vout # equation for branch current

}
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Analog-to-Digital and Digital-to-Analog Summary

The important points illustrated in the a2d and d2a interface model examples 
are as follows:

1. Digital information is transferred to analog using a combination of when, 
event_on, and schedule_next_time:

Note that the analog output resulting from this approach is discontinuous in 
time—resolving this requires a more advanced technique (as implemented 
in the id_d2a ideal Hypermodel template). 

2. Analog information is transferred to a digital value with the combination of 
when, threshold, and schedule_event:

MAST Interface Models and Foreign Simulators

The Saber simulator simulates both analog systems and discrete systems, as 
well as mixed-signal systems. However, it is sometimes desirable to simulate 
the digital portion of the circuit on another simulator, which can be any one of 
several commercial or proprietary simulators. It is also possible to use two 
versions of the Saber simulator as partner simulators—one for simulating the 
analog portion of the design and one for simulating the digital portion. 

The primary way to connect different portions of the design to be simulated by 
two separate simulators is with interface models. However, the a2d and d2a 
interface models will not work for a mixed-simulator application. One minor 
modification is needed—you must remove the digital pin from the header and 
declare it as an internal foreign state. 

when (event_on (state)) {

#set some values

}

schedule_next_time (time)

when (threshold(input, condition, before, after)) {

#set some values

}

schedule_event(time, state, level)
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For example, the a2d_1 template (below) is created by modifying the a2d 
template.

Pin d has been removed from the header and the header declaration state 
logic_4 d has been changed to the local declaration foreign state logic_4 d.

template a2d_1 a m = td, il, ih

electrical a, m

number td=0,

il=0.8,

ih=2.4

{

#***********************

foreign state logic_4 d #dig. pin declared as foreign state

#***********************

state nu before, 

after 

when (dc_init) {

schedule_event(time, d, l4_0)

}

when (threshold(v(a)-v(m), il, before, after)) {

if ((after<0) & (driven(d)~=l4_0)) {

schedule_event(time+td, d, l4_0)

}

}

when (threshold(v(a)-v(m), ih, before, after)) {

if ((after>0) & (driven(d)~=l4_1)) {

schedule_event(time+td, d, l4_1)

}

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
a2d_1.sin
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This minor change modifies the template to work with a foreign simulator. See 
the appropriate mixed-simulator product manuals for more information on 
simulation with such models. These manuals are provided by the respective 
partner simulator manufacturer. 
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A good modeling language lets modelers express their problems naturally. 
Previous chapters demonstrate the through and across variable approach for 
analog networks and the event-driven approach for digital networks. This topic 
introduces another approach: connecting functional blocks by using var and ref 
connections. This approach assumes that each functional block has distinct 
inputs and outputs and that the outputs are a function of the inputs. Because 
the inputs affect the outputs, but not vice versa, there is a notion of direction to 
the flow of information through the functional blocks. 

For example, consider a functional block that takes two inputs and produces 
the sum of the two inputs as its output. The flow of information is from the 
summing inputs to the output. Because there is no physical quantity to be 
conserved, it isn’t necessary to create an equivalent circuit network to model 
this block. The techniques described in this topic show how to model it directly. 

In control system modeling, much of the information flows through functional 
blocks. Consequently, this topic uses control system examples to illustrate the 
concepts pertaining to information flow through functional blocks. However, the 
concepts apply to other fields as well.

Control system models are sometimes referred to as signal flow or data flow 
models. 

The following topics introduce the modeling method of connecting functional 
blocks by using var and ref connections:
■ Connection Points for Control System MAST Templates
■ Creating Basic Control System MAST Templates
■ S-Domain Modeling Using the MAST d_by_dt Operator 
■ Ideal Delay
■ MAST Control System Example Results
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The control system modeling topics show how to model control system blocks 
using the following:
■ input and output connection points (which are similar to ref variable and var 

variable connections) 
■ s-domain modeling using the d_by_dt operator (including integration with 

initial conditions) 
■ Ideal delay modeling 

Connection Points for Control System MAST Templates

Many of the other examples used in this manual illustrate the use of connection 
points defined by through and across variables, principally electrical pins. A var 
variable is a system variable for which the simulator must solve; a ref variable 
is a reference to a variable declared as a var variable in another template. 

This topic explains the advantages of using var variables and ref variables for 
describing the flow of information among various functional blocks. In modeling 
control system blocks, the output (a var variable) of one template is the input (a 
ref variable) to a second template. As a convenience, the MAST language 
provides two connection points that provide the same functionality as the var 
variable and the ref variable, called output and input, respectively. They are 
declared as connection points in the same way as var variables and ref 
variables are declared. Refer to the MAST Reference Manual for more 
information on ref variables and var variables as connection points.

Control system concepts are illustrated by developing element templates and 
using hierarchy to combine them into the system model shown in the following 
figure. The input to such a system comes from a “source” template, which is 
similar to voltage source templates described in previous chapters, but which 
has only a single connection, declared as output. The other templates are 
developed using output and input connection points, s-domain modeling, and 
ideal delay modeling.  
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Creating Basic Control System MAST Templates

This topic describes the basic approach for writing control system templates 
using the following examples: 
■ A simple source (dcsrc)—although not used in the example circuit shown in 

the previous Control System diagram, this example illustrates the similarity 
to the simple voltage source. 

■ A full-featured source (multisrc)—this example extends the technique 
introduced for dcsrc to a control system version of the multiple-output 
voltage source. 

■ A two-input summer (sum2)—this example shows how to write a control 
system template whose output is the sum of its two inputs. 

■ A constant multiplier (mply)—this example shows how to write a control 
system template whose output is the product of a single input times a real-
valued argument. 
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Simple DC Source

The DC source template (dcsrc) listed below is the simplest example of a 
control systems template, because it has no inputs and only one output. This 
template has one connection point, p, which is declared as an output.

Compare this template to the simple voltage source template (vsource).

element template dcsrc p = vs

output nu p

number vs

{

equations {

p: p = vs

}

}

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/dcsrc.sin

template vsource p m = vs

electrical p,m

number vs

{

var i ivs

equations {

i(p->m) += ivs

ivs: v(p) - v(m) = vs

}

}

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
vsource.sin
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Note the following differences between these two templates:

1. The dcsrc template is an element template, while vsource is not. One of the 
advantages of an element template is that any var variable that it contains 
becomes available for other templates. 

2. The dcsrc template has only one pin, which is unitless and of type output, 
whereas the vsource template has two pins of type electrical. The vsource 
template needs at least two pins because it uses an across variable 
(voltage), which requires a circuit reference node. The dcsrc template needs 
only one pin because it is a simple number source with no units (nu).

3. The vsource template models the conservation of electrical quantities 
(current and voltage), and declares its pins (p, m) to be a branch for these 
quantities. The dcsrc template does not model conservation of any physical 
quantity; its output is a unitless value that requires no “path” to flow through 
or to be measured across. 

4. In the vsource template, the through and across variables (current and 
voltage) at the output pins are referenced in the equations section as 
follows: 

In the dcsrc template, the value at p is provided as a var variable with no 
units and can be referenced directly in the template equation. (The value of 
a var variable is always referenced directly.) It can also be used as a 
connection to other models. 

Full-Featured Source - MAST multisrc Template

The multisrc template listed below is a control systems source template that 
uses the same basic principles as the dcsrc template shown previously. The 
only difference is that it is capable of producing transient and AC (small-signal) 
outputs, in addition to DC outputs. The transient capability includes sinusoidal, 
exponential, and step waveforms.

i(p->m) += ivs

ivs: v(p) - v(m) = vs
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The principal difference between this source and those voltage sources is that 
multisrc has only one connection point (out), which is declared as an output 
with no units (nu). This provides the value at out as a var variable.

element template multisrc out = supply, tran, ac

output nu out

number supply = 0 

union { 

number off

struc {number vo, va, f, td;} sin

struc {number v1,v2,tau;} exp

struc {number v1,v2,tstep,tr;} step

} tran = (off=1) 

struc {

number mag=0,

phase=0

} ac = ()
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{ # Start template body

number pi = 3.14159

val nu vs

number td,vo,va,w,ss,v1,v2,tau,tstep,tr,slew

# define intermediate values, 

# depending on selected output

parameters {

if (union_type (tran,sin)) { 

td = tran->sin->td 

vo = tran->sin->vo 

va = tran->sin->va

w  = 2*pi*tran->sin->f 

ss = 0.05/tran->sin->f

}

else if (union_type (tran,exp)) { 

v1  = tran->exp->v1 

v2  = tran->exp->v2 

tau = tran->exp->tau

}

else if (union_type (tran,step)) { 

tstep = tran->step->tstep

v1    = tran->step->v1

v2    = tran->step->v2

tr    = tran->step->tr

slew  = (v2-v1)/tr

}

} # End parameters section
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# determine vs, which is set 

# equal to vn in template equation

values {

if (dc_domain|time_domain) { 

if (union_type (tran,sin)) { 

if (time <= td) {

vs = vo 

next_time = td

}

else { # if (time > td)

vs = vo + va*sin(w*(time-td))

step_size = ss

}

} # end tran->sin

else if (union_type (tran,exp)) { 

vs = v1 + (v2-v1)*(1-exp(-(time/tau)))

} # end tran->exp

else if (union_type (tran,step)) { 

if (dc_domain|(time < tstep)) {

vs = v1

next_time = tstep

}

else if ((time >= tstep) & (time < tstep+tr)){

vs = v1 + (time-tstep)*slew

next_time = tstep + tr

}

else {  

vs = v2

}    

} # end tran->step

else vs = supply

} # end dc_domain|time_domain
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Two-input Summer - MAST sum2 Template

This topic shows how to create a template that can take input stimuli, operate 
on them, and produce an output. The following example is a two-input summer, 
called sum2.

The schematic symbol and functionality are shown in the following figure.

else if (freq_mag) { # begin small-signal (ac)

vs = ac->mag # use magnitude value 

} 

else if (freq_phase) {         

vs = ac->phase # use phase value 

} # end small-signal 

} # end values section

equations {

out : out = vs

} 

}

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
multisrc.sin

element template sum2 in1 in2 out = k1, k2

input  nu in1, in2

output nu out

number k1=1, k2=1 

{ 

equations {

out: out = k1*in1 + k2*in2

}

} 

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
sum2.sin
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Note that the two inputs (in1 and in2) are declared as input connections with no 
units (nu). The output (out) is declared as an output connection with no units. 

The output is defined as the sum of products, each the product of an input and 
its corresponding constant. Typically, k1 and k2 are either 1 or -1, depending 
on the desired function. If k1 is 1 then in1 is added, whereas if k1 is -1, then in1 
is subtracted. A similar statement applies to k2 and in2. In general, k1 and k2 
can be any desired real numbers. 

Example
The following netlist shows how two instances of a source template (dcsrc) can 
be used as inputs to the sum2 template. 

The schematic for this system is shown in the figure below.

dcsrc.input1 input1 = vs = 5

dcsrc.input2 input2 = vs = 7

sum2.in input1 input2 output

in1

in2

out 

out = k1•in1 + k2•in2 Arguments
k1
k2

To subtract in2 from in1, specify k1=1 and k2=−1. 

Two-input summer
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The completion of a DC or transient analysis using this netlist would produce 
the following node value results: 

Multiplier - MAST mply Template

A multiplier template is also needed to complete the example shown in the 
figure below. The mply template shown below implements a constant gain 
function. The input to the template is declared as an input connection, and the 

input1  5

input2  7

output 12

input1

input2

output dcsrc.input1=5

dcsrc.input2=7

sum2.1

Connection diagram for sum2 and dcsrc templates
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output is declared as an output connection. The output (out) is defined such 
that out equals the product of the input (in) and the parameter constant (konst). 

S-Domain Modeling Using the MAST d_by_dt Operator

In control systems modeling, the system description is often available in s-
domain form. The control system diagram above shows several blocks where 
the block transfer function is defined as an s-domain function. The letter “s” is 
standard notation for the complex number quantity s+jw, where s is the real 
part of the quantity and jw is the imaginary part (j is the square root of -1 and w 
is frequency in radians/second). The “s” quantity is used when solving time-
domain differential equations using Laplace transforms. The Laplace 

element template mply in out = konst

input  nu in

output nu out

number konst

{ 

equations {

out: out = konst*in

}

} 

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
mply.sin

konstin out 

out = konst ⋅ in

Constant gain

Argument

konst
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transforms and inverse Laplace transforms make it possible to perform 
calculations in either the time-domain or the s-domain. 

The advantage of using the s-domain is that complicated operations in the 
time-domain are made easier in the s-domain. For example, differentiation in 
the time-domain is multiplication by s in the s-domain. Similarly, integration in 
the time-domain is simply division by s in the s-domain. Initial conditions must 
be established for integration. 

The MAST modeling language does not directly implement s-domain modeling. 
However, a simple rule is given as follows for converting s-domain expressions 
into time-domain expressions and simplifying the operation: 

Whenever a quantity in the s-domain expression is multiplied by s, 
substitute the multiplication operation with a differentiation operation, using 
the MAST differentiation operator, d_by_dt.

This process is illustrated using the following examples: 
■ A differentiator (using multiplication by s) 
■ An integrator (using division by s) 
■ A two-pole transfer function (using an s-domain polynomial in the 

denominator) 

Note that integration can be performed without the explicit need for an 
integration operator—the differentiation operator (d_by_dt) is sufficient.

Differentiator

The following figure shows a diagram for a differentiator. This illustrates the 
equivalence of multiplication by s in the s-domain to differentiation in the time 
domain. The output is the time derivative of the input multiplied by a constant 
(parameter tau).
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The MAST template for this differentiator (deriv) is shown as follows: 

Note that the constant multiplier, tau, must be inside the d_by_dt operation in 
the template equation. The simulator finds the value of out, such that out is 
equal to the time derivative of the product of tau and in. 

Because the tau constant multiplier must be inside the d_by_dt operation, the 
following line:

will produce a MAST syntax error. The MAST language requires that all 
multiplication take place inside the d_by_dt operator. 

element template deriv in out = tau

input nu in

output nu out

number tau

{

equations {

out: out = d_by_dt(tau*in)

}

} 

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
deriv.sin

out: out = tau*d_by_dt(in)

out = d(tau• in)/dt out = tau•s• in

in outinout 

In time domain: In s-domain:

d(tau• in)
dt

tau•s

Argument
tau

Differentiator model
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Integrator

Integration in the time domain is identical to division by s in the s-domain, which 
could be expressed as follows:

To implement this as a valid template equation, you need to perform the 
following steps: 

1. Revise the statement so that it has no denominator. To accomplish this, 
simply multiply both sides by tau*s, which yields the following: 

2. Replace the s operator with the MAST d_by_dt operator, and move tau 
inside the d_by_dt operator. This sets the time derivative of the output 
multiplied by a constant (tau, the template argument) equal to the input as 
follows: 

The MAST template for an integrator (intgr) is listed below and illustrated in the 
figure below. 

out = in/(tau*s) 

out: in = tau*s*out

out: in = d_by_dt(tau*out)

element template intgr in out = tau

input nu in # template input

output nu out # template output

number tau # constant multiplier

{

equations {

out: in = d_by_dt(tau*out)

}

}
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This integrator template operates as expected for transient and small signal AC 
analyses. However, it produces a singularity in the DC analysis. This is 
because the equation, expressed in integral form, is as follows:

 where C is a constant of integration. The MAST implementation effectively 
differentiates both sides of the integral equation. The constant of integration is 
therefore lost (the derivative of a constant is zero). 

One way to eliminate the constant of integration is to change the integral from 
an indefinite integral to a definite integral, by specifying the initial condition for 

out = 1/tau* Ú(in dt) + C 

in outinout 

In time domain: In s-domain:

d(out• tau)
dt tau•s

Argument
tau

1

in = d(out• tau)/dt
out = 1/tau ∫  in dt,  which becomes

Integrator model
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the out variable. The following template, intgr_1, shows this modification to 
intgr that includes the initial value (init) for the output. 

By definition, the DC solution to a system is the solution to the system when all 
time derivatives are set to 0. DC initialization is taken care of by using an 
initial_condition statement. Here, this is implemented in two steps: 

1. Declare an argument (init) that allows the user to specify a value to be 
assigned to out at DC. Here it appears on the same line as tau and has been 
given a default of undef. 

2. Create a control section and insert an initial_condition statement within it:

This technique allows you to specify the init parameter of the intgr_1 template 
as the output of the template during the DC analysis. If the analysis is in the 

element template intgr_1 in out = tau, init

input nu in 

output nu out 

number tau, init=undef 

{ 

control_section{

initial_condition(out,init)

}

equations {

out: in = d_by_dt(tau*out)

}

} 

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
intgr_1.sin

number tau, init=undef 

control_section{

initial_condition(out,init)

} 
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time domain or frequency domain, the template equation (which is identical to 
the original template equation for intgr) is then in effect: 

Two-Pole Transfer Function

This example of a two-pole transfer function demonstrates how s-domain 
transfer functions that are of order greater than one are implemented in the 
MAST modeling language. The following figure compares the time domain and 
s-domain representations of this function. 

In the s-domain, the two-pole transfer function (with poles represented by tau1 
and tau2) is expressed as:

Isolating the output term on the left side, this transfer function can be 
expressed as follows:

When you have a transfer function expressed in this general form: 

equations {

out: in = d_by_dt(tau*out)

}

out/in = 1/((tau1*s +1)*(tau2*s + 1))

out = 1/((tau1*s +1)*(tau2*s + 1)) * in 

Arguments
tau1, tau2

out = 

(tau1•s+1)• (tau2•s+1)

in outinout 

In time domain: In s-domain:

11

(tau1•d( )/dt+1)• (tau2•d( )/dt+1)

d((tau1+tau2)in)/dt + 1

Two-pole transfer function

(tau1 dt2 +d2 in)/• •tau2
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you can use the MAST transfer_function operator to implement it as a template 
equation, without having to rewrite each occurrence of s in terms of the 
d_by_dt operator. 

The general form for using the transfer_function operator is as follows:

where: 

Thus, you would expand the denominator of the following two-pole transfer 
function:

 to the following:

 

output = transfer_function(input_expression, \

[numerator], [denominator])

output is the output variable (output, branch, or var) 

input_expression is an expression containing the input variable (input, 
branch, val, or ref)

numerator a fixed-length array of coefficients for the numerator 
polynomial (highest order coefficients listed first)

denominator a fixed-length array of coefficients for the denominator 
polynomial (highest order coefficients listed first)

out = 1/((tau1*s +1)*(tau2*s + 1)) * in 

tau1*tau2*s**2 + (tau1+tau2)*s + 1 

output = 
numerator

denominator
•  input_expression
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You can then take these denominator coefficients (tau1*tau2, tau1+tau2, and 
1) and use them with the transfer_function operator to implement the following 
template equation (the numerator consists only of the constant, 1):

 The template for this two-pole transfer function is shown as follows:

equations {

out: out = transfer_function(in, [1], \

[tau1*tau2, tau1+tau2, 1])

}

element template twopole in out = tau1, tau2

input nu in         

output nu out        

number tau1, # time constant of first pole 

tau2 # time constant of second pole 

{ 

equations {

out: out = transfer_function(in, [1], \

[tau1*tau2, tau1+tau2, 1])

}

}

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
twopole.sin
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For contrast, the following example shows how you might have written this 
template if the transfer_function had not been available. You would rewrite 
each occurrence of s in terms of the d_by_dt operator as follows: 

Combining Elements - MAST pid Template

Because the gain, derivative, and integral s-domain templates were declared 
as element templates, you can take advantage of MAST’s hierarchical 
capabilities to use them as “building-blocks” to form the Proportional-Integral-
Derivative (PID) model shown in the following figure:

element template twopole_1 in out = tau1, tau2

input nu in # template input

output nu out # template output

number tau1, # first pole time constant

tau2 # second pole time constant

{

var nu doutdt # For finding first derivative

equations {

doutdt: doutdt = d_by_dt(out)

out: in = d_by_dt(tau1*tau2*doutdt) + \

(tau1+tau2)*doutdt + out

}

}
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The PID model functions as the controlling module of the system as shown in 
the following control system diagram figure: 

gain

s

s
1

++

+

Hierarchically constructed PID

+

_
gain

s

s
1

++
+

+
+

Proportional-Integral-Differentiator 

source

Controller

e - sτ
τ  •  ( 1 s+1) •  τ  ( 2 s+1)•  

1

source

Control system diagram
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Note that the following PID template includes an embedded netlist along with 
parameters that are passed to the embedded templates. It also contains a 
template equation.

Ideal Delay

This topic describes the modeling of an ideal control system delay in the s-
domain. The intrinsic delay function is used here. 

The s-domain transfer function for an ideal delay is:

where the output is identical to the input, but delayed by an amount of time 
represented as tdelay. This function is implemented using the delay function, 
rather than replacing the quantity s with the operator d_by_dt, shown in the 
following figure.

template pid in out = konst,dtau,itau,iinit

input nu in 

output nu out

number konst,dtau,itau,iinit=0

{ 

mply.1 in in1 = konst

deriv.1 in1 dout = dtau

intgr_1.1 in1 iout = itau,iinit

equations {

out: out = in1 + dout + iout

}

} 

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
pid.sin

out/in = exp(-s*tdelay)
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The delay function makes it a simple matter to write a template for an ideal 
delay (dlay). 

The quantity s can be replaced by the d_by_dt operator only in expressions 
involving linear combinations of s, which is not the case above.

MAST Control System Example Results

The templates described in this chapter provide all the pieces for the control 
system example shown in the following control system diagram figure. The 

template dlay in out = tdelay

input nu in # template input

output nu out # template output

number tdelay # delay from input to output

{

equations {

out: out = delay(in,tdelay)

}

} 

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
dlay.sin

Argument
tdelay

out = in delayed by time delay

in outinout 

In time domain: In s-domain:

delay(in,tdelay) e-tdelay•s

Ideal delay
230 Saber® MAST Language User Guide
B-2008.09



Chapter 9: Control System Modeling
MAST Control System Example Results
figure adds numbers for the appropriate constants. Note that the PID model 
functions as the controlling module for the system. 

The following netlist (testpid.sin) relates to the system shown in the preceding 
figure:

 The stimulus to the system is provided by the two netlist entries named 
multisrc.set and multisrc.load. The multisrc.set entry models the control set 
point of the system. It specifies DC value 3 and AC value (1,0). This means that 
during a DC analysis the value of the set node will be 3.

During a transient analysis the value of the set node will remain constant at 3. 
During an AC analysis, the simulator linearizes the rest of the system, based 

multisrc.set set = 3, ac=(1,0)

multisrc.load load = tran=(step=(3,5,1,1u))

sum2.1 set dlyout error = k2=-1

pid.1 error cntl = konst=6.7,dtau=1,itau=3.9

sum2.2 cntl load input

twopole.1 input out = tau1=10,tau2=1 

dlay.1 out dlyout = 1 

+

_
6.7

s

s
1

++
+

+
+

1
e-s

PID Controller

(10s + 1) •  (1s + 1)

source source

System with PID controller
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upon value 3 at the set node. Then it applies a small signal to node set with 
magnitude 1 and a phase of 0 degrees. 

Similarly, the multisrc.load source models the feed load into the system. During 
a DC analysis, the load node will have the initial value of the step, which is 3. 
During a transient analysis, the value of the load node will start out at 3 and 
then step from 3 to 5 at 1 second. The transition will take 1 microsecond. 
During an AC analysis, the simulator linearizes the system, using a load node 
value equal to the DC value, 3. The multisrc.load source has no AC source 
specification, so the load node has no effect during an AC analysis. 

Small Signal AC Analysis Results

You can use the testpid.sin netlist to simulate the set point-to-output 
characteristics of the system. The following figure shows the magnitude  
(dashed line) and phase (solid line) of the changes in the output that would 
result from unity changes in the frequency of the control set point input signal. 
These results were obtained by invoking the Saber simulator on testpid.sin. 
From the simulator Transcript window, type <testpid.scs. Both testpid.sin and 
testpid.scs are files that are provided with the Saber simulator, along with the 
example templates shown in this manual.
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Step Load Transient Analysis Results

The testpid.sin netlist can also be used to simulate the step-load characteristics 
of the system. The following figure shows the system output that would result 
from a step in the input from 3 to 5. The system set point remains at 3, so the 
final system output should eventually approach this set point value. You can 
evaluate the effectiveness of the PID controller by observing the system 
response to the step change in input. 

From the curve shown in the following figure, it is apparent that the system 
requires approximately 30 seconds to recover from a step change in the input 
from 3 to 5. 
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In the examples used throughout the Guide to Writing MAST Templates topics, 
various variable types are used and assumed to be declared. One assumption 
includes the electrical pin type with i and v as the through and across variables. 
Another is the system temperature variable named temp. These are part of the 
default Saber simulation set of MAST declarations that are provided. They are 
not, however, part of the Saber simulator. 

When you start the Saber simulator either from the Saber User Interface or with 
the saber command, without specifying a load option (-la; -ls; -ln; -lh; or -l 
filename), or if you start it with the -la option, the Saber simulator loads the 
analogy.sld file before reading your design. The analogy.sld file does several 
things, including setting up the simulation environment and declaring a set of 
templates. For a complete list of the templates loaded with analogy.sld, refer to 
the analogy.sin file located in the following directory: 

The analogy.sld file is created from analogy.sin.

The included templates consists of the following major parts:
■ Constant declarations 
■ Unit definitions (refer to the MAST Reference Manual)
■ Pin definitions (refer to the MAST Reference Manual)
■ External declarations (refer to the MAST Reference Manual)
■ Set of frequently-used templates

Saber Simulator Include Files

An include file is a file that is specified to be used by the Saber simulator. This 
specification can be made either from another file, from a schematic through 
the use of the saber symbol, or as part of the saber command line. The general 

install_home/template/support
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format for specifying an include file in a MAST template, netlist, or other include 
file is to enter a left angle bracket (<) followed by the name of the include file: 

where filename can be the name of any file in your data search path. The left 
angle bracket (<) must appear in the first column of the line (i.e., it cannot be 
preceded by leading or embedded spaces). 

When the simulator finds a statement for an include file, it replaces the 
statement with the complete contents of the named file. The Saber simulator 
reads in the contents of an include file directly, so you must position the include 
statement precisely where the information is required. 

The following files are automatically specified as include files as part of the 
invocation of the Saber simulator: 

These files are located in the following directory:

SPICE-Compatible Pre-Loaded Templates

The SPICE simulation environment is selected if you start the Saber simulator 
with the saber -ls load option. This environment differs from the default 
environment only in the collection of pre-loaded templates. Instead of loading 
MAST templates, the simulator includes SPICE-compatible templates. The 
SPICE simulation environment is stored in the spice.sld file. 

<filename 

consts.sin declares some useful constants, such as pi, Boltzmann’s 
constant, and electron charge.

header.sin declares some commonly-used parameters (such as simulation 
temperature) and initializes them to default values.

units.sin declares standard units and pin types used by all library 
templates.

install_home/template/include 
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For a list of the SPICE templates loaded with this environment, refer to the 
spice.set file located in the following directory: 

Note that you are not prevented from using SPICE-compatible templates if you 
do not use the -ls option—it just takes longer to initialize the Saber simulator. 
This is because it needs to find and read the appropriate templates, rather than 
have them pre-loaded. 

Setting Up Your Own MAST Include Files

There may be cases when neither the provided pre-loaded include file set is 
sufficient for your problem. In such cases, you can either modify an existing 
include file or create a new one from scratch. Additionally, you can set up your 
include file set temporarily, or you can save it for later use. These options are 
described in the following topics:
■ Adding Your Own Include File
■ Creating Your Own Include Files
■ Saving Your Include File Set 

Adding Your Own Include File

The simplest way to modify the simulation environment is to add your own unit 
or pin-type declarations. One way to do this is put these declarations in a 
separate file, and include this file at the top of your Saber input file (netlist), 
before any other noncommented entries in this file. The way to include your 
own file from a schematic is to use the saber symbol and the associated 
SaberInclude property on your top-level schematic. This makes your 
declarations available everywhere in your design.

As an example, assume that you need a unit declaration for distance in meters 
and that you want to call the physical quantity dist. You must first check the 
units.sin file to see whether a declaration with that name already exists. If it 
does and is distance in meters, there is no need to modify the environment. If a 
unit declaration for dist already exists but means something else, you must 
select another name, because names of physical quantities must be unique. If 

install_home/template/spice 
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no such declaration exists, put your declaration for distance into a file, say 
myunits.sin, as follows:

Then put the following line, without leading or embedded spaces, at the top of 
your Saber input file (design.sin):

This includes the myunits.sin file at the specified place in design.sin, which has 
the same effect as writing the contents of myunits.sin at that location. 

In general, you can define units anywhere in your design, not just at the top 
level. In such a case, the unit will be defined only at that location in your design. 
For example, if you define a unit in the body of a template, that unit will be 
known only in that template and possibly its subordinate templates. 

Creating Your Own Include Files

It is possible to create your own include file set, consisting of your units and pin 
types, without referring to the declarations in the units.sin and header.sin files. 
However, the templates provided depend on many of the units, pin types, and 
parameters in these files to be part of the environment. 

Note:   

It is recommended that your simulation environment always include the 
declarations provided.

To create your own include files, without any of the pre-declared templates, 
include the header.sin file at the top of your Saber input file, using the following 
statement: 

without leading or embedded spaces. This automatically includes units.sin and 
also declares the parameters defined in the header.sin file. If you have your 
own unit declarations, include them immediately after header.sin:

unit {“m”, “meter”, “distance”} dist

<myunits.sin

<header.sin

<myunits.sin
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The rest of your Saber input file will remain unchanged. When invoking the 
Saber simulator, be sure to specify the -ln option (load nothing) to tell the 
simulator not to load any other environment. 

Saving Your Include File Set

It is sometimes useful to save your include file set, so that you can load it later 
without recreating it. Typically, in such cases you also want to include some 
frequently used templates in your saved file set, so that they don’t have to be 
compiled each time they are needed. You can do so as described in the 
following example.

Assume you want to call your include file myenv. It should include the 
declarations from header.sin and your units from myunits.sin. Suppose, further, 
that you want the file to include the r, c, v, and q MAST templates, as well as 
your own opamp template. Create a file named myenv.sin that contains the 
following lines:

There must be no leading or embedded spaces on any of these lines. Each line 
instructs the simulator to include the specified file and to make their constants 
part of myenv.sin. Now, to create and save your environment, start the Saber 
simulator as follows: 

The -ln option tells the simulator not to load anything. The -p option instructs it 
to pre-compile myenv.sin, that is, to read it contents, together with all files it 
includes, find the declarations in those files, and put the result in a file named 
myenv.sld. This file now contains your environment as specified in myenv.sin. 

<header.sin

<myunits.sin

<r.sin

<c.sin

<v.sin

<q.sin

<opamp.sin

saber -ln -p myenv
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To use your environment when simulating your design, start the simulator as 
follows: 

where design.sin is the full name of your Saber input file (netlist).

MAST Template Extraction Groups

All MAST library templates are designed to make it convenient for you to 
extract relevant information (such as all voltages or all currents), without having 
to know the name of each variable. Each template description (in the Saber 
online documentation) contains a post-processing section that lists all variables 
that are available for extraction. 

You can use intuitive names for such things as voltages or currents and collect 
several of each type into extraction groups. The meaning, declaration, and use 
of extraction groups is described in the BJT example. The following list shows 
some of the groups used in MAST templates:

saber -l myenv design

v voltages

i currents

q charges

pwr power dissipations

f fluxes

noise noises

dv8 deviations from nominal
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Examples in earlier topics use models of familiar electrical circuit elements. 
This topic presents information about how to create models whose behavior is 
defined in piecewise segments. You can represent this type of nonlinear 
behavior with many of the same MAST constructs used for linear models in 
earlier topics. 

This topic uses the following nonlinear example templates: 
■ Modeling a Simple Voltage Limiter with MAST
■ Modeling a Voltage Divider with MAST

The two examples of nonlinear models introduce the following concepts:
■ A method to approximate a discontinuous function by a continuous one, so 

that it can be modeled in the MAST language
■ If expressions
■ Newton steps to limit changes of the independent variable from one iteration 

to the next, which aids convergence
■ Recommendations on when to specify newton steps
■ Parameterized newton steps 

Nonlinear Elements

A linear component is characterized by the fact that its template equations 
include only linear functions of system variables after substitution of all relevant 
expressions from val variable definitions. That is, there are no products or 
ratios of system variables in a template equation, and no system variable is an 
argument of a foreign or intrinsic function (except d_by_dt and delay). 

If one or more of these requirements for a linear template is not met, the 
template is considered nonlinear. Note that a template can include nonlinear 
assignment statements yet still describe a linear element. The important 
question is whether the nonlinearity enters the template equation. 
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For example, the resistor_1 template defines power as the square of the 
voltage drop across the resistor divided by the resistance. Nevertheless, the 
template is linear because power does not enter the template equation. In other 
words, power is part of the resistor template, but it is not part of the resistor 
model. A template can also include nonlinear functions of time, frequency, or 
any parameter, without being a nonlinear template. 

Nonlinear models are not confined to curvelinear functions—other types 
include those whose outputs have discontinuities or regions of piecewise linear 
behavior. The examples in this chapter illustrate these kinds of nonlinear 
characteristics. 

There are issues that can arise when modeling a nonlinear element. Most of 
these are handled automatically by the Saber Simulator; however, there are 
MAST constructs, (sample points), that allow you to provide your own values 
for more efficient simulation. All such constructs require statements in the 
control section of the template. 

Modeling a Simple Voltage Limiter with MAST

This topic shows how to use conditional expressions (if- else) in the template 
equation to define three regions of a symmetric voltage limiter shown in the 
following figure. 

Vout

Vmax-Vmax

Vin

Ideal Voltage Limiter Characteristics
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The structured template for this limiter is shown below.

element template vlim ip im op om = vmax

# template header

electrical ip, im, op, om # header declarations

number vmax

{ # start of template body

val v vin, vout # local declarations

var i iout

number slope=1u, vmx

struc {number bp, inc;} nvin[*]

parameters { # start of parameters sect.

vmx = abs(vmax) # ensure use of positive

nvin = [(-vmx,1.9*vmx),(vmx,0)]

} # Newton step array for vin

values { # start of values section

vin = v(ip) - v(im) # input voltage

if (vin < -vmx)     vout = -vmx + slope * (vin + vmx)

else if (vin > vmx) vout = vmx + slope * (vin - vmx)

else                vout = vin # voltage-limiting

} # end of values section

control_section { # start of control section

newton_step (vin, nvin) # assign Newton steps

} # end of control section

equations { # start of equations section

i(op -> om) += iout # current contribution

iout:  v(op) - v(om) = vout # equation determining iout

} # end of equations section

} # end of template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
vlim.sin
Saber® MAST Language User Guide 243
B-2008.09



Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Simple Voltage Limiter with MAST
The description of the vlim template is divided into the following topics:
■ Characteristic Equations
■ Header and Header Declarations
■ Values and Equations Sections -- This topic describes if expressions that 

include conditions. These conditions can use system variables, a branch 
variable, or a val variable that is a function of system variables to introduce 
nonlinear dependencies.

Models described with if statements must satisfy various requirements for 
consistency, continuity, and non-zero slope. 

• Requirements For If Expressions 
■ Control Section—Newton Steps

• Purpose of Newton Steps

• Newton Step Example

Characteristic Equations

The characteristic equations of the voltage limiter are: 

Header and Header Declarations

The vlim template is an element template with one argument, the limiting 
voltage (vmax). Its header and corresponding declarations are as follows:

There is no default value for vmax, which makes it mandatory for a user to 
specify an instance value. Note that this value may be specified as positive or 
negative—the template uses the absolute value of vmax.

vout = -vmax if vin < -vmax

vout = vin if -vmax <= vin <= vmax

vout = vmax if vin >= vmax

element template vlim ip im op om = vmax

electrical ip, im, op, om

number vmax
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Values and Equations Sections

The equations section for vlim follows the standard pattern for voltage-driven 
outputs as follows:

These equations closely reflect the limiting characteristics given in the topic 
titled "Characteristic Equations", except that they include a nonzero slope in the 
limiting regions (slope).

These equations require the following declarations in the local declarations 
section:

The limiting takes place in the following values section as follows:

 Although negative values for vmax are allowed, the equations for determining 
vout assume vmax is positive. That is, they use the absolute value of vmax, 

equations { 

i(op -> om) += iout

iout:  v(op) - v(om) = vout

}

val v vout, vin

var i iout

number slope=1u, vmx

values {

vin = v(ip) - v(im)

if (vin < -vmx) \

vout = -vmx + slope * (vin + vmx)

else if (vin > vmx) \

vout = vmx + slope * (vin - vmx)

else vout = vin 

}
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which is obtained by using abs, the intrinsic absolute value function. This 
absolute value of vmax is assigned to the local parameter vmx as follows:

The local declarations in conjunction with the values section enable the 
characteristic equations to express the output voltage (vout) as a function of 
the input voltage (vin), while finding the current contribution (iout) required for 
this to be true. 

Requirements For If Expressions

There are several points worth noting about the conditional statements used in 
the values section: 
■ If a system variable, a branch variable, or a val variable that is a function of 

system variables appear in the condition of an if statement, the variables 
defined in the body of the if statement depend nonlinearly on the variable 
used in the condition. In this example, vout depends nonlinearly on vin. 

■ You must ensure that nonlinear models implemented with if statements or if 
expressions are continuous from one region to the next. In these template 
equations, it is necessary to force continuity at vin = ±vmax. Discontinuities 
can cause problems during simulations (e.g., small time steps (and long 
simulation time) or nonconvergence).

parameters {

vmx = abs(vmax)

# other statements removed 

}
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■ You must ensure that variables in an if statement are always defined, 
regardless of the conditions of if statements or if expressions. One way to 
accomplish this is to make sure that any variable defined in any condition of 
an if statement is defined in every condition of the if statement or if 
expressions. 

■ An independent variable defined in the body of an if statement or if 
expression should never be set to a constant value. The reason is that, if the 
simulator, while iterating to find the solution of nonlinear equations, goes 
into a limiting region, it might not be able to get out of the region if the slope 
of the function is equal to 0—that is, the voltage limiter might latch. 

To prevent this problem, a small but non-zero multiple of vin named slope is 
added to vout (as shown in the following figure). In most cases, adding a 
very small slope yields a more realistic model than just a constant limit. 

Purpose of Newton Steps

The  previous figure shows that the dependence of vout on vin is piecewise 
linear, with -vmax and vmax defining crossover points for three separate 
regions of linear operation. For templates with this kind of input/output 
relationship, we recommend that you specify newton steps for the independent 
variable (here, vin). Newton steps are specified as pairs of numbers that 

vout

vin

slope

slope

Voltage Limiter Template Characteristics

Vmax-Vmax
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specify a breakpoint and an increment, which is described in more detail 
below.

The purpose of newton steps is to place a limit on the change of the 
independent variable from one iteration to the next. The effect of this is to 
restrict the range of approximation the simulator performs around the crossover 
points, which helps improve simulation efficiency and is summarized as 
follows:

When the variable is in a flat region, newton steps prevent the simulator 
from “guessing” a solution that grossly overshoots the actual solution. Such 
overshoots can cause slow convergence to a nonlinear solution or even 
numerical oscillation.
Newton step increments are chosen to be large enough to let the 
independent variable move from one piecewise linear segment to another, 
but small enough to prevent it from moving too far and possibly skipping a 
segment altogether. 

Newton steps are related to the iterative algorithm that the simulator uses to 
find the solution of nonlinear equations. If these equations include 
exponentials, convergence may be slow, because a small change in the 
independent variable of the exponential may cause a large change in the 
function value. 

More specifically, the goal is for the value of the independent variable vin to 
move quickly into the intended region of operation and, once there, have its 
movement restricted so that it is unlikely to leave the region again. 
248 Saber® MAST Language User Guide
B-2008.09



Chapter 11: Modeling Piecewise-Defined Behavior
Modeling a Simple Voltage Limiter with MAST
Control Section—Newton Steps

Newton steps require three different statements to be included in the template 
as follows:

1. A declaration of a structure parameter (nvin) to specify values for 
breakpoints and increments, as pairs of numbers in an array (bp, inc). This 
parameter may be declared either as an argument in the header 
declarations or as a local parameter in the template body. Values for these 
pairs are specified as described in 2, below. 

2. An assignment statement in the parameter section that specifies values for 
nvin: 

3. A statement in the control section to associate the newton steps parameter 
(nvin) with the independent variable of the template (vin): 

It is possible for a template to have multiple independent variables requiring 
newton steps. 

The meaning of the (breakpoint, increment) pairs is best defined by explaining 
the two pairs given for nvin in the assignment statement: 

struc { 

number bp, inc; 

} nvin[*] 

nvin = [(-vmx,1.9*vmx),(vmx,0)] #parameter sect.

control_section { 

newton_step(vin,nvin) 

} 

[(-vmx,1.9*vmx),(vmx,0)] 
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■ Below the first breakpoint (-vmx), there is no restriction on how much vin can 
change from one iteration to the next.

■ Between the first two consecutive breakpoints (-vmx and vmx), the change 
in vin is restricted to the first specified increment (1.9*vmx) per iteration. 

■ Above the last breakpoint (vmx), there is no restriction on how much vin can 
change. 

To see why newton steps are used for this type of model, refer again to the 
figure above. Typically, the solution of the nonlinear equations should be in the 
nonlimiting (central) linear region. If, during iterations, there is limiting (say, on 
the left side), you do not want vin to “step over” the nonlimiting region and go 
directly to the limiting region on the right side. Instead, it is preferable to limit 
changes in vin such that it is in the nonlimiting region for at least one iteration. 

Newton steps that have breakpoints (such as -vmx and vmx) that depend on 
the value given to an argument (vmax) are referred to as parameterized. 

To accomplish this, newton steps are specified as shown for the nonlimiting 
region (between -vmx and vmx) but not for the upper and lower limiting regions. 
This has the effect of limiting the distance the simulator can step between 
±vmx.—i.e., when it enters the nonlimiting region or is inside the region— to 
1.9•(vmx). Because this region has width 2•(vmx), this newton step array 
prevents the simulator from stepping completely over the nonlimiting region. 

In general, the maximum allowable change should be less than the width of the 
critical region. In this example, there is no restriction on the size of an iteration 
step if vin remains in either the upper or lower limiting region. This is indicated 
by the fact that nvin does not specify limiting below -vmx or above +vmx. (The 0 
increment means no limiting above +vmax.) 

Newton Step Example

Assume that vmax has been specified by the user as 10V, which sets the lower 
limit of the output to -10V and the upper limit to +10V, as shown in the following 
figure. Further, assume that vin is in the lower limiting region at -35V and that 
the iterative algorithm intends to change it to +35V. This would result in the 
simulator stepping over the nonlimiting region between ±10V. 

Inside the nonlimiting region, the amount of change is restricted to 1.9•vmax, 
which is 19V. However, this restriction does not affect the amount of change 
outside the nonlimiting region (i.e., vin can move from -35V to -10V in one 
iteration; the 19V limit does not apply until vin reaches -10V). 
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Therefore, for the next iteration, vin will have a value of +9V (-10 + 19), which is 
in the nonlimiting region. 

Modeling a Voltage Divider with MAST

A voltage divider provides an output voltage as the ratio of two input voltages. 
The vdiv template models this relationship as a form of controlled voltage 
source as shown in the following figure: 

Its characteristic equation needs to express the following: Determine the output 
current such that vout = vin1/vin2.

Vout

10V-10V

Vin

-35V 35V

First
iteration

9V

Second
iteration

How Newton Steps Limit the Change of vin

vin1

vin2

vout

Voltage Divider
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The vdiv template has a discontinuity. At vin2=0, vout “jumps” from -infinity to 
+infinity. Because the Saber Simulator requires models to be continuous, you 
have to modify the model to provide a “connection” across the discontinuity, as 
shown by the dashed line in the following figure:

The solid lines in the figure above show vout as a function of vin2 for a 
constant, positive value of vin1. There are various ways of connecting the two 
branches of the hyperbola so that vout is a continuous function of vin2. The 
dashed line shows the simplest way, using a straight line segment through the 
origin that intersects the hyperbolic branches of vout vs. vin2. The values of 
eps and -eps determine the points at which this line segment intersects the 
hyperbola. 

vout

vin2

-eps

eps

Voltage Divider Output as a Function of vin2
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By adding this connecting segment from -eps to +eps, the model for the voltage 
divider is expressed as:

Determine the output current such that:

In general, if a model has a discontinuity, it must be converted to a continuous 
model (as in this example). Note that this procedure would be much more 

vout = vin1/vin2 if vin2 < -eps or if vin2 > eps

vout = vin1*vin2/eps2 if -eps <= vin2 <= eps
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difficult if continuous derivatives were also required by the Saber Simulator. 

element template vdiv ip1 im1 ip2 im2 op om

# template header

electrical ip1, ip2, im1, im2, op, om

# header declarations

{ # start of template body

val v vin1, vin2, onev, vout # local declarations

var i iout

number eps = 1e-6, eps2

struc {number bp, inc;} nv2[*]

parameters { # start of parameters section

if (eps<=0) eps = 1e-15 # prevent negative eps values

if (eps>.01) eps = .01

eps2 = 1/(eps*eps)

nv2 = [(-2*eps,eps), (2*eps,0)]

# newton steps for vin2

} # end of parameters section

values { # start of values section

vin1 = v(ip1) - v(im1) # input voltage vin1

vin2 = v(ip2) - v(im2) # input voltage vin2

if (abs(vin2)<1e-50) onev = 0 # Prevent divide-by-zero

else onev = 1/vin2

if (abs(vin2) > eps) vout = vin1*onev # output voltage

# Next line prevents output from growing without bounds

else                 vout = vin1*vin2*eps2

} # end of values section
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The description of the vdiv template is divided into the following topics:
■ Header Declarations
■ Parameters Section - MAST vdiv Template
■ Newton Step Parameters -- shows unparameterized newton steps and 

requirements for newton steps
■ Equation and Values Sections

Header Declarations

As shown in the following figure, the vdiv template has two input ports and one 
output port, each consisting of two connection points. 

control_section { # start of control section

newton_step (vin2, nv2) # assign newton steps to vin2

} # end of control section

equations { # start of equations section

i(op->om) += iout # current contribution

iout:  v(op) - v(om) = vout # equation to determine current

} # end of equations section

} # end of template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/vdiv.sin

vin1

vin2

vout

Voltage Divider
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This template provides no arguments and the template header and header 
declaration is written as follows:

Parameters Section - MAST vdiv Template

The eps parameter specifies half the horizontal distance between the end 
points of the line segment shown in the following figure:

It is possible to make eps an argument of the template, but here it is declared 

locally and initialized to 10 . Although this approach does not allow the value 
of eps to be changed in a netlist, you can still change its value using the alter 
command. 

Further, an error-checking statement is included that resets eps to 10  if a 
user tries to alter it to a negative value or zero:

element template vdiv ip1 im1 ip2 im2 op om 

electrical ip1, ip2, im1, im2, op, om 

number eps = 1e-6, eps2 # local declarations

if(eps <= 0) eps = 1e-15 #In parameters section

vout

vin2

-eps

eps

eps Parameter

-6

-15
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In addition, the following line keeps eps at a level no greater than.01:

The eps2 parameter is defined as the reciprocal of eps squared; it is used in 
the equation that defines vout when vin2 lies in the region between -eps and 
+eps.

 The last line in the parameters section relates to the nv2 parameter, which is 
an assignment statement that specifies (breakpoint, increment) values for nv2 
as follows:

Refer to the topic titled "Newton Step Parameters".

Newton Step Parameters

The output voltage, vout, of the vdiv template depends nonlinearly upon the 
two input voltages vin1 and vin2. (The nonlinear dependence on vin1 is 
established by recognizing that 
¹vout/¹vin1 = 1/vin2 is not constant, but a function of the circuit’s operation.) As 
with the vlim template, the vdiv template provides different regions in which the 
output (vout) depends on the input (vin2). 

if(eps>.01) eps = .01 #In parameters section

eps2 = 1/(eps*eps) #In parameters section

nv2 = [(-2*eps,eps), (2*eps,0)]
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The figure above shows that vout is a hyperbolic function of vin2, with -eps and 
eps defining crossover points for three separate regions of continuous 
operation. Because vout depends on vin2 differently in different regions of vin2, 
and because, when vin2 is near 0, vout changes considerably even for small 
changes in vin2, it is advisable to specify newton steps for the independent 
variable, vin2. 

vout

vin2

-eps

eps

Voltage Divider Output as a Function of vin2
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Newton steps require the inclusion of three different statements in the vdiv 
template: 
■ A declaration of a structure parameter (nv2) that specifies values for 

breakpoints and increments, as pairs of numbers (bp, inc) in an array of 
unspecified size. This parameter may be declared either as an argument in 
the header declarations or as a local parameter in the template body. Here, 
nv2 is declared as a local parameter:

■ An assignment statement that specifies (breakpoint, increment) values for 
nv2:

■ A statement in the control section that associates the newton step variable 
(nv2) with the independent variable of the template (vin2): 

The values for the (breakpoint, increment) pairs in the assignment statement 
(Item 2, above) enforce the following restrictions on iterations of the simulator: 
■ Below the first breakpoint (-2*eps), there is no restriction on how much vin2 

can change from one iteration to the next. 
■ Between the first two consecutive breakpoints (-2*eps and 2*eps), the 

change in vin2 is restricted to the first specified increment (eps) per iteration. 
■ Above the last breakpoint (2*eps), there is no restriction on how much vin2 

can change. 

To see why newton steps are used for this type of model, refer back to the 
above figure. Typically, the solution of the nonlinear equations should be in one 
of the regions where vin2 ¼0 (i.e., on the hyperbola). If, during iterations, vin2 
=0, you do not want vin2 to “jump over” from one branch of the hyperbola to the 
other. Instead, it is preferable to limit changes in vin2 such that it is in the 
connecting region for at least one iteration. 

struc { number bp, inc; } nv2[*] #local decl.

nv2 = [(-2*eps,eps),(2*eps,0)] #parameters sect.

control_section {

newton_step (vin2, nv2)

}
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To accomplish this, newton steps are specified as shown for the connecting 
region (between ±2*eps) but not for the positive or negative regions of the 
hyperbola. Defining breakpoints with a factor of two means that the increment 
(eps) limits the distance the simulator can step to one-fourth of the distance 
between breakpoints. This ensures that at least one iteration is performed in 
this region. Limiting the distance the simulator can step as vin2 approaches 0 
prevents the simulator from stepping completely over the connecting region. 

Equation and Values Sections

In the vdiv template, the values section contains the statements that handle the 
output voltage. The equations section handles the current contribution.

The template equation for vdiv is similar to that of the voltage limiter template 
(vlim) as follows:

This requires that iout is declared as a var variable as follows:

In addition, vout is declared as a val as part of the following local declaration:

The values section defines the output voltage as a function of the two input 
voltages, according to the modified model. Because vout depends nonlinearly 
on the input voltages, you must declare both vin1 and vin2 as val variables as 
in the previous statement. 

equations {

i(op->om) += ioutn

iout:  v(op) - v(om) = vout

}

var i iout #local declaration

val v vin1, vin2, onev, vout #local declaration
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The following values section contains comments that identify the function of 
each statement: 

values {

vin1 = v(ip1) - v(im1) # input voltage vin1

vin2 = v(ip2) - v(im2) # input voltage vin2

# Next line prevents divide-by-zero error

if (vin2<1e-50) onev = 0 

else onev = 1/vin2

# Next lines prevent output from 

# growing without bounds

if (abs(vin2) > eps) vout = vin1*onev 

else                 vout = vin1*vin2*eps2

}
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This topic provides models of two common electrical devices—the junction 
diode and the bipolar junction transistor. For simplicity, the following example 
templates provide idealized models of these nonlinear devices: 
■ Modeling an Ideal Diode with MAST 
■ Ebers-Moll MAST Model for the Bipolar Transistor, a bipolar junction 

transistor that allows the user to select as either NPN or PNP 

Each of these templates uses a control section to include statements for 
newton steps and for initial conditions. In addition, these examples introduce 
the following concepts:
■ Enumerated parameters 
■ Grouping of val variables or system variables for extraction
■ Control section statements that specify small-signal parameters for use with 

the ssp command 
■ Collapsing nodes

Modeling an Ideal Diode with MAST

The ideal diode is a typical example of a nonlinear electrical device, because 
the diode current is proportional to the exponential of the voltage across the 
diode as shown in the following figure.
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The following shows the ideal diode example template:

element template diode p m = is, ic # template header

electrical p, m # header declarations

number is = 1e-16,

ic = undef

external number temp

id

is vd

Ideal Diode Characteristics
0
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{ # start of template body

number k = 1.318e-23, # local declarations

qe = 1.602e-19,

vt

val v vd

val i id

struc {

number bp, inc; # Newton steps

} nvd[*] = [(0,.001),(2,0)]

parameters { # start of parameters section

vt = k * (temp+273.15) / qe # compute thermal voltage

} # end of parameters section

values { # start of values section

vd = v(p) - v(m) # diode voltage

id = is * (limexp(vd/vt)-1) # diode current

} # end of values section

control_section { # start of control section

newton_step (vd,nvd) # Newton steps assigned to vd

initial_condition(vd,ic) 

start_value(vd,0.6) 

device_type("diode","example") 

small_signal(vd,voltage,"p-m voltage", vd)

} # end of control section

equations { # start of equations section

i(p->m) += id # current contribut. of diode

} # end of equations section

} # end of template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/diode.sin
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diode Template Topics

The description of the diode template is divided into the following topics:
■ Characteristic Equation
■ Header Declarations
■ Modeling Temperature
■ Newton Steps

Newton Steps Example - MAST diode Template

■ Template Equation -- shows how to use the limexp function, which is a 
modified exponential operator that is limited for large exponents to prevent 
overflow.

■ Initial Conditions
■ Starting Value -- shows how to specify a starting value for the first iteration 

of a DC analysis, using a start_value statement in the control section (which 
is different from the initial_condition statement).

■ Small-Signal Parameters -- shows how to specify small-signal parameters 
within a template, which are reported in response to a Saber ssp command.

Characteristic Equation

The characteristic equation for a diode is: 

id = is • (e  - 1) 

where:

id is the current through the diode

vd is the voltage across the diode

is is the saturation current, typically in the order of 10  A

q is the electron charge: q = 1.602•10  AÞs   (1 AÞs = 1 coulomb)

k is Boltzmann’s constant: k = 1.381•10  J/K

T is the absolute temperature (in kelvins)

(vd • q)/k • T)

-16

-19

-23
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The expression (k*T)/q is usually called thermal voltage. The template assigns 
this expression to the variable vt, which is then substituted into the template 
equation. 

Header Declarations

The diode template is an element template with two electrical pins and 
arguments for the saturation current (is) and the initial voltage across the diode 

(ic).   By initialization, is receives the default value 10  A and ic is undefined. 
The template header and header declarations are as follows: 

In addition, the system’s operating temperature, which is external to the diode 
template, must be made available—this is done by including temp as an 
external parameter in the header declarations as follows: 

Modeling Temperature

Because this simplified diode model does not include self-heating effects, it 
makes sense to compute the thermal voltage for use as a constant. The 
absolute temperature (T) used for calculating the thermal voltage is expressed 
in kelvins. However, the system temperature (temp) is expressed in ×C—this is 
converted to kelvins by adding 273.15 within the formula for thermal voltage in 
the parameters section as follows:

1 element template diode p m = is, ic

2 electrical p, m 

3 number is = 1e-16, 

4 ic = undef

5 external number temp # part of header declar.

15 parameters {

16 vt = k * (temp+273.15) / qe 

17 }

-16
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In addition, you need to assign values to the Boltzmann’s constant (k) and the 
electron charge (qe) parameters, which is done in the following local 
declarations:

Newton Steps

Newton steps place a limit on the change of the independent variable (vd) from 
one iteration to the next. The newton step parameter (nv) is declared as a 
structure that specifies values for breakpoint and increment pairs (bp, inc) in an 
array of unspecified size. This parameter may be declared either as an 
argument in the header declarations or as a local parameter in the template 
body. Here, nv is declared as a local parameter and initialized to the values 
indicated: 

This combines the declaration statement method and the assignment 
statement method of assigning newton steps. There is no functional difference 
between the two methods. 

The statement for newton steps in the control section associates the newton 
steps parameter (nvd) with the independent variable of the template (vd) as 
follows:

7 number  k = 1.318e-23, 

8 qe = 1.602e-19,

9 vt

12 struc { 

13 number bp, inc; 

14 } nvd[*] = [(0,0.001),(2,0)] 

23 newton_step(vd,nvd) # part of control_section
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The breakpoint and increment values for nvd ((0,0.001),(2,0)) enforce the 
following restrictions on iterations of the simulator. 
■ Below the first breakpoint (0), there is no restriction on how much vd can 

change from one iteration to the next. 
■ Between the first two consecutive breakpoints (0 and 2), the change in vd is 

restricted to the first specified increment (0.001) per iteration. 
■ Above the last breakpoint (2), there is no restriction on how much vd can 

change. 

Note that the value of nvd does not depend on the value of an argument to the 
template. Therefore, these newton steps are not parameterized. 

Newton Steps Example - MAST diode Template
The effect of this newton step definition is best seen in the example figure 
shown below. Assume first that vd = 0.27V, and that the iterative algorithm 
intends to change it to 0.55V. However, between 0V and 2V, the change is 
restricted to 0.1V, so in the next iteration vd will have a value of 0.37V. 
Similarly, if the algorithm intends to change vd to 0, it will change only to 0.17V. 
However, if vd = -3V and the algorithm intends to change it to 0.67V, vd will 
change to 0.1V. This is because there is no limit to the amount vd can change 
below zero, whereas between 0V and 2V, vd can change by only 0.1V.

id

0

is vd

0.27 0.55 2.0

LImiting region

0.37

How Newton Steps Limit the Change of vd
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Template Equation

The following equation expresses the branch current (id) as a function of the 
branch voltage (vd): 

The assignment to id is handled in the values section. The equations section 
uses the computed value of id to assign the current contribution of the diode as 
follows:

Note the usage of the MAST limexp function rather than the exp function. The 
limexp function is a limited exponential function. Its value is identical to that of 
exp for arguments between -80 and 80, but for arguments outside this range, 
limexp limits the function value to prevent overflows. The exact definition of 
limexp is given in the MAST Reference Manual. 

The diode voltage contribution is handled by the following statement in the 
values section:

Initial Conditions

Initial conditions allow you to specify the initial value for the voltage across the 
diode (vd) prior to a DC analysis. The initial_condition statement in the control 
section associates vd with the argument ic:

Starting Value

When finding a DC solution, the Saber simulator sets all system variables to 
their start values, which, by default, are 0. The start_value statement allows 

20 id = is*(limexp(vd/vt)-1) # Part of values section

29 equations {

30 i(p->m) += id

31 }

19 vd = v(p) - v(m) # Part of values section

24 initial_condition (vd,ic) #part of control_section
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you to overwrite this default with a value that is closer to the solution you 
expect. For example, the forward bias value of a PN junction puts the junction 
into its conducting region and is somewhere around 0.6V. You can specify this 
with a start_value statement in the control section, as follows: 

It is important to note the difference between start_value and initial_condition. 
The value of initial_condition is held throughout the DC analysis and is 
therefore the value at the end of DC. The value of start_value is used as an 
initial “guess” by the simulator for the first DC iteration only. After the first 
iteration, start_value is ignored for all subsequent iterations. 

Small-Signal Parameters

The next two statements in the control section allow you to specify the small-
signal characteristics of this model that will be reported in response to the 
Saber ssp command. See the topic titled "Small-Signal Parameters Report" 
below for more information on small-signal characteristics of the diode 
template. 

Small-Signal Parameters Report
There are additional statements that you can insert into the control section of a 
MAST template that allow you to list the values of a set of small-signal 
parameters by using the ssp command. The simulator obtains these values by 
linearizing the model at a given operating point, usually by taking the partial 
derivative of a dependent variable with respect to an independent variable. The 
ssp command reports small-signal parameter values for the linearized model 
only at the operating point—you cannot plot these values. Note that the 
complete specification for small-signal parameters requires that you run a DC 
analysis, which gives additional DC operating point information such as node 
voltages and branch currents. 

25 start_value (vd, 0.6) # part of control_section

26 device_type("diode","example") 

27 small_signal(vd,voltage,"p-m voltage", vd)
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The report appears in the .out file following simulation and provides the 
following headings for small-signal parameters: 

For example, the report for the small-signal parameter of the diode template 
would look something like the following: 

Small-Signal Parameter Statements
You can specify a small-signal parameter (SSP) for a template by using three 
types of SSP statements in the control section, which are identified as follows:
■ device_type - MAST Small Signal Parameter Statement 
■ small_signal - MAST Small Signal Parameter Statement
■ Four Fields: - small_signal Statement
■ Five Fields: - small_signal Statement
■ ss_partial - MAST Small Signal Parameter Statement

Because of the simplicity of the diode model, there are not many small-signal 
dependencies that can take advantage of the SSP reporting feature.

device_type - MAST Small Signal Parameter Statement This statement is 
inserted into the control section to provide an identifier in the SSP report; it has 
no effect on determining the SSP values. 

small_signal - MAST Small Signal Parameter Statement One 
small_signal statement is required to define each SSP. This statement can 
have either four or five fields that define the SSP characteristics. In either case, 
the first three fields are the same. 

Parameter Name Classification Value

Parameter Name Classification Value

p-m voltage vd voltage 0.46 

26 device_type("diode","example") 
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Four Fields: - small_signal Statement The following four-field small_signal 
statement appears in the diode template: 

The four fields are specified as follows:
■ parameter name (vd)—this is the name of the SSP that is reported under the 

Name heading by the ssp command. 
■ classification (voltage)—this is reported under the Classification heading by 

the ssp command. 
■ report identifier ("p-m voltage")—this is an identifier string that is reported 

under the Parameter heading by the ssp command. 
■ assigned variable (vd)—this is an internal variable whose value is assigned 

directly to the SSP. It must be either a val (an intermediate variable), a 
branch variable, a parameter, a value obtained from an ss_partial 
statement, or an expression of these. Here, the value of vd is assigned to vd. 

Five Fields: - small_signal Statement The following five-field small_signal 
statement appears in the d template from the MAST Template Library: 

The five fields are specified as follows:

1. parameter name (cd)—this is the name of the SSP that is reported under the 
Name heading by the ssp command. 

2. classification (capacitance)—this is reported under the Classification 
heading by the ssp command. 

3. report identifier ("p-is capacitance")—this is an identifier string that is 
reported under the Parameter heading by the ssp command. 

4. dependent variable (qd)—this is differentiated with respect to the specified 
independent variable. It must be either a val (an intermediate variable), a 
branch variable, or an expression of these. 

5. independent variable (vdi)—this is the variable with respect to which the 
dependent variable is differentiated. 

The variable in field 4 must be directly dependent upon the independent 
variable in field 5. Otherwise, a value of 0 will be reported by the ssp command. 

27 small_signal(vd,voltage,"p-m voltage", vd)

small_signal(cd,capacitance,"p-is capacitance",qd,vdi)
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In other words, you cannot use the variable that should be in field 5 in an 
expression and then put the result of that expression in field 5.

For example, in the five-field statement above, qd must depend directly on the 
value of vdi; qd cannot depend on the result of an expression containing vdi. 

ss_partial - MAST Small Signal Parameter Statement This is an alternate 
way of taking a partial derivative for use by the four-field form of a small_signal 
statement (above). It has three fields that define the differentiation. The 
following ss_partial statement appears in the d template from the MAST 
Template Library:

The line is composed of the following:

1. variable name—this is the name of the partial derivative of the next two 
fields. This partial derivative can be used in the fourth field of the 4-field form 
of the small_signal statement above. 

2. dependent variable—this is differentiated with respect to the specified 
independent variable in the third field, below. It must be either a val (an 
intermediate variable), a branch variable, or an expression of these. 

3. independent variable—this is the variable with respect to which the 
dependent variable is differentiated. 

The variable in field 2 must be directly dependent upon the independent 
variable in field 3. Otherwise, a value of 0 will be reported by the ssp command. 
In other words, you cannot use the variable that should be in field 3 in an 
expression and then put the result of that expression in field 3.

For example, in the ss_partial statement above, idi must depend directly on the 
value of vdi; idi cannot depend on the result of an expression containing vdi. 

Ebers-Moll MAST Model for the Bipolar Transistor

A bipolar junction transistor (BJT) is a typical example of a device consisting of 
several nonlinear functions. However, implementing a complete transistor 
model in the MAST language is beyond the g c

of this manual. As a result, this topic describes a reduced implementation of an 
Ebers-Moll model that shows various important aspects of modeling a complex 
device. The model shown in this topic is a simplified version of the EM2 model 

ss_partial(g_d,idi,vdi) 
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described in the book titled Modeling the Bipolar Transistor, by Getreu, I. 
(Tektronix, Inc. 1976). 

The transistor model presented in this section is shown in the following figure 
for an NPN transistor. It implements the Ebers-Moll DC model, non-zero 
collector resistance, and the junction capacitance of the base-emitter and 
base-collector diodes. The model has three external nodes (base, collector, 
and emitter) and one internal node (cp, the internal collector). 

b
cbc

cbe

vbcp

vbe

c

irrc

cp

ict

ibc

ibe

e

Ebers-Moll Model of an NPN transistor
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The complete BJT template (bjt) is shown as follows (line numbers are added 
for reference):

element template bjt c b e = model, ic

electrical c, b, e

struc { # the transistor mode

enum {_n, _p} type 

number  is=1e-16, bf=100, br=1, \

cje=0, vje=.75, mje=.33, \

cjc=0, vjc=.75, mjc=.33, rc=0

} model = ()

number ic[2]=[undef,undef] 

external number temp 

{ # begin template body

# declare local param., vals, and extraction groups

number k = 1.381e-23, # Boltzmann's constant

qe = 1.602e-19, # electron charge

vt, 

qbe0, qbc0, vje0, vjc0

struc {

number bp, inc;

} nv[*] = [(0,.1),(2,0)] 

val v vbc, vbe, vce # declarations of vals

val i iec, icc, iba, ico, ir 

val q qbc, qbe

electrical cp # local node

group {vbc,vbe} v # extraction groups

group {iba,ico,ir} i

group {qbc,qbe} q
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parameters {

# calculate thermal volts and functions of model param.

vt = k * (temp + 273.15) / qe 

qbe0 = model->cje * model->vje / (1 - model->mje)

qbc0 = model->cjc * model->vjc / (1 - model->mjc)

vje0 = 2 * model->vje / model->mje 

vjc0 = 2 * model->vjc / model->mjc

} # end of parameters section

values {

# calculate basic quantities of npn and pnp trans.

vbc = v(b) - v(cp)

vbe = v(b) - v(e) 

vce = v(cp) - v(e)

if (model->type == _n) {

iec = model->is * (limexp(vbc/vt) - 1)

icc = model->is * (limexp(vbe/vt) - 1)

}

else {

iec = -model->is * (limexp(-vbc/vt) - 1)

icc = -model->is * (limexp(-vbe/vt) - 1)

}

# calculate base, collector, and resistor currents

iba = iec/model->br + icc/model->bf

ico = icc - iec - iec/model->br

if (model->rc ~= 0) ir = (v(c) - v(cp)) / model->rc

else ir = 0
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# calculate charges

if(model->type == _n) {

if (vbc<0) {

qbc = qbc0*(1-((1-vbc/model->vjc)**(1-model->mjc)))

}

else {

qbc = model->cjc*vbc*(1 + vbc/vjc0)

}

if (vbe<0) {

qbe = qbe0*(1-((1-vbe/model->vje)**(1-model->mje)))

}

else {

qbe = model->cje*vbe*(1 + vbe/vje0)

}

} # end “if type _n” condition

else { # if model is not of type _n

if(vbc > 0) {

qbc = -qbc0*(1-(1+vbc/model->vjc)**(1-model->mjc)) 

}

else {

qbc = model->cjc*vbc*(1-vbc/vjc0) 

}

if(vbe > 0) {

qbe = -qbe0*(1-(1+vbe/model->vje)**(1-model->mje)) 

}

else {

qbe = model->cje*vbe*(1-vbe/vje0)

}

} # end “if not type _n” condition

} # end values section
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control_section {

# if no collector resistance, collapse nodes c and cp

if (model->rc == 0) collapse(c,cp)

# specify Newton steps

newton_step((vbc,vbe),nv)

# initial conditions and start value 

initial_condition(vbe, ic[1]) 

initial_condition(vce, ic[2]) 

start_value (vbe, 0.6) 

# small-signal parameters

device_type("bjt", "example")

small_signal(ibase,current,"base current",iba)

small_signal(icoll,current,"collector current",ico)

small_signal(vbe,voltage,"base-emitter voltage", vbe)

small_signal(vbc,voltage,"base-collector voltage", vbc)

small_signal(rc,resistance,"collector resistance",\

model->rc)

} # end control_section

equations {

# current at base, internal collector, and emitter

i(b->e) += iba + d_by_dt(qbe)

i(b->cp) += d_by_dt(qbc)

i(cp->e) += ico 

# current at collector resistor, if present

if (model->rc ~= 0) i(c->cp) += ir

} # end equations section

} # end template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/bjt.sin
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The description of the bjt template is divided into the following topics. Some of 
the concepts highlighted by these topics follow the topic title:
■ Basic Model Equations
■ Preparing to Write the MAST bjt Template
■ Header Declarations

Transistor Type -- shows the enumerated parameter type (enum), 
which is useful if a parameter can take on only a limited set of values.
Collector Resistance
Initial Conditions

■ Local Parameters

Temperature
Junction Capacitance
Newton Steps Declaration - MAST bjt Template
Local Node - MAST bjt Template
Intermediate Current and Charge Variables
Defining Groups For Extraction - MAST bjt Template -- shows that 
groups (specified using a group statement) are useful for grouping 
together several val variables or system variables, so that you can refer 
to them by a single name as when doing extraction.

■ Thermal Voltage
■ Junction Capacitance -- shows that model equations often need to be 

“transformed” into a MAST-compatible set of equations. In this example, 
you have to compute the charges stored in the nonlinear junction 
capacitances and account for their singularities.

■ Intermediate Calculations

Fundamental Quantities - MAST bjt Template
Currents
Charges

■ Control Section

• Collapse Node -- shows that collapsing nodes (using a collapse 
statement) is useful for reducing the size of a system, but it can place 
restrictions on parameter alteration. 

• Newton Steps -- shows association of the same set of newton steps with 
multiple variables.

• Initial Conditions in Control Section
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• Starting Value

• Small-Signal Parameters
■ Equations Section

Basic Model Equations

The following equations describing the model in the following figure are taken 
from the book titled Modeling the Bipolar Transistor, by Getreu, I. (Tektronix, 
Inc. 1976). 

ict = icc - iec

ibc = iec / βr

ibe = icc / βf

iec = is * (exp((qe * vbcp) / (k * T)) - 1)

icc = is * (exp((qe * vbe) / (k * T)) - 1)

cbc = cjco / (1 - vbcp / vjc) ** mjc

cbe = cjeo / (1 - vbe / vje) ** mje

b
cbc

cbe

vbcp

vbe

c

irrc

cp

ict

ibc

ibe

e

Ebers-Moll Model of an NPN transistor
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These equations use the following model parameters: 

Preparing to Write the MAST bjt Template

Before starting to write a MAST template for this transistor model, you need to 
take two preliminary steps:

1. Take into account that the junction capacitances cbc and cbe have 
singularities at vbcp = vjc and vbe = vje, respectively.

2. Compute the charge stored in the junction capacitances as a function of the 
junction voltage.

Both steps are contained in the context of expressing a generic junction 
capacitance:

cj = cjo / (1 - v / vj)

According to the book titled Modeling the Bipolar Transistor, by Getreu, I. 
(Tektronix, Inc. 1976), this is an empirical equation that is not valid for forward 
bias (v > 0). Under forward bias conditions, the diffusion capacitances 
dominate, so that a simple approximation of the junction capacitances for v > 0 
is usually sufficient. Although this transistor model does not include diffusion 
capacitances, it uses an approach similar to that in the Getreu book. That is, it 

is transistor saturation current (typically about 10 A)

βf forward current gain (typically about 100)

βr reverse current gain (typically about 1)

cjco collector-base junction capacitance (typically about 5pF)

cjeo emitter-base junction capacitance (typically about 5pF)

vjc collector-base barrier potential (typically about 0.75V)

vje emitter-base barrier potential (typically about 0.75V)

mjc gradient factor for collector-base capacitance (between 0.333 and 0.5)

mje gradient factor for emitter-base capacitance (between 0.333 and 0.5)

-16

m
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assumes that, for v > 0, the junction capacitance depends linearly on the 
junction voltage. Thus, it has a slope that results in matching slopes at v = 0. 
This leads to the following equation set for junction capacitance:

cj = cjo / (1 - v/vj)  for v < 0

cj = cjo * (1 + m*v/vj)for v Š 0

The second step consists of computing the charge stored in the junction 
capacitor as a function of the junction voltage. This is given as the integral of 
the capacitance over junction voltage, v:

qj(v) =   cj(v) dv

with the additional requirement that qj(0) = 0. The results, for reverse and 
forward bias of the junction, respectively, are:

qj = cj*vj*(1 - (1 - v/vj)  )/(1-m)for v < 0

qj = cj*v*(1 + 0.5*m*v/vj)for v Š 0

Note that qj is continuous at v = 0 in these equations. 

Header Declarations

The bipolar junction transistor (BJT) is an electrical device with three terminals: 
collector (c), base (b), and emitter (e). Eleven parameters characterize the 
transistor model. Nine of them are the ones listed in the topic titled "Basic 
Model Equations". The other two are the transistor type (type) and the collector 
resistance (rc). 

m

v

0

1 -m
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The following example shows the template header and header declarations for 
the bjt template:

The following topics describe the bjt template header declarations in more 
detail:
■ Transistor Type
■ Collector Resistance
■ Initial Conditions

Transistor Type
There are only two possible values for transistor type—NPN or PNP. For 
parameters with a limited set of possible values, the MAST language provides 
the enumerated parameter type (enum), which has the following syntax: 

where evalue is a comma-separated list of values that the name parameter can 
assume. If present, init_val must be one of the values in evalue. For the 
transistor type, there are only two choices, which are represented as _n (for 
NPN) and _p (for PNP). Therefore, you can define an argument that allows 
selecting the transistor type as follows:

1 element template bjt c b e = model, ic

2 electrical c, b, e

3 struc { 

4 enum {_n, _p} type 

5 number  is=1e-16, bf=100, br=1, \

6 cje=0, vje=.75, mje=.33, \

7 cjc=0, vjc=.75, mjc=.33, rc=0

8 } model = ()

9 number ic[2]=[undef,undef] 

10 external number temp 

enum {evalue [, evalue]} name[[=init_val], name[=init_val...]] 

4 enum {_n, _p} type 
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Collector Resistance
Rather than having each model parameter as an individual argument of the bjt 
template, it is preferable to group them into a single structure argument and 
give this structure argument the name model. The parameter for collector 
resistance (rc) has been included in model as follows:

Using the model structure emphasizes the fact that the parameters it contains 
belong together. It is their combination that characterizes a particular transistor 
instance. It also allows you to refer to such a combination by a single name 
(model), which makes it easy to use the same group of parameters for several 
transistor instances.

In the declaration, initialize each structure member to a typical value. The 
initialized value is then that member’s default value. The exceptions are the 
transistor type, for which there is no reasonable default, and the two junction 
capacitance values (cjc and cje), which are initialized to 0 so that, by default, 
the model does not include charge effects. 

Each individual parameter of the structure model is referenced later using the 
format model->cje to reference the cje parameter or model->vje to reference 
the vje parameter and so on.

Initial Conditions
You can declare an argument that specifies the initial value for the voltage 
across the pn junctions of the transistor. However, a BJT has two junctions of 
interest: the base-emitter junction and the collector- emitter junction. Thus, the 
argument for initial conditions needs to specify initial values for base-emitter 
voltage (vbe) and collector-emitter voltage (vce). This requires that the ic 
argument be declared as a two-dimensional array as follows: 

This declaration is declared outside the model structure (lines 5 through 8), 
because it isn’t really associated with the characterization of the BJT model 
(although it would work just as well if it were included within model).

5 number  is=1e-16, bf=100, br=1, \

6 cje=0, vje=.75, mje=.33, \

7 cjc=0, vjc=.75, mjc=.33, rc=0

8 } model = ()

9 number ic[2]=[undef,undef] 
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In addition there needs to be initial_condition statements in the control section 
to associates vbe and vce with the ic argument. 

The following external parameter, temp, makes the system temperature 
available in the template. 

10 external number temp 
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Local Parameters

Because of the complexity of the BJT model, there are several intermediate 
calculations that must be performed prior to using the template equation as 
shown below:

As a result, there are also several local parameters and variables that must be 
declared for use in these calculations, which are explained in the following 
topics:
■ Temperature
■ Junction Capacitance

12 # declare local param., vals, and extraction groups

13 number k = 1.381e-23, # Boltzmann's constant

14 qe = 1.602e-19, # electron charge

15 vt, 

16 qbe0, qbc0, vje0, vjc0

17 struc {

18 number bp, inc;

19 } nv[*] = [(0,.1),(2,0)] 

20 val v vbc, vbe, vce # declarations of vals

21 val i iec, icc, iba, ico, ir 

22 val q qbc, qbe

23 electrical cp # local node

24 group {vbc,vbe} v # extraction groups

25 group {iba,ico,ir} i

26 group {qbc,qbe} q

27 parameters {

28 # calculate thermal volts and functions of model param.

29 vt = k * (temp + 273.15) / qe 

30 qbe0 = model->cje * model->vje / (1 - model->mje)

31 qbc0 = model->cjc * model->vjc / (1 - model->mjc)

32 vje0 = 2 * model->vje / model->mje 

33 vjc0 = 2 * model->vjc / model->mjc

34 } # end of parameters section
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■ Newton Steps Declaration - MAST bjt Template
■ Local Node - MAST bjt Template
■ Intermediate Current and Charge Variables
■ Defining Groups For Extraction - MAST bjt Template

Temperature
The following local declarations are for parameters used in calculations for 
thermal voltage:

Junction Capacitance
The declarations below are for parameters used in calculations for junction 
charges:

where qbe0 and qbc0 are used to calculate junction charges under reverse 
bias conditions; vje0 and vjc0 are used for forward bias conditions. 

Newton Steps Declaration - MAST bjt Template
The newton steps parameter (nv) is nearly identical to that of the diode 
template (see the topic titled "Modeling an Ideal Diode with MAST"): 

In the control section, line 88 assigns these newton step values to two 
independent variables (vbc and vbe) as follows: 

13 number k = 1.381e-23, # Boltzmann's constant

14 qe = 1.602e-19, # electron charge

15 vt,

16 qbe0, qbc0, vje0, vjc0 #Part of number declar.

17 struc {number bp, inc;}\ 

18 nv[*] = [(0,0.1),(2,0)] 

88 newton_step((vbc,vbe), nv)
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Local Node - MAST bjt Template
As shown in the following figure, this model allows you to specify collector 
series resistance (rc). 

For non-zero values of rc, the topology of the model changes, which requires 
an internal node called cp as follows: 

This is the point at which this series resistance connects between the external 
collector (c) and the interior of the model. 

You can specify that this node be collapsed to the external collector (meaning 
that it no longer exists) if rc=0 (see line 86). 

Intermediate Current and Charge Variables
The variables listed below are declared as val variables and are used in 
calculating currents and charges. 

23 electrical cp

21 val i iec, icc, iba, ico, ir

22 val q qbc, qbe 

b
cbc

cbe

vbcp

vbe

c

irrc

cp

ict

ibc

ibe

e

Ebers-Moll Model of an NPN transistor
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Defining Groups For Extraction - MAST bjt Template
Any val variable can be made available for post-processing using the extract 
command, along with any system variable (pin, var, and ref variables). It is 
sometimes useful to extract only currents or voltages or, in general, any 
convenient collection of val variables and system variables. You can do this by 
defining the collection as a group in the local declarations of the template. 
Once a group is defined, you can refer to all members of the group by the name 
of the group. 

The following statement is the general form for defining a group of variables. 

where:

The bjt template contains three groups for holding voltages, currents, and 
charges:

For example, a netlist could contain the following netlist entries:

You could then use the Saber command shown below to extract all val 
variables and system variables in bjt.1, but only the currents defined in group i 
from bjt.2 (i.e., ib, ic, ir):

group {variable_list} name

variable_list is a comma-separated list of val variables and system 
variables. 

name is the name of the group and makes all variables in 
variable_list available by referring to name.

24 group {vbc, vbe}   v 

25 group {iba, ico, ir}   i 

26 group {qbc, qbe}   q

bjt.1 a b c = model=(type=_n)

bjt.2 d e f = model=(type=_p)

extract bjt.1/* bjt.2/i
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Thermal Voltage

Thermal voltage (vt) is calculated by the following statement in the parameters 
section:

Junction Capacitance

The charges at the collector-base and the emitter-base junctions under reverse 
and forward bias conditions are calculated as follows in the parameters 
section:

Note:   

Normally, some parameter checking would be provided at this point. To 
keep the example short, this has not been included in this example. 

29 vt = k * (temp + 273.15) / qe 

30 qbe0 = model->cje * model->vje / (1 - model->mje)

31 qbc0 = model->cjc * model->vjc / (1 - model->mjc) 

32 vje0 = 2 * model->vje / model->mje

33 vjc0 = 2 * model->vjc / model->mjc 
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Intermediate Calculations

Because of the complexity of the BJT model, there are several intermediate 
calculations that must be performed prior to using the template equation. 
These calculations are located in the following values section:

The calculations used in the values section use the locally declared parameters 
and variables. 

The following topics describe the different computational blocks shown in the 
previous code example:
■ Fundamental Quantities - MAST bjt Template
■ Currents
■ Charges

Fundamental Quantities - MAST bjt Template
The fundamental quantities of the model, upon which all currents and charges 
are based, are the base-emitter and base-collector voltages and the currents 

35 values {

36 # calculate basic quantities of npn and pnp trans.

37 vbc = v(b) - v(cp)

38 vbe = v(b) - v(e) 

39 vce = v(cp) - v(e) 

40 if (model->type == _n) {

### lines 41 through 47

48 # calculate base, collector, and resistor currents

### lines 49 through 53

54 # calculate charges

55 if(model->type = = _n) {

### lines 56 through 82

83 } #end values section
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iec and icc. Their definitions are straightforward, although dependent upon 
transistor type:

Lines 40 through 43 for an NPN type shows that in order to determine the 
base-collector voltage, you have to use the internal collector cp, rather than pin 
c. As with the diode template, you use limexp, a MAST language function, 
instead of exp, to compute the two currents. The reason is for protection 
against overflow. 

Lines 44 through 47 provide the same function for the PNP type with negated 
values of voltage and current. 

Currents
The currents in the bipolar transistor model are ict, ibc, ibe, and ir. These could 
easily be computed, but it is preferable to define currents that have a physical 
meaning and therefore are useful for extraction. The values of all val variables 
can be made available for post-processing using the extract command. 

Although you could define the emitter current, it is not necessary. Its value is 
given by ie = -iba - ico. 

36 # calculate basic quantities of npn and pnp trans.

37 vbc = v(b) - v(cp)

38 vbe = v(b) - v(e) 

40 if (model->type == _n) { # If type = NPN

41 iec = model->is * (limexp(vbc/vt) - 1) 

42 icc = model->is * (limexp(vbe/vt) - 1) 

43 }

44 else { # If type = PNP

45 iec = -model->is * (limexp(-vbc/vt) - 1) 

46 icc = -model->is * (limexp(-vbe/vt) - 1) 

47 } 

48 # calculate base, collector, and resistor currents

49 iba = iec / model->br + icc / model->bf 

50 ico = icc - iec - iec / model->br 

51 if (model->rc ~= 0) ir = (v(c) - v(cp)) / model->rc

52 else ir = 0
Saber® MAST Language User Guide 293
B-2008.09



Chapter 12: Modeling Nonlinear Devices
Preparing to Write the MAST bjt Template
The definition of ir is meaningful only if the collector resistance (rc) is non-zero. 
For rc=0, it would be good to express ir as the sum of ic and d(qbc)/dt, but the 
MAST language allows usage of the d_by_dt operator only in a template 
equation. Therefore, set ir=0 and write the rest of the template such that the 
value of ir is not needed if rc=0.

You could make ir available independent of the value of rc. This would be done 
by declaring ir as a var variable and letting the simulator determine its value. 
For efficiency, this example does not do so.

Charges
The remaining intermediate calculations define the charges stored in the two 
junctions. This is a direct translation of the charge equations into the MAST 
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language, except that it uses parameters as they are defined in the template as 
follows:

54 # calculate charges

55 if(model->type == _n) {

56 if (vbc<0) {

57 qbc = qbc0*(1-(1-vbc/model->vjc)**(1-model->mjc)

58 }

59 else {

60 qbc = model->cjc*vbc*(1 + vbc/vjc0)

61 }

62 if (vbe<0) {

63 qbe = qbe0*(1-(1-vbe/model->vje)**(1-model->mje)

64 }

65 else {

66 qbe = model->cje*vbe*(1 + vbe/vje0)

67 }

68 } # end “if type _n” condition

69 else { # if model is not of type _n

70 if(vbc > 0) {

71 qbc = -qbc0*(1-((1+vbc/model->vjc)**(1-model->mjc)))

72 }

73 else {

74 qbc = model->cjc*vbc*(1-vbc/vjc0) 

75 }

76 if(vbe > 0) {

77 qbe = -qbe0*(1-((1+vbe/model->vje)**(1-model->mje)))

78 }

79 else {

80 qbe = model->cje*vbe*(1-vbe/vje0)

81 }

82 } # end “if not type _n” condition
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Control Section

The following lines comprise the bjt template control section:

These lines are further described in the following topics:
■ Collapse Node
■ Newton Steps
■ Initial Conditions in Control Section
■ Starting Value
■ Small-Signal Parameters

Collapse Node
As described for local declarations, cp is declared as an internal node. When 
rc=0, there is no resistance between c and cp; thus, they actually refer to the 

84 control_section {

85 # if no collector resistance, collapse nodes c and cp

86 if (model->rc == 0) collapse(c,cp)

87 # specify Newton steps

88 newton_step((vbc,vbe),nv)

89 # initial conditions and start value 

90 initial_condition(vbe, ic[1]) 

91 initial_condition(vce, ic[2]) 

92 start_value (vbe, 0.6) 

93

94 # small-signal parameters

95 device_type("bjt", "example")

96 small_signal(ibase,current,"base current",iba)

97 small_signal(icoll,current,"collector current",ico)

98 small_signal(vbe,voltage,"base-emitter voltage", vbe)

99 small_signal(vbc,voltage,"base-collector voltage", vbc)

100 small_signal(rc,resistance,"collector resistance",\

101 model->rc)

102 } # end control_section
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same node. You can indicate this to the simulator by using a collapse 
statement in the control section as follows: 

Collapsing nodes has the advantage that it reduces the size of the system, that 
is, the number of system variables. This is particularly valuable in systems 
where there are numerous instances of a template, because reducing system 
size typically increases simulation speed. However, a disadvantage of 
collapsing nodes in this example is that using the alter command to change the 
collector resistance from zero to nonzero (or vice-versa) would alter the 
topology of the system. This is not allowed after starting simulation. 

Newton Steps
For the control section, you need to identify the independent variables of the 
nonlinear equations, in order to specify newton steps for them. Referring back 
to the topic titled "Basic Model Equations", the two voltages vbcp and vbe (vbc 
and vbe in the template) fit the requirements. All the nonlinear quantities 
ultimately depend upon vbc or vbe or both, and both vbc and vbe are 
expressed as the difference of two system variables. Therefore, both vbc and 
vbe require newton steps. 

Because these voltages are used identically in the model equations, you can 
use the same newton step values for both. Further, because both the base-
emitter and base-collector junctions are modeled as diode junctions, you can 
use the same newton step values as for the diode example.

The control section statement that associates the arrays of newton step values 
with the independent variables is as follows: 

Initial Conditions in Control Section 
One initial_condition statement in the control section is required for each 
variable (vbe and vce) whose initial value is specified by the ic argument, which 
is declared as a two-dimensional array:

85 # if no collector resistance, collapse nodes c and cp

86 if (model->rc == 0) collapse(c,cp)

88 newton_step((vbc,vbe), nv)

90 initial_condition (vbe,ic[1]) 

91 initial_condition (vce,ic[2])
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Starting Value
You can use the following start_value statement to specify the forward bias 
value (vbe) of the base-emitter junction at the first iteration of the DC iteration. 
This puts the junction into its conducting region at a value that is closer to the 
solution you expect (around 0.6V). 

Small-Signal Parameters
You can insert statements into the control section that allow you to list the 
values of a set of small-signal parameters (SSP) when using the ssp 
command. The simulator obtains these values by linearizing the model at a 
given operating point, usually by taking the partial derivative of a dependent 
variable with respect to an independent variable. The ssp command reports 
small-signal parameter values for the linearized model only at the operating 
point—you cannot plot these values. For the complete specification, you need 
to run a DC analysis, which gives additional DC operating point information 
such as node voltages and branch currents. 

For example, some of the parameters that might be reported for the bjt 
template are listed below. 

You can specify a small-signal parameter for a template by using the 
device_type and small_signal statements in the control section. These are 
explained below.

Note:   

Because of the simplicity of this transistor model, there are not many small-
signal dependencies that can take full advantage of these statements (for 
example, using an ss_partial statement). 

92 start_value (vbe, 0.6) 

Parameter Name Classification Value

collector 
resistance

rc resistance 170 

base-emitter 
voltage

vbe voltage 0.672

base current iba current 0.176u 
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device_type This statement is inserted into the template to provide an 
identifier in the SSP report; it has no effect on determining the SSP values:

small_signal One small_signal statement is required to define each SSP. 
This statement can have either four or five fields that define the SSP 
characteristics, as explained in the topic titled "Modeling an Ideal Diode with 
MAST”. In either case, the first three fields are the same.

The following 4-field small_signal statements appear in the bjt template:

Equations Section

The template equations list the branch currents and express them as functions 
of the intermediate variables previously calculated:

95 device_type("bjt", "example")

96 small_signal(ibase,current,"base current",iba)

97 small_signal(icoll,current,"collector current",ico)

98 small_signal(vbe,voltage,"base-emitter voltage", vbe)

99 small_signal(vbc,voltage,"base-collector voltage", vbc)

100 small_signal(rc,resistance,"collector resistance",\

101 model->rc)

103 equations {

104 # current at base, internal collector, and emitter

105 i(b->e) += iba + d_by_dt(qbe)

106 i(b->cp) += d_by_dt(qbc)

107 i(cp->e) += ico 

108

109 # current at collector resistor, if present

110 if (model->rc ~= 0) i(c->cp) += ir

110 } # end equations section
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These equations show the following: 
■ How to use an if statement to set up equations differently for different 

parameter values. The condition part of such an if statement can include 
only parameters.

■ It is preferable to write the template such that ir is needed only if the collector 
resistance (rc) is non-zero, as shown by the if statement. If rc=0, the internal 
and external collector nodes (cp and c) are collapsed to the same node. 
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13Modeling Nonlinearities

This topic is divided into the following subtopics: 
■ Simulation Techniques for Evaluating Nonlinearities
■ Modeling a Voltage Squarer - MAST vsqr Template -- describes the 

following concepts:

• Using the control section of the template to pass certain information that 
is not part of the model to the simulator

• Using sample points for the independent variables of nonlinear 
equations, including their selection and specification

• The effect of the simulator’s density variable on the sample points

• Using arrays of structures and their initialization 

• Default sample points automatically provided by the Saber Simulator.

Simulation Techniques for Evaluating Nonlinearities

To illustrate the problems that arise in modeling a nonlinear element, consider 
the characteristic equation of a voltage squaring block:

vout = vin * vin

In finding the solution of nonlinear networks such as those containing squaring 
blocks, the simulator must solve a set of nonlinear, simultaneous equations. 
There are no techniques that do so directly, so the simulator uses the following 
method: 

1. Guess a set of values for all unknowns.

2. Linearize each nonlinearity about these values, thereby obtaining a set of 
simultaneous linear equations.

3. Solve the linear equations (using well-known techniques). 

4. Update the values of all unknowns using the solution of the linear equations.

5. Repeat steps 2 through 4 until the correct solution has been obtained.
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This algorithm reveals two important concepts:
■ Simultaneous nonlinear equations are solved iteratively
■ The iterative method involves linearization 

These are not independent of each other. 

Simulation Linearization Techniques

There are several techniques for the linearization of nonlinear equations. Of 
these, three used by different simulators are described as follows: 

1. Taking the slope of the characteristic equation at the present value

2. Using a piecewise linear approximation of the characteristic equation

3. Using a piecewise linear evaluation of the characteristic equation (used by 
the Saber Simulator) 

Taking the Slope (Method 1)

A common technique for linearization is to take the slope of the characteristic 
equation (i.e., its first derivative) at the present value of the independent 
variable. Some simulators use this technique, which is shown in the following 
figure. 

Vout

Vin

V0

Linearization by taking the slope—Method 1
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Simulators using this technique typically require a model to include both the 
characteristic equations of the element and their derivatives with respect to the 
independent variables. Moreover, both the model equations and their 
derivatives must be continuous functions of the independent variables. In 
particular, the requirement for continuous derivatives makes modeling of such 
characteristics very difficult, if they are described by different functions in 
different regions of the independent variables (as in the case of MOS devices). 
Simulators using this approach find, for the nonlinear equations, an 
approximate solution that is controlled by one or more convergence 
parameters. 

Piecewise linear approximation (Method 2)

Another linearization technique is piecewise linear approximation. Rather than 
describing a nonlinear characteristic exactly, the model consists of a set of 
straight lines approximating the nonlinear equation, as shown in the following 
figure. 

The piecewise linear approximation of the characteristic equations is obtained 
before the simulation begins, so all the simulator “sees” is the piecewise linear 
model, which must be continuous, but obviously has discontinuous derivatives. 
This model is solved exactly using special algorithms. However, the solution is 
only as accurate as the piecewise linear approximations, and you can change 
the accuracy only by changing the model.

vout

vin

v0

v1 v2
v3 v4 v5

Piecewise linear approximation—Method 2
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Piecewise Linear Evaluation (Method 3)

A third linearization technique, the one used by the Saber Simulator, is called 
piecewise linear evaluation. The model consists of the nonlinear equations plus 
a set of sample points for the independent variables. The simulator uses the 
sample points (which may be specified in the template) to find a piecewise 
linear approximation of the nonlinear equations, as shown in the figure below, 
where v1...v5 are the sample points. 

Note:   

The Saber Simulator automatically uses default sample points for any 
independent variables of a nonlinear template that require them. 
Consequently, all the information on sample points in this chapter is 
optional—it is necessary only if you want to change the values of sample 
points from the default. See the topic titled "Default Sample Points". 

The simulator then solves the piecewise linear approximation of the model 
exactly, using specialized algorithms. Again the accuracy of the solution 
depends upon the piecewise linear approximation, but the main advantage of 
this approach is that the density of the sample points is easily changed. The 
density variable of any given analysis is a multiplier for the sample points of all 
templates that have them specified (default density is 1). This enables the user 
to choose (at run time) either increased accuracy or faster computation time. 
For more information on density, refer to the Calibrating DC Analysis topic in 
the Saber online documentation.

Vout

Vin

V0

V1 V2
V3 V4 V5

Piecewise linear evaluation—Method 3
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Given that the slope technique cannot solve the equations exactly, this 
technique can produce results as accurate as those produced by the slope 
technique, if the density of the sample points is sufficiently high. 

Comparison and Summary of Linearization Techniques

These three linearization techniques can be summarized as follows:
■ slope technique requires a continuous model with continuous first-order 

derivatives. The simulator finds an approximate solution of the linearized 
model, where accuracy is controlled by convergence parameters.

■ piecewise linear approximation technique requires a model consisting of 
continuous piecewise linear segments. The simulator finds an exact solution 
of the piecewise linear model, where accuracy can be changed only by 
changing the model.

■ piecewise linear evaluation technique used by the Saber Simulator requires 
a continuous model and a set of sample points. The simulator finds an exact 
solution of the piecewise linear approximation specified by the sample 
points, where accuracy can be changed by changing the density of the 
sample points. 

From this, then, a nonlinear model implemented in a MAST template must 
include the following information:
■ The nonlinear equations describing the model
■ A set of sample points for each independent variable in the model
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Modeling a Voltage Squarer - MAST vsqr Template

This example shows a nonlinear model that is a simple voltage squarer 
template, vsqr, whose output voltage is the square of its input voltage. Note 
that this is implemented as an element template. 

vsqr Template Topics

The following topics describe the vsqr template:
■ Template Header
■ Values Section 

element template vsqr ip im op om

electrical ip, im, op, om # header declarations

{

var i iout # local declarations

val v vin, vout

# sample points defined

struc {number bp, inc;} svin[*]=\

[(-100k,1),(-1k,.1),(10,.01),\

(0,.01),(10,.1),(1k,1),(100k,0)]

values {

vin = v(ip) - v(im) # input voltage

vout = v(op) - v(om) # output voltage

} # end of values section

control_section {

sample_points(vin, svin) # sample points associated

#  with input voltage

} # end of control section

equations {

i(op->om) += iout # current contribution

iout:  vout = vin * vin

} # end of equations section

} # end of template body
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■ Equations Section
■ Control Section 
■ Understanding Sample Points
■ Specifying Sample Points
■ Density of Sample Points
■ Default Sample Points

Template Header

The vsqr template has two input pins and two output pins, but no arguments. 
The header and its corresponding declarations are:

Values Section

The values section declares vin and vout, which are used in the equations 
section as follows: 

Both vin and vout are declared as a val variable as follows:

element template vsqr ip im op om

electrical ip, im, op, om

values {

vin = v(ip) - v(im) # input voltage

vout = v(op) - v(om) # output voltage

} # end of values section

val v vin, vout
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Equations Section

The characteristic equation of the voltage squarer finds the voltage across the 
output pins (vout) in terms of the voltage across the input pins (vin). The 
equations section appears as follows:

 The equations section implements the voltage squarer as a nonlinear voltage-
controlled voltage source as follows: 

The output current iout, contributes to the current at pins op and om as follows: 

The simulator determines iout such that the output voltage is the square of the 
input voltage. 

At this point, the voltage squarer template is complete, unless you want to 
specify sample point values for the independent variable (vin) that are different 
from the values specified in the template (see the topic titled "Specifying 
Sample Points"). 

The Saber Simulator automatically uses default sample points for any 
independent variables of a nonlinear template that require them. Consequently, 
all the information on sample points in this chapter is optional—it is necessary 
only if you want to specify values of sample points that differ from these 
automatically-supplied default values (see the topic titled "Default Sample 
Points"). 

Control Section

The control section of a template provides the simulator with information that is 
specific to the system being analyzed but is not directly a part of the model. An 

equations {

i(op->om) += iout # current contribution

iout:  vout = vin * vin

}

iout:  vout = vin * vin 

i(op->om) += iout
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example of such information is the sample points required for the independent 
variables in nonlinear equations.

The control section consists of the keyword control_section, followed by a 
sequence of control section statements, enclosed between braces ({}). Such 
statements are special in the sense that they can occur only in the control 
section. A complete list of these statements is given in the MAST Reference 
Manual. Here, only a sample points statement for the independent variable of a 
nonlinear equation is of interest. 

The sample points statement inserted in this section takes the following form:

where:

For the voltage squarer template, you have to specify sample points for the 
input voltage (vin), which is the independent variable in the characteristic 
equation. 

With svin as the name of the array containing the sample points, the control 
section for this template is as follows:

The actual values of the sample points (within svin) are specified as local 
parameters, as described in the topic titled "Specifying Sample Points". 

sample_points (variable, sa_points)

variable is a branch variable, a var variable, or a val variable that is 
equal to either a system variable or a difference of two system 
variables (i.e., var1 - var2)

sa_points is the name of an array of sample points —note that the actual 
sample point values are specified in an array declared as a 
local parameter

control_section {

sample_points(vin, svin) # sample points associated

#  with input voltage

} # end of control section
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Understanding Sample Points

The specification of sample points for an independent variable of a nonlinear 
equation consists of the following two parts: 

1. Considerations for selecting sample points (described in the next topic) 

• General Approach

• Specific Approach (voltage squarer)

2. The actual specification of sample point values in a template, using MAST 
language constructs (described in the topic titled "Specifying Sample 
Points").

Considerations for Selecting Sample Points
There are several considerations for selecting sample points:
■ Accuracy vs. speed. Denser sample points provide better accuracy of the 

piecewise linear approximation of the nonlinearity, but this is usually 
accompanied by slower simulation speed.

■ Optimum combination of accuracy and speed. The Saber Simulator lets you 
change the density of the sample points at run time by means of the density 
variable of the analysis you are running (see the topic titled "Density of 
Sample Points"). You should specify values for sample points such that the 
accuracy of the piecewise linear approximation is sufficient for the default 
simulator density of 1 (which means density has no effect on sample points). 
Of course, the meaning of “sufficient accuracy” depends upon the 
application. 

■ Operation limits. These are the minimum and maximum values that the 
independent variable is not supposed to exceed—if it does, the Saber 
Simulator reports a warning and sets the variable to the limit value.

■ Intended region of operation of the model. This is a region inside the 
operation limits where the model is intended to be used. Typically, you want 
better accuracy inside this region than outside.

■ Numerical considerations. The independent variable may be restricted to a 
certain value range by the laws of physics, but during iterations it may 
assume values outside this range. (For example, absolute temperature may 
become negative during iterations.)

■ Other requirements. The Saber Simulator requires that 0 (zero) be a sample 
point. 
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The accuracy of the piecewise linear evaluation is demonstrated in the 
following figure.

This figure shows a nonlinear function y=f(x) and a linear approximation that 
intersects the function at x1 and x2. That is, x1 and x2 are sample points of 
y=f(x). Further, y1 and y2 are the function values at x1 and x2, respectively, 
and e is the maximum error of the linear approximation of f(x) between x1 and 
x2. In order to find approximate sample points for x, you need to express e as a 
function of Dx=x1-x2. If there were such a function, its inverse would yield the 
sample point spacing for a given maximum error. In general, such a function is 
difficult to derive, except in the very simplest cases, such as this voltage 
squarer. Therefore, a general approach is described first, then a specific 
approach as it is applied to the voltage squarer.

General Approach The preceding figure shows that e is always smaller than 
Dy=y2-y1 if the sign of the slope of f(x) does not change between x1 and x2.

Therefore, if f(x) is monotonic between x1 and x2, Dy is an upper bound for the 
approximation error. Because simulation always involves a trade-off between 
accuracy and speed, you will expect a certain accuracy of simulation results 

(such as three digits of relative accuracy or an absolute accuracy of 10 ). In 
both cases, you actually specify a minimum resolution or “granularity” for the 
simulator results, and you expect Dy to be smaller than this level of resolution. 

y

y2

y1

y = f(x)

x
x1 x2

ε

Accuracy of a piecewise linear approximation

-3
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Next, find Dx as a function of Dy. In many cases, it is possible to do this using 

the inverse relationship x=f  (y). In more complicated cases (particularly with 
multi-dimensional nonlinearities), selecting the sample points may be a process 
of trial and error. Keep in mind the concept of resolution or “granularity” as an 
aid for quickly finding a reasonable set of sample points. Remember too, that 
Dy might be a pessimistic upper bound (i.e., too large) for the approximation 
error, depending upon the nonlinearity.

In the case where f(x) is non-monotonic between x1 and x2, divide Dx into 
smaller parts, such that f(x) is monotonic throughout each part. In practice, this 
further division is not critical, because the monotonicity of f(x) is required only to 
ensure that e is smaller than Dy. Therefore, if Dx is sufficiently small, Dy is a 
good upper bound for the approximation error.

Specific Approach (voltage squarer) For vsqr, use the direct approach. 

Note that e=Dx , which indicates that the (absolute) error of the piecewise 
linear approximation depends only on the distance between two sample points. 
Therefore, equal-spaced sample points yield constant approximation error. 
Similarly, if the relative error should be constant, Dx should be proportional to 
÷x. However, as described earlier, the approximation error is not the only thing 
to consider when selecting sample points.

The value range of each independent variable consists of several parts, as 
shown in the figure below. You must specify sample points for the entire 
allowable region, but typically you want better accuracy (and therefore denser 
sample points) in the intended region of operation. Sometimes it is desirable to 
have different accuracy in several different regions in order to get better results 
when x is closer to the intended region of operation. For vsqr, limit the 
allowable region of operation to ±100kV. Select sample points separated by 1V 
near the outer limits of the allowable region and closer together near 0V, which 
gives a relative approximation error that is fairly constant. 

-1

2
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Taking all these points into account, it is clear that there is no universal 
algorithm for selecting sample points. Rather, the selection depends upon 
various trade-offs and often requires some experimentation. 

Specifying Sample Points

The control section of a template associates sample points with an 
independent variable by a sample_points(variable, sa_points) statement. The 
sa_points variable is an array that describes the distribution of sample points. 
Rather than requiring you to specify each sample point individually, the 
sa_points array describes the sample point distribution by means of a 
collection of breakpoint (bp) and increment (inc) pairs, which the simulator 
interprets as shown in the following figure. 

Each breakpoint (bp) marks the left end of a region of x. The actual sample 
points throughout that region are separated by the distance inc. 

Each (bp, inc) pair is kept in a structure, so sa_points becomes an array of 
structures. For vsqr, the local declarations becomes:

struc {number bp, inc;} svin[*] 

out of 
limits

out of 
limits

intended region
of operation

allowable region of operation

x

Value range of an independent variable

bp1 bp2

inc1 inc2...inc1 inc1 inc1... inc2 ...

Specifying sample points using breakpoints and increments
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which declares svin to be an array of structures, where the array is of 
undetermined length, and each structure holds the two values bp and inc. The 
semicolon (;) is required. It introduces a logical end-of-line so that the right 
brace is (syntactically) at the beginning of a new line, as required.

Sample Point Statement Syntax
The syntax for specifying a sample point statement in the control section is as 
follows:

where svin is an array of (bp, inc) pairs that are specified as one of the 
following: 
■ A local parameter
■ An argument (in the header declarations)
■ A control section statement (within the sample_points statement itself)

The values in svin can be defined either by means of an initializer in the 
declaration (used here) or separately, as described for newton steps in the 
topic titled “Modeling a Simple Voltage Limiter with MAST” in a previous 
chapter. As suggested in the topic titled “Understanding Sample Points”, svin 
has at least three entries: 
■ Two breakpoints, at 100kV and -100kV, to mark the allowable range of 

operation
■ A breakpoint at 0, as required by the Saber Simulator 

Thus, you can declare and initialize the sample points as shown below. Note 
that the backslash (\) indicates that the next line is to be a continuation of the 
current line.

Sample Point Values
Select four additional breakpoints for vin, at ±1kV and ±10V, with increment 
values that start at 1 near the operational limits and decrease to 0.01 near 0. 
This provides a relative approximation error that is almost constant throughout 

sample_points (vin,svin) 

struc {number bp, inc;} svin[*]=\ 

[(-100k,1),(-1k,.1),(10,.01),(0,.01),\

(10,.1),(1k,1),(100k,0)]
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the specified value range. Following the requirement that the breakpoints be 
listed in increasing order, define svin as follows:

Each pair of values between parentheses, (bp, inc), is one array element. 
These values have the following meanings:
■ From -100k to -1k, and from 1k to 100k, the spacing between sample points 

is 1
■ From -1k to -10, and from 10 to 1k, the spacing is 0.1
■ From -10 to 10, the spacing is 0.01
■ The first and last breakpoints determine the allowable region of operation
■ The last breakpoint marks the beginning of the right-hand “off-limits” area, 

so the associated increment, while syntactically required, is not used (i.e., 
the number of breakpoints is always one greater than the number of 
intervals defined) 

Note:   

Increment values must be non-negative. 

Density of Sample Points

The Saber Simulator lets you increase the density of the sample points, that is, 
reduce the size of the spaces separating them, in order to get better accuracy. 
Referring to the figure above, running a simulation with the density variable set 
to 1 (the default) will cause the simulator to sample the independent variable at 
the sample points specified in the template. Using a different density has no 
effect on the breakpoints, but the increments between breakpoints are divided 
by the specified density. Thus, with a density of 2, the spacing between sample 
points is half that specified in the template, and with a density of 0.2, the 
spacing is five times the default. 

Specifying a density greater than 1 typically increases both simulation time and 
simulation accuracy. Similarly, specifying a smaller density typically decreases 
both simulation time and simulation accuracy. 

The simulator automatically limits the number of sample points between any 

two consecutive breakpoints to 2  -1, regardless of the selected density.

[(-100k,1),(-1k,.1),(-10,.01),(0,.01),\

(10,.1),(1k,1),(100k,0)]
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Saber® MAST Language User Guide 315
B-2008.09



Chapter 13: Modeling Nonlinearities
Default Sample Points
Default Sample Points

For any nonlinear template, the Saber Simulator uses the default breakpoints 
and increments listed below for the sample points of all independent variables 
that require them. There are two ways to express them, either with multiplier 
prefixes (shown first, below) or in scientific notation (shown second, below).

With multiplier prefixes:

In scientific notation:

[(-1t,1meg), (-1g,1k), (-1meg,1), (-1k,1m),\

(1,1u),(1m,1n), (-1u,1p), (0,1p), (1u,1n),\

(1m,1u), (1,1m),(1k,1), (1meg,1k), (1g,1meg),\

(1t,0)]  

[(-1d12,1d6), (-1d9,1d3), (-1d6,1d0), \

(-1d3,1d-3), (-1d0,1d-6), (-1d-3,1d-9), \

(-1d-6,1d-12), (0d0,1d-12), (1d-6,1d 9), \

(1d-3,1d-6), (1d0,1d-3), (1d3,1d0),\

(1d6,1d3), (1d9,1d6), (1d12,0d0)] 
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It is sometimes useful to implement portions of a model as separate functions. 
These functions reside in separate files outside of the template, but they are 
called (invoked) from within the bjtm template.

There are three major reasons for using MAST functions:

1. You can modularize MAST code for readability and maintainability.

2. You can encapsulate MAST code for re-use (for example, use the same 
MAST function call in a diode template and in a bjt template).

3. You can easily convert code from a foreign routine to a MAST function (for 
example, convert a SPICE3 MOS model from a C routine to a MAST 
function). 

Using a MAST Function Instead of a Foreign Routine

It is possible to call a foreign routine (such as one written in C or FORTRAN) 
from a template. However, it is recommended to use the MAST functions 
shown in the bjtm template instead whenever possible. Using a MAST function 
has the following advantages over using a foreign routine: 
■ The interface between function and template is substantially easier and less 

error-prone. 
■ A MAST function is more easily debugged. You can use message () 

statements, or you can pass signals back to the template for plotting. 
■ Porting to different computers is no longer required—the code is written in 

the MAST language, which is executed on every machine by the Saber 
Simulator. 

■ The Saber Simulator interprets a MAST function more readily than it does a 
foreign function, which generally results in greater simulation efficiency. 
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The bjtm template shows how MAST functions can perform some of the 
calculations that are included within the bjt template. The MAST functions 
(residing in separate files) perform the intermediate calculations and return the 
results to the template. The combination of the bjtm template and the MAST 
functions have the same functionality as the original bjt template. 

This topic is divided into the following subtopics: 
■ Guidelines for Splitting a MAST Template into Separate Functions
■ The bjtm Template Architecture Using MAST Functions -- describes how 

the functions are placed in a file with the same name as the function. In 
addition, .sin is appended so that the Saber Simulator can access the 
functions.

■ The bjtm Template -- shows calls to two different functions and a 
“companion” template.

■ Function Call Overview - bjtm MAST Template
■ bjtm_arg Declaration Template -- shows that creating a “companion” 

template is a more efficient way of providing argument and local parameter 
declarations for use by the original template and any functions it calls.

■ Local Parameters Function bjtm_pars -- shows the essential parts of a 
MAST function.

■ Calculated Values Function bjtm_values
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Guidelines for Splitting a MAST Template into Separate 
Functions

Deciding how to split a model between a template and a MAST function can be 
summarized by the following general rule:

When a model is split between a template and MAST functions, declarative 
parts must be in the template, while procedural parts (calculations and 
assignments) can be implemented in the MAST function. 

Beyond this simple rule, the following guidelines can help decide how to split 
the model:
■ The template header and header declarations must be specified within the 

template. 
■ All parameters, val and var variables, local nodes, and extraction groups 

must be declared in the template body. 
■ A “companion” template can be created that declares arguments and local 

parameters externally. Arguments are then referenced from this external 
template in the header declarations of the original template; local 
parameters are referenced from the external template in the body of the 
original template. This is demonstrated in the example in the topic titled "The 
bjtm Template". 

This is similar to an include file used in high-level languages, such as the C 
programming language. 

■ The control section, netlist section, and template equations are still specified 
in the template body, but they can include calls to MAST functions. 

■ All assignment statements and intermediate calculations using variables 
and parameters can be implemented in a MAST function. 

■ Template equations must be in the template. 

The bjtm Template Architecture Using MAST Functions

By implementing the guidelines described in the previous topic, the bjtm 
template is largely the same as the bjt template—the only parts that changed 
are the calls to the MAST functions (named bjtm_arg, bjtm_pars, and 
bjt_values), which are indicated by comments in the template. 
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Comparing the bjtm template with the bjt template, the calls from the bjtm 
template refer to the following external files: 
■ bjtm_arg.sin—a “companion” template 
■ bjtm_pars.sin—an external function 
■ bjtm_values.sin—an external function 

Although these file names are arbitrary, each file must have a .sin extension. 
The following figure shows an overview of this relationship between functions 
and templates. The solid lines represent function calls; the dashed lines 
represent “centralized” declarations. 

bjtm template

bjtm_arg

bjtm_pars

bjtm_values

Calling external functions from the bjtm template
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The bjtm Template

The bjtm template including MAST function calls is shown as follows:

element template bjtm c b e = model, ic

electrical c, b, e

bjtm_arg..model model = () # ... use arguments from 

# ... "companion" template

number ic[2]=[undef,undef]

external number temp 

{ # begin template body

bjtm_arg..work work # ... use local parameters

# ... from “companion” template

struc {

number bp, inc;

} nv[*] = [(0,.1),(2,0)] 

val v vbc, vbe, vce # declare variables

val i iec, icc, iba, ico, ir 

val q qbc, qbe

electrical cp # local node

group {vbc,vbe} v # extraction groups

group {iba,ico,ir} i

group {qbc,qbe} q

parameters {

# calculate thermal voltage and 4 functions of model param.

# ... 1’st call to MAST function

work = bjtm_pars(model,temp) 

} # end of parameters section
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values {

# calculate basic quantities of npn and pnp trans.

vbc = v(b) - v(cp)

vbe = v(b) - v(e) 

vce = v(cp) - v(e)

# ... 2’ond call to MAST function

(iec,qbc,icc,qbe) = bjtm_values(model,work,vbc,vbe)

# calculate base, collector, and resistor currents

iba = iec/model->br + icc/model->bf

ico = icc - iec - iec/model->br

if (model->rc ~= 0) ir = (v(c) - v(cp)) / model->rc

else ir = 0

} # end values section

control_section {

# if no collector resistance, collapse nodes c and cp

if (model->rc == 0) collapse(c,cp)

# specify Newton steps

newton_step((vbc,vbe),nv)

# initial conditions and start value 

initial_condition(vbe, ic[1]) 

initial_condition(vce, ic[2]) 

start_value (vbe, 0.6) 

# small-signal parameters

device_type("bjtm", "example")

small_signal(ibase,current,"base current",iba)

small_signal(icoll,current,"collector current",ico)

small_signal(vbe,voltage,"base-emitter voltage", vbe)

small_signal(vbc,voltage,"base-collector voltage", vbc)

small_signal(rc,resistance,"collector resistance",\

model->rc)

} # end control_section
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The three types of function calls in the bjtm template are explained as follows:

1. The bjtm_arg template is not actually a MAST function (see the topic titled 
"bjtm_arg Declaration Template"). It is a template that serves as a central 
location for the declaration of arguments and local parameters of bjtm by 
declaring them in model and work, which are structure parameters. The bjtm 
template, the bjtm_pars function, and the bjtm_values function then use 
these parameters by calling them from bjtm_arg. 

This is done using the argdef operator (..), which references the model and 
work parameters from bjtm_arg as follows: (Refer to the MAST Reference 
Manual for information on the argdef operator.)

equations {

# current at base, internal collector, and emitter

i(b->e) += iba + d_by_dt(qbe)

i(b->cp) += d_by_dt(qbc)

i(cp->e) += ico 

# current at collector resistor, if present

if (model->rc ~= 0) i(c->cp) += ir

} # end equations section

} # end template body

ASCII text of this example is located in:
saber_home/example/MASTtemplates/structured/
bjtm.sin

3 bjtm_arg..model model = ()# use local parameters

4 # from “companion” template

# ...

8 bjtm_arg..work  work # use local parameters

9 # from “companion” template
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Using bjtm_arg to provide these declarations illustrates the convenience of 
the modular approach. Although it is not necessary to use an additional 
template like bjtm_arg, not doing so means that you must declare variables 
and structures in both the calling template and in the function being called. 

2. The bjtm_pars function provides values to the work parameter as the first 
call from the bjtm template: 

This shows the syntax for calling an external MAST function: 

(variable_list) = name(argument_list)

where:

On the righthand side of the equals sign (=), the bjtm_pars function uses the 
arguments from model and the external parameter temp. It computes and 
returns the following values to work on the lefthand side of the equals sign: 

22 # 1’st call to MAST function

23 work = bjtm_pars(model,temp) 

variable_list is a comma-separated list of variables to receive the 
results of the function call. If a state is returned by the 
function, it must appear in a when statement. If only 
one value is returned, the parentheses enclosing 
variable_list must be omitted. 

name is the name of the MAST function being called (for 
example, bjtm_pars). The file containing this function 
(for example, bjtm_pars.sin) should be in the same 
directory as the calling template.

argument_list is a comma-separated list of variables passed as 
arguments to the MAST function.

vt, qbe0, qbc0, vje0, vjc0 
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These values are stored in the work structure rather than in individual 
numbers as in the bjt template in order to show how structures are passed 
between a template and an external MAST function. Note that model and 
temp are still declared as parameters in the bjtm template. 

3. The bjtm_values function computes values for currents and charges based 
on whether the device is NPN or PNP. The transistor type checking is 
located in the bjtm_values function. This function call appears as follows:

Notice that these calls have identical variable lists and similar argument 
lists. The first argument is the model structure. The second argument is the 
work structure holding the values returned by bjtm_pars. The third and 
fourth arguments are the base-collector and base-emitter voltages. 

On the righthand side of the equals sign (=), the bjtm_values function uses 
the appropriate argument values to compute and return the following four 
values on the lefthand side of the equals sign: 

These variables are then used in the template equations. This function is 
described more completely in the topic titled "Calculated Values Function 
bjtm_values". 

The remaining parts of the template are identical to the corresponding parts of 
the bjt example. 

30 # 2’ond call to MAST function

31 (iec,qbc,icc,qbe) = bjtm_values(model,work,vbc,vbe)

iec,qbc,icc,qbe
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bjtm_arg Declaration Template

The bjtm_arg template performs the actual declaration of the model argument 
and local parameters used by the bjtm template, the bjtm_pars function, and 
the bjtm_values function.

template  bjtm_arg = model, work 

# the bjt model...

struc { 

enum{_n, _p} type

number is=1e-16, bf=100, br=1,

cje=0, vje=.75, mje=.33,

cjc=0, vjc=.75, mjc=.33, rc = 0

} model 

# working parameters for local bjt calculations...

struc { 

number vt, 

qbe0, qbc0, vje0, vjc0  

} work 

{ # empty template body...

}

326 Saber® MAST Language User Guide
B-2008.09



Chapter 14: MAST Functions
Function Call Overview - bjtm MAST Template
There are three major points to note about this template: 
■ Although using bjtm_arg is not strictly required, it prevents having to declare 

model and work in both bjtm (the calling template) and in bjtm_pars and 
bjtm_values (the functions being called). This helps avoid errors associated 
with duplication and maintenance. 

■ It consists solely of a header and header declarations of two structure type 
parameters (model, work). These are arguments for this template that are 
used for other purposes in other templates and functions. This template has 
no connection points and an empty body, as shown by the empty braces at 
the bottom, { }. 

■ Local parameters vt, qbe0, qbc0, vje0, and vjc0 have been grouped under 
a structure named work for convenience. The bjtm template then declares 
all the parameters within work by referring to the declaration within bjtm_arg 
as follows: 

Local Parameters Function bjtm_pars

An external MAST function such as this one has some similarities to a MAST 
template:
■ It has similar partitioning (header, header declarations, body). 
■ It uses the same referencing techniques. 
■ It resides in a file of the same name as the function and has the .sin 

extension (for example, bjtm_pars.sin). Although not required, it is good 
practice to make this file available to the Saber Simulator the same way that 
templates are.

8 bjtm_arg..work  work # use local parameters

9 # from “companion” template
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Each section of this function is described in the following topics, using the 
following bjtm_pars function as an example:
■ Function Header
■ Header Declaration
■ Function Body

Function Header
As is the case for a template, the function header is the first noncommented 
line of the function. The header identifies the function, specifies the output from 
the function, assigns a name to the function, and specifies the input to the 
function:

function (work)= bjtm_pars(model,temp) 

bjtm_arg..work work # output from this function

bjtm_arg..model model # input to this function

number temp # input to this function

{ 

# The following include file declares math_boltz constant

# (is k in bjt template), the math_charge constant

# (is qe in bjt template), and the math_ctok constant 

<consts.sin 

# Calculation of thermal voltage and 4 other quantities 

work->vt = math_boltz * (temp + math_ctok) / math_charge;

work->qbe0 = model->cje * model->vje / (1.0 - model->mje);

work->qbc0 = model->cjc * model->vjc / (1.0 - model->mjc);

work->vje0 = 2.0 * model->vje / model->mje;

work->vjc0 = 2.0 * model->vjc / model->mjc;

}

1 function (work) = bjtm_pars(model,temp) 
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This line from bjtm_pars shows the general syntax for the header of a MAST 
function (note the similarity to the call from the template): 

where:

The bjtm_pars function uses the arguments from model along with the external 
parameter temp to compute and return the following five values: 

These values are stored in the work structure rather than as individual 
numbers. This structure is then passed to the calling template, bjtm. 

Header Declaration
The following line in the bjtm_pars function declares the output parameter that 
appears in the variable_list of the function header:

 This is followed by declarations for the input parameters appearing in 
argument_list of the function header: 

Note that the bjtm_arg template is referenced again in lines 3 and 4 to obtain 
work and model, eliminating the need to enter all the parameters that they 

function (variable_list) = name(argument_list) 

function a reserved word that identifies the contents of this file as 
a MAST function. 

variable_list a comma-separated list of parameters that receive the 
output of the function for passing to the calling template. 

name the name of the MAST function being called (bjtm_pars).

argument_list a comma-separated list of parameters supplied as input 
to the function by the calling template. 

vt, qbe0, qbc0, vje0, vjc0 

3 bjtm_arg..work work 

4 bjtm_arg..model model 

5 number temp 
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contain. The declaration for temp allows a simple numeric value to be passed 
into the function.

Function Body
The body begins with a left brace, {, and ends with a right brace, }. The first line 
within the body includes the consts.sin file (file inclusion is denoted by the <). 
This is a standard include file provided with the Saber Simulator that contains 
several commonly used constants for this function to perform calculations:

The next five lines perform calculations for thermal voltage and junction 
characteristics. The results are assigned to the individual parameters in work, 
which is provided as a single output parameter from this function:

Calculated Values Function bjtm_values

The bjtm_values function takes the values in work (obtained from bjtm_pars) to 
compute currents and charges that will appear in the template equations. 
Although a little more elaborate than bjtm_pars, it has the same general 

10 <consts.sin 

14 work->vt = math_boltz * (temp + math_ctok) / math_charge; 

15 work->qbe0 = model->cje * model->vje / (1.0 - model->mje); 

16 work->qbc0 = model->cjc * model->vjc / (1.0 - model->mjc); 

17 work->vje0 = 2.0 * model->vje / model->mje; 

18 work->vjc0 = 2.0 * model->vjc / model->mjc; 
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characteristics as described in the topic titled "Local Parameters Function 
bjtm_pars". 

function (iec,qbc,icc,qbe) =  bjtm_values(model,work,vbc,vbe)

val i iec, icc  # output from function

val q qbc, qbe # output from function

bjtm_arg..model model # input to function

bjtm_arg..work work # input to function

val v vbc, vbe # input to function

{ 

# calculate basic quantities of npn and pnp trans.

if (model->type == _n) {

iec = model->is * (limexp(vbc/work->vt) - 1)

icc = model->is * (limexp(vbe/work->vt) - 1)

}

else {

iec = -model->is * (limexp(-vbc/work->vt) - 1)

icc = -model->is * (limexp(-vbe/work->vt) - 1)

}
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# calculate charges

if(model->type == _n) {

if (vbc<0) {

qbc = work->qbc0*(1-((1-vbc/model->vjc)**(1-model->mjc)))

}

else {

qbc = model->cjc*vbc*(1 + vbc/work->vjc0)

}

if (vbe<0) {

qbe = work->qbe0*(1-((1-vbe/model->vje)**(1-model->mje)))

}

else {

qbe = model->cje*vbe*(1 + vbe/work->vje0)

}

} # end “if type _n” condition

else { # if model is not of type _n

if(vbc > 0) {

qbc = -work->qbc0*(1-((1+vbc/model->vjc)**(1-model->mjc))) 

}

else {

qbc = model->cjc*vbc*(1-vbc/work->vjc0) 

}

if(vbe > 0) {

qbe = -work->qbe0*(1-((1+vbe/model->vje)**(1-model->mje))) 

}

else {

qbe = model->cje*vbe*(1-vbe/work->vje0)

}

} # end “if not type _n” condition

}
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The following topics describe each section of the bjtm_values function in more 
detail:
■ Function Header
■ Header Declaration
■ Function Body

Function Header
The header for bjtm_values shows that the output consists of individual 
parameters (iec, qbc, icc, qbe), and the input contains both structures (model, 
work) and individual parameters (vbc, vbe):

Header Declaration
The following five lines from the bjtm_values function declare the input and 
output parameters appearing in the header: 

Note that the bjtm_arg template is referenced once again to obtain work and 
model, eliminating the need to enter all the parameters that they contain. The 
declarations for the input and output vals duplicate their declarations in the 
calling template (bjtm). 

Function Body

The body of the bjtm_values function template consists of the same equations 
for charges and currents as found in the bjt template. The only difference is that 
in the bjtm template, the following arguments are part of the work structure. 

1 function(iec,qbc,icc,qbe)=bjtm_values(model,work,vbc,vbe)

3 val i iec, icc  # output from function

4 val q qbc, qbe # output from function

5 bjtm_arg..model model # input to function

6 bjtm_arg..work work # input to function

7 val v vbc, vbe # input to function
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Therefore, these arguments are referenced in this function using the structure 
name work followed by -> and then the argument name (such as work->vt).

The body of the bjtm_values function is as follows:

vt, qbe0, qbc0, vje0, vjc0 

8 { # start template body

9 # calculate basic quantities of npn and pnp trans.

10 if (model->type == _n) {

11 iec = model->is * (limexp(vbc/work->vt) - 1)

12 icc = model->is * (limexp(vbe/work->vt) - 1)

13 }

14 else {

15 iec = -model->is * (limexp(-vbc/work->vt) - 1)

16 icc = -model->is * (limexp(-vbe/work->vt) - 1)

17 }
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18 # calculate charges

19 if(model->type == _n) {

20 if (vbc<0) {

21 qbc = work->qbc0*(1-((1-vbc/model->vjc)**(1-model-
>mjc)))

22 }

23 else {

24 qbc = model->cjc*vbc*(1 + vbc/work->vjc0)

25 }

26 if (vbe<0) {

27 qbe = work->qbe0*(1-((1-vbe/model->vje)**(1-model-
>mje)))

28 }

29 else {

30 qbe = model->cje*vbe*(1 + vbe/work->vje0)

31 }

32 } # end “if type _n” condition

33 else { # if model is not of type _n

34 if(vbc > 0) {

35 qbc = -work->qbc0*(1-((1+vbc/model->vjc)**(1-model-
>mjc))) 

36 }

37 else {

38 qbc = model->cjc*vbc*(1-vbc/work->vjc0) 

39 }

40 if(vbe > 0) {

41 qbe = -work->qbe0*(1-((1+vbe/model->vje)**(1-model-
>mje))) 

42 }

43 else {

44 qbe = model->cje*vbe*(1-vbe/work->vje0)

45 }

46 } # end “if not type _n” condition

47 }
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15Foreign Routines in MAST

This topic, which shows how to use foreign routines as extensions of the MAST 
language, is divided into the following subtopics: 
■ Using a FORTRAN Function in a MAST Template -- shows a foreign routine 

that returns the factorial of its argument. Because it returns a single value, 
this routine can be used in a template wherever an intrinsic function can be 
used (if properly declared). 

■ Modeling the Bipolar Transistor Using Foreign Routines -- shows the bipolar 
transistor model, implemented here partly in the MAST language and partly 
in C. It demonstrates a more general use of foreign routines.

■ Implementing a MAST Foreign Routine in C -- shows the calling interface for 
foreign routines written in C; shows the mechanism for passing structures, 
enumerated types, and arrays, both to and from the foreign routine; shows 
the implementation and usage of multi-purpose foreign routines that are 
called with a varying argument list and return different values for different 
calls; and shows guidelines for splitting a component model into a MAST 
template and a foreign routine.

Introduction

It is sometimes useful to implement part of a model in a routine that has been 
written in a general-purpose programming language, such as C or FORTRAN, 
rather than in the MAST language. One such case is when the model requires 
operations that are not supported in the MAST language, such as certain 
mathematical functions (e.g., Bessel functions). Another is when a model 
implemented for another simulator has to be adapted for use with the Saber 
Simulator. The MAST language includes a well-defined way of calling such 
foreign routines, which can be written in any programming language provided 
that they can be called from a FORTRAN environment. 

A foreign routine requires an appropriate compiler (such as C) and a significant 
amount of interface between the MAST language and the language of the 
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foreign routine. For these reasons, it is recommended to use a MAST function 
instead of a foreign routine whenever possible.

Using a FORTRAN Function in a MAST Template

The factorial, n!, of a positive integer, n, is defined as the product of all positive 
integers from 1 through n:

n! = 1X2X*3X...X(n-1)Xn

Therefore, a function computing the factorial (fact) has one argument and 
returns one value as shown in the following UNIX example:

The implementation of the FORTRAN routine for this is explained in the 
following topics:
■ Writing the FORTRAN Routine -- shows the following concepts:

• Defining the header of the factorial routine 

• Getting input in the first element of the in array

• Returning results in the first element of the out array 

• Using c.. to indicate comments (which are ignored by the routine) 

subroutine fact(in,nin,ifl,nifl,out,nout,ofl,nofl,undef,ier)

c..header declarations

integer nin, ifl(*), nifl, nout, ofl(*), nofl, ier

double precision in(*), out(*), undef

c..local declarations

integer n, i

c..convert input value to integer (ignore fractions)

n = in(1)

c..compute factorial and store in out(1)

out(1) = 1

do 10 i=1,n

10 out(1) = out(1)*i

c..return to template

return

end
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■ Making the routine available to the Saber Simulator 
■ Declaring and calling the routine from a template 

Writing the FORTRAN Routine

The way to call a foreign routine from the MAST language is through a unique 
calling interface that has two parts: 
■ The header of the foreign routine 
■ The mechanism for passing values between MAST templates and the 

foreign routine 

The foreign routine header is identical for all foreign routines on a given 
platform and is independent of the way the routine is used in a MAST template. 
For a foreign routine, the UNIX header is as follows (an asterisk, *, indicates 
unlimited array size):

The header for Windows NT is shown as follows:

where:

subroutine name(in,nin,ifl,nifl,out,nout,ofl,nofl,undef,ier)

integer nin, ifl(*), nifl, nout, ofl(*), nofl, ier

double precision in(*), out(*), undef

subroutine 
name(inp,ninp,ifl,nifl,out,nout,ofl,nofl,aundef,ier)

!MS$ATTRIBUTES DLLEXPORT :: name

integer ninp,nifl,nout(2),nofl,ifl(*),ofl(*),ier

real*8 inp(*),out(*),aundef

name is the user-selected name of the foreign routine. From MAST 
templates, the routine must be called by this name. The name must 
be unique and must be a valid name in both the MAST language and 
FORTRAN. For the factorial function, let name be fact.
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The remaining arguments in the foreign routine header, namely ifl, nifl, ofl, nofl, 
and ier, are reserved for future use. Although currently unused, they must be 
present in the foreign routine header. 

The mechanism used to pass the values of variables from a MAST template to 
a foreign routine depends upon the type of the variables, as declared in the 
template. Similarly, the routine must return its results in a format that depends 
on the type of the variables that receive those results. It is therefore important 
to understand that a foreign routine and the templates using it must agree in 
the number and the type of both the variables passed to the routine (its 
arguments) and the results of the foreign routine. Here, the mechanism is 
described only to the extent that it is used in the examples—refer to the MAST 
Reference Manual for more information on the argument-passing mechanism. 

According to its intended use, the factorial function has a single numeric value 
as input and returns a single numeric value. Several types of MAST variables 
are represented by a single numeric value: number (both template arguments 
and local parameters), var variables, ref variables, val variables, and state 

in is a double-precision array containing the arguments from the call to 
the foreign routine. These arguments, when received by the foreign 
routine, are packed. Arguments of certain types are encoded as well. 
The encoding scheme for arguments is further described in the 
MAST Reference Manual.

nin is an integer containing the number of elements in the in array. It is 
often different from the number of arguments passed to the foreign 
routine in the MAST template.

out is a double-precision array into which the foreign routine must place 
the values to be passed back to the MAST template. Depending upon 
the data type of the results (as declared in the calling template), the 
routine might have to encode certain values. The out array is 
guaranteed to be large enough to hold the properly-encoded results, 
except when the routine is returning a variable-length array to the 
template. Information about returning variable-length arrays is given 
in the MAST Reference Manual.

nout is an integer containing the size of the out array.

undef is a double-precision number indicating an undefined quantity. Its 
value is identical to the undef constant in the MAST language. 
Foreign routines can use it to interpret input values or to return 
undefined values.
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variables. In the argument-passing mechanism all are handled identically: if a 
variable of any of the listed types is passed as the only argument to the foreign 
routine in a template, the foreign routine receives its value in the first element of 
the in array, and nin is 1. Similarly, if the foreign routine returns a single value 
of one of the types listed, nout has a value of 1, the out array has length 1, and 
the routine must return its result in the first element of the out array. 

Declaring and Calling the Routine From a Template

Like any other user-defined quantity in the MAST language, a foreign routine 
must be declared in the calling template before being used. 

You declare a foreign routine in the template body in either of the following two 
ways, depending upon how many values it returns:

A routine returning a single numeric value should be declared as:

You can use such a routine wherever you can use MAST intrinsic functions, 
even in expressions. This means you can use them anywhere in the template 
body including in the template equations, in the netlist section, in when 
statements, and even in a local declaration to initialize a number.

A routine returning multiple values must be declared as:

An example of such a routine is described in the topic titled "Modeling the 
Bipolar Transistor Using Foreign Routines". 

Because this factorial routine always returns a single value, it appears as a 
local declaration of any template that calls it, as follows:

Having done this, you can compute the factorial of a given positive integer 
anywhere in the template. For example, you could include the following 
statement in a template:

foreign number (name) 

foreign (name) 

foreign number fact()

nfact = fact(n)
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where nfact and n must be declared as numeric values (i.e., as number 
variables, val variables, or state variables). Note that n can also be a var 
variable or a ref variable. You could also use the fact function in an expression 
to define a 1.2k ohm resistor by writing the netlist entry as follows:

Modeling the Bipolar Transistor Using Foreign Routines

This topic presents a more general way to use foreign routines with a MAST 
template. As an example, it uses the bipolar transistor model (bjt) as described 
in the topic “Ebers-Moll MAST Model for the Bipolar Transistor”. The goal of 
this example is to write a MAST template and a foreign routine that implement 
the model in such a way that the combination has the same functionality as the 
bjt template. Initial conditions, start values, and small-signal parameters are 
removed from the new template for brevity.

This new template (bjtf) and its foreign routine are such that the model contains 
only one-dimensional nonlinearities, which optimizes its speed. 

This topic is divided into the following subtopics:
■ Splitting Functionality Between a MAST Template and a Foreign Function
■ Modifying the BJT Template to Use a Foreign Routine
■ General Foreign Function Call Syntax
■ Calling the Foreign Routines

Splitting Functionality Between a MAST Template and a Foreign 
Function

Unlike the example in the topic titled "Using a FORTRAN Function in a MAST 
Template" (which essentially added another mathematical function to the 
MAST language), deciding how to split a model between a MAST template and 
a foreign routine is not trivial. 

r.1 a b = 10 * fact(5)
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Deciding how to split a model between a template and a MAST function can be 
summarized by the following general rule:

When a model is split between a template and a foreign function, declarative 
parts must be in the template, while procedural parts (calculations and 
assignments) can be implemented in the foreign function. 

Beyond this simple rule, the following guidelines can help decide how to split 
the model:
■ The template header and header declarations must be specified entirely 

within the MAST template.
■ The control section, values section, parameters section, netlist section, and 

template equations must be specified in the MAST template, but they can 
include calls to foreign routines that return a single numeric value. The 
factorial routine from the topic titled "Using a FORTRAN Function in a MAST 
Template" is an example of such a routine. 

■ The local declarations section of the template must include declarations of 
all variables used in the template. Specifically, it must include all 
parameters, val variables, var variables, local nodes, extraction groups, and 
foreign routine names. 

■ Messages and error handling should be done in the template, because the 
functionality of the MAST error(), warning(), and message() functions is not 
directly available in foreign routines.

■ All assignment statements and intermediate calculations using variables 
and parameters can be implemented in a foreign routine. 

■ Any val variable defined by a foreign routine call is considered to be a 
nonlinear function of all the val variables or system variables passed as 
arguments to the foreign routine. 

This fact leads to the following rules:

• val variables that are linear functions of system variables should be 
defined in the template.

• val variables defined by foreign routine calls should, if possible, be 
grouped according to how they depend upon other val variables. It is 
typically more efficient to call a foreign routine several times with a small 
number of val variables as arguments (that is, with low dimensionality) 
than to call it once with all val variables (thereby creating a high-order 
nonlinear function). This rule is illustrated later in this chapter.

• val variables defined only for extraction purposes can be defined either 
in the template or in foreign routines.
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Modifying the BJT Template to Use a Foreign Routine

The bjtf template (listed below) is largely the same as bjt—the only parts that 
changed were the calls to the foreign routine (named bjt), which are indicated 
by comments. 

Unlike the bjtm template, which uses calls to two different MAST functions plus 
an include file, all calls in the bjtf template are made to the same foreign routine 
(bjt).

element template bjtf c b e = model, ic

electrical c, b, e

struc { # the transistor model

enum {_n, _p} type 

number  is=1e-16, bf=100, br=1, \

cje=0, vje=.75, mje=.33, \

cjc=0, vjc=.75, mjc=.33, rc=0

} model = ()

number ic[2]=[undef,undef] 

external number temp

{ # begin template body

# declare local param., vals, and extraction groups

number work[5] 

struc {number bp,inc;} \ 

nv[*] = [(0,.1),(2,0)]

val v vbc, vbe, vce

val i iec, icc, iba, ico, ir 

val q qbc, qbe

electrical cp # local node

group {vbc,vbe} v #...extraction groups

group {iba,ico, ir} i

group {qbc,qbe} q

foreign bjt # ... foreign routine
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control_section {

# If no collector res., collapse nodes c and cp

if(model->rc == 0) collapse(c,cp) 

# specification of sample points and newton steps

newton_step((vbc,vbe),nv) 

# initial conditions, start values, and 

# small-signal parameters removed for brevity

}
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parameters {

# Calculate thermal voltage and 4 functions of model

# parameters. They are stored in a work vector

work = bjt(1,model,temp) #...foreign call

}

values {

vbc = v(b,cp)

vbe = v(b,e) 

vce = v(cp,e)

# calculate currents and charges

if(model->type == _n) {

(iec,qbc) = bjt(2,model,work,vbc) #...foreign call

(icc,qbe) = bjt(3,model,work,vbe) #...foreign call

}

else {

(iec,qbc) = bjt(2,model,work,-vbc) #...foreign call

(icc,qbe) = bjt(3,model,work,-vbe) #...foreign call

} 

#calculate base, collector, and resistor currents

iba = iec/model->br + icc/model->bf

ico = icc - iec - iec/model->br

if (model->rc ~= 0) ir = (v(c,cp)) / model->rc

else ir = 0

} # end of values section
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The foreign function calls are described in the following topics:
■ General Foreign Function Call Syntax
■ Calling the Foreign Routines

General Foreign Function Call Syntax

All of the foreign routine calls in the bjtf template use the syntax of the following 
general foreign routine call:

where:

equations {

# current at base, internal collector, and emitter

i(b->e) += iba + d_by_dt(qbe)

i(b->cp) += d_by_dt(qbc)

i(cp->e) += ico 

# current at collector resistor, if present

if (model->rc ~= 0) i(c->cp) += ir

} # end of equations section

} # end of template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
bjtf.sin

(variable_list) = name(argument_list) 

variable_list is a comma-separated list of variables to receive the results of 
the routine call. If a state is returned by the routine, it must 
appear in a when statement. If only one value is returned by the 
foreign routine, the parentheses enclosing variable_list are 
optional.

name is the name of the foreign routine to call.
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Calling the Foreign Routines

Note that the bjtf template contains the following declaration and calls to the 
foreign routine: 

1. The bjt routine is declared locally as a foreign function:

This declaration indicates that the bjt routine may return more than one 
value, and that the type and number of returned values might differ for 
different calls. In fact, the bjt routine returns an array of length five for the 
first call, but it returns a pair of vals (that is, a pair of simple numeric values) 
for the second and third calls.

2. The first call to the bjt foreign routine is: 

The first argument of the call to bjt (1) identifies the first task to be 
performed. This is necessary because this same routine is called, with 
different arguments, further down in the template. 

The second and third arguments (model, temp) are the model argument and 
the system temperature (temp). Note that model and temp are still declared 
as parameters in the template. 

The values of model and temp are used to compute and return the following 
five values that are computed in bjt:

argument_list is a comma-separated list of variables passed as arguments to 
the foreign routine.

23 foreign bjt

35 work = bjt(1, model, temp)

vt, qbe0, qbc0, vje0, vjc0 
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These values are stored in the work array, rather than in individual numbers, 
to show how arrays are passed between templates and foreign routines. 
This is described in the topic "Implementing a MAST Foreign Routine in C". 

3. The calls to the bjt routine in the following lines are made to compute 
currents and charges: 

Although all bjtf template currents and charges could be computed in one 
routine call, it is preferable to call the routine twice—first for the iec, qbc pair, 
second for the icc, qbe pair.

According to the above guidelines, all four of these val variable are 
interpreted as one-dimensional nonlinear functions of vbc or vbe. If all four 
val variables were computed in one foreign routine call, they would be 
considered two-dimensional nonlinear functions of vbc and vbe, which 
would be less efficient for simulation. 

Notice that the second and third routine calls have similar arguments. The 
first tells the bjt routine whether the base-collector or the base-emitter 
characteristics have to be computed. The second argument is the model 
structure. The third argument is the work vector holding the values returned 
by the first call. The fourth argument is the base-collector or base-emitter 
voltage. 

The remaining parts of the template are identical to the corresponding parts of 
the bjt template described in later topics and are therefore not discussed here. 

Implementing a MAST Foreign Routine in C

This topic describes how to implement the bjt routine as a C language routine. 
The calling interface is functionally identical to the one described in the topic 
"Using a FORTRAN Function in a MAST Template" for FORTRAN routines, as 

43 if(model->type == _n) {

44 (iec,qbc) = bjt(2,model,work,vbc)

45 (icc,qbe) = bjt(3,model,work,vbe)

46 }

47 else {

48 (iec,qbc) = bjt(2,model,work,-vbc)

49 (icc,qbe) = bjt(3,model,work,-vbe)

50 }
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are the meaning and usage of arguments. The following shows a UNIX routine 
format:

The following shows a Windows NT routine format:

In a Windows NT environment, the C routine name must be entered in upper-
case characters.

Some systems require name to have a trailing underscore (_), in order for the 
routine to be callable from a FORTRAN environment, as the MAST language 
requires. This topic is divided into the following subtopics:
■ Defining Template Arguments
■ First Call—Setting Up Return Parameters
■ Second and Third Calls—Performing Calculations
■ Complete BJT C Routine

Defining Template Arguments

The factorial function example in the topic "Using a FORTRAN Function in a 
MAST Template" shows how a single numeric argument is passed to the 
foreign routine. If there are multiple arguments, the process is similar, except 
that arguments must appear in a particular order, and each argument occupies 
a specific number of places in the in or out array.

To improve the readability of the routine and reduce the possibility of errors, 
you should define a name for each entry in the in and out arrays. Choose 
names that suggest the purposes of the quantities passed to and from the 
routine. 

name(in, nin, ifl, nifl, out, nout, ofl, nofl, undef, ier)

int *nin, *ifl, *nifl, *nout, *ofl, *nofl, *ier;

double *in, *out, *undef; 

__declspec(dllexport) void name(double* inp,long*

ninp,long* ifl,long* nifl,double* out,long* nout,long* ofl,

long* nofl,double* aundef,long* ier)

{

}
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The first argument is a single number telling the foreign routine what to do. It 
can have any of the values 1, 2, and 3. This argument is passed to the foreign 
routine as the first element of the in array, that is, in in[0]. (Unlike FORTRAN, 
arrays in C start with element 0.) The corresponding definitions are as follows:

The second argument is the model structure. A structure is passed to and from 
foreign routines by passing each member of the structure as a separate 
parameter, in the order in which they are declared in the structure. The first 
member of the model structure is the model type, which is of type enum. An 
enum is passed as a single number, which is 1 if the value of the variable is first 
in the list of possible values, 2 if the value is second in the list, etc. In the 
declaration of the model type, note that _n (for an npn transistor) is encoded as 
1, and _p is encoded as 2. All other members of the model structure are 
numbers, which can be handled directly. Therefore, the definitions for the 
model structure are as follows:

4 #define JOB in[0]

5 #define PARAMETERS 1

6 #define BC_CHARACTERISTICS 2

7 #define BE_CHARACTERISTICS 3

8 #define MODEL_TYPE in[1]

9 #define _N 1  /* npn */

10 #define _P 2  /* pnp */

11 #define MODEL_IS in[2]

12 #define MODEL_BF in[3]

13 #define MODEL_BR in[4]

14 #define MODEL_CJE in[5]

15 #define MODEL_VJE in[6]

16 #define MODEL_MJE in[7]

17 #define MODEL_CJC in[8]

18 #define MODEL_VJC in[9]

19 #define MODEL_MJC in[10]

20 #define MODEL_RC in[11]
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In addition, the system temperature, which is a local parameter is defined as 
follows: 

The rest of the definitions depend on the calls to the foreign routine, described 
in the next topics. 

First Call—Setting Up Return Parameters

As its result, the new bjtf template returns an array, of length 5, called work. 
Arrays are passed to and from foreign routines in two parts, the array size and 
the array contents. The array size is a single number, and each array element 
takes as many places as a variable of the same type would. The work array 
consists of five numbers, so it needs six places in the out array. 

Each array element has been given a name that indicates its use in the 
following lines:

The P in each name stands for parameters. You must distinguish these work 
values, which are returned from the bjt routine, from work values for the second 
and third calls (described in the next topic), which are passed to the bjt routine. 

Note that, in order to compute thermal voltage, the values of Boltzmann’s 
constant and the electron charge must also be included as follows:

21 #define TEMP in[12] 

24 #define WORK_P_SIZE out[0]

25 #define WORK_P_VT out[1]

26 #define WORK_P_QBE0 out[2]

27 #define WORK_P_QBC0 out[3]

28 #define WORK_P_VJE0 out[4]

29 #define WORK_P_VJC0 out[5]

51 #define K 1.381e-23 /*Boltzmann's constant */

52 #define QE 1.602e-19 /*electron charge */
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The first part of implementing the first call to the bjt routine is a straightforward 
translation of the intermediate calculations of vt, qbe0, qbc0, vje0, and vjc0 
(from the original bjt template) into the C language:

The second part consists of defining the size of the work array as follows:

It is important to define this size and to make it identical to the array size as 
declared in the template. If omitted, the size will be undefined, and the routine 
call will not have the expected effect.

Second and Third Calls—Performing Calculations

The second and third calls to this routine both have the work vector as their 
third argument. The work vector occupies the six positions following the model 
structure. (TEMP is not present in these calls):

75 if (JOB == PARAMETERS) {

76 /* Calculate thermal voltage and four other quant. */

77 WORK_P_VT = K * (TEMP + 273.15) / QE;

78 WORK_P_QBE0 = MODEL_CJE * MODEL_VJE / (1.0 - MODEL_MJE);

79 WORK_P_QBC0 = MODEL_CJC * MODEL_VJC / (1.0 - MODEL_MJC);

80 WORK_P_VJE0 = 2.0 * MODEL_VJE / MODEL_MJE;

81 WORK_P_VJC0 = 2.0 * MODEL_VJC / MODEL_MJC; 

83 /* Define the array size */

84 WORK_P_SIZE = 5;

85 } 

32 #define WORK_V_SIZE in[12]

33 #define WORK_V_VT in[13]

34 #define WORK_V_QBE0 in[14]

35 #define WORK_V_QBC0 in[15]

36 #define WORK_V_VJE0 in[16]

37 #define WORK_V_VJC0 in[17]
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Note that these definitions for the elements in the work array are similar to the 
ones given in the first call, except that the work array now appears in the in 
array. They are distinguished by the V in each name, which stands for values. 

The second call computes the iec, qbc pair as a function of vbc. Therefore, vbc 
is an additional input, and iec and qbc are outputs of the routine.

The code calculating both iec and qbc is again a straightforward translation into 
the C language of the corresponding calculations from the original bjt template 
as follows:

The only difference is the exp() function of the C language is called instead of 
the limexp() function of the MAST language.

41 #define VBC in[18]

42 #define IEC out[0]

43 #define QBC out[1]

86 else if (JOB == BC_CHARACTERISTICS) { 

87 /* Calculation of iec and qbc from vbc */ 

88 IEC = MODEL_IS * (exp(VBC / WORK_V_VT) - 1.0); 

89 if (VBC < 0.0) {

90 QBC=WORK_V_QBC0 *

91 (1.0 - pow(1.0 - VBC/MODEL_VJC, 1.0 - MODEL_MJC));

92 }

93 else {

94 QBC = MODEL_CJC * VBC * (1.0 + VBC / WORK_V_VJC0);

95 }

96 if (MODEL_TYPE == _P) {

97 IEC = -IEC;

98 QBC = -QBC;

99 }

100 }
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The third call is very similar to the second call, calculating icc and qbe:

This concludes the detailed description of the bjt routine and the argument-
passing mechanism. Further information, including how foreign routines can 
return variable-length arrays, is given in the MAST Reference Manual.

47 #define VBE in[18]

48 #define ICC out[0]

49 #define QBE out[1]

86 else if (JOB == BE_CHARACTERISTICS) {

87 /* Calculation of icc and qbe from vbc */

88 ICC = MODEL_IS * (exp(VBE / WORK_V_VT) - 1.0);

89 if (VBE < 0.0) {

90 QBE=WORK_V_QBE0 *

91 (1.0 - pow(1.0 - VBE/MODEL_VJE, 1.0 - MODEL_MJE));

92 }

93 else {

94 QBE = MODEL_CJE * VBE * (1.0 + VBE / WORK_V_VJE0);

95 }

96 if (MODEL_TYPE == _P) {

97 ICC = -ICC;

98 QBE = -QBE;

99 }

100 }
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Complete BJT C Routine

The following is a listing of the complete bjt routine, written in the C language.

/* Define names for the input and output of the foreign*/

/* routine. First the part that is common to all usage:*/

/* result = bjt(job, model...) */

#define JOB in[0]

#define PARAMETERS 1

#define BC_CHARACTERISTICS 2

#define BE_CHARACTERISTICS 3

#define MODEL_TYPE in[1]

#define _N 1                  /* npn */

#define _P 2                  /* pnp */

#define MODEL_IS in[2]

#define MODEL_BF in[3]

#define MODEL_BR in[4]

#define MODEL_CJE  in[5]

#define MODEL_VJE in[6]

#define MODEL_MJE in[7]

#define MODEL_CJC in[8]

#define MODEL_VJC in[9]

#define MODEL_MJC in[10]

#define MODEL_RC in[11]

#define TEMP in[12] /* local parameter */
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/* Define names for 1st call     */

/* work = bjt(1, model, temp)  */

#define WORK_P_SIZE out[0]

#define WORK_P_VT out[1]

#define WORK_P_QBE0 out[2]

#define WORK_P_QBC0 out[3]

#define WORK_P_VJE0 out[4]

#define WORK_P_VJC0 out[5]

/* Define names for 2nd and 3rd calls   */

/* result = bjt(job, model, work,...)       */

#define WORK_V_SIZE in[12]

#define WORK_V_VT in[13]

#define WORK_V_QBE0 in[14]

#define WORK_V_QBC0 in[15]

#define WORK_V_VJE0 in[16]

#define WORK_V_VJC0 in[17]

/* Define names for calculation of base/collector charac. */

/* (iec, qbc) = bjt(2, model, work, vbc) */

#define VBC in[18]

#define IEC out[0]

#define QBC out[1]

/* Define names for calculation of base/emitter charac. */

/* (icc, qbe) = bjt(3, model, work, vbe) */

#define VBE in[18]

#define ICC out[0]

#define QBE out[1]
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/* Other defines */

#define K 1.381e-23 /* Boltzmann`s constant */

#define QE 1.602e-19 /* electron charge        */

/*-------------------------------------------------*/

/*The following two include statements are 

system-provided files used to declare input/output 

channels and the exp() and pow() mathematical functions*/

#include <stdio.h>

#include <math.h>

#include “saberApi.h” /* Specify the complete path here to 

 “<install_home>/include/saberApi.h” */

#if defined(_MSC_VER)

#define bjt BJT

#endif

/*The following line works for SunOS 5.5.1 - 5.6 platforms

void bjt_(double*in, long*nin, long*ifl, long*nifl, */

/* The following line works for HP platforms */

void bjt(double*in, long*nin, long*ifl, long*nifl,

double*out, long*nout, long*ofl, long*nolf, double*undef,

long*ier)

{
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if (JOB == PARAMETERS) {

/* Calculate thermal voltage and four other quan. */

WORK_P_VT = K * (TEMP + 273.15) / QE;

WORK_P_QBE0 = MODEL_CJE * MODEL_VJE / (1.0 - MODEL_MJE);

WORK_P_QBC0 = MODEL_CJC * MODEL_VJC / (1.0 - MODEL_MJC);

WORK_P_VJE0 = 2.0 * MODEL_VJE / MODEL_MJE;

WORK_P_VJC0 = 2.0 * MODEL_VJC / MODEL_MJC;

/* Define the array size */

WORK_P_SIZE = 5;

}

else if (JOB == BC_CHARACTERISTICS) {

/* Calculation of iec and qbc from vbc */

IEC = MODEL_IS * (exp(VBC / WORK_V_VT) - 1.0);

if (VBC < 0.0) {

QBC=WORK_V_QBC0 *

(1.0 - pow(1.0 - VBC/MODEL_VJC, 1.0 - MODEL_MJC));

}

else {

QBC = MODEL_CJC * VBC * (1.0 + VBC / WORK_V_VJC0);

}

if (MODEL_TYPE == _P) {

IEC = -IEC;

QBC = -QBC;

}

}
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else if (JOB == BE_CHARACTERISTICS) {

/* Calculation of icc and qbe from vbc */

ICC = MODEL_IS * (exp(VBE / WORK_V_VT) - 1.0);

if (VBE < 0.0) {

QBE=WORK_V_QBE0 *

(1.0 - pow(1.0 - VBE/MODEL_VJE, 1.0 - MODEL_MJE));

}

else {

QBE = MODEL_CJE * VBE * (1.0 + VBE / WORK_V_VJE0);

}

if (MODEL_TYPE == _P) {

ICC = -ICC;

QBE = -QBE;

}

}

else { /*If the bjt routine is called with an

unrecognized first argument, do the following*/

fprintf(stderr, “Bad job: %f\n”, JOB);

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
bjt.c
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The following examples introduce the MAST capabilities that allow you to 
create models that depend on effects in the time domain:
■ Using the MAST delay Function in an Ideal Delay Line -- shows how to 

represent a time delay using the intrinsic delay function and how to influence 
the time-step algorithm of the simulator from within a template (i.e., 
scheduling)

■ Expanding the Multiple-Output Voltage Source -- shows how to define a val 
variable as a function of both time and other val variables

Using the MAST delay Function in an Ideal Delay Line

The MAST delay function can be used in template equations to model ideal 
delay. Using delay in an equation has the following general form:

where delayed_value and reference_value are either a val variable, a branch 
variable, or a var variable; and time is a parameter that specifies the duration of 
the constant delay between delayed_value and reference_value. For example, 
suppose a template equation contains the following statement:

This statement has the following meaning:

Solve for a value of output voltage (vout) that has the same amplitude as the 
input voltage (vin), but delay the output from the input by the specified value 
of delay (dtime).

An example of a template using the delay function is the ideal delay line 
template, dline, shown in the figure below, which is equivalent to a voltage-
controlled voltage source with a time delay and a gain 

delayed_value = delay (reference_value,time) 

iout: vout = delay (vin, dtime)
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The dline template description is divided into the following topics:
■ Ideal Delay Line (dline) MAST Template
■ Delayed Sine Wave Transient Analysis
■ Delayed Sine Wave AC Analysis
■ MAST dline Template Summary 

e-s(td)

inp 

inm 

outp 

outm 

vin vout

+

_

+

_

Ideal delay line
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Ideal Delay Line (dline) MAST Template

The dline template is shown as follows:

The delay function in the template equation instructs the simulator to set the 
output voltage (across pins outp and outm) to the same value as vdl, but delay 
it by time td. 

Note that vdl needs to be declared as a val variable because it is an 
intermediate variable that depends on the value of the input branch voltage, 
vin. 

It is allowable to omit vdl altogether by using the following equation:

template dline inp inm outp outm = td, a

electrical inp, inm, outp, outm

number td = 0.0, # ideal delay, with default

a = 1.0 # gain, with default

{

var i iout # current from outp to outm

val v vout, # voltage developed across outp and outm

vin, # controlling voltage 

vdl # delayed voltage

values  {

vout = v(outp) - v(outm)

vin = v(inp) - v(inm)

vdl = vin * a

}

equations  {

i(outp->outm) += iout

iout: vout = delay(vdl, td)

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
dline.sin

iout: vout=delay(vin*a, td) 
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Including vdl simplifies the template equation and permits the product of gain 
and input voltage to be extracted and plotted.

It is incorrect syntax to multiply the delay function by any quantity. For example, 
the following template equation would be incorrect:

The delay function cannot be multiplied by the constant a; instead, the constant 
a must multiply vin inside the parentheses, as shown in the preceding equation. 

Delayed Sine Wave Transient Analysis

The following figure shows the result from a transient simulation of a sine wave 
input to the dline template.

# incorrect equation... 

iout: vout = a*delay(vin, td)

0 200u 400u 600u 800u 1m 1.2m 1.4m
t(s)-1.25

-1
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Delayed sine wave-transient analysis result
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 The circuit netlist is shown below:

In this example, the voltage at pin out is the same as the voltage at pin in, 
except that it is delayed by 200 ms. During a DC analysis, the delay function 
has no effect. Consequently, the voltages at in and out are the same following 
a DC analysis. 

Delayed Sine Wave AC Analysis

The dline template is also effective for a small-signal AC analysis. If the 
multiplier, a, is left at the default value of 1, dline has no effect on the 
magnitude of the input signal. However, the phase is shifted as a function of 
frequency. 

The voltage source (v.in) from the preceding circuit netlist can be modified to 
simulate an AC source, as follows:

 The following figure shows the result of an AC analysis. The waveforms show 
the magnitude and phase at out, the output of dline.1. 

v.in    in 0       = tran=(sin=(0,1,1k))

dline.1 in 0 out 0 = td=200u 

v.in in 0 = ac=(1,0)

dline.1 in 0 out 0 = td=200u
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The negative slope of the phase (in radians) with respect to frequency (in 
radians per second) is commonly called group delay. From the graph shown in 
the following figure, you can see that this slope for dline.1 is measured as -200 
ms, which corresponds to the td=200u specified in the netlist.

MAST dline Template Summary

To summarize, you can conceptualize the MAST delay function as: 
■ A zero delay during DC analysis
■ A time delay during transient analysis
■ A constant group delay during a small signal (AC) analysis

0 1k 2k 3k 4k 5k 6k 7k 8k 9k 10k 11k 12k 13k
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Group Delay—200us

Delayed sine wave-AC analysis (small-signal) result
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Expanding the Multiple-Output Voltage Source

A simvar is a built-in variable that interacts with the simulator. Most simvar 
variables are set by the simulator, and templates can use them but not alter 
them. In effect, they are a “window” into what is happening in the simulator. 
Two simvar variables, named time and time_domain, are used in the multi-
purpose voltage source (vsource_2) example, which is described in the 
following topics:
■ Overview
■ The vsource_2 MAST Template
■ Header Declarations
■ Union Type Parameters -- shows how to the intrinsic function union_type for 

indicating which member of the union has been selected
■ Local Declarations
■ Equations Section
■ Determining Union Elements
■ Assigning Internal Values
■ Performing Calculations (Defining Signals) -- shows how to use the 

step_size and next_time simvar variables to communicate information to the 
simulator and how to use the sin and exp intrinsic functions

■ Netlist Examples

Two other simvar variables, step_size and next_time, are special, in that 
templates can change their values. These simvar variables let templates 
communicate to the simulator. The vsource_2 example illustrates their use.

For a description of the simvar variables and their uses, see the MAST 
Reference Manual. 

A point worth emphasizing is that vsource_2 is a linear template, even though 
the definition of tran is nonlinear. The linearity of a template is determined with 
respect to other variables, such as voltages or currents. The nonlinearity of tran 
in this voltage source example is with respect to time. 

Overview

The voltage source (vsource_2) template provides three different, time-varying 
outputs. It is similar to vsource_1, but it uses a union parameter type to provide 
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more flexibility. For more information on unions, refer to the MAST Reference 
Manual. 

The vsource_2 template is used as a voltage supply or waveform source as 
follows:
■ A constant output voltage for all large-signal analyses
■ One of three output waveforms (a sine wave, an exponential signal, or a 

step function) for the transient (time-based) analysis

To specify one template for two separate purposes (constant supply or varying 
waveform), you must decide how to handle conflicting specifications, 
particularly regarding DC analysis. If the voltage source is specified as a 
supply, the supply value is obviously the DC value. If the voltage source is 
specified as a transient waveform, then the waveform value at time-equal-to-
zero should be used as the DC value. However, if both the supply and transient 
specifications are given, only one can be chosen for the DC analysis. In this 
example, the transient specification overrides the supply specification by 
default. However, a provision is made to allow the template user to override 
this default. 

Consequently, the template must have the following properties:
■ The value of a transient waveform at time=0 must be able to override the 

constant supply voltage value. 
■ Although the transient specification must, by default, override the supply 

specification, the transient specification must also have an “off” setting that 
allows the supply specification to be in effect.
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The vsource_2 MAST Template

The template for this voltage source (vsource_2) is listed below.

element template vsource_2 p m  = supply, tran

electrical p, m

number supply = 0

union {

number off

struc {number vo, va, f, td;} sin

struc {number v1,v2,tau;} exp

struc {number v1,v2,tstep,tr;} step

} tran = (off = 1)

{

number pi = 3.14159

val v vn, vs

var i is

number td,vo,va,w,ss,v1,v2,tau,tstep,tr,slew

parameters {

# define intermediate values, depends on selected output

if (union_type (tran,sin))  { 

td = tran->sin->td 

vo = tran->sin->vo 

va = tran->sin->va

w = 2*pi*tran->sin->f 

ss = 0.05/tran->sin->f

}

else if (union_type (tran,exp)) { 

v1  = tran->exp->v1 

v2 = tran->exp->v2 

tau = tran->exp->tau

}
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else if (union_type (tran,step)) { 

tstep = tran->step->tstep

v1 = tran->step->v1

v2 = tran->step->v2

tr = tran->step->tr

slew = (v2-v1)/tr

}

} # end parameters section

values { 

vn = v(p) - v(m) 

if (dc_domain|time_domain) { 

if (union_type (tran,sin))  {

if (time <= td) {

vs = vo

next_time = td

}

else {

vs = vo + va*sin(w*(time-td))

step_size = ss

}

} # end tran->sin

else if (union_type (tran,exp)) { 

vs = v1 + (v2-v1)*(1-exp(-(time/tau)))

} # end tran->exp
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Header Declarations

The template header has two arguments, supply (for constant output) and tran 
(for time-varying output) as follows: 

else if (union_type (tran,step)) { 

if (dc_domain|(time < tstep)) {

vs = v1

next_time = tstep

}

else if ((time >= tstep) & (time < tstep+tr)){

vs = v1 + (time-tstep)*slew

next_time = tstep + tr

}

else {

vs = v2

}

}

else vs = supply

} # end dc_domain|time_domain

else vs = 0

} # end values section

equations { 

i(p) += is 

i(m) -= is 

is : vn = vs 

} # end equations section

} 

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
vsource_2.sin

1 element template vsource_2 p m = supply, tran
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The tran parameter is not a simple type, so there is an example of how to use it 
in a netlist entry later in this section. 

As always, header declarations declare the names used in the header. These 
are the names of the pins p and m, and the arguments supply and tran. 

However, the tran argument, which must be able to represent any of three 
transient waveforms, cannot be defined simply as a number. It must be 
declared as a new type of parameter, the union parameter, which is described 
in the following section. 

Union Type Parameters

You want to be able to specify any of the following kinds of signals when 
choosing the tran argument: 
■ Sine Wave Output (sin) Declaration
■ Exponential Wave Output (exp) Declaration
■ Step Function Output (step) Declaration

Each of these is complex enough to require its own list of parameters to define 
the signal function. When only one of a list of parameters can be used at a 
time, it is best to declare the list as a part of a union. A union is a parameter 
type that has multiple members, but each time the union is used, only one of 
the members is selected. The general form of a union declaration is: 

Notice that this is different than the specification for an enumerated type 
(enum). An enum allows the selection of one out of a list of constant values. A 
union allows the selection and specification of one out of a group of possible 
members. Notice that the union specification is similar to the general form of 
the structure declaration. Initial values and defaults (optional) have the same 

2 electrical p, m 

3 number supply = 0 

union  {definition} name [ = ([initial values]) ] 
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meanings for unions as for structures. The following example is from the 
vsource_2 template,

The union definition contains a declaration for each member of the union. Each 
member may be of any type, even a structure or another union. In this 
example, the members are the three signal types defined for tran; sine, 
exponential, and step. In addition, there should be a parameter to turn the 
entire union (named tran) on and off. When on, this enables the tran parameter 
to override the supply argument. When off (tran=(off=1)), the supply argument 
is in effect. 

As shown above, there are the following four members in this union: 

The off parameter is declared a number while sin, exp, and step, each of which 
contains other parameters, are declared to be structures. Thus, this union 
consists of one number and three structures—selecting any one of these four 
in a netlist excludes the other three. The three structures are discussed in the 
following topics. 

Although off is initialized in the template by setting off=1, this is not a Boolean 
function. In other words, the action of explicitly setting off to any value (even 
undef or 0) selects it and excludes the other three members of the tran union. 

Sine Wave Output (sin) Declaration 
The equation for defining a sine wave, as shown in the following figure, is:

4 union {

5 number off

6 struc {number vo, va, f, td;} sin

7 struc {number v1,v2,tau;} exp

8 struc {number v1,v2,tstep,tr;} step

9 } tran = (off = 1)

off disable tran (the only initialized parameter)

sin sine wave output

exp exponential wave output

step step function output
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v = vo + va * sin (2πf (time - td)) 

where: 

All of these have numerical values and therefore, are declared as numbers 
within the sin structure. In addition, no initial values are assigned. Because time 
is a simvar, its value is provided by the simulator and does not need to be 
declared.

Thus, the declaration for sin is as follows: 

Exponential Wave Output (exp) Declaration
The exponential signal, as shown in the following figure, is defined with the 
following equation:

vo the offset value in volts

va the amplitude in volts

f the frequency in hertz

td the delay in seconds

6 struc {number vo, va, f, td;} sin

vo

t = 0

va

td td + 1/f

vo

T = 1/f

voltage

time

Describing a sine wave
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v = v1 + (v2 - v1) * (1 - e )

where:

The structure declaration for exp is as follows: 

Step Function Output (step) Declaration 
The step function, shown in the following figure, is defined as a stepped voltage 
from v1 to v2, 

v1 the initial voltage

v2 the voltage at time=inf (infinite)

tau the time constant

7 struc {number v1, v2, tau;} exp 

-(time/tau)

voltage

time
τ

V2

V1

V1 + (V2 - V1)•(1 - e
(-time/τ )

)

Describing an exponential waveform
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where:

The structure declaration for step is as follows:

Initial Values
The default value of off=1, sets the initial choice for tran. This default setting 
disables the transient waveforms unless tran is explicitly set to sin, exp, or step, 
thereby overriding off. When tran is set to one of these waveforms, it overrides 
the supply parameter, which satisfies one of the design considerations stated 
earlier.

The arguments of the sin, exp, and step structures are not initialized and have 
no default values. Thus, you must specify their values in a netlist entry 
whenever you set tran to sin, exp or step. Remember that this template does 
not include the parameter checking (out-of-range, divide-by-zero, etc.) that is 
incorporated into MAST library templates. 

v1 the initial voltage

v2 the step voltage level

tstep the time at which the step begins

tr the transition time from v1 to v2

8 struc {number v1, v2, tstep, tr;} step

voltage

time

V2

V1

tstep

tr

Describing a step function waveform
376 Saber® MAST Language User Guide
B-2008.09



Chapter 16: Time-Domain Modeling
Expanding the Multiple-Output Voltage Source
Also, recall that the declaration syntax of a structure requires that the closing 
brace (}) be on a separate line. However, inserting a semicolon (;) has the 
same effect as moving to a new line. 

The complete set of parameter declarations for vsource_2 is:

The time simvar variable is part of the definition of each of the transient 
waveforms. Because it is a reserved word, it does not require a declaration 
(although you may define a variable named “time,” which will override the 
simvar time).

Netlist Example
Assume you want to specify a sine wave source (overriding any DC supply 
characteristics) with instance name input, connected to nodes named in and 0, 
and having the following sine wave output characteristics:
■ 0V offset (vo=0)
■ 4.3V amplitude (va=4.3)
■ 1kHz frequency (f=1k)
■ 0s delay (td=0)

The corresponding netlist entry for this would be as follows:

or, specifying argument values without argument names, it would be the 
following: 

3 number supply = 0

4 union {

5 number off

6 struc {number vo, va, f, td;}      sin 

7 struc {number v1, v2, tau;}        exp 

8 struc {number v1, v2, tstep, tr;}  step 

9 } tran=(off=1) 

vsource_2.input in 0 = tran=(sin=(vo=0,va=4.3,f=1k,td=0))

vsource_2.input in 0 = tran=(sin=(0,4.3,1k,0))
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Because none of the parameters are initialized in the template, all values of sin 
must be assigned in the netlist entry, even those specified as 0. 

Local Declarations

The following declarations are required for use throughout the template:
■ pi, the name used to represent the number p, defined here as 3.14159
■ The branch current is 
■ The intermediate variables vn and vs, as a val 
■ Various numbers used in determining intermediate values

Therefore, the local declarations are: 

Equations Section

The template equation is similar for this voltage source as it is for the voltage 
source template (vsource_1). The major difference is that here vs is defined 
with more options. These are based on which element of the tran union is 
specified, plus which simulation analysis is being performed. 

11 number pi = 3.14159

12 val v vn, vs

13 var i is

14 number td,vo,va,w,ss,v1,v2,tau,tstep,tr,slew

70 equations {  ### FROM vsource_2

71 i(p) += is 

72 i(m) -= is 

73 is : vn = vs 

74 } # end equations section
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Determining Union Elements

As in the template vsource_1, several conditional statements are used to 
define the output term, vs. In this template, the definition of vs depends on the 
following conditions of the tran argument:
■ If the tran argument is not selected (the default condition), then vs=supply 
■ If the tran argument is selected, then one of the sin, exp, or step parameters 

has been specified. The value of vs then depends on defining the 
corresponding waveform. 

In doing this, the template must use the values specified for sin, exp, or step, 
depending on which one has been specified for a given netlist entry. 

However, you cannot use values from sin, exp, or step directly. This is because 
they are contained within a union and must be indirectly referenced, just as 
members of a structure must be indirectly referenced. 

You need to use the structure reference operator (->) for indirectly referencing 
a variable inside a union of structures. The general syntax for using this 
operator is as follows:

For example, 

This assigns the specified value of td (which is contained within sin, which is 
contained within tran) to the internal variable, td. (Refer to the MAST Reference 
Manual for more information on the structure reference operator, ->). 

37 equations { ### FROM vsource_1

38 i(p->m) += is

39 is: v(p)-v(m)=vs # determine current contributed

40 # by source

41 } # end of equations section

union_name->structure_name->variable_name

td = tran->sin->td 
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Assigning Internal Values 

Structure referencing of values from the sin, exp, and step structure 
parameters is required so that they can be used to define vs for the appropriate 
output waveform. To do this, if-else statements are used along with an intrinsic 
MAST function, called union_type. which specifies a member of a union 
according to the following syntax: 

This is a Boolean function whose value is true when a member of the union has 
been defined for a given instance of this template (i.e., whether it has values 
passed to it from a netlist). For example, the following statements provide a 
true/false indicator for each structure of tran: 

As a result, union_type can be used with if-else statements and the structure 
reference operator (->) to make values nested within tran available for 

union_type  (defined_union parameter, member) 

union_type (tran, sin) 

union_type (tran, exp) 

union_type (tran, step) 
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calculations of vs. These calculations are performed only for the signal (sin, 
exp, or step) that has been specified in a netlist. 

Note that the sin portion calls an intrinsic function named sin, and the exp 
portion calls an intrinsic function named exp. These are functions included with 
the Saber Simulator to perform the sine and exponential (e) functions. Many 
mathematical functions are available as intrinsic functions (see the MAST 
Reference Manual for more information). 

Refer also to the MAST Reference Manual for more information on the if-else 
statement and the structure reference operator (->). 

Performing Calculations (Defining Signals)

The output of the voltage source (vs) is calculated using the values from either 
sin, exp, or step, as determined by the value of union_type. Because vs is 

17 if (union_type (tran,sin)) { 

18 td  = tran->sin->td 

19 vo  = tran->sin->vo 

20 va  = tran->sin->va

21 w   = 2*pi*tran->sin->f 

22 ss  = 0.05/tran->sin->f

23 }

24 else if (union_type (tran,exp)) { 

25 v1  = tran->exp->v1 

26 v2  = tran->exp->v2 

27 tau = tran->exp->tau

28 } 

29 else if (union_type (tran,step)) { 

30 tstep = tran->step->tstep

31 v1    = tran->step->v1

32 v2    = tran->step->v2

33 tr    = tran->step->tr

34 slew  = (v2-v1)/tr

35 } 
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conditional upon the tran argument, these calculations also use if-else 
statements and the union_type function. 

These conditions can be defined in the template with the if statement, 
according to the following logic:

Substituting from the template, use the union_type function with if statements 
to identify the members of the tran union. Thus, the logical statements above 
are converted to the following MAST statements:

Each of these logical steps uses the union_type function to select the 
appropriate tran choice (sin, exp, step) and then calculate their respective 
voltages. 

if (the large-signal analysis is selected) {

define vs equal to supply, unless }

if (the sine wave is selected) {

define vs as a sine function}

else if (the exponential is selected)  {

define vs as an exponential function}

else if (the step is selected) {

define vs as a step function}

39 if (dc_domain | time_domain) {

40 if (union_type (tran, sin)) {

# define vs as a sine wave}

50 else if (union_type (tran, exp)) {

# define vs as an exponential wave}

53 else if (union_type (tran, step)) {

# define vs as step function}

65 }

66 else vs = supply 
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Sine Wave Output
The sine wave voltage is defined with respect to time as:

v = vo + va * sin(2*pi*f*(time - td))

where:

You cannot use the vo, va, f, and td values directly; you must reference them 
indirectly using the structure reference operator (->). For convenience, this was 
done previously in the template for all the tran structures, although it could 
have been done here. 

If the time is less than or equal to the delay time, the output voltage (vs) is 
constrained to the value of the offset voltage, vo. This requires a subsidiary if 
statement, written as follows:

The complete sine wave definition then becomes:

vo the offset value in volts

va the amplitude in volts

f the frequency in hertz

td the delay in seconds

41 if (time <= td) { 

41 vs = vo

40 if (union_type (tran,sin)) { 

41 if (time <= td) {

42 vs = vo 

43 next_time = td 

44 }

45 else {     # if (time > td)

46 vs = vo + va*sin(w*(time-td))

47 step_size = ss 

48 }

49 }
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Also, notice the use of the assignment to the step_size variable as follows:

The use of the step_size simvar variable allows the template to influence the 
size of the time step allowed during the transient simulation. The value of 
step_size places an upper bound on the variable step size performed by the 
Saber Simulator. In this instance, this is necessary to ensure an adequate 
resolution of the output, making it look like a sine wave. Here, step_size is 
assigned the value of ss, which was defined previously by the following 
statement:

This limits the step size for this example to 5% of the period of the sine wave. 
The step_size simvar is one of only two simvar variables that can be assigned 
a value in a template. The other is next_time (see the topic titled "Step Function 
Output"). Like all other simvar variables, they need not be declared. 

Exponential Waveform Output
The exponential waveform uses a similar approach. The equation for the 
output voltage with respect to time is:

v = v1 + (v2 - v1) * 1 - e where:

As with the sine wave, you cannot use values for v1, v2, and tau directly; you 
must reference them indirectly using the structure reference operator (->). The 
complete section for the exponential is as follows:

47 step_size = ss

22 ss = 0.05/tran->sin->f 

v1 the initial voltage

v2 the voltage at time=inf (infinity)

tau the time constant

50 else if (union_type (tran,exp)) { 

51 vs = v1 + (v2-v1)*(1-exp(-(time/tau))) 

52 }

-(time/tau)
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Note that exp, the exponential function, is another intrinsic function. Note also 
that step_size is not used in the exponential example. Typically, step_size is 
not necessary. This is especially true of complex systems, where the 
complexity of the system forces the time steps to be small enough to ensure 
the desired effect. However, the step_size construct is supplied to give 
template writers as much control as they might need. 

Step Function Output 
A similar approach applies to the step function output. The step function is 
defined as a stepped voltage from v1 to v2, where:

The complete step function section is as follows:

Using if statements (if-else) allows you to specify each region of the step 
function and determine its voltage appropriately. Before time=tstep, the voltage 
should be v1. After time tstep + tr, the voltage should be v2. During the 

v1 the initial voltage

v2 the stepped voltage

tstep the start time of the step

tr the transition time from v1 to v2

53 else if (union_type (tran,step)) { 

54 if (dc_domain|(time < tstep)) {

55 vs = v1

56 next_time = tstep

57 }

58 else if ((time >= tstep) & (time < tstep+tr)){

59 vs = v1 + (time-tstep)*slew

60 next_time = tstep + tr

61 }

62 else {  

63 vs = v2

64 }    

65 }
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transition from v1 to v2, the voltage should be determined by linear 
interpolation between v1 and v2. 

It is very important that there be a simulation time step at the exact points 
where the transition starts (tstep) and ends (tstep + tr). This prevents the Saber 
Simulator from skipping over abrupt changes as functions of time in the step 
function—it is forced to go through the transition and use the correct points 
between steps. 

Consequently, a MAST construct is required to let the model tell the simulator 
the time points that must have corresponding simulation time steps. This 
construct is the next_time simvar variable, which corresponds to a time at 
which the simulator must perform a time step. The next_time simvar variable is 
invoked only in an assignment statement. Its effect expires after each time 
step, regardless of whether the appropriate time point has been passed. 
Although this simvar variable is effective only for the selection of the very next 
time step, it works here because this portion of the template will be evaluated at 
every time step. 

Therefore, the time region that precedes the start of the step transition has a 
statement assigning the value of tstep to next_time. Also, the transition region 
assigns the value of tstep + tr to next_time (the end of the transition). This 
guarantees time steps at the necessary locations.

No tran Output
Although it is possible to specify what occurs if off is selected (in a manner 
similar to that for sin, exp, and step), it is not necessary to do so. This is 
because the desired effect for off=1 is to leave the value of vs at the voltage 
specified by the supply parameter. That automatically occurs when none of the 
three if-else conditions are true. 
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All definitions for vs are as follows: 

39 if (dc_domain|time_domain) { 

40 if (union_type (tran,sin)) { 

41 if (time <= td) {

42 vs = vo 

43 next_time = td 

44 }

45 else {     # if (time > td)

46 vs = vo + va*sin(w*(time-td))

47 step_size = ss 

48 }

49 }

50 else if (union_type (tran,exp)) { 

51 vs = v1 + (v2-v1)*(1-exp(-(time/tau))) 

52 }

53 else if (union_type (tran,step)) { 

54 if (dc_domain|(time < tstep)) {

55 vs = v1

56 next_time = tstep

57 }

58 else if ((time >= tstep) & (time < tstep+tr)){

59 vs = v1 + (time-tstep)*slew

60 next_time = tstep + tr

61 }

62 else {  

63 vs = v2

64 }    

65 }

66 else vs = supply

67 }    

68 else vs = 0 
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Netlist Examples

The following examples show how this template could be used in a netlist 
entry. For the sake of simplicity, the instance name in all the examples is src, 
and connection points are declared to be connected to nodes 1 and 2. 

1. To designate a DC source src with a value of 5 volts:

or

2. To assign the following characteristics to the sin structure of the tran union:

Notice that because the argument values in this example are assigned in the 
same order in which they are declared in the template, it is not necessary to 
specify the name of each argument. If you do not know the order or wish to 
write the names for clarity, simply specify the name of the field and an equals 
sign (=) to the left of the value, as follows:

vsource_2.a 1 2 = supply=5

vsource_2.b 1 2 = 5

offset voltage vo 0 V

amplitude va 4.3 V

frequency f 1 kHz

delay time td 0 s

vsource_2.c 1 2 = tran=(sin=(0,4.3,1k,0)) 

vsource_2.d 1 2 = tran=(sin=(vo=0,va=4.3,f=1k,td=0))
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The Saber simulator can perform a noise analysis to include the noise 
contributions of a circuit or system element. To do this, the template must 
contain information that defines its noise contribution. 

The following topics show how noise information is added to the simple resistor 
and vsource (voltage source) templates:
■ Adding Noise to a Resistor MAST Template -- shows adding noise 

information to a template, and the use of the noise_source statement in the 
control section.

■ Adding Noise to a Voltage Source MAST Template 
■ Adding Noise to the MAST diode Template

Introduction

In general, a noise source for an electrical element is defined either as a 
current or voltage source between two nodes of the element. For a simple 
element, such as a resistor, there is a single noise source. For a more complex 
element, such as a transistor, there may be several noise sources, as well as 
several types of noise: thermal noise, shot noise (due to DC current), and 
flicker noise (a frequency-related noise).

Adding noise information to a template is not difficult, and the procedure is the 
same for all types of noise. In general, it consists of the following:
■ Define the name of the noise source as a val variable (a local variable). 
■ Provide the defining expression for the noise variable (the val variable).
■ In the control section, insert a noise_source statement that supplies one of 

the following kinds of information:

• If the noise source is a current source, the statement describes the 
location of the noise source in terms of the connection points or internal 
nodes.
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• If the noise source is a voltage source, the statement associates the 
name of the noise source with a var variable (a system variable). 

If there is more than one noise source, the control section must contain a 
separate variable, definition, and statement for each. 

Adding Noise to a Resistor MAST Template

For reference, the resistor template without the noise functionality is shown as 
follows:

For this example, only the thermal noise through the resistor will be added. 
This noise source is defined as a current source in parallel with the resistor, as 
shown in the figure below. Note that there is no direction associated with the 
current source. 

template resistor p m = res

electrical p, m

number res

{

equations  {

i(p->m) += (v(p)-v(m))/res

}

}

p m

Defining a noise generator
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To include thermal noise effects in the template, the following expression is 
used to define them: 

where:

Note that it is necessary to declare variables for Boltzmann’s constant and 
temperature, in addition to the noise source variable. The following resistor_2 
template includes the noise functionality:

noise = (abs(4kT/r))

k is Boltzmann’s constant (1.38 * 10  joules/K)

T is the temperature in K

r is the specified resistance

template resistor_2 p m = res

electrical p, m

number res

external number temp #noise-related

{

val ni nsr #noise-related

number k = 1.38e-23 #noise-related 

number t #noise-related

parameters  {

t = temp + 273.15 #noise-related

}

values  {

nsr = sqrt(abs(4.0*k*t/res)) #noise-related

}

control_section  {

noise_source (nsr, p, m) #noise-related

}

1/2

-23
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The following topics describe the resistor_2 template:
■ Header Declarations
■ Local Declarations
■ Expression for Noise
■ Control Section -- shows how to use the noise_source statement in the 

control section.

Header Declarations

The variable for simulation temperature (temp, in ×C) is declared in the header 
declarations section: 

Local Declarations

A unit is provided for thermal noise (ni) generated by a current source, which is 
defined in A/÷Hz. By declaring a noise variable as a val variable, you can 
assign the unit ni to it. For example, a noise variable named nsr would be 
declared as follows: 

The constants used to calculate noise must also have local declarations: 

equations {

i(p->m) += (v(p)-v(m))/res

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
resistor_2.sin

external number temp #noise-related

val ni nsr 

number k = 1.38e-23 

number t 
392 Saber® MAST Language User Guide
B-2008.09



Chapter 17: Modeling Noise
Adding Noise to a Resistor MAST Template
Because the value defined externally for temp is in ×C, a statement is required 
to convert the temperature (t) to kelvins: 

Expression for Noise

Using these variable names for the noise generator, insert a statement to 
perform the noise calculation as follows: 

The statement in the values section uses two intrinsic functions: sqrt, the 
square root function, and abs, the absolute value function.

Control Section

A noise_source statement is used in the control section. It identifies the noise 
source in relation to the rest of the template. If the noise source is a current 
source, as in this template, the statement contains the name of the pins (or 
internal nodes) to which the noise generator is connected. If one side of it is 
connected to ground, only the other need be listed, in which case the simulator 
assumes that the other side is grounded. 

In this example, the noise source nsr is connected between pins p and m. 
Therefore, the complete control section is as follows:

The noise_source statement adds the noise to p and subtracts it from m. 
Alternately, because the noise analysis ignores the sign of the noise source, 
the following statement would be an equivalent statement (swapping positions 
of m and p): 

t = temp + 273.15 

values  {

nsr = sqrt(abs(4.0*k*t/res)) #noise-related

}

control_section  {

noise_source (nsr, p, m) #noise-related

}

noise_source (nsr, m, p)
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For a noise current source, the general form of the noise_source statement in 
the control section is as follows:

For a noise voltage source, the form of the statement would be as shown 
below, where var_name is the name of a var variable defining the current 
through the voltage source. 

Adding Noise to a Voltage Source MAST Template

Adding a voltage noise source requires the following three types of statements:
■ Define the name of the noise source as a val variable.
■ Provide the defining expression for the noise variable (the val variable).
■ In the control section, insert a noise_source statement that associates the 

name of the noise source with a var variable. 

However, because a var variable is required in the noise_source statement for 
this template, the var variable must appear in a template equation (as 
implemented for the opamp template. 

Adding the necessary noise source statements to the vsource template makes 
it the vsource_3 template shown below. These statements are indicated with 
comments. 

noise_source (val_name, pin [, pin]) 

noise_source (val_name, var_name) 
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Note that the noise voltage has been made available as an argument (noise), 
which is then assigned to the noise val variable, nsv. 

Adding Noise to the MAST diode Template

The diode template defines a simplified diode model. In a more fully-defined 
diode model, such as the d template in the Standard Template Library, all three 
types of noise are defined. However, this template incorporates only the shot 
noise from the DC current. 

The shot noise is defined as a current source, and it is connected between pins 
p and m. The defining equation for shot noise is as follows:

template vsource_3 p m = vs, noise

electrical p, m

number vs, noise # add argument for noise

{

var i i

val nv nsv # (1) declare noise val

values {

nsv = noise # (2) set value of noise val

}

control_section {

noise_source(nsv, i) # (3) associate noise val

} #     with var i

equations {

i(p->m) += i

i: v(p)-v(m) = vs

}

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/structured/
vsource_3.sin

nsi = sqrt(2*qe*abs(id))
Saber® MAST Language User Guide 395
B-2008.09



Chapter 17: Modeling Noise
Adding Noise to the MAST diode Template
where qe is the charge on the electron and id is the current through the diode 
(both previously defined in the template). 

Therefore, only three statements need be added to this template to define shot 
noise:
■ Define the name of the noise source as a val:

■ Provide the defining expression for the noise variable:

■ In the control section, insert a noise_source statement that associates the 
name of the noise source with a var variable:

From this example, it should be clear that adding noise information is a very 
straightforward process, regardless of the complexity of the template. Adding 
the other noise information (thermal noise and/or flicker noise) is simply a 
matter of defining each necessary variable, adding its defining expression, and 
inserting its noise_source statement in the control section of the template.

val ni nsi

nsi = sqrt(2*qe*abs(id))

noise_source(nsi, p, n)
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Statistical modeling (also known as a Monte Carlo analysis) includes the 
features that are described in the following topics: 
■ Varying Values in a Simple Voltage Divider
■ Probability Density Functions (PDFs)
■ Cumulative Density Functions (CDFs)
■ Correlating Distributions
■ Modifying Uniform and Normal Default Distributions
■ Parameterized PDF and CDF Specifications
■ The random MAST Function
■ Use of the statistical MAST Simvar Variable
■ Worst-Case Statistical MAST Modeling

These features enable you to define a model with built-in variability. Then the 
simulator, running an mc (Monte Carlo) command, uses the model to run a 
series of simulations, where each simulation uses a new set of values for the 
variable parameters.

Thus, it is possible to use the Saber Simulator in a statistical or non-statistical 
(deterministic) environment.

Introduction

Models for a particular component or design are described with equations and 
accompanying coefficients (model parameters). In some models the model 
parameters are assumed to be constants that characterize the object. This is a 
good assumption when the model represents a single sample of a component 
or circuit. However, another sample of the same component or circuit might be 
better characterized by a slightly different set of model parameters due to the 
tolerances of the components. 
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The topic of statistical modeling introduces the notion that a model parameter 
may be best described as a collection of possible values, with each value 
having its own likelihood of occurring. Statistical modeling describes the 
process of varying model parameters in a precise, yet random, way. This 
method defines parameters statistically.

Varying Values in a Simple Voltage Divider

Assume you are designing the simple voltage divider circuit shown in the 
following figure, consisting of two resistors and a voltage source.

For simulation, this circuit has the following netlist: 

The voltage source is a battery whose voltage varies slightly, depending both 
on the lot from which it was produced and its age. Assume the voltage varies 
uniformly from 8.9 to 9.1 volts. 

The resistors available are 100k resistors with gold outer bands (5% tolerance) 
and 470k resistors with silver outer bands (10% tolerance). You do some 
measurements and discover that the resistor variation has a normal distribution 
around the nominal value. The standard deviation is approximately one third of 

v.battery in 0   = 9 

r.1       in mid  = 470k 

r.2       mid 0   = 100k 

in

mid

9.0V
v.battery

r.1  470 k

r.2  100 k

Simple voltage divider
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the tolerance, so that, for example, ±0.10*470000, would be the tolerance for 
the 470k resistor. Statistically, 99.7% of the 470k resistors will actually have 
resistances between 423k (470k - 47k) and 517k (470k + 47k).

The goal is to determine the nominal value of the voltage at the mid node, 
along with the expected distribution of this voltage based on the distributions of 
the battery voltage and resistor values.

A simple DC analysis using this circuit produces the result that the voltage at 
mid is 1.5789 volts. To add the variations to this model, include the uniform and 
normal intrinsic distribution functions in the netlist:

You can then perform a Monte Carlo DC analysis with this circuit, which 
produces many DC analysis results—each one randomly varying all distributed 
parameters. If you simulate enough times (the number of simulations is a 
Monte Carlo analysis parameter), you can clearly see the distribution of the 
voltage at mid (see the figure below). The normal distribution in the figure 
below was produced with 300 simulations; the average is near the expected 
1.5789 volts. 

v.battery in 0    = uniform(9, 8.9, 9.1)

r.1       in mid  = normal(470k, 0.1)

r.2      mid 0    = normal(100k, 0.05)
Saber® MAST Language User Guide 399
B-2008.09



Chapter 18: Statistical Modeling
Probability Density Functions (PDFs)
From this analysis, observe that the voltage at mid is likely to vary between 
1.45 and 1.7 volts. This information lets you decide either to accept this 
variation as being within your design specification or to adjust your design to 
compensate for the variation. 

Probability Density Functions (PDFs)

The primary tool for describing model parameter variations is the probability 
density function (PDF). Among the types of PDFs are the following:
■ Intrinsic Probability Density Functions
■ Uniform Probability Density Function
■ Normal Probability Density Function
■ Piecewise Linear Probability Density Function

The PDF is a continuous function of an independent variable, say x, such that, 
for real numbers a and b, the probability that a random value of x will be 
between a and b is the area under the PDF curve between a and b. For 
example, the following figure shows the distribution of the resistor r.1, which is 
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(V)
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Histogram of voltages at mid
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used in the voltage divider example in the preceding topic. The uniform and 
normal intrinsic functions, used in the voltage divider example, are nothing 
more than predefined probability density functions. 

The X-axis is the value of resistance; the Y-axis is the probability density. The 
distribution is normal in this example. The normal distribution has the familiar 
bell-shaped curve. The average (also called expected) value of the normal 
distribution corresponds to the peak of the curve. This means that the values of 
resistance (X-axis values) with the highest probability of occurring (Y-axis 
value) are those near the average value. The total area under the curve, from -
infinity to infinity, must equal 1. This means that, for r.1 in the example, the 
probability is 1 that the resistance value of a resistor taken from a bin full of 
470k resistors will be between-infinity and infinity. This obviously must be true. 

Intrinsic Probability Density Functions

The topic titled "Probability Density Functions (PDFs)" on the previous page 
introduces two examples of intrinsic PDFs: normal and uniform. Another 
intrinsic PDF is the piecewise linear (pwl). All three are discussed in more detail 
below. 

PDF

423k 470k 517k
Ω

Normal PDF for resistor r.1
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It is useful to think of a PDF as follows:
■ Begin with the basic, normalized, distribution, called the prototype 

distribution (MAST provides three intrinsic functions: normal, uniform, and 
pwl).

■ Use a scaling multiplier (that stretches or compresses the distribution) and 
an offset factor (that shifts it right or left) to customize the prototype 
distribution for the application. The resulting distribution is called the actual 
value distribution. 

In other words, you first describe the prototype distribution, then you define the 
parameters that modify the prototype into the corresponding actual distribution. 

Uniform Probability Density Function

The prototype distribution for the uniform probability density function is 
illustrated in the figure below. The default nominal value is 0 and the limits are 
1 and -1.

By passing parameters to the uniform function, you can modify the prototype 
uniform distribution to shift the nominal value and scale the limits. The uniform 
function has several forms, including the following two:

uniform(nominal_value, lower_limit, upper_limit) 

uniform (nominal_value, tolerance) 

PDF

-1 0 +1

Uniform prototype distribution
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where the arguments have the following meanings:

This second form of the uniform function shown above is used if the uniform 
distribution is symmetrical with respect to nominal_value.

Regardless of how you specify an actual value uniform distribution from its 
corresponding prototype distribution, it must satisfy the following requirements:
■ The nominal_value of the actual value distribution corresponds to the 0 

value of the prototype distribution. 
■ The lower_limit of the actual value distribution corresponds to the -1 value 

of the prototype distribution. 
■ The upper_limit of the actual value distribution corresponds to the 1 value of 

the prototype distribution. 

Note that these correspondences are maintained even if the prototype 
distribution is changed. 

The battery voltage source example from the topic titled "Varying Values in a 
Simple Voltage Divider" illustrates using the uniform distribution: 

This means that all values between 8.9 volts and 9.1 volts are equally likely. 
The figure below shows this actual value uniform distribution for battery 
voltage. 

nominal_value the listed, or stated value; often, the intended value

lower_limit the smallest value of the distribution

upper_limit the largest value of the distribution

tolerance a value greater than -1 and less than 1, such that the limits of 
the distribution are nominal_value + tolerance*nominal_value 
and nominal_value - tolerance*nominal_value

v.battery in 0 = uniform(9, 8.9, 9.1)
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The same effect could have been achieved by specifying a tolerance value 
rather than limits as follows:

The uniform function can detect that if two arguments are specified, they 
indicate the nominal value and the tolerance; whereas three arguments 
indicate the nominal, minimum, and maximum values, respectively.

The uniform function can have other arguments as well as described in the 
topic titled "Modifying a Uniform Prototype Distribution". 

Normal Probability Density Function

The prototype distribution for the normal probability density function is 
illustrated in the figure below. The default nominal value is 0 and the limits are 
1 and -1. The limits correspond to the 3s and -3s points, respectively, where s 
is the normal distribution’s standard deviation.

v.battery in 0 = uniform(9, 0.01111)

PDF

8.9 9.0 9.1

Battery
voltage

Uniform actual value distribution
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By passing parameters to the normal function, you can modify the prototype 
normal distribution to shift the nominal value and scale the limits. The normal 
function has several forms, including the following:

where the arguments have the following meanings:

normal(nominal_value, lower_limit, upper_limit)

normal(nominal_value, tolerance) 

nominal_value The listed or stated value; often, the intended value.

lower_limit The -3s value (when using the default) of the distribution, 
where s is the standard deviation of the normal distribution. 
You may change the multiplier of s from its default of -3. 

upper_limit The +3s value of the distribution, where s is the standard 
deviation of the normal distribution. You may change the 
multiplier of s from its default of 3.

tolerance A value greater than -1 and less than 1, such that the limits of 
the distribution are nominal_value + tolerance*nominal_value 
and nominal_value - tolerance*nominal_value. The tolerance 
specifies the ±3s limit.

PDF

−1 0 +1

Normal prototype distribution
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The second form of the normal distribution shown above applies if the normal 
distribution is symmetrical with respect to nominal_value. 

The normal function automatically detects that if two arguments are specified, 
they indicate nominal value and tolerance, whereas three arguments indicate 
nominal_value, nominal_value - 3s, and nominal_value + 3s, where the two 3s 
values need not be equal. If they are unequal, then the left side of the 
distribution is normal with one standard deviation, while the right side is normal 
with a different standard deviation.

Regardless of how you specify an actual value normal distribution from the 
normal prototype, it must satisfy the following requirements:
■ The nominal_value of the actual value distribution corresponds to the 0 

value of the prototype distribution.
■ The lower_limit of the actual value distribution corresponds to the -1 value 

of the prototype distribution, which corresponds to the -3s.
■ The upper_limit of the actual value distribution corresponds to the +1 value 

of the prototype distribution.

Note that these correspondences are maintained even if the prototype 
distribution is changed.

The resistor r.1 from the example in the topic titled "Varying Values in a Simple 
Voltage Divider" illustrates the use of the normal distribution: 

This means that the resistance values for resistor r.1 follow the normal 
distribution, with a nominal value of 470 kOhm and a tolerance of 0.1. Thus, the 
-3s limit is 470kOhm - (470kOhm•0.1) = 423kOhm, and the +3s limit is 
470kOhm + (470kOhm•0.1) = 517kOhm. Because the 3s value is 
470kOhm•0.1 or 47kOhm, then the value of one standard deviation (s) would 
be 47kOhm/3 or 15.67kOhm. 

The figure below shows the actual value normal distribution. The tolerance 
specifies the symmetrical ±3s limits. Using 3s as the tolerance means that, 
given a randomly selected resistor from the batch, the probability that its 
resistance lies inside the tolerance (i.e., between ±3s) is approximately 0.997. 

r.1 in mid = normal(470k, 0.1)
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You could have achieved exactly the same effect by specifying limits rather 
than a tolerance: 

The normal function can have other arguments as well, see the topic titled 
"Modifying a Uniform Prototype Distribution". 

Piecewise Linear Probability Density Function

The piecewise linear probability density function has no default prototype PDF. 
The use of a piecewise linear PDF provides a great amount of flexibility. 
Accordingly, its use requires more complex constructs. The following steps are 
required to create a piecewise linear PDF:

1. Create a prototype PDF. Because the piecewise linear prototype can be 
anything, it must first be defined (unlike the uniform or normal prototype 
PDFs, which are uniquely defined). 

2. Map actual values to the prototype PDF.

3. Use the resulting actual value PDF in a netlist.

These steps are expanded in the following topics to change the distribution for 
r.1 in the example to use a piecewise linear PDF.

r.1 in mid = normal(470k, 423k, 517k) 

PDF

423k 470k 517k

resistance
of r.1

Normal actual value distribution
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1. Creating a Piecewise Linear Prototype PDF
Creating a piecewise linear prototype PDF requires a structure parameter 
similar to the following: 

This structure (named p_pwl) declares the local variable that is to hold the 
prototype piecewise linear PDF. The pwl intrinsic function, to be used in the 
netlist specification, looks for this structure. You can use this structure in a 
netlist, as described in the topic titled "3. Using a Piecewise Linear Prototype 
PDF in a Netlist", or you can include it in a template using the MAST include 
construct (<) and the predefined file named distrib.sin as follows:

The distrib.sin file contains the definition of the p_pwl structure shown above 
(as well as other definitions of statistical distributions). Once you make this 
definition of p_pwl available, you can use it as a type to declare local variables 
of the same type, which you can then modify. A convenient way of doing this is 
to use the standard template, which is explained in the following topic. 

Using the Standard Template You can declare a variable of type p_pwl by 
calling the provided template standard, which already includes the distrib.sin 
file (as described above). When referenced, the standard template declares an 
argument named p_pwl as the correct type. This allows you to use an argdef 
(..) declaration to declare a local variable of this type from standard. Refer to 
the MAST Reference Manual for information on the argdef operator. An 
example of doing this using a local parameter named ppwl1 is shown below. 

Example Consider the triangle-shaped distribution shown in the following 
figure:

struc p_pwl {

enum {_pdf,_cdf} type

struc {number x, y;} pwl[*]

} 

<distrib.sin 
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This prototype PDF can be specified with the following declaration in a 
template: 

The declaration of the p_pwl structure is called from the standard template and 
given the local name of ppwl1 for this particular template (i.e., p_pwl and ppwl1 
are the same type of parameter). 

The type field is initialized to _pdf, indicating that it is a PDF (as opposed to a 
cumulative density function, CDF, see the topic titled "Cumulative Density 
Functions (CDFs)"). The pwl field is an array of coordinate pairs that 
correspond to the points shown on the PDF. This declaration and initialization 
of the local variable named ppwl1 completes the creation of the prototype 
piecewise linear PDF called ppwl1. 

If the type field is _pdf, the ordered pairs (x, y) in the pwl field must satisfy the 
following requirements: 
■ There must be at least two (x, y) pairs.
■ The x values must be monotonically non-decreasing.
■ The y values must be Š 0.

standard..p_pwl ppwl1=(type=_pdf,pwl=[(1,0),(0,1),(1,0)])

PDF

−1 0 +1

1

Example piecewise linear prototype PDF
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■ The first x value (x1) must be <0, and the last (xn) must be > 0. (The 
simulator uses these values as truncation bounds when assigning random 
values to the distribution.)

■ The integral of the PDF, from x1 to xn, must be positive (not necessarily 1). 
Note that this implies that at least one y value must be > 0. 

2. Correspondence Between Actual Values and Prototype PDF 
Values
Once the prototype piecewise linear PDF is defined, you can use it to create an 
actual value piecewise linear PDF. You do this by passing parameters to the 
pwl function, which has the following format: 

where:

You can specify either nominal_value and tolerance or nominal_value and both 
lower_limit and upper_limit. If you specify the tolerance, then you must set 
lower_limit and upper_limit to undef. On the other hand, if you specify the 
lower_limit and upper_limit, you must set the tolerance equal to undef. You 
must identify prototype.

pwl(nominal_value, tolerance, lower_limit, upper_limit,

prototype)

nominal_value the value that the distribution is to have in a deterministic 
(non-statistical) environment. 

tolerance either undef or a numeric value between -1 and 1—if it is a 
numeric value, then the upper and lower limits of the 
distribution are nominal_value + tolerance*nominal_value 
and nominal_value - tolerance*nominal_value

lower_limit either undef or a numeric value less than nominal_value

upper_limit either undef or a numeric value greater than nominal_value

prototype the name of the prototype piecewise linear PDF
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Regardless of how you specify an actual value piecewise linear distribution, it 
must satisfy the following requirements:
■ The nominal_value of the actual value distribution corresponds to value 0 of 

the prototype distribution.
■ The lower_limit of the actual value distribution corresponds to value -1 of the 

prototype distribution.
■ The upper_limit of the actual value distribution corresponds to value 1 of the 

prototype distribution. 

Note that these correspondences are maintained even if the prototype 
distribution is changed. 

3. Using a Piecewise Linear Prototype PDF in a Netlist
The following example duplicates the example given at the beginning of the 
Statistical Modeling topic with one exception: the resistor r.1 has a piecewise 
linear distribution. This is implemented in the netlist as follows (note the 
comments):

The above example specifies for the resistor r.1 the actual value PDF by giving 
the nominal value (470k, the value used in non-statistical analyses), the 
tolerance value (0.1), two undefined values (for the upper and lower bound), 
and the name of the prototype distribution (ppwl1). The figure below shows the 
resulting actual value PDF for the r.1 resistor. 

# creates prototype pwl PDF 

standard..p_pwl ppwl1=(type=_pdf,pwl=[(-1,0),(0,1),(1,0)])

v.battery in 0   = uniform(9, 8.9, 9.1)

# map values from pwl PDF to r.1

r.1       in mid = pwl(470k, 0.1, undef, undef, ppwl1)

r.2       mid 0  = normal(100k, 0.05)
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The following is an alternate way of specifying the same distribution:

This example specifies, for the resistor r.1, the actual value PDF by giving the 
nominal value (470k), the tolerance (undef), the upper and lower bounds (423k 
and 517k, respectively), and the name of the prototype PDF (ppwl1).

Note that in each example either the tolerance or both upper and lower limits 
must be undef. It is an error to specify numeric values for all three, even though 
all three must have values. The pwl intrinsic function, unlike the uniform and 
normal functions, cannot infer the tolerance or the limits from the context of the 
calling sequence.

standard..p_pwl ppwl1=(type=_pdf, pwl=[(1,0),(0,1),(1,0)])

# same as above

v.battery in 0   = uniform(9, 8.9, 9.1)

r.1       in mid = pwl(470k, undef, 423k, 517k, ppwl1)

# alternate method

r.2     mid 0 = normal(100k, 0.05)

PDF

423k 470k 517k

1

resistance 
of  r.1

Actual value PDF for resistor r.1
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Cumulative Density Functions (CDFs)

The probability density function (PDF) is a common way of specifying the 
statistical variations of a design parameter. However, sometimes it is more 
convenient to specify a function of cumulative probability, the cumulative 
density function (CDF). Both the PDF and the corresponding CDF describe the 
same distribution, but they do so in slightly different ways as shown in the 
following figure:

The CDF, like the PDF, is a function of x, where x ranges from -infinity to 
infinity. The value of a CDF at x is the integral of the PDF, evaluated between -
infinity and x.

In other words, the CDF at any point x is the probability that a sample from the 
distribution has a value less than x. Obviously, at x equals infinity the value of 
the CDF function must equal 1, because the probability that a sample from any 
distribution will be less than infinity is 1. Correspondingly, the CDF function 
must equal 0 at x equals -infinity, because the probability that a sample from 
any distribution will be less than -infinity is 0. The figure below shows an 
example of a uniform PDF and its corresponding CDF. 

PDF

0.5

−1 0 +1

CDF

0.5

−1 0 +1

1

PDF and corresponding CDF
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Some distributions, such as those with only discrete values, cannot be 
described using a PDF. Consider, for example, an experiment that consists of 
flipping a coin and assigning value 1 if the coin lands with heads showing and -
1 if it lands with tails showing. This experiment has a binary distribution, with 
heads and tails each having probability 0.5. It is not possible to describe this 
distribution using a PDF, because the area under the points at 1 and -1 would 
each have to be 0.5, but the area under any other point cannot exceed 0.

The CDF for this binary distribution, however, is easily demonstrated in the 
following figure: 

The cumulative probability that a sampled value will be less than -1 is zero. The 
cumulative probability that a sampled value will be less than 1 is 0.5. The 
cumulative probability that a sampled value will be less than any number 
greater than 1 is 1.

CDF

0.5

-1 0 +1

1

CDF for a binary distribution
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Intrinsic Piecewise Linear Cumulative Density Function

The only intrinsic CDFs provided are those that correspond to piecewise linear 
PDFs. The following steps are required to create a piecewise linear CDF:
■ Create a prototype CDF.
■ Map actual values to the prototype CDF.
■ Use the resulting actual value CDF in a netlist.

These steps are expanded in the following topics to change the distribution for 
v.battery in the example to use a piecewise linear CDF. The result is a 
specification that produces simulation results identical to those of the uniform 
PDF specification used in the topic titled "Uniform Probability Density 
Function". 

1. Creating a Piecewise Linear Prototype CDF 
Creating a piecewise linear prototype CDF requires a structure parameter 
similar to the following (the same as for a prototype PDF, explained in the topic 
titled "1. Creating a Piecewise Linear Prototype PDF"):

This structure (named p_pwl) declares the local variable that is to hold the 
prototype piecewise linear CDF. The pwl function used in the netlist 
specification searches for this structure. You can use this structure in a netlist, 
as described in the topic titled "3. Using a Piecewise Linear Prototype CDF in a 
Netlist", or you can include it in a template using the MAST include construct 
(<) and the pre-defined file named distrib.sin:

As explained in the topic titled “Using the Standard Template” for a prototype 
PDF, you can use the standard template, which already includes the distrib.sin 
file as described above. The standard template declares an argument named 
p_pwl as the correct type. You can then use an argdef (..) declaration to 

struc p_pwl {

enum {_pdf,_cdf} type

struc {number x,y;} pwl[*]

} 

<distrib.sin
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declare a local parameter of this type referenced from standard. An example of 
doing this using a local parameter named cpwl1 is shown below. 

Example Consider the uniform prototype distribution shown in the upper 
portion of the following figure. It corresponds to the PDF used in the original 
v.battery example. The corresponding CDF is shown in the lower portion of the 
figure. 

You can specify this prototype CDF in a template with the following declaration:

The declaration of the p_pwl structure is called from the standard template and 
given the local name of cpwl1 for this particular template ( p_pwl and cpwl1 are 
the same type of parameter). The type field is initialized to _cdf, indicating that 
it is a CDF (as opposed to a PDF). The pwl field is an array of coordinate pairs 
that correspond to the points on the CDF shown in the lower portion of the 
previous figure. This declaration and initialization of the variable named cpwl1 
completes the creation of the prototype piecewise linear CDF called cpwl1. 

standard..p_pwl cpwl1 = (type=_cdf, pwl=[(-1,0),(1,1)])

PDF

0.5

-1 0 +1

CDF

0.5

-1 0 +1

1

Prototype uniform PDF (above), corresponding CDF (below)
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If the type field is _cdf, the ordered pairs (x, y) in the pwl field must satisfy the 
following requirements:
■ There must be at least two (x, y) pairs.
■ The x and y values must be monotonically non-decreasing.
■ The y values must be Š 0.
■ The first x value (x1) must be < 0, and the last (xn) must be > 0. The 

simulator uses these as truncation bounds when assigning random values 
to the distribution.

■ The first y value must equal 0, the last y value must be greater than 0.

2. Correspondence Between Actual Values and Prototype CDF 
Values 
Once the piecewise linear prototype CDF is defined, you can use it to create an 
actual value CDF. You do this by passing parameters to the pwl function, which 
has the following format: 

where: 

You can specify either nominal_value and tolerance or nominal_value and both 
lower_limit and upper_limit. If you specify the tolerance, then you must set 
lower_limit and upper_limit to undef. On the other hand, if you specify the 
lower_limit and upper_limit, you must set the tolerance equal to undef. You 
must identify prototype. 

pwl(nominal_value, tolerance, lower_limit, upper_limit,
prototype)

nominal_value the value the distribution has in a deterministic environment.

tolerance either undef or a numeric value between -1 and 1—if it is a 
numeric value, then the upper and lower limits of the 
distribution are nominal_value + tolerance*nominal_value 
and nominal_value - tolerance * nominal_value

lower_limit either undef or a numeric value less than nominal_value

upper_limit either undef or a numeric value greater than nominal_value

prototype the name of the piecewise linear prototype CDF
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Regardless of how you specify an actual value piecewise linear distribution, it 
must satisfy the following requirements: 
■ The nominal_value of the actual value distribution corresponds to value 0 of 

the prototype distribution.
■ The lower_limit of the actual value distribution corresponds to value -1 of the 

prototype distribution.
■ The upper_limit of the actual value distribution corresponds to value 1 of the 

prototype distribution.

Note that these correspondences are maintained even if the prototype 
distribution is changed.

3. Using a Piecewise Linear Prototype CDF in a Netlist
The following example duplicates the example given in the topic titled 
"Probability Density Functions (PDFs)", with one exception: the v.battery 
voltage source has a piecewise linear cumulative distribution that is equivalent 
to the original uniform distribution.

This example specifies the actual value CDF by giving the nominal value (9, 
which is the value used in non-statistical analyses), an undefined tolerance 
value, the lower and upper values (8.9 and 9.1, respectively), and the name of 
the prototype distribution (cpwl1). 

# create prototype pwl CDF

standard..p_pwl cpwl1 = (type=_cdf,pwl=[(-1,0),(1,1)]) 

# map values from pwl CDF to v.battery

v.battery in 0   = pwl(9, undef, 8.9, 9.1, cpwl1)   

r.1       in mid = normal(470k, 0.1)

r.2       mid 0   = normal(100k,0.05)
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The following is an alternate way of specifying the same distribution:

This method specifies the actual value CDF by giving the nominal value (9), the 
tolerance (0.01111), the lower and upper bounds (both undef), and the name of 
the prototype CDF (cpwl1). 

Note that in each example either tolerance OR both upper and lower limits 
must be undef. It is an error to specify numeric values for all three, even though 
all three must have values. The pwl intrinsic function, unlike the uniform and 
normal functions, cannot infer the tolerance or limits from the context of the 
calling sequence. 

The following figure shows the resulting actual value PDF and CDF for the 
voltage of   v.battery. 

standard..p_pwl cpwl1 = (type=_cdf,pwl=[(-1,0),(1,1)])

# same as above

# alternate method of specifying v.battery

v.battery in 0 = pwl(9, 0.01111, undef, undef,

cpwl1)

r.1       in mid = normal(470k, 0.1)

r.2       mid 0   = normal(100k, 0.05)
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Correlating Distributions

Sometimes it is desirable to model two or more quantities that tend to vary 
together. For example, two resistors may be manufactured on an integrated 
circuit. The resistor values may vary a great deal from wafer to wafer, or even 
from die to die. However, the resistors on the same die may tend to vary 
together. That is, if one resistor is at the high end of its range, others from that 
die tend to be at the high end of their ranges as well. When this occurs, the 
resistor values are said to be correlated.

Correlation occurs in numerous actual applications. The objective of this topic 
is to explain how this kind of variation can be modeled with constructs already 
described.

The voltage divider example (in the topic titled "Varying Values in a Simple 
Voltage Divider") can be used to show how to correlate two parameters. 
Assume that the two resistor values in the voltage divider are uniformly 

PDF

0.5

8.9 9.0 9.1

CDF

0.5

8.9 9.0 9.1

1

voltage of
v.battery

voltage of
v.battery

Actual value PDF for v.battery voltage

Actual value CDF for v.battery voltage
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distributed with a tolerance of 10%, and that they correlate with each other 
within 0.5%. The following netlist implements these relationships:

The first line declares an arbitrarily named variable called common and uses an 
initializer (by invoking the uniform function) to assign a value from a uniform 
distribution. This uniform distribution has a nominal value of 1 and a 10% 
tolerance. The resistor netlist entries (r.1, r.2) use the common variable as a 
multiplier, providing the desired correlation. These resistor netlist entries also 
provide a 0.5% correlated variation. 

Therefore, each resistor will have values that vary with a 10% tolerance, but 
they will vary (relatively, in the ratio 47:10) from each other with only a 0.5% 
tolerance.

Modifying Uniform and Normal Default Distributions

If necessary, you can modify the default prototype distributions provided for the 
uniform and normal distributions. Modifying these default distributions is similar 
to defining piecewise linear distributions.

There are several reasons for changing the default prototype distributions:
■ To create uniform distributions that are asymmetrical about the nominal 

value
■ To create uniform distributions with limits that are a multiple of the limits of 

a piecewise linear distribution
■ To truncate either side of a normal distribution
■ To change the standard deviation of a normal distribution

Next you will learn the following topics:
■ Modifying a Uniform Prototype Distribution
■ Modifying a Normal Prototype Distribution

number common=uniform(1,0.1)

v.battery in 0  = uniform(9, 8.9, 9.1)

r.1     in mid  = normal(common*470k, 0.005)

r.2      mid 0  = normal(common*100k, 0.005)
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Modifying a Uniform Prototype Distribution

To modify a uniform prototype PDF, use a MAST structure parameter such as 
the following:

You can implement this in any of the following ways:
■ Use this structure in a netlist
■ Include it in a template preceded by <distrib.sin as described in the topic 

“Creating a Piecewise Linear Prototype PDF”
■ Include it in a template as by calling it from the standard template by using 

an argdef (..) declaration as described in the topic titled “Using the Standard 
Template” 

The p_uniform structure defines the uniform prototype distribution. The default 
values for min and max are -1 and 1, respectively. Note that the min and max 
values are not the values that become associated with the limits named lower 
and upper in the following use of the uniform function:

The limits of the function call always map to -1 and 1 in the prototype 
distribution. Therefore, if min and max are specified to be other than -1 and 1, 
the actual value PDF will have values defined above or below the specified 
lower and upper limits.

You can modify the prototype distribution in either of the following ways:

1. Using a variable initializer

2. Modifying, in the template body, variables of the structure defined using the 
p_uniform prototype PDF

1. Modifying a Uniform Prototype PDF Using Initializers
It is not necessary to declare a prototype variable when using the default. 
However, modifying the default prototype PDF requires a variable declaration. 

struc p_uniform {

number min=-1

number max=1

}

uniform(nominal, lower, upper)
422 Saber® MAST Language User Guide
B-2008.09



Chapter 18: Statistical Modeling
Modifying Uniform and Normal Default Distributions
The most direct way is to use initializers when defining the prototype variable 
patterned after the p_uniform prototype PDF by including the following in the 
template:

The above example produces the same distribution for v.battery as in the 
original example (shown below), which was based on the values min=-1 and 
max=1:

Note that, in the modified version, the uniform function call requires 
specification of all the possible arguments: nominal value (9), tolerance 
(undef), lower limit (8.95), upper limit (9.2), and prototype name (punif). The 
uniform function has the following general syntax: 

where:

When using a non-default prototype function, you must specify all parameters, 
with either tolerance set to undef or both lower_limit and upper_limit being set 
to undef.

standard..p_uniform punif =(min=-2, max=0.5) 

v.battery in 0 = uniform(9, undef, 8.95, 9.2, punif)

v.battery in 0 = uniform(9, 8.9, 9.1)

uniform(nominal_value, tolerance, lower_limit,

upper_limit,prototype)

nominal_value the value that the distribution is to have in a deterministic 
(non-statistical) environment.

tolerance either undef or a numeric value between -1 and 1—if it is a 
numeric value, then the upper and lower limits of the 
distribution are nominal_value + tolerance*nominal_value 
and nominal_value - tolerance * nominal_value

lower_limit either undef or a numeric value less than nominal_value

upper_limit either undef or a numeric value greater than nominal_value

prototype the name of the prototype uniform PDF
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Note that producing the symmetry of the original distribution required specifying 
asymmetrical limits in the function call. This is because the scaling on the two 
sides of the nominal value are different, as shown in the following figure:

The scaling is different because of the mapping between the prototype 
distribution and the parameters passed to the uniform function:
■ The parameter value 8.95 maps to the prototype value -1
■ The parameter value 0 maps to the prototype value 0
■ The parameter value 9.2 maps to the prototype value +1

The result is a uniform distribution between 8.9 and 9.1.

PDF

0.4

8.9 9.0 9.1
actual value of x

9.28.95

PDF

0.4

-2 0 0.5
prototype x

1-1

Uniform PDF using non-default prototype
424 Saber® MAST Language User Guide
B-2008.09



Chapter 18: Statistical Modeling
Modifying Uniform and Normal Default Distributions
2. Modifying a Uniform Prototype PDF in a Template
You can obtain the same results as above (using an initializer) by modifying the 
prototype PDF in the template body, as follows:

The example just given produces the same distribution for v.battery as the 
previous example (reproduced below):

Modifying a Normal Prototype Distribution

Modifying a normal prototype PDF requires the use of a MAST structure similar 
to the following:

As shown above for a uniform distribution, you can implement this in any of the 
following ways:
■ Use this structure in a netlist
■ Include it in a template, preceded by <distrib.sin, as described in the topic 

titled "Creating a Piecewise Linear Prototype PDF"
■ Include it in a template, calling it from the standard template by using an 

argdef (..) declaration, as described in the topic titled “Using the Standard 
Template” 

standard..p_uniform punif 

punif->min = -2

punif->max = 0.5

v.battery in 0 = uniform(9, undef, 8.95, 9.2,

punif)

v.battery in 0 = uniform(9, 8.9, 9.1)

struc p_normal {

number mean=0

number std_dev=0.33333333333333

number min=undef

number max=undef

} 
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The p_normal structure defines the normal prototype distribution. The default 
value for the mean is 0. The default value for the standard deviation is 1/3. The 
default values for min and max are both undef, which defines the distribution 
from -infinity to infinity. Otherwise, the distribution is truncated at the specified 
value. 

Note that the min and max values are not the values mapped to the lower and 
upper limits in the following call to the normal function:

The limits of the function call always map to -1 and 1 in the prototype 
distribution. 

The values of min and max are used only to specify the point at which the 
distribution becomes truncated. If the values of min and max are left at undef 
(the default) then the actual value PDF continues from -infinity to infinity. If the 
values of min and max are specified as -1 and 1, then the actual value PDF will 
be truncated at the specified limits (lower and upper). If the values of min and 
max are specified to be other than -1 and 1, the actual value PDF will be 
truncated accordingly. This is shown in the example that follows. 

You can modify the prototype distribution in either of the following ways:

1. Using a variable initializer

2. Modifying, in the template body, variables of the structure defined using the 
p_normal prototype PDF

1. Modifying a Normal Prototype PDF using Initializers
It is not necessary to declare a prototype variable when using the default. 
However, modifying the default prototype PDF requires a variable declaration. 
The most direct way is to use initializers when defining the prototype variable 
patterned after the p_normal prototype PDF by including the following in the 
template: 

normal(nominal, lower, upper)

standard..p_normal pnorm = (std_dev=1/4, min=-2, max=2)

r.1 p m = normal(470k, 0.1, undef, undef, pnorm)
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The above example produces a distribution somewhat like that for r.1 in the 
original example (shown below): 

However, the modified distribution differs by having an actual value distribution 
whose standard deviation is (470k•0.1)/4, rather than (470k•0.1)/3. Also, 
because the limit of the modified distribution was apecified as min=-2 and 
max=2, the upper end is truncated at 564k and the lower end is truncated to 
376k. The following figure illustrates this modified distribution. 

Note that, in the modified version, the call to the normal function requires 
specification of all the possible arguments: nominal value (470k), tolerance 
(0.1), lower limit (-2), upper limit (2), and prototype name (pnorm). The normal 
function has the following general syntax:

where:

r.1 p m = normal(470k, 0.1)

normal(nominal_value, tolerance, lower_limit,

upper_limit, prototype)

nominal_value the value that the distribution is to have in a deterministic 
(non-statistical) environment.
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When using a non-default prototype function, you must specify all parameters, 
and either the tolerance or both limits must be undef.

2. Modifying a Normal Prototype PDF in a Template
You can obtain the same results as above (using an initializer) by modifying the 
prototype PDF in the template body, rather than in the initialization of the 
variable. This modification (shown below) produces the same distribution for r.1 
as does the preceding example. 

Parameterized PDF and CDF Specifications

Occasionally, it is useful to be able to change the statistical properties of a 
parameter. For example, you might want to turn some parameters on 
statistically or turn some off, or both. There are two intrinsic functions for this 
purpose, one for PDFs, the other for CDFs. You can call them as follows:

tolerance either undef or a numeric value between -1 and 1—if it is a 
numeric value, then the upper and lower limits of the 
distribution are nominal_value + tolerance*nominal_value 
and nominal_value - tolerance * nominal_value

lower_limit either undef or a numeric value less than nominal_value

upper_limit either undef or a numeric value greater than nominal_value

prototype the name of the prototype normal PDF

standard..p_normal pnorm=()

pnorm->std_dev=1/4

pnorm->min = -2

pnorm->max = 2

r.1 p m = normal(470k, 0.1, undef, undef, pnorm)

parameter = pdf(nominal, tol, bounds,

prototype_pdf)

parameter = cdf(nominal, tol, bounds,

prototype_cdf)
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The prototype distributions are defined in distrib.sin as follows:

The following example shows how to use a parameterized PDF—using a 
parameterized CDF is similar.
■ In the local declarations section of the template, include the declarations to 

specify a normal distribution: 

■ In the netlist section, place the following entry:

Later, when running the simulator, you could change to a uniform distribution 
by entering the following command:

Note that the structure bounds was used to simplify the specification of the two 
undefined quantities required by the pdf function call. The parameter pdf1 
specifies a normal distribution. Later, when running the simulator, you could 
change to a uniform distribution by entering the following command:

union p_pdf {

number off=1

struc p_uniform uniform=()

struc p_normal normal=()

struc {number x,y;} pwl[*]

}

union p_cdf {

number off=1

struc {number x,y;} pwl[*]

}

standard..p_pdf pdf1 = (normal=()) 

struc {number min, max;} bounds =(undef,

undef)

r.1 a b =pdf(1k, 0.1, bounds, pdf1) 

alter pdf1 =(uniform=())

alter pdf1 =(off=1)
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The random MAST Function

The MAST language includes the random() function, which has no arguments. 
The random function returns a pseudo-random number in the interval that 
includes 0 and goes up to, but does not include, 1. The pseudo-random 
sequence can be seeded when the statistical environment is activated. 
Seeding is associated with the mc command.

The random() function is useful if you want to do something with a certain 
probability. For example, assume you want to flip a coin (i.e., have a variable 
that takes on two discrete values with certain probabilities). Although this could 
be described with the pwl distribution, it is simpler to use the random() function.

The following example shows how to set up a parameter that has the value 1K 
with probability 0.4, and 2K with probability 0.6:

Use of the statistical MAST Simvar Variable

One of the intrinsic simulation variables is statistical, whose value is 0 if the 
simulation environment is deterministic. On the other hand, it is non-zero if the 
environment is statistical, such as when you execute the mc command.

When a statistical environment has been established, statistically defined 
parameters take on random values according to the distribution functions 
defined for them. On the other hand, such parameters take on their nominal 
values if the environment is deterministic.

You can use the statistical simvar variable if you want to do different things in 
the deterministic and statistical environments. For example, you could use it 

number r, value

r = random()

if (r<.4) {

value = 1K

} 

else {

value = 2K

} 
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when the nominal value of the statistical distribution is different from the 
deterministic value as follows:

Worst-Case Statistical MAST Modeling

It is sometimes useful to perform what is called a worst-case analysis (WCA) 
on a design using Monte Carlo techniques. The MAST language supports this 
through the worst_case simvar variable. This simvar variable has a value of 0 
except during a Monte Carlo analysis in which the worst_case variable is set to 
yes, when it assumes a non-zero value (such as 1). 

The worst_case simvar variable interacts with the statistical simvar as follows: 

You can use the worst_case simvar variable to do different things in standard 
and worst-case Monte Carlo analyses. For example, the statistical distributions 

if (statistical) {

resistance = normal(10k, 200)

}

else {

resistance = 8k

}

value of statistical value of worst_case 

Deterministic environment 0 0

Statistical environment (Monte 
Carlo analysis)

1 0

Worst-case analysis in 

statistical environment (Monte 
Carlo analysis)

1 1
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provided (such as uniform, normal, pwl) change their behavior depending on 
the value of the worst_case simvar as follows: 
■ If worst_case is 0, these distributions are implemented. 
■ If worst_case is 1 (or any non-zero value), these distributions are 

implemented as discrete distributions—they return, with equal probability, 
only the upper and lower limit values that result after applying the 
appropriate prototype distribution. 
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A stress measure is a definition of an operating condition for which a safe 
operating limit can be specified. The operating condition will typically 
correspond to a rating (or SOA) specification for a device in a manufacturer’s 
data sheet.

The following steps describe a way to add stress measures to a template for 
which stress ratios can then be calculated by a stress analysis.

1. Add stress_measure Statements to Template

2. Determine if Specified Variables are Accessible

3. Add Stress Ratings

4. Add Thermal Resistances (Optional)

5. Add a Way to Disable Stress (Optional)

6. Add a Way to Specify Device Type and Class (Optional)

Add stress_measure Statements to Template

To add the required stress_measure statements to the control section of the 
template:

• Place a stress_measure statement for each stress measure you want to 
implement in the control section of your template.
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Add stress_measure Statements to Template
The following examples show stress_measure statements for a resistor 
template:

A stress_measure statement takes the following form:

where 

stress_measure (pdmax,power,"Max Power Diss.", 

pwrd,winmax,pdmax)

stress_measure (pdavg,power,"Avg Power Diss.", 

pwrd,average,pdmax)

stress_measure (tjmax,temperature,"Max Temperature",

tempj,winmax,xtjmax,tempj_tnom)

stress_measure (tjavg,temperature,"Avg temperature",

tempj,average,xtjmax,tempj_tnom)

stress_measure (tjmin,temperature,"Min Temperature",

tempj,min,xtjmin,tempj_tnom)

stress_measure (vmax,voltage,"Max Voltage",

abs(v),max,xvmax)

stress_measure (uid, gid, "name", val,

measure, rating[, ref_rating])

uid stress report formatting - (unique identification) identifies the 
stress measure (for example, pdmax). The uid is used as the 
value for the smeasurelist variable of the stress command.

gid stress report formatting - (group identification) identifies a type 
or grouping of stress measures to which this stress measure 
belongs (for example, power)

name stress report formatting - specifies the text to be used to 
describe this stress measure in a stress report (for example, 
"Max Power Diss." ). Limited to 18 characters. 
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val is the name of a variable in the template from which the value 
of the stress measure is to be extracted using the measurement 
specified in the measure field (e.g., pwrd). See the topic titled 
"Determine if Specified Variables are Accessible" for more 
information about template variables.

measure specifies the measurement to be made on the template variable 
specified in the val field. This measurement provides the 
“actual” or “measured” value for the stress ratio calculation. 
Possible measurements are one of: peak, max, winmax, min, 
winmin, rms, and average.

When winmax or winmin are used (rather than max or min), a 
sliding average filter is applied to the waveform before the 
maximum or minimum value is determined. The stress 
command variable xwindow is used to specify the time constant 
of the filter to be applied.

Note that if the value for rating is positive, the peak 
measurement is equivalent to the max measurement. If the 
value for rating is negative, the peak measurement is 
equivalent to the min measurement.

rating is the manufacturer’s rating for the stress measure (e.g., 40, 
pdmax). You can enter the actual value of the rating as a 
constant in this field, or you can enter a variable. If a variable is 
entered, the value can be provided as an argument in the 
header of the template (see the topic titled "Add Stress 
Ratings"). The rating is a parameter passed into the template 
and should not be confused with the uid which may have a 
similar name.

ref_rating is an optional single value reference rating. When a reference 
rating is specified, the measured and derated values are 
referenced to this value rather than to 0 when the stress ratio is 
calculated. For example, you may want to use 25××C rather 
than 0 as a reference for a temperature-related stress measure 
(for example, for tempj_tnom).

The stress measures in templates in the MAST libraries are all 
referenced to 0 and do not use the ref_rating variable
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Determine if Specified Variables are Accessible

Determine if the variable specified in the val field of each stress measure is 
available in the template and add if needed.

Somewhere in your template, a value must be provided from which the stress 
measure can be extracted. The stress measures shown in the topic titled "Add 
stress_measure Statements to Template" are obtained by making 
measurements on the three variables pwrd, tempj, and v. These values (val 
variables) are calculated in the body of the resistor template as shown below:

For examples on using val variables in a template, see Variables and 
Arguments on page 97.

Add Stress Ratings

If a rating is not provided directly in a stress statement, it must be passed into 
the template as an argument. By convention, ratings are passed in using a 
structure parameter. An example of this method is shown below. However, if 

v = v(p) - v(m)

.

.

.

power = v*i

pwrd = power

tempj = temp + pwrd*rth_eff
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only one or two stress measures are included in the template, you may prefer 
to specify the ratings arguments individually rather than in a structure. 

1. In the header declarations section of the template, declare a structure for the 
ratings. An example is shown as follows:

2. Add the name of the structure to the template header. In this example, 
ratings is the name of the structure. The header is shown as follows:

struc {

number pdmax_ja=undef, # Max. Pwr, no htsnk

pdmax_jc=undef, # Max. Pwr, with htsnk

tjmax=undef, # Max. temperature

tjmin=undef, # Min. temperature

vmax=undef # Max. voltage

} ratings=()

element template r  p m = rnom, tc, tnom, nons,

model, l, w, ratings, rth_ja, rth_jc, rth_hs,

part_type, part_class
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3. In the body of the template, define local variables in which to store ratings 
after error checking is complete. By convention, a local variable that 
corresponds to a rating variable takes the same name as the rating variable 
preceded by the character x.

4. Add error checking for ratings. A function called ratingbp is provided that 
returns the absolute value specified for the rating and provides standard 
error checking and appropriate warning and error messages. The ratingbp 
function can be found in install_home/template/function/ratingbp.sin. 

In the following example, this function is used to assign the absolute value 
of the rating vmax to the variable xvmax and to check the value for errors.

The second part of this section of the example handles the special case of 
tjmax and tjmin where a negative value is allowed. It checks for values of 
undef (no value provided) and inf (non-applicable value) and determines if 

number r, #Final resistance.

g, #Final conductance.

nx, #Noise flag.

xl, #Effective resister length.

xw, #Effective resister width.

dl, #Final value of geometry reduction.

rth_eff, #Final value of thermal resistance.

pdmax, #Final value of power diss. rating.

xvmax, #Final value of max. voltage rating.

xtjmax, #Final value of max temp rating.

xtjmin #Final value of min temp rating.

number tempj_tnom=25 #Ref_rating for temp stress.

xvmax = ratingbp(ratings->vmax,"vmax")
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xtjmax is greater than xtjmin. If tjmax is not greater then tjmin, the message 
TMPL_S_REL_VALUE is displayed that states that “the maximum value 
should be greater than the minimum value.”

Add Thermal Resistances (Optional)

Thermal resistances are typically passed in as arguments to the template. An 
intrinsic function called thermpar can be used to determine the effective 

xtjmax = ratings->tjmax

xtjmin = ratings->tjmin

if(xtjmin ~= undef & xtjmin ~= inf) {

if(xtjmax ~= undef & xtjmax~=inf & 

xtjmax < xtjmin) {

saber_message("TMPL_S_REL_VALUE",instance(),

"tjmax","tjmin")

 xtjmin = undef

}

} 
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thermal resistance and maximum power dissipation from the values that are 
passed in.

1. In the header declarations section of the template, add thermal resistance 
variables as shown in the example below:

2. Add local variables to the body of the template for thermal resistance and 
power dissipation:

number rnom=undef, # Nominal resistance.

tnom=27, # Nominal temperature.

tc[2]=[0,0], # Temperature coefficients.

nons=0.0, # Resistor will be noiseless

# if non-zero value.

l=0.0, # Optional length of resistor.

w=0.0, # Optional width of resistor.

rth_ja=undef, # Junction-Ambient Thermal 

# resistance deg C/W).

rth_jc=undef, # Junction-Case Thermal

# resistance (deg C/W).

rth_hs=undef # Heatsink Thermal resistance 

# (deg C/W).

number r, # Final resistance.

g, # Final conductance.

nx, # Noise flag.

xl, # Effective resister length.

xw, # Effective resister width.

dl, # Final value of geometry reduction.

rth_eff, # Final value of thermal resistance.

pdmax, # Final value of power diss. rating.

xvmax, # Final value of max. voltage rating.

xtjmax, # Final value of max temp rating.

xtjmin # Final value of min temp rating.

number tempj_tnom=25 # Ref_rating for temp stress.
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3. Add a statement to the template that determines the effective thermal 
resistance rth_eff and the power dissipation pdmax to be used. The 
following example makes use of the thermpar function.

Note that the thermpar function has five arguments separated by commas. 
The fourth argument contains an if then else condition. The thermpar 
function can be found in install_home/template/function/thermpar.sin. 

The thermpar function implements the truth table shown as follows:

Add a Way to Disable Stress (Optional)

A mechanism can be implemented in a template to allow you to inactivate the 
stress statements in a template when they are not needed. This feature is 
useful if a template is to be used as a macromodel building block. Typically, in 
a macromodel, an overall value for an operating condition such as power is 
calculated by combining values from the building blocks and then stress 

(rth_eff,pdmax) = thermpar(rth_ja,rth_jc,rth_hs,

if(ratings->pdmax_ja==undef) then r_pdmax 

else ratings->pdmax_ja, 

ratings->pdmax_jc)

INPUTS OUTPUTS

rth_ja rth_jc rth_hs rth_eff pdmax

undef undef undef 0 pdmax_ja

undef undef val_hs 0 pdmax_ja

undef val_jc undef val_jc pdmax_jc

undef val_jc val_hs val_jc+val_hs pdmax_jc

val_ja undef undef val_ja pdmax_ja

val_ja undef val_hs val_ja pdmax_ja

val_ja val_jc undef val_ja pdmax_ja

val_ja val_jc val_hs val_jc+val_hs pdmax_jc
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measures for the macromodel itself are extracted. In this case, the stress 
measures in the individual templates are typically of less use in a stress report. 

1. In the header declarations section of the template, add include_stress to the 
list of parameters declared as external numbers as shown in the following 
example:

The parameter name include_stress is not a MAST reserved word. It is the 
name used by convention in MAST templates

Values declared in external statements are found at a higher level in the 
hierarchy of a design. The include_stress parameter, for example, is set to 
a default value of 1 in the header.sin file.

The header.sin file contains declarations for various global variables such 
as temp and include_stress. It is included in the Saber input file (netlist) for 
the design when the Saber Simulator is invoked.

external number temp, include_stress, 

r_tol, r_pdmax
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2. Place a conditional statement around the stress_measure statements in the 
control section of the template to detect if they are to be included in the 
simulation. See the following example:

Add a Way to Specify Device Type and Class (Optional)

Information about the type and class of a device provided in the template are 
used as sorting criteria for the stress report.

1. Add a device_type statement to the control section of the template as shown 
in the following example:

In the previous statement, part_type and part_class could be replaced by 
the actual part type and part class of the device. Alternatively, these values 
can be passed in as arguments to the template as shown next.

if(include_stress) {

stress_measure(pdmax,power,"Max Power Diss.",

pwrd,winmax,pdmax)

stress_measure(pdavg,power,"Avg Power Diss.",

pwrd,average,pdmax)

stress_measure(tjmax,temperature,

"Max Temperature",tempj,winmax,

xtjmax,tempj_tnom)

stress_measure(tjavg,temperature,

"Avg Temperature",tempj,average,

xtjmax, tempj_tnom)

stress_measure(tjmin,temperature,

"Min Temperature",tempj,min,

xtjmin, tempj_tnom)

stress_measure(vmax,voltage,"Max Voltage",

abs(v),max,xvmax)

}

device_type(part_type,part_class)
Saber® MAST Language User Guide 443
B-2008.09



Chapter 19: Adding Stress Measures to a MAST Template
Add a Way to Specify Device Type and Class (Optional)
2. In the header declarations section, declare part_type and part_class as 
strings and give them default values as shown in the following example:

The part_type string must be limited to 9 characters and the part_class 
string to 18 characters to fit into the format of the stress report.

If you are modifying an existing template to add stress measures, device_type, 
part_type, and part_class statements may have already been defined in the 
template. However, you can alter them to provide part type or part class names 
that may be more useful as sorting criteria in your stress reports.

string part_type="resistor",# type of the device

part_class="generic" # class of the device
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MAST Example Including Stress Statements

A complete listing of the example resistor template is shown below. Stress-
related statements are shown in bold.

#************************************************************
*****

# Constant resistor (called by: r )

# Zero value is not allowed and will generate an error message.

# Geometric description is allowed.

#************************************************************
*****

#************************************************************
*****

# This template created by Synopsys, Inc. for exclusive use 
with 

# the Saber Simulator.

# Copyright 1987,1988,1989,1993,2005 Synopsys, Inc.

# This template may not be reproduced in any way (physically or

# electronically) without permission from Synopsys, Inc.

# The content of this template is subject to change without 

# notice. Synopsys does not assume liability for the use of this 

# template or the results obtained from using it.

#************************************************************
****

element template r  p m = rnom,tc,tnom,nons,model,l,w,

ratings,rth_ja,rth_jc,

rth_hs,part_type,part_class

#...declaration of connections:

electrical p,m

process..imodel model = ()# Process model for resistor.
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#...declaration of arguments (tnom is in degrees celsius)

number rnom=undef, # Nominal resistance.

tnom=27, # Nominal temperature.

tc[2]=[0,0], # Temperature coefficients.

nons=0.0, # Resistor will be noiseless if 

# non-zero value.

l=0.0, # Optional length of resistor.

w=0.0, # Optional width of resistor.

rth_ja=undef, # Junction-Ambient Thermal 

# resistance (deg C/W) 

rth_jc=undef, # Junction-Case Thermal 

# resistance (deg C/W)

rth_hs=undef # Heatsink Thermal 

# resistance (deg C/W) 

#...Bring in external numbers

external number temp, include_stress, r_tol, r_pdmax

external standard..pdist pdist

struc {

number pdmax_ja= undef,# Max. power diss. w/out heatsink

pdmax_jc=undef, # Max. power diss. w/ heatsink

tjmax=undef, # Max. temperature

tjmin=undef, # Min. temperature

vmax=undef # Max. voltage

} ratings=()

string part_type="resistor",# type of the device

part_class="generic" # class of the device
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export val tc tempj # instantaneous junction temperature

export val p  pwrd # instantaneous power dissipation

export val i  i # instantaneous current

#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

# Start the definition

{

#...Quantities useful for output:

val v v

val p power

val ni nsr

val tc temp_case

val rth rth_hs_tjmax

#...Define a group for extraction purposes

group {nsr} noise

group {power,pwrd} pwr
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#...Define quantities used later

number r, # Final resistance.

g, # Final Conductance.

nx, # Noise flag.

xl, # Effective resister length.

xw, # Effective resister width.

dl, # Final value of geometry reduction.

rth_eff, # Final value of thermal resistance.

pdmax, #Final value of power dissipation rating.

xvmax, # Final value of max. voltage rating.

xtjmax, # Final value of max temp rating.

xtjmin # Final value of min temp rating

number tempj_tnom=25 # Ref_rating for temp stress.

#...Bring in mathematical constants

<consts.sin
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#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

parameters {

#...Check input parameters.

if ( (rnom == undef) & ((model->rsh == 0)|(l == 0)|

((w == 0)&(model->wdf == 0))) ) {

# Resistance is not specified.

saber_message("TMPL_S_ALT_SPEC",  instance(),

"resistance","rnom","model->rsh, l, and w")

}

#...Include temperature effects

if (rnom ~= undef) {

#...Resistor specification.

if (rnom == inf) {

r = inf

}

else {

#...Call function to apply distribution 

#...to resistor value

r = distfunc(rnom,r_tol,pdist)

r = r*(1 + tc[1]*(temp-tnom) + tc[2]*((temp-tnom)**2))

}

}
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else {

#...Process specification.

#...Check input parameters.

if ((model->dl == undef)|(model->dl < 0)) {

dl = 0

}

else {

dl = model->dl

}

if ( ((w == 0)|(w == undef)) &

((model->wdf == 0)|(model->wdf == undef)) ) {

saber_message("TMPL_S_ALT_SPEC",  instance(),

"resistor width","w","model->wdf")

}

#...Take into account the geometry 

#...reduction of the length.

xl = l - dl

if (xl <= 0) {

saber_message("TMPL_S_POS",instance(),

"effective resistor length")

}

#...Take into account the geometry 

#...reduction of the width.

if ((w > 0)&(w ~= undef)) {

xw = w - dl

}

else {

xw = model->wdf

}
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#...Calculate the resistance from 

#...the sheet resistance.

if (xw > 0) {

#...Call function to apply distribution 

#...to resistor value

r = distfunc(model->rsh*(xl/xw),r_tol,pdist)

r = r*(1 + tc[1]*(temp-tnom) + tc[2]*((temp-tnom)**2))

}

else {

saber_message("TMPL_S_POS",instance(),

"effective resistor width")

}

}

#...Calculate conductance and print message if r=0 

if (r == 0) {

saber_message("TMPL_S_RANGE_NE_0",instance(),

"resistance value")

g = 0

}

else if (r < 0) {

#...negative resistance

saber_message("TMPL_W_GE_REL_VALUE",instance(),

"resistance value","zero")

g = 1/r

}
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else if (r == inf) {

g = 0

}

else {

g = 1/r

}

#...Bulletproofing on ratings

(rth_eff,pdmax) = thermpar(rth_ja,rth_jc,rth_hs,

if(ratings->pdmax_ja==undef) then r_pdmax 

else ratings->pdmax_ja,

ratings->pdmax_jc)

xvmax = ratingbp(ratings->vmax,"vmax")

xtjmax = ratings->tjmax

xtjmin = ratings->tjmin

if(xtjmin ~= undef & xtjmin ~= inf) {

if(xtjmax ~= undef & xtjmax~=inf & xtjmax < xtjmin) {

saber_message("TMPL_S_REL_VALUE",instance(),"tjmax",

"tjmin")

xtjmin = undef

}

}    

#...Determine the noise "switch" multiplier

if ((nons == 0) & (r > 0)) {

nx = 1

}

else {

nx = 0

}

}
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#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

values {

#...Definition of output quantities.

v = v(p) - v(m)

i = g*v

# If r=0, i=0. The value for i is wrong but a 

# message has been printed out indicating that r=0.

#...Calculate noise generator

if (freq_domain & nx) {

nsr = sqrt(abs(4.0*math_boltz*(temp + math_ctok)*g))

}

else {

nsr = 0.0

}

#...Determine power term for extraction 

power = v*i

pwrd = power

tempj = temp + pwrd*rth_eff

if(rth_jc ~= undef & rth_jc ~= inf & rth_jc > 0) {

if (pwrd ~= 0) {

rth_hs_tjmax = (xtjmax - temp)/pwrd - rth_jc

}

else rth_hs_tjmax = inf

temp_case = tempj - pwrd*rth_jc

}

}
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#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

control_section {

#...device type and class

device_type(part_type,part_class)

#...Specify noise source

noise_source(nsr,p,m)

#...Specify the stress measures

if(include_stress) {

stress_measure(pdmax,power,"Max Power Diss.",

pwrd,winmax,pdmax)

stress_measure(pdavg,power,"Avg Power Diss.",

pwrd,average,pdmax)

stress_measure(tjmax,temperature,"Max Temperature",

tempj,winmax,xtjmax, tempj_tnom)

stress_measure(tjavg,temperature,"Avg Temperature",

tempj,average,xtjmax,tempj_tnom)

stress_measure(tjmin,temperature,"Min Temperature",

tempj,min,xtjmin,tempj_tnom)

stress_measure(vmax,voltage,"Max Voltage",

abs(v),max,xvmax)

}

}

#++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++

equations {

i(p->m) += i

}

}
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This appendix presents examples that use an unstructured approach to 
modeling.

Constant Current Source

The contents of the constant current source template are shown below 
modeled in an unstructured format.

Branch Declarations

The following branch declaration identifies the through variable flowing 
between pins p and m as a branch current and assigns it to a variable named i:

template isource p m = is 

electrical p,m 

number is 

{ 

branch i = i(p->m) # branch declaration

i=is # template equation

} 

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
isource.sin

branch i = i(p->m)
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Note:   

Although you could omit the branch declaration shown above and just write 
the equation as i(p->m) = is, it is not recommended.

Template Equation

The template equation is written to describe the effect of the continuous analog 
portion of a template at its connection points.

The source current is enters at pin p and leaves at pin m. That is, if isource is 
used in a netlist, the current flowing between the nodes to which pins p and m 
are connected is modified by the source current from isource. In the MAST 
language, the simplest way to express this is:

The terms in this equation include: 

For a constant current source, this means that a current of the amount is 
provided between the node connected to pin p and the node connected to pin 
m. Because an independent current source is not affected by its branch 
voltage, no equations need to be provided for voltage across the source (that 
is, the branch voltage becomes whatever is required to maintain the specified 
level of branch current, is).

Therefore, the following equation is a complete description of a constant 
current source:

where i has been assigned to represent the branch current:

i(p->m) = is

i(p->m) The branch current flowing from the node connected to pin p to 
the node connected to pin m. (This current is assigned to the 
variable i in the branch declaration, so that i is used in the actual 
template equation).

is The user-specified current contributed by the source.

i = is

i(p->m)
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Linear Resistor MAST Template

The un-structured approach to modeling a simple resistor template with MAST 
is as follows: 

Branch Declarations

This template provides a single branch from p to m. This means that, when p 
and m are connected to system nodes, the template models a path for the 
through variable (current). Similarly, an across variable (voltage) can be 
calculated between nodes to which p and m are connected. The branch 
variables for this template are named and declared as:

Branches can be declared in any order within the template body. 

Template Equation

Referring to the ideal resistor figure, the voltage across the resistor is given as 
the difference between the voltages at its pins: 

template resistor p m = res

electrical p,m

number res

{

branch cur=i(p->m) # Branch current

branch vlt=v(p,m) # Branch voltage 

cur=vlt/res # Equation for current

# through the resistor

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
resistor.sin

branch cur = i(p->m) 

branch vlt = v(p,m) 

v(p,m) = v(p) - v(m) 
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Because both p and m are electrical, v(p) and v(m) are implicitly declared as 
system variables (meaning, the simulator supplies their values). To be written 
as a MAST equation, the characteristic equation of the resistor must use the 
branch variables as they have been declared (above). Therefore, the current 
through the resistor is given by: 

This is the equation for the resistor template; it defines the amount of current 
that the resistor contributes to the current flowing from pin p to pin m. 

Linear Capacitor MAST Template

The un-structured approach to modeling a linear capacitor appears as follows:

cur = vlt/res 

template capacitor p m = cap # header

electrical p, m # header declarations

number cap

{ # Start template body

branch i = i(p->m)

branch v = v(p,m) 

i = d_by_dt(v*cap)

} # End template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
capacitor.sin

v(p)
v(p,m)

v(m)

+ _

p m
res

i(p->m)

Ideal resistor
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The branch declarations are very similar to those for the isource and the 
resistor templates. 

Template Equation

The simulator solves for the values of v(p) and v(m) as system variables, so 
they are known to the template. Refer to the following figure.

To write the template equation, you need to express the voltage across the 
capacitor in terms of these system variables, which is done by the branch 
declaration: 

Referring to the characteristic equation, the branch current (i) of the capacitor is 
given as the time derivative of its charge. In the MAST language, taking the 
time derivative of an expression is represented by applying the d_by_dt 
operator to the expression. 

In this example, this becomes:

The d_by_dt operator can operate on any expression that does not include a 
delay operator or another d_by_dt operator. It can appear only in a template 
equation, and you can only add terms to it and subtract terms from it. 
Therefore, the expression cap*d_by_dt(v), while valid in conventional calculus, 
is not valid in the MAST language. Higher order derivatives are implemented 
with multiple d_by_dt statements. 

branch v = v(p,m) 

i = d_by_dt(v * cap) 

v(p)
v(p,m)

v(m)

+ _

p m
cap

i(p->m)

Linear capacitor
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Constant Voltage Source MAST Template 

The un-structured approach to modeling a constant voltage source is as 
follows:

The following figure illustrates the voltage source; it provides a constant 
voltage (vs) across pins p and m. The value of vs is user-specified for an 
instance of this template in a netlist; it is therefore an argument for the source 
model. 

This topic introduces the need for an additional branch declaration to provide 
the through variable (current) as a system variable 

template vsource p m = vs

electrical p,m

number vs

{

branch i=i(p->m), v=v(p,m)

v = vs

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
vsource.sin

v(m)

p mi(p->m)

v(p) vs
+ _

Voltage source

vsource
460 Saber® MAST Language User Guide
B-2008.09



Chapter A: Unstructured Modeling Approach — Examples
Constant Voltage Source MAST Template
Branch Declarations

The value of current through the constant voltage source, i(p->m), cannot be 
determined by the source alone. Instead, this current depends upon the system 
to which the voltage source is connected (recall that the simulator solves for 
system variables, such as the across variables at the pins). The branch current 
needs to be declared, as explained below. 

Notice that vsource uses branch voltage much the same way as isource uses 
branch current—it defines the appropriate branch variable and then sets it 
equal to the value of the template argument: 

However, there is one important difference: vsource also needs to declare its 
branch current as a system variable for use by the simulator, whereas isource 
does not need to declare its branch voltage (because the simulator already 
finds it as a system variable). Thus, vsource needs to declare two branch 
variables, i and v: 

However, MAST allows you to combine branch declarations on one line:

Template equation

After the branch declarations described above have been made, the template 
equation for this voltage source can be written (similar to that for the current 
source): 

vsource isource

v=v(p,m) i=i(p->m)

v=vs i=is

branch i = i(p->m) 

branch v = v(p,m) 

branch  i=i(p->m), v=v(p,m) 

v=vs 
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For a constant voltage source, this means that the branch voltage from p to m 
is maintained at a value equal to vs. Because an independent voltage source is 
not affected by its branch current, no equations have to be provided for current 
through the source, as long as that current appears in a branch declaration 
(i.e., the branch current becomes whatever is required to maintain the specified 
level of branch voltage, vs). 

Linear Inductor MAST Template

The un-structured approach to modeling a template describing a linear inductor 
is as follows:

Characteristic Equations

The voltage, VL, across an inductor is defined as the derivative of magnetic flux 
(f) with respect to time: 

VL = df/dt 

For a linear inductor, the flux is defined as the product of the inductance, L, of 
the inductor and the current (IL) through it:

f = L•IL 

Therefore, inductor voltage can be expressed in terms of inductance and 
current: 

VL = d(LIL)/dt 

element template inductor p m = ind

electrical p,m

number ind

{ 

branch i=i(p->m), v=v(p,m) 

v = d_by_dt(ind*i)

} 

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
inductor.sin
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The inductance (L) characterizes each instance of an inductor and is provided 
as an argument of the template (ind). The following figure shows the symbol 
and the relevant characteristics of a linear inductor, including the branch 
variables to be contained in the ideal inductor template. 

Setting Up the Template Equation

As with the resistor template, you should try to express the inductor current (the 
through variable contribution) as a function of the voltage across the inductor, 
which would be:

IL = 1/L  VL dt 

Although this equation serves as a compact implementation of the model, it 
requires the use of an integral, which the MAST language does not support. 
Therefore, it is necessary to use a new approach that differs from the one used 
to implement the resistor and capacitor templates. 

Note:   

When you encounter an integral expression as in Equation 4, you need to 
differentiate both sides of the equation to eliminate the integral. 

As with the constant voltage source (vsource), you need to declare a branch 
variable for current through inductor, which can be done on the same line as 
the branch voltage: 

This allows you to use current in an equation such that you can express voltage 
in terms of current. Now you can replace the integration formula for the inductor 
current with a differentiation formula for the inductor voltage. 

branch i = i(p->m), v=v(p,m) 

v(p) v(m)

+ _

p mind

i(p->m)

v(p,m)

Ideal inductor
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Taking the derivative of both sides of Equation 4 and multiplying both sides by 
L, it becomes: 

d(LIL)/dt = VL 

which is implemented in the template as (ind is the value of inductance, L, 
provided as an argument): 

Although this violates a guideline of expressing current as a function of voltage, 
it is the only method available. 

Current-Controlled Voltage Source MAST Template

The un-structured approach to modeling a template describing a current-
controlled voltage source (CCVS) is as follows:

Characteristic Equation

The characteristic equation for a CCVS is similar to that of a constant voltage 
source, except that the output voltage is determined differently. 

v = k*ci 
choose i such that KVL is satisfied.

v = d_by_dt(ind*i) 

template cvt ci p m = k

ref i ci

electrical p, m

number k

{

branch i=i(p->m), v=v(p,m)

v = k*ci

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
cvt.sin
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In this equation, ci is the controlling current, k is the transimpedance 
characterizing an instance of the cvt template, v and i are the branch voltage 
and current, respectively. 

Template Equation and Local Declarations

As with the vsource template, you must declare the branch current i along with 
the branch voltage, v, to be able to solve for voltage: 

This makes the current through the source (i) available as a system variable, 
for which the simulator can now solve. The template equation is as follows:

shows that this voltage source depends on a controlling input current (ci), 
which is from another template. This input current is obtained from a different 
kind of connection point, the ref. 

branch i=i(p->m), v=v(p,m) 

v= k*ci 

i
p

m

ci k*ci cvt

Current-controlled voltage source
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Mutual Inductance MAST Template

The un-structured approach to modeling a template describing mutual 
inductance is as follows:

Setting Up the Template Equations

The template equations for mutind use the equation in the inductor template. 
There, the associated equation was essentially the first term shown in 
Equations 1 and 2 shown in the topic titled "Characteristic Equations for 
Modeling Mutual Inductance" as follows:

V1 = d(L1I1)/dt + d(MI2)/dt 
V2 = d(L2I2)/dt + d(MI1)/dt 

The mutind template modifies the equation in the inductor template that is 
associated with the branch current, i, of the inductor. That is, when used in a 
netlist, the mutual inductance template “searches out” the equations of the two 
inductors and couples them as specified in the mutind model. 

The following MAST construct in a template equation modifies an equation 
associated with an explicitly declared system variable such as a branch 
current:

system_variable      operator      expression
where:

element template mutind i1 i2 = m

ref i i1, i2

number m

{

i1 -= d_by_dt(m*i2)

i2 -= d_by_dt(m*i1) 

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
mutind.sin

system_variable is the name of a branch variable, var, or a 
ref (which is a var from another template)
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Using this construct, the characteristic equations of mutual inductance yield the 
following template equations for mutind: 

It is important to understand that d_by_dt(m * i2) is not subtracted from i1, but 
rather from the left side of the equation that defines i1 (and, because i1 is a ref 
in this template, its defining equation is in the inductor template). 

This is illustrated using the following example netlist:

Because the inductor template declares i as a branch current (which makes it a 
system variable), its associated equation is:

This corresponds to the first term of either Equation 1 or Equation 2. 
Considering inductor.l1, the current from inductor.l2 is passed as ref i2 into the 
mutind template, which, in turn, modifies the equation in inductor.l1, using its 
branch current, i, and inductance, ind. The effective equation in inductor.l1 
would be: 

operator is either += or -=, indicating that expression 
is added to or subtracted from the left side 
of the equation defining system_variable

expression is a MAST expression formed from 
variables of different types; mathematical 
functions; the algebraic operators +, -, *, /, 
and **; parentheses; and the special 
operators d_by_dt and delay 

i1 -= d_by_dt(m*i2) 

i2 -= d_by_dt(m*i1) 

inductor.l1 p1 m1 = ind=1 

inductor.l2 p2 m2 = ind=2 

mutind.1 i(inductor.l1) i(inductor.l2) = \

m=0.98*sqrt(ind(inductor.l1)*ind(inductor.l2)) 

v = d_by_dt(ind*i) 

v-d_by_dt(m*i2) = d_by_dt(ind*i) 
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which, after algebraic rearrangement, corresponds to Equation 1. A similar 
modification is applied to the equation associated with the branch current i and 
inductance, ind in inductor.l2. to yield Equation 2. Thus, the mutind template, 
together with two instances of the inductor template, provide the inductance 
coupling shown in the “Coupled inductors” figure in the topic titled 
"Characteristic Equations for Modeling Mutual Inductance" in a previous 
chapter. 

Flattened Hierarchy MAST Template

The un-structured approach to modeling an RLC template with flattened 
hierarchy is as follows:

template rlc2 p m = r,l,c

electrical p,m

number r = 10k, # resistance arg. w/default

l = 1m, # inductance arg. w/default

c = 1u # capacitance arg. w/default

{

electrical x # internal node 

branch ipm=i(p->m), vpm=v(p,m) # resistor branch

branch ipx=i(p->x), vpx=v(p,x) # inductor branch

branch ixm=i(x->m), vxm=v(x,m) # cap. branch

# template equations 

ipm = vpm/r # resistor current

vpx = d_by_dt(ipx*l) # inductor voltage

ixm = d_by_dt(vxm*c) # capacitor current

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
rlc2.sin
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Template Equations

The template equations for the rlc2 template consist of the equations from the 
resistor, inductor, and capacitor templates using the variable names from the 
rlc2 template. Note that these statements can appear in any order. 

Template Body - Local Declarations

The internal node x, because it is a local internal node, must be declared 
following the opening brace before it can be used: 

Note that there are three branches in this model, one for each element—
resistor, inductor, capacitor. Here, the current and voltage for each branch are 
declared and given variable names that are unique within this template: 

ipm = vpm/r 

vpx = d_by_dt(ipx*l) 

ixm = d_by_dt(vxm*c) 

{ 

electrical x 

branch ipm=i(p->m), vpm=v(p,m) 

branch ipx=i(p->x), vpx=v(p,x) 

branch ixm=i(x->m), vxm=v(x,m) 
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Mixed Hierarchy MAST Template

The un-structured approach to modeling an RLC template with mixed hierarchy 
is as follows:

template rlc3 p m = r,l,c

electrical p,m

number r = 10k, # resistance arg. w/default

l = 1m, # inductance arg. w/default

c = 1u # capacitance arg. w/default

{

electrical x # internal node 

inductor.l1 p x = l # use inductor template

i(p->m) = v(p,m)/r # res. equation

i(x->m) = d_by_dt(v(x,m)*c) # cap. equation

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
rlc3.sin
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MAST capacitor_1 Template

The following example shows the un-structured approach to modeling 
capacitor_1 such that the voltage across the capacitor and its charge become 
available for extraction:

element template capacitor_1 p m = cap, ic

electrical p,m

number cap, ic=undef

{ 

branch i=i(p->m), vc=v(p,m)

val q qc

qc = vc*cap # charge assignment

control_section { 

initial_condition(vc,ic) # initial voltage 

} # across capacitor

i = d_by_dt(qc) 

} 

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
capacitor_1.sin

v(p)
vc

v(m)

+ _

p m
cap

qc = vc * cap

Linear capacitor
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Local Declarations - Assignment Statements

The syntax of an assignment statement is as follows:

variable = expression

where:

Statements in the template body are both procedural and declarative. 
Procedural statements are performed in sequence, so you must order the 
statements such that each val is defined before it is used in a statement. 
Declarative statements are performed only if the simulator requires the 
declared variable (for example, if variable is a val that is to be extracted or is 
needed for solution of the system variables). 

If variable is not needed, the simulator skips the statement during evaluation, 
although it might use certain information provided by a statement during initial 
setup. Therefore, including statements that declare vals in a template does not 
impose any performance penalties if no variables are extracted. 

Note:   

Assignment statements can appear anywhere in the template body, but 
should not be confused with template equations—the expression on the 
right is evaluated and its result is assigned to the variable on the left. They 
are evaluated in sequential order, as in a computer program. 

Template equations express mathematical equality and are evaluated 
simultaneously. 

variable is a val, var, branch variable, local parameter, or simvar 
(simulator variable). If you declare variable as any of these 
(except as a simvar), you must do so in the body of the 
template.

expression is a MAST expression defining variable—the value of 
expression is assigned to variable (this is not a mathematical 
equality). An expression can include variables of different types 
(except for through variables); mathematical functions; the +, -, 
*, /, **, d_by_dt( ), and delay( ) operators; and parentheses (()).
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Local Declarations - Declaring a val

One of the stated objectives for this example was to make the voltage across 
the capacitor and the charge of the capacitor available for post-processing. The 
relationship of these quantities, which are incorporated in the capacitor_1 
template are as follows: 

Note that the assignment statement defining charge (qc) uses variables that 
have been previously declared—vc (branch voltage) in a branch declaration 
and cap (template argument) in a header declaration. 

Further, the quantity qc is declared as a charge (val q) and is then assigned the 
value of the product of vc and cap (the capacitance). As required, the 
declaration of qc as a val precedes its assignment statement. The letter q in 
this declaration establishes qc as an electrical charge, as defined in the 
units.sin file, which is provided with the Saber simulator. 

The simulator, by default, includes the units.sin file with each input file (netlist). 
The unit for charge (coulomb) is then automatically used when qc is displayed 
after simulation in the Scope Waveform Analyzer.

Note:   

As with vars and refs, the unit of the val declaration is used only to label 
plots. Thus, it is possible to exclude the val declaration (val q qc), and the 
rest of the template will function properly as a capacitor model. However, 
there will be no units of charge (coulombs) assigned to qc when it is 
displayed in Scope. 

The declaration of a val appears in the following general form (optional 
declarations are enclosed by italicized square brackets, [ ]): 

This declares one or more variables to be vals having the specified unit. 

You can assign a value to a val only in an assignment statement, as described 
above. However, you can use a val variable in the template equation, the 
control section, and in when statements. 

branch vc = v(p,m) 

val q qc 

qc = vc*cap 

val unit name [,name, name, ...] 
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Template Equation

The template equation for capacitor_1 is very similar to the one for capacitor, 
except that now the capacitor charge (qc) replaces the quantity of voltage times 
capacitance: 

The Saber simulator uses the template equation and assignment statements 
jointly to set up the system equations. It uses these assignment statements 
only to the extent necessary to determine the through variable contribution at 
the capacitor pins as a function of the across variables at the pins. It does not, 
however, evaluate the assignment statements, except when a user specifies 
that certain information is to be extracted—and even then it evaluates only the 
equations needed to provide the requested information. 

As described earlier, this does not mean that assignment statements are 
evaluated to solve the system variables. Rather, the simulator uses certain 
information when it sets up the simultaneous equations (from all templates in 
the netlist) describing the system. Consequently, the equation that the 
simulator solves for this capacitor is identical to the one for the capacitor 
template. 

i = d_by_dt (qc) 
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Multiple-Output Voltage Source

The following example shows the un-structured approach to modeling 
vsource_1, which models a source that provides a constant voltage output, 
independent of time and frequency:

element template vsource_1 p m = supply, tran, ac

electrical p, m # header declarations

number supply=0

struc { # start of tran structure

number v1=0, # initial voltage

v2=0, # voltage at time=inf

tau=0 # time constant

} tran=() # end of tran structure

struc { # start of ac structure

number mag=0, # AC magnitude

phase=0 # AC phase

} ac=() # end of ac structure

{ # start template body

branch i=i(p->m), v=v(p,m) # branch declarations 

# determine output based on analysis being run...

# begin large signal (supply or tran)
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Template Body

The branch current needs to be declared because the value of current through 
the voltage source, i(p->m), cannot be determined by the source alone. 
Instead, this current depends on the system to which the voltage source is 
connected (because the simulator solves for system variables, such as the 
across variables at the pins). The branch current is declared on the same line 
as the branch voltage: 

if (dc_domain | time_domain) {

# if tran specified, use tran value

if ((tran->v1~=0 | tran->v2~=0) & tran->tau>0) {

vs = tran->v1 + (tran->v2-tran->v1) * (1-exp(-time/tran-
>tau))

}                              

else { # if tran not specified,

vs = supply # use supply value

} 

} # end large signal 

else if (freq_mag) { # begin small-signal (ac) 

vs = ac->mag # use magnitude value 

} 

else if (freq_phase) {         

vs = ac->phase # use phase value 

} # end small-signal  (ac)  

v = vs # assign value of vs to output, v

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
vsource_1.sin

branch i=i(p->m), v=v(p,m) 
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The remainder of this unstructured example is very similar to the structured 
vsource_1 example.

Linear Transformer

The following example shows the un-structured approach to modeling xformer, 
which consists of two inductors and their mutual coupling:

This unstructured template is similar to the structured version. The major 
changes are that this unstructured template has no local declaration or use of 
m and the parameters section in this template is eliminated.

element template xformer p1 m1 p2 m2 = l1, l2, k

electrical p1, m1, p2, m2

number l1, l2, k = 1

{ # start body of template

if (k < -1 | k > 1) {

# if arg. value invalid, display message and end simulation

error("%:coupling factor must be between -1 and 1:k=%",

instance(), k)

}

# Use following netlist to make a transformer from 

# two mutually-coupled inductors

inductor.1 p1 m1 = l1 # inductor netlist entry

inductor.2 p2 m2 = l2 # other inductor netlist entry

mutind.12 i(inductor.1) i(inductor.2) = k * sqrt(abs(l1 * 
l2))

# mutual inductance netlist entry

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
xformer.sin
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Temperature-Dependent Resistor

The following example shows the un-structured approach to modeling 
resistor_1. This template can operate at various ambient temperatures, checks 
for a value of zero resistance and allows power to be extracted

This unstructured template is similar to the structured version. The major 
changes are that this unstructured template has no explicit local declaration of 
r, v and i. Also, this template does not use a parameters section, a values 
section, or an equations section.

element template resistor_1 p m = res, tc, tnom

electrical p, m

number res, tc[2]=[0, 0], tnom=27

external number temp # use simulation temperature

export val p power # make power available

{

branch i=i(p->m), v=v(p,m) 

power = v*i # calculate power

# local parameter (calculated from arguments)

r = res * (1 + tc[1]*(temp-tnom) + tc[2]*(temp-tnom)**2)

# check for zero resistance, display message, end simulation:

if (r==0) error("%: resistance value is zero",instance())

# template equation using calculated r (not res) 

i = v/r 

}# end of template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
resistor_1.sin
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Simple Idealized Op Amp

The following example shows the un-structured approach to modeling an 
opamp. The opamp example introduces a modeling technique that lets you 
combine different model equations such that a single equation satisfies all 
values of the template parameters. This template allows specifying either finite 
or infinite gain. 

element template opamp ip im out = a

electrical ip, im, out # header declarations

number a = inf

{ # start of template body

var i iout # local declarations

branch vin=v(ip,im) # input branch voltage 

number x1, x2

# checking value of gain argument, a

if (a==inf | a==undef) { # if gain is infinite

x1=1; x2=0 # or undefined, then input

} # voltage is 0;

else { # otherwise, output voltage

x1=a; x2=1 # is gain times input voltage

}

# equations for output current at one connection point

i(out) += iout # current contribution at output

iout: x1 * vin = x2 * v(out)

# equation associated with iout

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
opamp.sin
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Unstructured MAST clock Template

The following example shows how to construct a simple clock template using 
internal events in the unstructured modeling approach. It also describes 
initialization of states. 

template  clock ckout = freq, duty 

state logic_4 ckout 

number freq=0, # clock frequency 

duty=0.5 # duty cycle (pulse time/period)

{ 

state nu tick # internal "wake-up" state 

number ton=0, # clock on-time

toff=0 # clock off-time

# calculate off and on time

if (freq > 0) {

ton = duty/freq

toff = 1/freq - ton

}

when (dc_init) {

schedule_event(time,ckout,l4_0)

}

# start clock ticking after delay time

when (time_init) {  

if (freq > 0) schedule_event(time,tick,1)

}
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when (event_on(tick)) {

if (driven (ckout)==l4_0) {

# turn clock on (set to 1) 

if (ton > 0) { 

schedule_event(time,ckout,l4_1) 

schedule_event(time+ton,tick,1)

} 

} 

else { 

# turn clock off (set to 0)

if (toff > 0) {

schedule_event(time,ckout,l4_0)

schedule_event(time+toff,tick,1)

}   

}  

}

}
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Modeling a Simple Voltage Limiter

The unstructured template for the limiter, vlim, is shown as follows:

element template vlim ip im op om = vmax

# template header

electrical ip, im, op, om # header declarations

number vmax

{ # start of template body

branch  vin=v(ip,im)

branch vout=v(op,om) 

branch iout=i(op->om) 

struc { 

number bp, inc; 

} nvin[*] 

number slope = 1u 

vmx = abs(vmax)

nvin = [(-vmx,1.9*vmx),(vmx,0)] 

control_section { 

newton_step(vin,nvin) 

} 

# template equations using conditional expressions

vout = if vin < -vmx then  -vmx + slope*(vin + vmx) 

  else if vin > vmx then    vmx + slope*(vin - vmx) 

  else vin 

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
vlim.sin
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Local Declarations

The branch declarations enable the characteristic equations to express the 
output voltage (vout) as a function of the input voltage (vin), while finding the 
current contribution (iout) required for this to be true. 

Although negative values for vmax are allowed, the equations for determining 
vout assume vmax is positive. That is, they use the absolute value of vmax, 
which is obtained by using abs, the intrinsic absolute value function. This 
absolute value of vmax is assigned to the local parameter vmx as follows: 

A variable named slope is declared as a local parameter and initialized to 10 . 
This is used in the template equations, as explained below. 

Template Equations

In the template equations, note that this expression defines three conditions for 
the value of vout, although vout is explicitly listed only once. That is, in the first 
two lines, the value of vout evaluates to the expression following then. In the 
last line, the value of vout evaluates to the value of vin. Also note the use of the 
backslash (\) as a line continuation character. 

branch vin=v(ip,im),

branch vout=v(op,om) 

branch iout=i(op->om) 

vmx = abs(vmax) 

number slope=1u 

-6
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Modeling a Voltage Divider

The unstructured template for the voltage divider, vdiv, is shown as follows:

element template vdiv ip1 im1 ip2 im2 op om

# template header

electrical ip1, ip2, im1, im2, op, om

{ # start of template body

branch vin1=v(ip1,im1) 

branch vin2=v(ip2,im2) 

branch iout = i(op->om), vout=v(op,om)

eps = 1e-6

val v onev, vout

onev=if (abs(vin2)<1e-50) then 0 else 1/vin2

struc { 

number bp,inc;

} nv2[*] 

if(eps <= 0) eps = 1e-15

eps2 = 1 / (eps * eps)

nv2 = [(-2*eps,eps),(2*eps,0)] 

control_section {

newton_step(vin2,nv2)

} 

# template equations

vout = if(abs(vin2) > eps) then vin1*onev \

else vin1 * vin2 * eps2

}

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
vdiv.sin
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Modeling an Ideal Diode 

The following example combines the structured and unstructured modeling 
techniques to model the ideal diode:

element template diode p m = is, ic  # template header

electrical p, m # header declarations

number is = 1e-16,

ic = undef # initial branch voltage

external number temp

{ # start of template body

branch id=i(p->m), vd=v(p,m) 

number k = 1.318e-23, # local declarations

qe = 1.602e-19

struc {

number bp, inc; # Newton steps

} nvd[*] = [(0,.001),(2,0)]

control_section { # start of control section

newton_step (vd,nvd) # Newton steps assigned to vd

initial_condition(vd,ic) 

device_type("diode","example") 

small_signal(vd,voltage,"p-m voltage", vd)

} # end of control section

vt = k * (temp+273.15) / qe # computation of thermal volt.

id = is * (limexp(vd/vt)-1) # diode current

} # end of template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
diode.sin
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Ebers-Moll Model for a BJT

The BJT template (bjt) is shown below using a combination of the structured 
and unstructured modeling approach: 

element template bjt c b e = model, ic

electrical c, b, e

struc { 

enum {_n, _p} type 

number  is=1e-16, bf=100, br=1, \

cje=0, vje=.75, mje=.33, \

cjc=0, vjc=.75, mjc=.33, rc=0

} model = ()

number ic[2]=[undef,undef] 

external number temp 

{

# declare local param., vals, and extraction groups

number k = 1.381e-23, # Boltzmann's constant

qe = 1.602e-19, # electron charge

vt, qbe0, qbc0, vje0, vjc0

struc {

number bp, inc;

} nv[*] = [(0,.1),(2,0)] 

electrical cp # local node
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branch ibe=i(b->e), vbe=v(b,e)

branch ibc=i(b->cp), vbc=v(b,cp)

branch ice=i(cp->e), vce=v(cp,e)

val i iec, icc, iba, ico

val q qbc, qbe

group {vbc,vbe} v # extraction groups

group {iba,ico} i

group {qbc,qbe} q

control_section { 

# If no collector resistance, collapse nodes c and cp 

if(model->rc == 0) collapse(c,cp) 

# specification of newton steps

newton_step((vbc,vbe),nv)

# initial conditions and start value 

initial_condition(vbe, ic[1]) 

initial_condition(vce, ic[2]) 

start_value (vbe, 0.6) 

# small-signal parameters

device_type("bjt", "example")

small_signal(ibase,current,"base current",iba)

small_signal(icoll,current,"collector current",ico)

small_signal(vbe,voltage,"base-emitter voltage", vbe)

small_signal(vbc,voltage,"base-collector voltage", vbc)

small_signal(rc,resistance,"collector resistance",\

model->rc)  

}
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#calculate thermal voltage and 4 functions of model param.

vt   = k * (temp + 273.15) / qe

qbe0 = model->cje * model->vje / (1 - model->mje)

qbc0 = model->cjc * model->vjc / (1 - model->mjc)

vje0 = 2 * model->vje / model->mje

vjc0 = 2 * model->vjc / model->mjc 

#calculate fundamental quant. for npn and pnp trans.

if(model->type == _n) {

iec = model->is * (limexp(vbc/vt) - 1)

icc = model->is * (limexp(vbe/vt) - 1)

} 

else {

iec = -model->is * (limexp(-vbc/vt) - 1)

icc = -model->is * (limexp(-vbe/vt) - 1)

} 

# calculate base and collector currents 

iba = iec/model->br + icc/model->bf 

ico = icc - iec - iec/model->br 
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# calculate charges

if(model->type == _n) { 

if(vbc < 0) {

qbc = qbc0 * (1 - ((1 - vbc/model->vjc)**(1-model->mjc))) 

}

else {

qbc = model->cjc * vbc * (1 + vbc/vjc0) 

}

if(vbe < 0) {

qbe = qbe0 * (1 - ((1 - vbe/model->vje)**(1-model->mje)))

}

else {

qbe = model->cje * vbe * (1 + vbe/vje0) 

}

} 

else { 

if(vbc > 0) {

qbc = -qbc0 * (1 - ((1 + vbc/model->vjc)**(1-model->mjc))) 

}

else {

qbc = model->cjc * vbc * (1 - vbc/vjc0) 

}

if(vbe > 0) {

qbe = -qbe0 * (1 - ((1 + vbe/model->vje)**(1-model->mje))) 

}

else {

qbe = model->cje * vbe * (1 - vbe/vje0) 

}

} 
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# template equations (calculate branch currents) 

ibe = iba + d_by_dt(qbe) 

ibc = d_by_dt(qbc) 

ice = ico 

# current through collector resistor if present 

if(model->rc ~= 0) {

i(c->cp) = v(c,cp)/model->rc 

}

} # end template body

ASCII text of this example is located in:
install_home/example/MASTtemplates/unstructured/
bjt.sin
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Digitally-Controlled, Ideal Switch

This example shows the unstructured version of an ideal, single-pole, single-
throw switch (SPST) controlled by a digital input.

template sw p m cntl = ron, roff

electrical p, m # analog pins 

state logic_4 cntl # digital connection

number ron=1, roff=1meg # parameter declaration

{ 

branch cur=i(p->m), vlt=v(p,m)

state r res # internal state variable

when (event_on(cntl)) { # switch control

if (cntl == l4_1) res = ron

else res = roff

schedule_next_time(time)

} 

# template equation for analog switch

cur = vlt/res 

} 
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Digital-to-Analog (d2a) Interface Model

The following template shows the unstructured version of the d2a template:

Integrator (intgr)

Integration in the time domain is identical to division by s in the s-domain, which 
could be expressed as follows:

element template d2a d a m = td, ol, oh 

electrical a, m 

state logic_4 d

number td=0, # input to output time delay 

ol=0.5, # output logic low voltage level

oh=4.0 # output logic high voltage level

{

state v vout=ol # output voltage

branch cur=i(a->m), vlt=v(a,m)

# process input events

when (event_on(d)) {

if (d==l4_0) { # input low

schedule_event(time+td, vout, ol) # change vout

schedule_next_time(time+td) # force analog step

}

else if (d==l4_1) { # input high

schedule_event(time+td, vout, oh) # change vout

schedule_next_time(time+td) # force analog step

} 

} 

vlt = vout 

} 

out = in/(tau*s) 
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To implement this as a valid template equation, you need to perform the 
following steps: 

1. Revise the statement so that it has no denominator. To accomplish this, 
simply multiply both sides by tau*s, which yields the following: 

2. Replace the s operator with the MAST d_by_dt operator, and move tau 
inside the d_by_dt operator. This sets the time derivative of the output 
multiplied by a constant (tau, the template argument) equal to the input as 
follows: 

3. For a template that does not use the equations section (an unstructured 
model), insert the keyword make at the beginning of the statement as 
follows:

This is required because the lefthand side of #2 above is not a simple output, 
but an expression, which means this relation cannot be expressed directly. 
Statements such as this must be prefixed with the keyword make so it will be 
recognized as a template equation. This kind of a statement is called a 
constraint equation. 

In an unstructured template, the keyword make is required anytime the output 
is an expression. It can also be used (although it is not required) if the lefthand 
side is an output (such as for the deriv template in Differentiator on page 219). 

The unstructured MAST template for an integrator (intgr) is listed as follows: 

tau*s*out = in

d_by_dt(out*tau) = in

make d_by_dt(out*tau) = in 

element template intgr in out = tau

input  nu in # template input

output nu out # template output 

number tau # constant multiplier

{ # solve for the input variable

make in = d_by_dt(out*tau) 

} 
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Using MAST Functions - Unstructured bjtm Template

The BJT template (bjtm) is shown below using function calls and a combination 
of the structured and unstructured modeling approach: 

element template bjtm c b e = model, ic

electrical c,b,e 

bjtm_arg..model model = () # use arguments from 

# "companion" template

number ic[2]=[undef,undef]

external number temp

{ # begin template body

# use local parameters from "companion" template 

bjtm_arg..work work 

struc {

number bp,inc;

} nv[*] = [(0,.1),(2,0)]

electrical cp #...local node

branch ibe=i(b->e),  vbe=v(b,e)

branch ibc=i(b->cp), vbc=v(b,cp)

branch ice=i(cp->e), vce=v(cp,e)

val i iec,icc,iba,ico #...declare variables 

val q qbc,qbe 

group {vbc,vbe} v               #...extraction groups 

group {iba,ico} i 

group {qbc,qbe} q control_section {

 #...If no collector resistance, collapse nodes c and cp

if(model->rc == 0) collapse(c,cp)

#...specification of sample points and newton steps

newton_step((vbc,vbe),nv) 

} 
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The function calls and functions are identical to the bjtm structural model 
described in the following topics found in Chapter 4:
■ Function Call Overview - bjtm MAST Template
■ bjtm_arg Declaration Template
■ Local Parameters Function bjtm_pars
■ Calculated Values Function bjtm_values

# calculate thermal voltage and 4 funct. of model param.

#... 1’st call to MAST function

work = bjtm_pars(model,temp) 

#...calculation of currents and charges

 #...2’nd call to MAST function

(iec,qbc,icc,qbe) = bjtm_values(model,work,vbc,vbe) 

#...calculate base and collector currents for extraction 

iba = iec/model->br + icc/model->bf

ico = icc - iec - iec/model->br

#...calculation of branch currents

ibe = iec/model->br + icc/model->bf + d_by_dt(qbe)

ibc = d_by_dt(qbc)

ice = icc - iec - iec/model->br

#...current through collector resistor if present

if(model->rc ~= 0) i(c->cp) = v(c,cp)/model->rc

}
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Ideal Delay Line - Unstructured dline Template

The ideal delay line template (dline) is shown below using the delay function 
and the unstructured modeling approach:

template dline inp inm outp outm = td, a

electrical inp, inm, outp, outm

number td=0.0, # time delay

             a=1.0 # gain

{ 

branch iout=i(outp->outm) # output current

branch vin=v(inp,inm), vout= v(outp,outm) # input & output

# voltages

val v vdl # delayed voltage 

vdl = vin*a 

vout=delay(vdl, td) 

} 
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Multiple-Output Voltage Source - Unstructured vsource_2 Template

The vsource_2 template is a voltage source that provides three different, time-
varying outputs. The following template is modeled using the unstructured 
approach:

element template  vsource_2 p m = supply, tran 

electrical p, m 

number supply = 0

union { 

number off

struc {number vo, va, f, td;} sin

struc {number v1,v2,tau;} exp

struc {number v1,v2,tstep,tr;} step

} tran = (off=1)

{  

number pi = 3.14159

branch is=i(p->m), vn=v(p,m)

val v vs

# define intermediate values depending on selected output

if (union_type (tran,sin)) { 

td = tran->sin->td 

vo = tran->sin->vo 

va = tran->sin->va

w = 2*pi*tran->sin->f 

ss = 0.05/tran->sin->f

  }

else if (union_type (tran,exp)) { 

v1 = tran->exp->v1 

v2 = tran->exp->v2 

tau = tran->exp->tau

  }
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else if (union_type (tran,step)) { 

tstep = tran->step->tstep

v1 = tran->step->v1

v2 = tran->step->v2

tr = tran->step->tr

slew = (v2-v1)/tr

} 

# determine vs, which is set equal to vn in temp. equ.

if (dc_domain|time_domain) { 

if (union_type (tran,sin)) { 

if (time <= td) {

vs = vo 

next_time = td

}

else {     # if (time > td)

vs = vo + va*sin(w*(time-td))

step_size = ss

}

} # end tran->sin

else if (union_type (tran,exp)) { 

vs = v1 + (v2-v1)*(1-exp(-(time/tau)))

} # end tran->exp
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else if (union_type (tran,step)) { 

if (dc_domain|(time < tstep)) {

vs = v1

next_time = tstep

}

else if ((time >= tstep) & (time < tstep+tr)){

vs = v1 + (time-tstep)*slew

next_time = tstep + tr

}

else { 

vs = v2

}

} # end tran->step

else vs = supply

} # end 
dc_domain|time_domain

else vs = 0  

# template equation...find branch voltage, vn 

vn = vs   

} 
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BMaking User Templates Visible for Unix and NT

This chapter describes how to make user templates visible in both Unix and NT 
environments.

Making User Templates Visible for Unix

This topic describes the following:

How the Applications Find Files
Using Templates Written in MAST
Using Custom Models From Your Capture Tool
Using C or FORTRAN Routines Called by Templates

How the Applications Find Files

To make your own templates (or any other user files) available to the Saber 
simulator or the other applications, you need to do one of the following:
■ Place the files in a directory along the data search path where the 

applications will find them. (The data search path is described in this topic.)
■ Use the appropriate environment variable to tell the applications where they 

are located as shown in the following table. 

The applications look for files containing data they need in directories along the 
data search path, as listed in the following table in the order listed. 

For example, the first directory to be searched is the working directory.
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Data Search Path 

If there are multiple files with the same name in the data search path, Saber 
applications use the first one encountered. Your models will be found as long 
as they are in one of the locations listed in the above table. However, if you 
have created a library of custom models that you would like to be available for 
general use, the proper search path location for your directories is as part of 
the original SABER_DATA_PATH environment variable (or AI_SCH_PATH in 
the case of Saber Sketch finding symbols).

1. The working directory is the first location that is checked along the data 
search path. For quick-test purposes, it can be convenient to place library 
items in the current directory. You should not rely on this technique for long-
term storage of your libraries, as the current directory may change 
depending on where the Saber application was invoked.

2. Templates and components are found by the Saber simulator using the 
SABER_DATA_PATH environment variable. The SABER_DATA_PATH 
variable is a colon-separated list of directories. Any custom libraries 
intended for use by others at your site should be stored in a directory that is 
part of SABER_DATA_PATH. 

If such a directory does not exist, you should create one and add its path to 
this variable.

The topic titled "Using Templates Written in MAST", describes how to define 
or modify a SABER_DATA_PATH environment variable. The 
AI_SCH_PATH variable can be modified in a similar way.

Saber Sketch Saber Simulator Description

. . Working directory where the 
application was started.

AI_SCH_PATH
(Locates directories 
that contain custom 
symbols)

SABER_DATA_PATH
(Locates directories that 
contain custom templates 
and components)

Environment variable that you set 
to point to proper location(s)

install_home/config Directory to hold configuration 
information specific to an 
installation.

Directories and subdirectories in install_home specific to each application
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The topic titled Manually Creating Template Information Files, in the 
Managing Symbols and Models Manual, describes how to update custom 
templates that do not have the proper permissions for a user. You must be 
a site manager with read and write permissions to use this feature.

Never point SABER_DATA_PATH to install_home.

Symbols are found by your schematic capture tool using whichever 
mechanism is provided with your particular tool (Saber Sketch, Design 
Architect, Artist, or ViewDraw).

Saber Sketch searches the value of the AI_SCH_PATH environment 
variable to search for directories containing symbols. The AI_SCH_PATH 
variable is a colon-separated list of directories. Any custom symbols 
intended for use by others at your site should be stored in a directory that is 
part of AI_SCH_PATH. If such a directory does not exist, you should create 
one and add its path to AI_SCH_PATH. If AI_SCH_PATH does not exist, 
you should create it.

3. The install_home/config directory holds configuration information specific to 
an installation. Do not place any libraries in this directory.

4. The last place(s) an application will search are the additional directory(s) 
that are appended by the application. These are the homes for the software 
supplied data. For the Saber simulator these directories are saber_home/
bin, then saber_home/template/*, then saber_home/component/*/*. 

Precompiled files (.sld files) created using the saber -p option are not found by 
using the search path shown in the table titled "Data Search Path". They are 
found by using the list of directories contained in your path variable. For a 
procedure for modifying your path variable, refer to Step 3 in the topic titled 
Configuring for the UNIX Environment.

Precompiled (also called preloaded) model files have priority over all other 
models.

Using Templates Written in MAST

To use templates written in the MAST modeling language, you need to inform 
the software where they are located. The following methods can be used.

Method 1: Place the templates in a directory in the data search path. Once you 
have done this, the templates will be found by the applications when they are 
needed.
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Method 2: Specify the directory containing the templates in an environment 
variable called SABER_DATA_PATH in your user start-up file. To add your 
own template library to the SABER_DATA_PATH environment variable, 
complete the following procedure.

1. Define or modify the SABER_DATA_PATH environment variable

Edit the appropriate file for your shell as shown in the following table:

In this table, template_directory is the full path name to the directory 
containing the templates or where dir1, dir2, and dir3 are full path names to 
three different directories.

If a SABER_DATA_PATH environment variable already exists in your 
.cshrc or .profile file, you can modify it to include the new directory. 

Shell &

File

SABER_DATA_PATH Definition

C 

.cshrc

If a SABER_DATA_PATH environment variable does not
exist in your .cshrc file, enter the following line
anywhere in the file:

setenv SABER_DATA_PATH "template_directory"
You may include more than one directory by specifying
a colon separated list as follows:

setenv SABER_DATA_PATH "dir1:dir2:dir3"

Bourne

.profile

If a SABER_DATA_PATH environment variable
does not exist in your .profile file, enter the
following lines anywhere in the file:

SABER_DATA_PATH= "template_directory"

export SABER_DATA_PATH

You may include more than one directory by
specifying a colon separated list as follows:

SABER_DATA_PATH="dir1:dir2:dir3"

export SABER_DATA_PATH
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If your SABER_DATA_PATH environment variable includes directories that 
are provided with the software, you should remove these directories from 
the list. For example, directories containing template or component libraries 
provided with the Saber simulator should not be included in the 
SABER_DATA_PATH environment variable.

Use care when you use the wildcard (*) character to include directories in 
the SABER_DATA_PATH environment variable. If too many directories are 
included in the SABER_DATA_PATH environment variable, some files may 
not be found by the Saber simulator or the other software applications. 

2. Re-initialize your startup file

To re-initialize your startup file, log out and log in to your computer. You do 
not need to reboot your system.

Using Custom Models From Your Capture Tool

You must make modifications to allow your schematic capture tool to find your 
new symbols. Each schematic capture tool has a different mechanism for 
allowing symbols to show-up in its symbol browser. Refer to your schematic 
capture tool documentation (Saber Sketch, Design Architect, Artist, or 
ViewDraw) for details. If you are using the Saber Sketch design editor use the 
following instructions.

Making Symbols Available in Saber Sketch

To make symbols available in Saber Sketch, two steps must be accomplished.

1. Modify AI_SCH_PATH to point to your new symbol directories.

2. Add the part description to the Parts Gallery.

Saber Sketch finds symbols in the same way the Saber simulator finds 
templates, except that it uses a different environment variable. You modify 
AI_SCH_PATH in the same way you modified SABER_DATA_PATH.

To add a part, you open Saber Sketch and click on the Parts Gallery button (on 
the tool bar) to open the Parts Gallery window. From the Parts Gallery window, 
you select the Edit pulldown menu, then you select the New Part menu item to 
open the Create New Part window. You can browse the Category and Symbol 
fields until you have your part set-up the way you want it, then click on the 
Create button.
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Using C or FORTRAN Routines Called by Templates

It is possible to create MAST templates that call routines written in FORTRAN 
or C. Such routines are called foreign routines. A procedure for incorporating 
such routines into a template is described in the Guide to Writing MAST 
Templates manual, topic titled Foreign Routines in MAST. 

To make foreign routines available to the Saber simulator, you complete the 
following procedure.

• Compile each foreign routine

You must use one of the supported compilers listed in one of the tables titled 
Compatible SUN Compiler Versions, or Compatible HP-UX Operating 
System Compiler Versions, to avoid possible dynamic loading problems 
when trying to use a foreign routine.

To compile a FORTRAN routine, use the command for your system as shown 
in the following table.

Command to Compile a FORTRAN Foreign Routine 

Replace filename with the name of the file you are compiling.

To compile a C routine, complete the following steps:

1. To find out if you need to add an underscore to the end of C routine names 
on your system, refer to the table titled "Command to Compile a C Foreign 
Routine". If a trailing underscore is required, complete the following:

In the file containing the C routine, add an underscore (_) to the end of the 
name of the routine in the header line of the routine.

Do not add an underscore to the name of the file or to the name used in the 
MAST foreign command in your template to call the routine.

For more information, refer to Foreign Routines in MAST on page 337.

2. Compile the C routine by using the command for your system shown in the 
following table.

System Command

Solaris f77 -c -PIC -cg89 -dalign \
-ftrap=%none -xlibmil filename.f

HP-UX f77 -c +Z filename.f
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Command to Compile a C Foreign Routine 

Replace filename with the name of the file you are compiling.

How to Make a Single Routine Available to the Saber Simulator

Once the subroutine has been created and compiled it must be made available 
to the Saber simulator.

1. Make the compiled routine available to the Saber simulator.

Complete one of the following:

• Place the compiled routine in a directory in the data search path. For 
more information on the data search path, refer to the topic titled "How 
the Applications Find Files".

• Use the procedure described in Step 1 and Step 2 to add the location of 
the compiled routine to your SABER_DATA_PATH environment 
variable.

2. Invoke the Saber simulator

Invoke the Saber simulator by using the saber command and your usual 
command options (if any).

In some cases, the Saber simulator tries to automatically load subroutines 
into a simulation upon invocation. This can be the case when subroutines 
have been compiled but not linked to a library. If this is the case, the 
compiled subroutines will be in a file labeled filename.o, where filename 
indicates the original user-assigned subroutine file name. When started 

System Command Trailing 
Underscore?

Solaris cc -c -K PIC -cg89 \
-dalign -ftrap=%none \

-xlibmil filename.c

yes

HP-UX cc -c +Z filename.c no
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under these conditions, the Saber simulator tries to dynamically link the 
filename.o files into the simulation by automatically issuing one of the 
following UNIX commands:

Multiple subroutine files are indicated by filename.o. Several different 
subroutines can be included in this list of file names. The single shared 
library file is indicated by filename.so (Sun) and filename.sl (HP).

Making a Library of Routines Available to the Saber Simulator

To make a library of routines available to the simulator:

1. Compile the subroutines using the appropriate compiler.

Refer to the table titled Command to Compile a FORTRAN Foreign Routine.

2. Link the compiled files together into a single shared library file.

Once the subroutines have been compiled, they can be linked together into 
a single shared library file. 

To link multiple subroutines together, use one of the following UNIX 
commands:

Multiple subroutine files are indicated by file1.o and file2.o ... Several 
different subroutines can be included in this list of file names. The single 
shared library file is indicated by file.so (Sun) and file.sl (HP).

3. Declare the shared library file as global

System Command

Solaris ld -o filename.so -dy -G filename.o

HP-UX ld -o filename.sl -b filename.o

System Command

Solaris ld -o file.so -dy -G file1.o file2.o ...

HP-UX ld -o file.sl -b file1.o file2.o ...
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When several subroutines are combined to create a single shared library 
file, you will need to specify a SABER_GLOBAL variable at the operating 
system level. This variable needs to include the shared library file and make 
it available anytime the Saber simulator is started. The Saber simulator will 
then search the shared library file for any subroutines which are used but 
not found by other means.

Create the SABER_GLOBAL variable using the same method you used for 
creating the SABER_DATA_PATH variable, which is described in the table 
titled "Data Search Path". You need to point the SABER_GLOBAL variable 
to the shared library file that was created in However, you must omit the .so 
file name extension. For example, if you created a file called 
my_lib_routines.so with the ld command, you need to set the 
SABER_GLOBAL variable to my_lib_routines.

4. Make the shared library file available to the Saber simulator.

Once you have created a shared library file and referenced it to the 
libai_saber.lib file, place the directory containing the shared library file in the 
SABER_DATA_PATH path variable, or place the shared library file in a 
directory contained in the SABER_DATA_PATH path variable. 

5. Re-initialize your startup environment

Reinitialize your start-up file by logging in to the machine (you may need to 
log out first).

Making User Templates Visible for NT

This topic describes the following:

How Applications Find Files
Making Symbols Available in Saber Sketch
Using Templates Written in MAST
Using C or FORTRAN Routines Called by Templates (NT)

login login_name
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To make your own templates (or any other user files) available to the Saber 
simulator or other applications, you need to do one of the following:
■ Place the files in a directory along the data search path where applications 

will find them. (The data search path is described in this subsection.)
■ Use the appropriate environment variable to tell the applications where they 

are located. 

Applications look for files containing data they need in directories along the 
data search path, as listed in the following table in the order listed. 

For example, the first directory to be searched is the working directory.

Data Search Path

If there are multiple files with the same name in the data search path, Saber 
applications use the first one encountered. Your models will be found as long 
as they are in one of the locations listed in the Data Search Path table above. 

However, if you have created a library of custom models that you would like to 
be available for general use, the proper search path location for your 

Saber Sketch Saber Simulator Description

1 . . Working directory of the design 
that the application is invoked on.

2 AI_SCH_PATH
(Locates 
directories that 
contain custom 
symbols.)

SABER_DATA_PATH
(Locates directories that 
contain custom templates 
and components)

Environment variable that you set 
to point to proper location(s).

3 saber_home\config Directory to hold configuration 
information specific to a site.

4 Directories and subdirectories in saber_home specific to each application
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directories is as part of the SABER_DATA_PATH environment variable (or 
AI_SCH_PATH in the case of Saber Sketch finding symbols).

1. The working directory is the first location that is checked along the data 
search path. For quick-test purposes, it can be convenient to place library 
items in the current directory. You should not rely on this technique for long-
term storage of your libraries, as the current directory changes depending 
on the location of the design that is being used by the application.

2. Templates and components are found by the Saber simulator using the 
SABER_DATA_PATH environment variable. The SABER_DATA_PATH 
variable is a semicolon-separated list of directories. Any custom libraries 
intended for use by others at your site should be stored in a directory that is 
part of SABER_DATA_PATH. If such a directory does not exist, you should 
create one and add its path to this variable.

The subsection titled "Using Templates Written in MAST", describes how to 
define or modify a SABER_DATA_PATH environment variable. The 
AI_SCH_PATH environment variable can be modified in a similar way.

Manually Creating Template Information Files describes how to update 
custom templates that do not have the proper permissions for a user. You 
must be a site manager with read and write permissions to use this feature.

Note:   

Never point SABER_DATA_PATH to saber_home.

Saber Sketch searches the value of the AI_SCH_PATH environment 
variable to search for directories containing symbols. The AI_SCH_PATH 
variable is a semicolon-separated list of directories. Any custom symbols 
intended for use by others at your site should be stored in a directory that is 
part of AI_SCH_PATH. If such a directory does not exist, you should create 
one and add its path to AI_SCH_PATH. If AI_SCH_PATH does not exist, 
you should create it.

3. The saber_home\config directory holds configuration information specific to 
a site. Do not place any custom libraries in this directory.

4. The last place(s) an application will search are the additional directory(s) 
that are appended by the application. These are the homes for specific-
supplied data. For the Saber simulator these directories are

saber_home\bin, then saber_home\template\*, then 
saber_home\component\*\*. 
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Do not place any custom libraries in this directory.

Precompiled files (.sld files) created using the saber -p option are found by 
using the list of directories contained in your Path variable. They are not 
found by using the search path shown in the "Data Search Path". 

Precompiled (also called preloaded) model files have priority over all other 
models. For more information on precompiled files, refer to the topic titled 
Predefined MAST Declarations.

To check the Path variable setting, do the following:

• Navigate to, and start the System program:

Start > Settings > Control Panel > System > Environment tab

• Look at the System Environment Variable list for the Path variable.

• Add the appropriate directory(s) to the value.

Making Symbols Available in Saber Sketch

To make symbols available in Saber Sketch, two steps must be accomplished.

1. Modify AI_SCH_PATH to point to your new symbol directories.

2. Add the part description to the Parts Gallery.

Saber Sketch finds symbols in the same way the Saber simulator finds 
templates, except that it uses a different environment variable. You modify 
AI_SCH_PATH in the same way you modified SABER_DATA_PATH.

To add a part, you open Saber Sketch and click on the Parts Gallery button (on 
the tool bar) to open the Parts Gallery window. From the Parts Gallery window, 
you select the Edit pulldown menu, then you select the New Part to open the 
Create New Part window. You can browse the Category, Symbol, and 
Template fields until you have your part set-up the way you want it, then click 
on the Create button.

Using Templates Written in MAST

To use templates written in the MAST modeling language, you need to inform 
the software where they are located. This description specifically refers to the 
SABER_DATA_PATH variable. The AI_SCH_PATH variable might also need 
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to be set for custom symbols in Saber Sketch using the same procedure. The 
following methods can be used:

Method 1:  Place the templates in a directory in the data search path. Once you 
have done this, the templates will be found by the applications when they are 
needed.

Method 2:  Specify the directory containing the templates in an environment 
variable called SABER_DATA_PATH. To add your own template library to the 
SABER_DATA_PATH environment variable, complete the following procedure.

1. Define or modify the SABER_DATA_PATH environment variable

In this example, dir1, dir2, and dir3 are full pathnames to three different 
directories.

To check the SABER_DATA_PATH variable setting, do the following:

• Navigate to, and start the System program:

Start > Settings > Control Panel > System > Environment tab

• Look at the System Environment Variable list for the 
SABER_DATA_PATH variable.

• If it does not exist, create it and add the appropriate directory(s) to the 
value.

If your SABER_DATA_PATH environment variable includes directories that 
are provided with the software, you can remove these directories from the 
list. For example, directories containing template or component libraries 
provided with the Saber simulator should not be included in the 
SABER_DATA_PATH environment variable.

• Use care when you use the wildcard (*) character to include directories 
in the SABER_DATA_PATH environment variable. If too many 
directories are included in the SABER_DATA_PATH environment 
variable, some files may not be found by the Saber simulator or other 
applications. 

2. Re-initialize your startup environment

To re-initialize your startup environment, log out and log in to your computer. 
You do not need to reboot your system.

SABER_DATA_PATH="dir1;dir2;dir3"
Saber® MAST Language User Guide 513
B-2008.09



Appendix B: Making User Templates Visible for Unix and NT
Using C or FORTRAN Routines Called by Templates
Using C or FORTRAN Routines Called by Templates 

It is possible to create MAST templates that call routines written in FORTRAN 
or C. Such routines are called foreign routines. A procedure for incorporating 
such routines into a template is described in the topic titled Foreign Routines in 
MAST.

To make foreign routines available to the Saber simulator on a Windows NT 
system you must do the following:
■ Insert the proper code in the header of each foreign routine
■ Compile the routine on the Windows NT system
■ Link multiple-compiled files into one file
■ Set up environment variables so that the Saber simulator can find the linked 

files

The C Language Header

If the C programming language is being used to create foreign routines for use 
with MAST and the Saber simulator, the routine header must appear exactly as 
follows (substitute your foreign routine name for CROUTINE):

The __declspec statement is important for Windows NT since it indicates that 
the routine is exported from the Dynamic Link Loader and can be found by the 
Saber simulator. 

The CROUTINE string must be entered in upper-case characters.

The FORTRAN Language Header

If the FORTRAN programming language is being used to create foreign 
routines for use with MAST and the Saber simulator, the routine header must 

declspec(dllexport) void CROUTINE(double* inp,long*

ninp,long* ifl,long* nifl,double* out,long* nout,long* ofl,

long* nofl,double* aundef,long* ier)

{

}
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appear exactly as follows (substitute your foreign routine name for 
FROUTINE):

The ATTRIBUTES statement is important for Windows NT since it indicates 
that the routine is exported from the Dynamic Link Loader and can be found by 
the Saber simulator.

The FROUTINE string must be entered in upper-case characters.

How to Make a Single Routine Available to the Saber Simulator

Once the subroutine has been created, it must be compiled to create the 
executable Dynamic Link/Load Library (DLL) file and then referenced to the 
Saber library. Both operations can be taken care of using the same command. 
The compiling and referencing operations are part of the C or FORTRAN 
language compilers and can be version-dependent.

One-Step Dynamic Library Linking
In some cases, the Saber simulator tries to automatically load subroutines into 
a simulation upon invocation. This can be the case when subroutines have 
been compiled but not linked to a library. If this is the case, the compiled 
subroutines will be in a file labeled filename.obj, where filename indicates the 
original user-assigned subroutine file name. When started under these 
conditions, the Saber simulator tries to dynamically link the filename.obj files 
into the simulation by automatically issuing the following command:

link /DLL /OUT:filename.dll filename.obj 
  saber_home\lib\libai_saber.lib
  saber_home\lib\libai_analogy.lib

where saber_home is the software location. In a standard installation this is:

C:\<filename>\SaberDesigner5.2

subroutine 
FROUTINE(inp,ninp,ifl,nifl,out,nout,ofl,nofl,aundef,ier)

!MS$ATTRIBUTES DLLEXPORT :: FROUTINE

integer ninp,nifl,nout(2),nofl,ifl(*),ofl(*),ier

real*8 inp(*),out(*),aundef
Saber® MAST Language User Guide 515
B-2008.09



Appendix B: Making User Templates Visible for Unix and NT
Using C or FORTRAN Routines Called by Templates
This dynamic linking process, however, may not work if there are libraries 
which need to be included but are not part of libai_saber.lib or libai_analogy.lib. 
If this is the case, refer to the following sections titled “One-Step C Language 
Compiling and Linking"and "One-Step FORTRAN Language Compiling and 
Linking" depending on the programming language being used.

One-Step C Language Compiling and Linking
When the C programming language is used to create a subroutine, the 
following command must be used:

cl /LD filename.c saber_home\lib\libai_saber.lib

saber_home\lib\libai_analogy.lib

Where saber_home is the software location. In a standard installation this is:

C:\<filename>\SaberDesigner5.2

where the name of the actual subroutine file, without extensions, is substituted 
for filename, and filename indicates the original user-assigned subroutine file 
name. The /LD command indicates a DLL file will be created. The resulting DLL 
file will be named filename.dll. For example, if the original C file was called 
adder.c, the resulting DLL file would be called adder.dll.

One-Step FORTRAN Language Compiling and Linking
When the FORTRAN programming language is used to create a subroutine, 
the following command must be used:

fl32 /LD filename.f

saber_home\lib\libai_saber.lib

saber_home\lib\libai_analogy.lib

where saber_home is the software location. In a standard installation this is:

C:\<filename>\SaberDesigner5.2

Where the name of the actual subroutine file, without extensions, is substituted 
for filename, and filename indicates the original user-assigned subroutine file 
name. The /LD command indicates a DLL file will be created. The resulting DLL 
file will be named filename.dll. For example, if the original FORTRAN file was 
called adder.f, the resulting DLL file would be called adder.dll. The 
%SABER_HOME% string is a path variable, set during the Saber software 
installation, which points to the location of the Saber program and its 
associated files.
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How to Compile and Link Libraries of Routines

There may be situations where it is desirable to link several subroutines into a 
single DLL file, and then reference this file to a Saber library as shown in the 
following steps:

1. Compile the subroutines using the appropriate compiler.

Compiling subroutines is a language-dependent operation. 

You must use one of the supported compilers listed in the topic titled 
Compatible Compiler Versions, to avoid possible dynamic loading problems 
when trying to use a foreign routine.

2. Link the compiled files together into a single DLL file.

Once the subroutines have been compiled, they can be linked together into 
a single DLL file. To link multiple subroutines together, use the following 
command:

where saber_home is the software location. In a standard installation this is:

The /OUT:dllname.dll command assigns a user-specified name to the 
resulting DLL file. Multiple subroutine files are indicated by filename1.obj 
and filename2.obj. Several different subroutines can be included in this list 
of file names.

3. Declare the DLL file as global.

When several subroutines are combined to create a single DLL file, it is 
necessary to specify a SABER_GLOBA variable at the operating system 
level. This variable will point to the combined DLL file and make it available 
anytime the Saber simulator is started. The Saber simulator will then search 
the combined DLL file for any subroutines which are used but not found by 
other means.

link /DLL /OUT:dllname.dllfilename1.obj filename2.obj 
saber_home\lib\libai_saber.lib

saber_home\lib\libai_analogy.lib

C:\<filename>\SaberDesigner5.2
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Set the SABER_GLOBAL variable as follows:

Navigate to, and start the System program:
Start > Settings > Control Panel > System > Environment tab

• Set the variable as follows:

The Value entry field contains the name of the DLL file assigned in Step 2, 
but does not contain the .dll extension. More than one DLL file can be 
assigned to the Value by using a comma-separated list of file names. For 
example:

4. Make the combined DLL file available to the Saber simulator.

Once a DLL file has been created and referenced to the libai_saber.lib and 
libai_analogy.lib files, the directory containing the DLL file must be placed in 
the SABER_DATA_PATH path variable, or the DLL file must be placed in a 
directory contained in the SABER_DATA_PATH path variable. Use the 
following procedures to check and edit the SABER_DATA_PATH variable.

Check or edit the SABER_DATA_PATH variable as follows:

Navigate to, and start the System program:
Start > Settings > Control Panel > System > Environment tab

• In either the System or User environment variable list box, an entry for 
SABER_DATA_PATH may appear. If it does not appear, create it. Enter 
the path(s) to the directory(s). If there is more than one path, list them 
and separate by colons.

5. Re-initialize your startup environment

To re-initialize your startup environment, log out and log in to your computer. 
You do not need to reboot your system.

Variable:   SABER_GLOBAL

Value: dllname

Variable:   SABER_GLOBAL

Value: dllname1, dllname2, dllname3
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