ActivePSR
 Innovative Power!

AC/DC IED lighting

 DESIGN GUIDE

 DESIGN GUIDE}

June 2010

Table of ConteNts

ACT364 1W 350mA(3.5V) 3
ACT364 3W 700mA(4V) 5
ACT364 3W 350mA(12V) 7
ACT364 6W 350mA(26V) 9
ACT50 5W 350mA(15V) 11
ACT50 5W 128mA(49V) 13
ACT50 7W 350mA(28V) 15
ACT50 12W 350mA(35V) Non-Isolated. 17
ACT50 12W 350mA(35V) PAR38. 19
ACT50 12W 350mA(35V) High Efficiency 21
ACT50 21W 750mA(28V) 23

E27 1x1W LED Lighting

Input Voltage	Device	LED(s)	Output Voltage	Power Output	Topology
$85-264 \mathrm{VAC}$	ACT364	1	3.5 V	1 W	Flyback

Operation and Application

Figure 1 is the schematic of an offline LED driver using ACT364 to provide a power output of 3.5 V , 350mA. This circuit is a typical flyback type power supply which includes the AC rectified circuit (BD1, $C 1$), power drive circuit ($B D$ pin, $Q 1$), secondary rectified circuit (D3, C4) and the IC(ACT364) control circuit. ACT364 is a Primary Side Regulator (PSR) so that the power supply unit can regulate current and voltage without opto-coupler. Pin 4 and Pin 2 are the VDD and ground pins to provide power for the IC. Pin 3 is the base driver for the NPN transistor. Pin 1 is the switching pin. Pin 5 is the feedback pin that senses the output current and output voltage. Pin 6 is the peak current sense pin. Through a patented PSR technology, this circuit
can provide drivers for one (min), or two (max) LED lights in series due to the wide VDD operation ranges.

Key Component Selection

The turn ratio of the primary turn and the secondary turn $\left(\mathrm{N}_{\mathrm{P}} / \mathrm{N}_{\mathrm{S}}\right)$, together with the R7 sets the maximum output current value as shown in formula (1.1). The voltage setting is through the flyback voltage of auxiliary winding and the feedback resistor R5, R6 as shown in formula (1.2). $N_{P} / N_{S} / N_{\text {AUX }}(160 / 10 / 23)$ must be designed correctly to make sure it operates in DCM mode and it can supply either one to two LEDs in same circuit. A design value $\mathrm{V}_{\text {outcv }}$ equal to 3.5 V and $\mathrm{l}_{\text {OUtcc-min }}$ equal to 350 mA are used to do the design.
$I_{\text {OUTCC }}=\frac{1}{2} \times L_{P} \times\left(\frac{0.396 \times 0.9}{R_{C S}}\right)^{2} \times\left(\frac{\eta \times F_{\text {SW }}}{V_{\text {OUTCV }}}\right)$
N_{S} and $\mathrm{N}_{\mathrm{AUX}}$ are numbers of transformer secondary and auxiliary turns, and $\mathrm{V}_{\text {SEC-R }}$ is the rectifier diode forward drop voltage at approximately 0.1A bias.
$V_{\text {OUTCV }}=V_{R E F} \times\left(1+\frac{R 5}{R 6}\right) \times \frac{N_{S}}{N_{A U X}}-V_{S E C_{-} R}$
The peak current limit is set by $(0.396 \times 0.9) / R_{\text {cs }}$.

Figure 1:

Schematic of LED Lighting Driver

Innovative Power ${ }^{\text {TM }}$
ACT364 DESIGN GUIDE
June 2010

Bill of Materials

REF.	DESCRIPTION	MFTR.
C1	Capacitor,Electrolytic, $4.7 \mu \mathrm{~F} / 400 \mathrm{~V}, 8 \times 12 \mathrm{~mm}$	KSC
C2	Capacitor,Ceramic,100pF/500V,1206,SMD	POE
C3	Capacitor,Ceramic,47 μ F/25V,1206,SMD	POE
C4	Capacitor,Ceramic,10 $\mathrm{F} / 10 \mathrm{~V}, 1206$, SMD	POE
BD1	Bridge Rectifier,600V/0.5A, MBS06, SDIP	PANJIT
D1	Diode,U1tra Fast,GS1M,1000V/1.0A,SMA	PANJIT
D2	General Rectifier, LL4148, 100V/1A	PANJIT
D3	Diode,schottky,40V/2A,S240,SMA	PANJIT
L1	Axial Inductor, 1.5mH,0410,Dip	SoKa
PCB1	PCB, L^{*} W*T $=25.5 \times 14 \times 1.6 \mathrm{~mm}, \mathrm{Rev}: A$	Jintong
FR1	Wire Round Resistor,1W,10ohm,KNP,5\%	TY-OHM
Q1	Transistor,HFE 15-25,NPN,D13003,TO-92	Huawai
R1	Chip Resistor, 00K ohm,0805,5\%	TY-OHM
R2	Chip Resistor,10M ohm,1206,5\%	TY-OHM
R3,4	Chip Resistor,22 ohm,0805,5\%	TY-OHM
R5	Chip Resistor,52.3K ohm,0805,1\%	TY-OHM
R6	Chip Resistor,9.2K ohm,0805,1\%	TY-OHM
R7	Chip Resistor, 2.8 ohm, 1206,5\%	TY-OHM
R8	Chip Resistor, 3K ohm, 0805, 5\%	TY-OHM
T1	Transformer, Lp=4.2mH, EE10	
U1	IC, ACT364US-T, SOT23-6	ACT

Transformer Specification

$\varepsilon^{81}{ }^{\circ}$

Build Up

WINDING	TERMINAL		TURN	WIRE			INSULATION	
	START	FINISH		TYPE	SIZE \times QTY	LAYER	THICKIWIDE	LAYER
P1	1	4		2UEW	$0.1 \Phi \times 1$	3	$25 \mu / 8.5 \mathrm{~mm}$	2
SH2	2	Open	16	2UEW	$0.1 \Phi \times 3$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
S1	8	7	10	TEXE Reverse	$0.35 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
P2	3	2	23	2UEW	$0.1 \Phi \times 2$	2	$25 \mu / 8.5 \mathrm{~mm}$	2
SH2	Core	4	1	Copper Wire	$0.18 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	2

PCB Top and Bottom Layers

Electrical Specifications

ITEM	DESCRIPTION	CONDITION	LIMITS
1	Electrical Strength	$50 \mathrm{~Hz}, 1$ minute, from Primary and Secondary	3 kVAC
2	P1 Inductance	Inductance between pin 4 and pin 1 at 1VAC \& 1kHz	$4.2 \mathrm{mH} \pm$ 7%
3	P1 Leakage Inductance	Inductance between pin 4 and pin 1 with pins 3-2 and 8-5 shorted	$75 \mu \mathrm{H}$

Typical performance Characteristics

EVALUATION KITS	$\mathbf{V}_{\mathbf{I N}}$	$\mathbf{I}_{\mathbf{0}}$	LED(s)
ACT364-LED01	$85-264 \mathrm{VAC}$	$300-350 \mathrm{~mA}$	1 or 2

Note: P1 and P2 are Primary, S1 is Secondary (Bobbin: EE-10 Horizontal).

ACT364 DESIGN GUDE
Innovative Power ${ }^{\text {TM }}$

GU10 1x3W LED Lighting

Input Voltage	Device	LED(s)	Output Voltage	Power Output	Topology
$85-264 \mathrm{VAC}$	ACT364	1	4 V	3 W	Flyback

Operation and Application

Figure 1 is the schematic of an offline LED driver using ACT364 to provide a power output of 4 V , 650 mA . This circuit is a typical flyback type power supply which includes the AC rectified circuit (BD1, L1, C1), primary snubber circuit (D1, R1, C2), power drive circuit (BD pin ,Q1), secondary rectified circuit (D3, C4) and the IC control circuit. ACT364 is a Primary Side Regulator (PSR) so that the power supply unit can regulate current and voltage without Opto-couple. Pin 4 and Pin 2 are the VDD and ground pins to provide power for the IC. Pin 3 is the base drive for the NPN transistor. Pin 1 is the switching pin. Pin 5 is the feedback pin that senses the output current and output voltage. Pin 6 is the peak current sense pin. Through a patented PSR
technology, this circuit can provide drivers one 3 W LED lights in series due to the wide VDD operation ranges.

Key Component Selection

The turn ratio of the primary turn and the secondary turn $\left(\mathrm{N}_{\mathrm{P}} / \mathrm{N}_{\mathrm{S}}\right)$, together with the R7 sets the maximum output current value as shown in formula (1.1). The voltage setting is through the flyback voltage of auxiliary winding and the feedback resistor R5, R6 as shown in formula (1.2). $\mathrm{N}_{\mathrm{P}} / \mathrm{N}_{\mathrm{S}} / \mathrm{N}_{\mathrm{Aux}}(168 / 7 / 22)$ must be designed correctly to make sure it operates in DCM mode and it can supply one LEDs in same circuit. A design value Voutcv equal to 4 V and $\mathrm{l}_{\text {outcc_min }}$ equal to 650 mA are used to do the design.
$I_{\text {OUTCC }}=\frac{1}{2} \times L_{P} \times\left(\frac{0.396 \times 0.9}{R_{\text {CS }}}\right)^{2} \times\left(\frac{\eta \times F_{\text {SW }}}{V_{\text {OUTCV }}}\right)$
N_{S} and $\mathrm{N}_{\mathrm{AUX}}$ are numbers of transformer secondary and auxiliary turns, and $\mathrm{V}_{\text {SEC-R }}$ is the rectifier diode forward drop voltage at approximately 0.1A bias.
$V_{\text {OUTCV }}=V_{\text {REF }} \times\left(1+\frac{R 5}{R 6}\right) \times \frac{N_{S}}{N_{\text {AUX }}}-V_{S_{S E C} R}$
The peak current limit is set by $(0.396 \times 0.9) / R_{\text {Cs }}$.

Figure 1:

Typical Application Circuit

Innovative Power ${ }^{\text {TM }}$

ACT364 DESIGN GUDE

Bill of Materials

REF.	DESCRIPTION	MFTR.
C1	Capacitor,Electrolytic, $4.7 \mu \mathrm{~F} / 400 \mathrm{~V}, 8 \times 12 \mathrm{~mm}$	KSC
C2	Capacitor,Ceramic,100pF/500V,1206,SMD	POE
C3	Capacitor,Ceramic,4.7 $\mathrm{F} / 25 \mathrm{~V}, 1206$, SMD	POE
C4	Capacitor,Ceramic, $10 \mu \mathrm{~F} / 10 \mathrm{~V}, 1206, \mathrm{SMD}$	POE
BD1	Bridge Rectifier,600V/0.5A,MBS06,SDIP	PANJIT
D1	Diode,U1tra Fast,GS1M,1000V/1.0A,SMA	PANJIT
D2	General Rectifier,LL4148,100V/1A	PANJIT
D3	Diode,schottky,40V/2A,S240,SMA	PANJIT
L1	Axial Inductor, 1.5mH,0410,Dip	SoKa
PCB1	PCB $, L * W * T=25.5 \times 14 \times 1.6 \mathrm{~mm}, \mathrm{Rev}: A$	Jintong
FR1	Wire Round Resistor,1W,10ohm,KNP,5\%	TY-OHM
Q1	Transistor,HFE 15-25,NPN,D13003,TO-92	Huawai
R1	Chip Resistor,300K ohm,0805,5\%	TY-OHM
R2	Chip Resistor,10M ohm,1206,5\%	TY-OHM
R3,4	Chip Resistor,22 ohm,0805,5\%	TY-OHM
R5	Chip Resistor,51.6K ohm,0805,1\%	TY-OHM
R6	Chip Resistor,9.88K ohm,0805,1\%	TY-OHM
R7	Chip Resistor, 2 ohm,1206,5\%	TY-OHM
R8	Chip Resistor,2K ohm,0805,5\%	TY-OHM
T1	Transformer,Lp=3.2mH,EE10	
U1	IC,ACT364US-T,SOT23-6	ACT

Transformer Specification

Build up

WINDING	TERMINAL			WIRE			INSULATION	
	START	FINISH	TURNS	TYPE	SIZE \times QTY	LAYER	THICKIWIDE	LAY ER
P1	1	4	160	2UEW	$0.1 \Phi \times 1$	3	$25 \mu / 8.5 \mathrm{~mm}$	2
SH2	2	Open	16	2 UEW	$0.1 \Phi \times 3$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
S1	8	7	10	TEXE Reverse	$0.35 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
P2	3	2	22	$2 U E W$	$0.1 \Phi \times 2$	2	$25 \mu / 8.5 \mathrm{~mm}$	2
SH2	Core	4	1	Copper Wire	$0.18 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	2

PCB Top and Bottom Layers

Electrical Specifications

ITEM	DESCRIPTION	CONDITION	LIMITS
1	Electrical Strength	$50 \mathrm{~Hz}, 1$ minute, from Primary and Secondary	3 kVAC
2	P1 Inductance	Inductance between pin 1 and pin 4 at 1VAC \& 1kHz	$3.2 \mathrm{mH} \pm$ 7%
3	P1 Leakage Inductance	Inductance between pin 1 and pin 4 with pins 1-2 and 7-8 shorted	$75 \mu \mathrm{H}$

Typical Performance Characteristics

Output Current vs. Input Voltage

EVALUATION KITS	$\mathbf{V}_{\text {IN }}$	$\mathbf{I}_{\mathbf{0}}$	LED(s)
ACT364-LED02	$85-264 \mathrm{VAC}$	$650-750 \mathrm{~mA}$	1

P1 and P2 are Primary, S1 is Secondary (Bobbin: EE-10 Vertical) ACT364 DESIGN GUDE

G U10 3x1W LED Lighting

Input Voltage	Device	LED(s)	Output Voltage	Power Output	Topology
$85-264 \mathrm{VAC}$	ACT364	3	12 V	3 W	Flyback

Operation and Application

Figure 1 is the schematic of an offline LED driver using ACT364 to provide a power output of 12 V , 350 mA . This circuit is a typical flyback type power supply which includes the AC rectified circuit (BD1, C1, L1), primary snubber circuit (D1, R1, C2), power drive circuit (BD pin, Q1), secondary rectified circuit (D3, C4) and the IC control circuit. ACT364 is a Primary Side Regulator (PSR) so that the power supply unit can regulate current and voltage without Opto-coupler. Pin 4 and Pin 2 are the VDD and ground pins to provide power for the IC. Pin 3 is the base drive for the NPN transistor. Pin 1 is the switching pin. Pin 5 is the feedback pin that senses the output current and output voltage. Pin 6 is the
peak current sense pin. Through a patented PSR technology, this circuit can provide drivers for two (min), or three (max) LED lights in series due to the wide VDD operation ranges.

Key Component Selection

The turn ratio of the primary turn and the secondary turn $\left(N_{P} / N_{S}\right)$, together with the $R 7$ sets the maximum output current value as shown in formula (1.1). The voltage setting is through the flyback voltage of auxiliary winding and the feedback resistor R5, R6 as shown in formula (1.2). $\mathrm{N}_{\mathrm{P}} / \mathrm{N}_{\mathrm{S}} / \mathrm{N}_{\mathrm{AUX}}(160 / 20 / 24)$ must be designed correctly to make sure it operates in DCM mode and it can supply either two or three LEDs in same circuit. A design value $\mathrm{V}_{\text {outcv }}$ equal to 12 V and $\mathrm{l}_{\text {Outccmin }}$ equal to 300 mA are used to do the design.
$I_{\text {OUTCC }}=\frac{1}{2} \times L_{P} \times\left(\frac{0.396 \times 0.9}{R_{C S}}\right)^{2} \times\left(\frac{\eta \times F_{S W}}{V_{\text {OUTCV }}}\right)$
N_{S} and $\mathrm{N}_{\mathrm{Aux}}$ are numbers of transformer secondary and auxiliary turns, and $\mathrm{V}_{\text {SECR }}$ is the rectifier diode forward drop voltage at approximately 0.1A bias.
$V_{\text {OUTCV }}=V_{R E F} \times\left(1+\frac{R 5}{R 6}\right) \times \frac{N_{S}}{N_{A U X}}-V_{S E C _R}$
The peak current limit is set by $(0.396 \times 0.9) / R_{\text {Cs }}$.

Fi

Innovative Power ${ }^{\text {TM }}$

ACT364 DESIGN GUDE

Bill of Materials

REF.	DESCRIPTION	MFTR.
C1	Capacitor,Electrolytic, $4.7 \mu \mathrm{~F} / 400 \mathrm{~V}, 8 \times 12 \mathrm{~mm}$	KSC
C2	Capacitor,Ceramic,100pF/500V,1206,SMD	POE
C3	Capacitor,Ceramic,4.7 $\mathrm{F} / 25 \mathrm{~V}, 1206, S M D$	POE
C4	Capacitor,Ceramic,10 $\mathrm{F} / 16 \mathrm{~V}, 1206, S M D$	POE
C5	Capacitor,Electrolytic, $2.2 \mu \mathrm{~F} / 400 \mathrm{~V}, 6.2 \times 12 \mathrm{~mm}$	KSC
BD1	Bridge Rectifier,600V/0.5A,MBS06,SDIP	PANJIT
D1	Diode,U1tra Fast,GS1M,1000V/1.0A,SMA	PANJIT
D2	General Rectifier, LL4148, 100V/1A	PANJIT
D3	Diode,schottky,100V/1A,S100,SMA	PANJIT
L1	Axial Inductor, 1.5mH,0410,Dip	SoKa
PCB1	PCB, L^{*} W* ${ }^{*}=25.5 \times 14 \times 1.6 \mathrm{~mm}, \mathrm{Rev}: \mathrm{A}$	Jintong
FR1	Wire Round Resistor,1W,10ohm,KNP,5\%	TY-OHM
Q1	Transistor,HFE15-25,NPN,D13003,TO-92	Huawai
R1	Chip Resistor,300K ohm,0805,5\%	TY-OHM
R2	Chip Resistor,10M ohm, 1206,5\%	TY-OHM
R3,4	Chip Resistor, 22 ohm,0805,5\%	TY-OHM
R5	Chip Resistor,52.3K ohm,0805,1\%	TY-OHM
R6	Chip Resistor,9.2K ohm,0805,1\%	TY-OHM
R7	Chip Resistor, 1.4 ohm, 1206,5\%	TY-OHM
R8	Chip Resistor,10K ohm,0805,5\%	TY-OHM
T1	Transformer,Lp=2.1mH,EE10	
U1	IC, ACT364US-T, SOT23-6	ACT

Transformer Specification

Build Up

WINDING	TERMINAL			WIRE			INSULATION	
	START	FINISH	TURNS	TYPE	SIZE \times QTY	LAYER	THICKIWIDE	LAY ER
P1	1	4	160	2 UEW	$0.1 \Phi \times 1$	3	$25 \mu / 8.5 \mathrm{~mm}$	2
SH1	2	Open	16	$2 U E W$	$0.1 \Phi \times 3$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
S1	8	7	20	TEXE Reverse	$0.25 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
P2	3	2	24	$2 U E W$	$0.1 \Phi \times 2$	2	$25 \mu / 8.5 \mathrm{~mm}$	2
SH2	Core	4	1	Copper Wire	$0.18 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	2

PCB Top and Bottom Layers

Electrical Specifications

ITEM	DESCRIPTION	CONDITION	LIMITS
1	Electrical Strength	50Hz, 1 minute, from Primary and Secondary	3 kVAC
2	P1 Inductance	Inductance between pin 1 and pin 4 at 1VAC \& 1kHz	$2.1 \mathrm{mH} \pm$ 7%
3	P1 Leakage Inductance	Inductance between pin 1 and pin 4 with pins 2-3 and $7-8$ shorted	$75 \mu \mathrm{H}$

Typical Performance Characteristics

EVALUATION KITS	$\mathbf{V}_{\mathbf{I N}}$	$\mathbf{I}_{\mathbf{0}}$	LED(s)
ACT364-LED03	$85-264 \mathrm{VAC}$	$280-350 \mathrm{~mA}$	2 or 3

Note: P1 and P2 are Primary, S1 is Secondary (Bobbin: EE-10 Vertical).

ACT364 DESIGN GUDE
Innovative Power ${ }^{\text {TM }}$

E27 6x1W LED Lighting

Input Voltage	Device	LED(s)	Output Voltage	Power Output	Topology
$85-264 \mathrm{VAC}$	ACT364	7	26 V	6 W	Flyback

Operation and Application

Figure 1 is the schematic of an offline LED driver using ACT364 to provide a power output of 26 V , 240 mA . This circuit is a typical flyback type power supply which includes the AC rectified circuit (D1D4, C1, C2), power drive circuit (BD pin, Q1), primary snubber circuit (D5, R3, C4), secondary rectified circuit (D7, C7, C8) and the IC control circuit. ACT364 is a Primary Side Regulator (PSR) so that the power supply unit can regulate current and voltage without Opto-coupler. Pin 4 and Pin 2 are the VDD and ground pins to provide power for the IC. Pin 3 is the base driver for the NPN transistor. Pin 1 is the switching pin. Pin5 is the feedback pin that senses the output current and output voltage. Pin 6 is the peak current sense pin. Through a patented PSR technology, this circuit
can provide drivers for five (min), or seven (max) LED lights in series due to the wide VDD operation ranges.

Key Component Selection

The turn ratio of the primary turn and the secondary turn ($\mathrm{N}_{\mathrm{P}} / \mathrm{N}_{\mathrm{S}}$), together with the R10 and R11 sets the maximum output current value as shown in formula (1.1). The voltage setting is through the flyback voltage of auxiliary winding and the feedback resistor R8, R9 as shown in formula (1.2). $\mathrm{N}_{\mathrm{P}} / \mathrm{N}_{\mathrm{S}} / \mathrm{N}_{\mathrm{AUX}}(110 / 28 / 16)$ must be designed correctly to make sure it operates in DCM mode and it can supply either five or seven LEDs in same circuit. A design value $\mathrm{V}_{\text {outcv }}$ equal to 26 V and loutcc_min equal to 240 mA are used to do the design.
$I_{\text {OUTCC }}=\frac{1}{2} \times L_{P} \times\left(\frac{0.396 \times 0.9}{R_{C S}}\right)^{2} \times\left(\frac{\eta \times F_{\text {SW }}}{V_{\text {OUTCV }}}\right)$
N_{S} and $\mathrm{N}_{\mathrm{Aux}}$ are numbers of transformer secondary and auxiliary turns, and $\mathrm{V}_{\text {SEC_R }}$ is the rectifier diode forward drop voltage at approximately 0.1A bias.
$v_{\text {OUTCV }}=v_{R E F} \times\left(1+\frac{R 8}{R 9}\right) \times \frac{N_{S}}{N_{\text {AUX }}}-v_{\text {SEC_R }}$
The peak current limit is set by $(0.396 \times 0.9) / R_{\text {cs }}$.

Figure 1:
Schematic of LED Lighting Driver

Innovative Power ${ }^{\text {TM }}$

ACT364 DESIGN GUIDE

June 2010

Bill of Materials

REF.	DESCRIPTION	MFTR.
C1	Cap-X2 $0.1 \mu \mathrm{~F} 250 \mathrm{~V}, 13 \times 6 \times 11 \mathrm{~mm}, \mathrm{P}=10 \mathrm{~mm}$	UTX
C2, 3	Capacitor Electrolytic, $4.7 \mu \mathrm{~F} / 400 \mathrm{~V}, 8 \times 12 \mathrm{~mm}$	KSC
C4	Capacitor Ceramic, 1000pF/1KV,Dip	POE
C5	Capacitor Electrolytic, $10 \mu \mathrm{~F} / 35 \mathrm{~V}, 5 \times 11 \mathrm{~mm}$	KSC
C6	Capacitor Ceramic,1000pF/50V,1206	POE
C7, C8	Capacitor Electrolytic, $100 \mu \mathrm{~F} / 35 \mathrm{~V}, 5 \times 11 \mathrm{~mm}$	KSC
C9	Y1 Capacitor,1000pF/400VAC,DIP	POE
D1-4	Rectifier,1000V/1A,1N4007,DO-41	Good-Ark
D5	Diode,Ultra Fast,FR107,1000V/1.0A,DO-41	Good-Ark
D6	Diode,Ultra Fast,FR102,100V/1.0A,DO-41	Good-Ark
D7	Diode, Schottky,HER104,300V/1A,DO-15	ST
L1	Axial Inductor, 1mH, 0410, DIP	SoKa
PCB	PCB, ϕ^{*} T= $43 \times 1.0 \mathrm{~mm}, \mathrm{Rev}: A$	Jintong
FR1	Wire Round Resistor, 1W, 10ת, KNP, 5\%	TY-OHM
Q1	Transistor,HFE15-25,NPN,D13003,TO-126	Huawei
VL1	Varistor,TVR05,431KSY, ¢ 5,430V, $\pm 10 \%$,	Thinking
R1	Chip Resistor, 1 M , 1206,5\%	TY-OHM
R2	Chip Resistor,2.2k $, 1206,5 \%$	TY-OHM
R3	Chip Resistor,300k 2 ,1/2W,5\% DIP	TY-OHM
R4,5	Chip Resistor,5m $2,0805,5 \%$	TY-OHM
R6	Chip Resistor,22,,1206,1\%	TY-OHM
R7	Chip Resistor,22Л,1/4W,5\%,DIP	TY-OHM
R8	Chip Resistor, $51.1 \mathrm{k} \Omega, 0805,1 \%$	TY-OHM
R9	Chip Resistor,8.66k $\Omega, 0805,1 \%$	TY-OHM
R10, 11	Chip Resistor,1.5 , 1206,5\%	TY-OHM
R12	Chip Resistor,100』,0805,5\%	TY-OHM
R13	Chip Resistor,10k $\Omega, 0805,5 \%$	TY-OHM
T1	Transformer, $\mathrm{L}_{P}=1.2 \mathrm{mH}, \mathrm{EE} 16$	
U1	IC,ACT364US-T,SOT23-6	ACT

Transformer Specification

Build up

WINDING	TERMINAL			WIRE			INSULATION	
	START	FINISH	TURNS	TYPE	SIZE \times QTY	LAYER	THICKINIDE	LAY ER
P1	2	5	110	2UEW	$0.15 \Phi \times 1$	2	$25 \mu / 8.5 \mathrm{~mm}$	2
SH2	4	NC	17	$2 U E W$	$0.12 \Phi \times 3$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
S1	9	10	28	TEXE Reverse	$0.3 \Phi \times 1$	2	$25 \mu / 8.5 \mathrm{~mm}$	2
P2	1	4	16	2UEW	$0.2 \Phi \times 2$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
SH2	Core	5	1	Copper Wire	$0.18 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	2

Note: P1 and P2 are Primary, S1 is Secondary (Bobbin: EE-16 Vertical).

PCB Top and Bottom Layers

Electrical Specifications

ITEM	DESCRIPTION	CONDITION	LIMITS
1	Electrical Strength	50Hz, 1 minute, from Primary and Secondary	3 kVAC
2	P1 Inductance	Inductance between pins 2 and pin 5 at 1VAC \& 1kHz	$1.2 \mathrm{mH} \pm$ 7%
3	P1 Leakage Inductance	Inductance between pins 2 and pin 5 with pins 1-4 and $9-10$ shorted	$75 \mu \mathrm{H}$

Typical performance Characteristics

EVALUATION KITS	$\mathbf{V}_{\mathbf{I N}}$	$\mathbf{I}_{\mathbf{0}}$	LED(s)
ACT364-LED04	$85-264 \mathrm{VAC}$	$200-270 \mathrm{~mA}$	5 or 7

ACT50 DESIGN GUIDE
Innovative Power ${ }^{\text {TM }}$

16V, 5W, 350mA High Efficienc y Solutions

Input Voltage	Device	LED(s)	Output Voltage	Power Output	Topology
$85-264 \mathrm{VAC}$	ACT50	4	16 V	5 W	Flyback

FATURES

- Universal AC input
- High efficiency
- Constant Voltage Control \& Short Circuit Protection
- CC temperature compensation
- $\pm 5 \%$ current accuracy
- Exceed Energy Start 2.0 regulation
- Small SOT23-5 Package

APPUCATIONS

- Off-Line isolated LED Driver

Operation and Application

Figure 1 is the schematic of an offline LED driver using ACT50 to provide a power output of 16 V , 350 mA . This circuit is a Flyback type power supply which includes the AC rectified circuit (D4, L1, C1, C 2), power drive circuit (D9, R6, Q1), output rectified circuit (D10, C8) and the IC supply and control circuit. ACT50 is a very low cost peak
current control PWM controller. Constant voltage control is through OPTO couple and ZD1. Accurate current control is through R10 and the TC compensation circuit (C9, R14, R13).

Key Component Selection

The inductance value is selected to enable to operate the circuit in the CCM mode. The ripple current can be designed to be $20 \%-40 \%$ of the load current. A fast efficiency rectifier D10 is required to achieve higher efficiency. The turn ratio of secondary and auxiliary can be set as to make sure the V_{DD} in a working range. The serial output voltage V_{0} should be in the range of $12 \mathrm{~V}-16 \mathrm{~V}$ voltage. The constant output current is set through R10 according formula (1). R14 is a thermal resistor to achieve good output current accuracy in high temperature. V_{BE} is 0.6 V at $25^{\circ} \mathrm{C}$ and 0.55 V at $50^{\circ} \mathrm{C}$ respectively.

$$
\begin{equation*}
V_{B E}=I_{0} \times R 10 \times \frac{R 14(T)+R 13}{R 14(T)+R 13+R 9} \tag{1}
\end{equation*}
$$

ZD1 is selected to set the output voltage constant when it is in open circuit.

Figure 1:
Typical Application Circuit

Bill of Materials

REF.	DESCRIPTION	MFTR.
IC1	IC, ACT50UC	ActiveSemi
IC2	IC, EL817C, DIP-4	Everlight
C1, C2	Capacitor, Electrolytic, $6.8 \mu \mathrm{~F} / 400 \mathrm{~V}$, 8x12mm	KSC
C3	Capacitor, Ceramic, 1000pF/1kV, DIP	POE
C4	Capacitor, Electrolytic, $10 \mu \mathrm{~F} / 35 \mathrm{~V}, 6.3 \times 11 \mathrm{~mm}$	KSC
C5	Capacitor, Ceramic, 1000pF/50V, 0805, SMD	POE
C6, C9	Capacitor, Ceramic, 3200pF/50V, 0805, SMD	POE
C7	Capacitor, Ceramic, 220pF/50V, 1206, SMD	POE
C8	Capacitor, Electrolytic, 470 μ F/25V, 10x8mm	KSC
D1-D4	Diode, Ultra Fast, 1000V/1A 1N4007 DO-41	Good-Ark
D5	Diode, Ultra Fast, FR107, 1000V/1.0A, DO-41	Good-Ark
D6	Diode, Switching, 75V/150mA LL4148 MINI-MELF	Good-Ark
D9	Diode, Switching, 75V/150mA 1N4148, D0-15	Good-Ark
D10	Diode, Super Fast, SB5100, 100V/5.0A, DO-201AD	PANJIT
ZD1	Diode, Zener, GLZJ15A, 16V, 0.5W, MINI-MELF	PANJIT
L1	Axial Inductor, 1.5mH, 0410, DIP	Amode Tech
Q1	Transistor, NPN, 600V, 1.5A, D13003X, TO-26	Hua Wei
Q2	Transistor, NPN, KTC9014, TO-92	KEC
F1	Fuse:1A 250V 3.6x10mm With Pigtail	Walter
R1	Chip Resistor, 3k, , 0805, 5\%	TY-OHM
R2	Chip Resistor, 750k, 1206, 5\%	TY-OHM
R3	Chip Resistor, 500 k , 1206, 5\%	TY-OHM
R4	Chip Resistor, 100k, 1/2W, 5\%	TY-OHM
R5	Chip Resistor, 120』, 0805, 5\%	TY-OHM
R6	Chip Resistor, 200』, 0805, 5\%	TY-OHM
R7	Chip Resistor, 60k 2 , 0805, 1\%	TY-OHM
R8, R9	Chip Resistor, 1k 2 , 0805, 5\%	TY-OHM
R10	Meter Film Resistor, 1.87, 1W DIP,1\%	TY-OHM
R11	Chip Resistor, 47, 1206, 5\%	TY-OHM
R12	Chip Resistor, 100 , 1206, 5\%	TY-OHM
R13	Chip Resistor, 820, , 0805, 5\%	TY-OHM
R14	NTC Minus Thermistor Compensation 10k 2 , 5%	Thinking
VR1	Varistor, TVR05471KSY, $¢ 5,470 \mathrm{~V}, \pm 10 \%$	Thinking
YC1	Y1 Capacitor, 1000pF/400V, DIP	UTX
T1	Transformer, $L_{P}=1.8 \mathrm{mH}$, EE16	

Build up

WINDING	TERMINAL			WIRE			INSULATION	
	START	FINISH	TURNS	TYPE	SIZE \times QTY	LAYER	THICK/WIDE	LAYER
	2	1	125	2UEW	$0.15 \Phi \times 1$	3	$25 \mu / 8.5 \mathrm{~mm}$	2
SH1	1	Open	26	2UEW	$0.15 \Phi \times 2$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
S1	8	5	23	2UEW	$0.4 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
SH2	3	Open	1.1	Copper	7 mm	1	$25 \mu / 8.5 \mathrm{~mm}$	1
P2	4	3	21	2UEW	$0.15 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	1

P 1 and P 2 are Primary, S 1 is Secondary (Bobbin: EE-16 Horizontal)

PCB Top and Bottom Layers

Transformer Specification

Electrical Specifications

ITEM	DESCRIPTION	CONDITION	LIMITS
1	Electrical Strength	50Hz, 1 minute, from Primary and Secondary	3 kVAC
2	P1 Inductance	Inductance between pin 1 and pin 2 at 1VAC \& 1kHz	1.8 mH $\pm 7 \%$
3	P1 Leakage Inductance	Inductance between pin 1 and pin 2 with pins 3-4 and 5-8 shorted	$75 \mu \mathrm{H}$

Output Current vs. Input Voltage

Input Voltage (V)

EVALUATION KITS	$\mathbf{V}_{\text {IN }}$	$\mathbf{I}_{\mathbf{0}}$	LED(s)
ACT50UC-T-LED03	$85-264$ VAC	$280-350 \mathrm{~mA}$	3 or 4

ACT50 DESIGN GUIDE

49V, 5W, 128mA High Efficienc y Solutions

Input Voltage	Device	LED(s)	Output Voltage	Power Output	Topology
$85-264$ VAC	ACT50	14 Serial LED $\times 8$ Line	49 V	5 W	Flyback

FATURES

- Universal AC input
- High Efficiency
- Constant Voltage Control \& Short Circuit Protection
- CC Temperature Compensation
- $\pm 5 \%$ Current Accuracy
- Exceed Energy Start 2.0 Regulation
- Small SOT23-5 Package

APPUCATIONS

- Off-Line isolated LED Driver

Operation and Application

Figure 1 is the schematic of an offline LED driver using ACT50 to provide a power output of 49 V , 128 mA . This circuit is a flyback type power supply which includes the AC rectified circuit (D4, L1, C1, C2), power drive circuit (D9, R6, Q1), output rectified circuit (D10, C8) and the IC supply and control circuit. ACT50 is a very low cost peak
current control PWM controller. Constant voltage control is through OPTO couple and ZD1. Accurate current control is through R10 and the TC compensation circuit (R9, R13, R14).

Key Component Selection

The inductance value is selected to enable to operate the circuit in the CCM mode. The ripple current can be designed to be $20 \%-40 \%$ of the load current. A fast efficiency rectifier D10 is required to achieve higher efficiency. The turn ratio of secondary and auxiliary can be set as to make sure the V_{DD} in a working range. The serial output voltage V_{0} should be in the range of $48 \mathrm{~V}-52 \mathrm{~V}$ voltage. The constant output current is set through R10 according formula (1). R14 is a thermal resistor to achieve good output current accuracy in high temperature. V_{BE} is 0.6 V at $25^{\circ} \mathrm{C}$ and 0.55 V at $50^{\circ} \mathrm{C}$ respectively.

$$
\begin{equation*}
V_{B E}=I_{O} \times R 10 \times \frac{R 14(T)+R 13}{R 14(T)+R 13+R 9} \tag{1}
\end{equation*}
$$

ZD1 is selected to set the output voltage constant when it is in open circuit.

Figure 1:
Typical Application Circuit

ACT50 DESIGN GUDE
Innovative Power ${ }^{\text {TM }}$
June 2010

Bill of Materials

REF.	DESCRIPTION	MFTR.
IC1	IC, ACT50UC-T, SOT23-5	Active
IC2	IC, EL817C, DIP-4	Everlight
C1	Capacitor, Electrolytic, $6.8 \mu \mathrm{~F} / 400 \mathrm{~V}, 10 \times 12 \mathrm{~mm}$	KSC
C2	Capacitor, Electrolytic, $4.7 \mu \mathrm{~F} / 400 \mathrm{~V}, 8 \times 12 \mathrm{~mm}$	KSC
C3	Capacitor, Ceramic, 1000pF/1kV, DIP	POE
C4	Capacitor, Electrolytic, 10رF/35V, $5 \times 11 \mathrm{~mm}$	KSC
C5	Capacitor, Ceramic, 1000pF/50V, 0805, SMD	POE
C6	Capacitor, Ceramic, 3300pF/50V, 0805, SMD	POE
C7	Capacitor, Ceramic, 220pF/50V, 1206, SMD	POE
C8	Capacitor, Electrolytic, $100 \mu \mathrm{~F} / 63 \mathrm{~V}, 8 \times 12 \mathrm{~mm}$	KSC
C9	Capacitor, Ceramic, 1000pF/50V, 0603, SMD	POE
C10	Safety Capacitor, Y2, 1000pF/400V, DIP	UTX
D4	Bridge Rectifier, 1000V/1A DI1010S, SDIP	PANJIT
D5	Diode, Ultra Fast, FR107, 1000V/1.0A, DO-41	Good-Ark
D6	Diode, Ultra Fast, HER103, 200V/1.0A, DO-41	Good-Ark
D8, D9	Diode, Switching, 75V/150mA LL4148 MINI-MELF	Good-Ark
D10	Diode, Super Fast, BY299, 800V/2.0A, DO-201AD	PANJIT
ZD1	Diode, Zener, GLZ47, 47V, 0.5W, MINI-MELF	Good-Ark
L1	Axial Inductor, $1.5 \mathrm{mH}, 0410$, DIP	Amode Tech
Q1	Transistor, NPN, 600V, 1.5A, D13003X, TO-126	Hua Wei
Q2	Transistor, NPN, KTC9014, TO-92	KEC
F1	Fuse: 1A 250V 3.6×10mm With Pigtail	Walter
R1	Meter Film Resistor, 3k 2 , 0805, 5\%	TY-OHM
R2	Chip Resistor, 750k , 1206, 5\%	TY-OHM
R3	Chip Resistor, 500kS, 0805, 5\%	TY-OHM
R4	Chip Resistor, 100kS, 1206, 5\%	TY-OHM
R5	Chip Resistor, 10, , 0805, 5\%	TY-OHM
R6	Chip Resistor, 200』, 0805, 5\%	TY-OHM
R7	Chip Resistor, 60k, , 0805, 1\%	TY-OHM
R8	Chip Resistor, 3.9k , 0805, 5\%	TY-OHM
R9	Chip Resistor, 1kת, 0805, 5\%	TY-OHM
R10	Meter Film Resistor, 1.87, 1/2W DIP, 1\%	TY-OHM
R11	Chip Resistor, 47, 1206, 5\%	TY-OHM
R12	Chip Resistor, 100』, 1206, 5\%	TY-OHM
R13	Chip Resistor, 820, , 0603, 5\%	TY-OHM
R14	NTC Minus Thermistor Compensation 10k $2,5 \%$	Thinking
R15	Chip Resistor, 91k , 0603, 5\%	TY-OHM
T1	Transformer, $\mathrm{L}_{P}=2.0 \mathrm{mH}, \mathrm{EE}-16$	

Build Up

WINDING	TERMINAL		TURNS	WIRE			INSULATION	
	START	FINISH		TYPE	SIZE \times QTY	LAYER	THICK/WIDE	LAYER
SH1	1	Open	26	2UEW	$0.15 \Phi \times 2$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
P1	2	1	125	2UEW	$0.15 \Phi \times 1$	3	$25 \mu / 8.5 \mathrm{~mm}$	2
SH2	3	Open	26	2UEW	0.15Ф $\times 2$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
S1	8	7	68	TEXE	$0.3 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
P2	4	3	21	2UEW	$0.15 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	3
SH3	3	Open	1.1	Copper	7 mm	1	$25 \mu / 8.5 \mathrm{~mm}$	3

P1 and P2 are Primary, S1 is Secondary (Bobbin: EE-16 Horizontal)

PCB Top and Bottom Layers

Transformer Specification

Electrical Specifications

ITEM	DESCRIPTION	CONDITION	LIMITS
1	Electrical Strength	50Hz, 1 minute, from Primary and Secondary	3 kVAC
2	P1 Inductance	Inductance between pin 1 and pin 2 at 1VAC \& 1 Hz	2.0 mH 77\%
3	P1 Leakage Inductance	Inductance between pin 1 and pin 2 with pins 3-4 and 7-8 shorted	$75 \mu \mathrm{H}$

Typical Performance Characteristics

Output Current vs. Input Voltage

EVALUATION KITS	$\mathbf{V}_{\mathbf{I N}}$	$\mathbf{I}_{\mathbf{0}}$	LED(s)
ACT50UC-T-LED05	$85-264 \mathrm{VAC}$	$115-140 \mathrm{~mA}$	$14 \mathrm{~s} \times 8 \mathrm{p}$ $(8 \times 16 \mathrm{~mA})$

ACT50 DESIGN GUDE

PAR30 7W LED Lighting

Input Voltage	Device	LED(s)	Output Voltage	Power Output	Topology
$85-264 \mathrm{VAC}$	ACT50	7	28 V	7 W	Flyback

Operation and Application

Figure 1 is the schematic of an offline LED driver using ACT50 to provide a power output of 28 V , 350 mA . This circuit is a Flyback type power supply which includes the AC rectified circuit (BD1, L1, C1, C 2), power drive circuit (D3, R6, Q1), output rectified circuit (D4, C8, C9) and the IC supply and control circuit. ACT50 is a very low cost peak current control PWM controller. Constant voltage control is through OPTO couple and ZD1. Accurate
current control is through R13, R14 and the TC compensation circuit (RT1) R15.

Key Component Selection

The inductance value is selected to enable to operate the circuit in the CCM mode. The ripple current can be designed to be $20 \%-40 \%$ of the load current. A fast efficiency rectifier D4 is required to achieve higher efficiency. The turn ratio of secondary and auxiliary can be set as to make sure the V_{DD} in a working range. The serial output voltage V_{0} should be in the range of $21 \mathrm{~V}-28 \mathrm{~V}$ voltage. The constant output current is set through R13, R14 according formula (1). RT1 is a thermal resistor to achieve good output current accuracy in high temperature. V_{BE} is 0.6 V at $25^{\circ} \mathrm{C}$ and 0.55 V at $50^{\circ} \mathrm{C}$ respectively.
$V_{B E}=I_{0} \times \frac{R 13 \times R 14}{R 13+R 14} \times \frac{R T 1+R 15}{R T 1+R 12+R 15}$
ZD1 is selected to set the output voltage constant when it is in open circuit.

Figure 1:
Typical Application Circuit

ACT50 DESIGN GUDE
Innovative Power ${ }^{\text {TM }}$

Bill of Materials

REF	DESCRIPTION	MFTR
U1	IC, ACT50UC, SOT23-5	Active
U2	IC, EL817C, DIP-4	Everlight
C1, C2	Capacitor Electrolytic, $3.3 \mu \mathrm{~F} / 400 \mathrm{~V}, 8 \times 12 \mathrm{~mm}$	KSC
C3	Capacitor Ceramic, 470pF/1KV, DIP	POE
C4	Capacitor Electrolytic, $22 \mu \mathrm{~F} / 35 \mathrm{~V}, 5 \times 11 \mathrm{~mm}$	KSC
C5	Capacitor Ceramic,1000pF/50V,0805	POE
C6	Capacitor Ceramic, 3300pF/25V,0603	POE
C7	Capacitor Ceramic, 220pF/50V,0805	POE
C8, C9	Capacitor Tantalum, 33-F/35V, D Case	AVX
C10	Capacitor Ceramic,1000pF/1KV, DIP	POE
BD1	Bridge Rectifier,1000V/1A, DI1010S, SDIP	PANJIT
D1	Diode, Ultra Fast, FR107, 1000V/1.0A, DO-41	Good-Ark
D2	Diode, Switching, 75V/150mA, LL4148, MICRO-MELF	Good-Ark
D3	Diode, Switching, 75V/150mA, LL4148, MICRO-MELF	Good-Ark
D4	Diode, Ultra Fast, ER2D, 200V/2.0A, SMD	PANJIT
ZD1	Diode, Zener, GMZJ27A ,27V, 0.5W, MICRO-MELF	PANJIT
Q1	Transistor, Mosfet, 1N60, TO-126	UTC
Q2	Amplifier Transistor, NPN, MMBT3904, SOT-23	
F1	Fuse: 2.0A 250V $3.6 \times 10 \mathrm{~mm}$ With Pigtail, Ceramic tube	Walter
L1	Axial Inductor, 1mH, 0410, DIP	Amode Tech
PCB1	ACT50 PCB, Ф18mm, T = 1.6mm, CEM-1, Rev: A	Jintong
PCB2	$A C T 50$ PCB, $L \times W \times T=29 \times 28 \times 1.0 \mathrm{~mm}$, FR-4, Rev: A	Jintong
R1	Chip Resistor, 1.5k $, 1206,5 \%$	TY-OHM
R2	Chip Resistor, 470k®,1206, 5\%	TY-OHM
R3	Chip Resistor, 470k $\Omega, 1206,5 \%$	TY-OHM
R4	Chip Resistor, 300k Ω,1206, 5\%	TY-OHM
R5	Chip Resistor, 10Л,1206, 5\%	TY-OHM
R6	Chip Resistor, 47,,0805, 5\%	TY-OHM
R7	Chip Resistor, 10k $2,0805,5 \%$	TY-OHM
R8	Chip Resistor, 100^,0805, 5\%	TY-OHM
R9	Chip Resistor, 39k $2,0603,1 \%$	TY-OHM
R10	Chip Resistor, 47,,1206, 5\%	TY-OHM
R11	Chip Resistor, 2.0k $2,0603,5 \%$	TY-OHM
R12	Chip Resistor, 1k $2,0603,5 \%$	TY-OHM
R13, R14	Chip Resistor, 3.6ת,1206, 1\%	TY-OHM
R15	NC	TY-OHM
RT1	NC	Thinking
T1	Transformer, $L_{P}=1.8 \mathrm{mH}, \mathrm{EPC}-19$	
VR1	Varistor, TVR05431KSY, $¢ 5,430 \mathrm{~V}, \pm 10 \%$, DIP	Thinking

Build up

WINDING	TERMINAL		TURNS	WIRE			INSULATION	
	START	FINISH		TYPE	SIZE \times QTY	LAYER	THICK/WIDE	LAYER
P1	3	1	95	2UEW	$0.25 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
SH1	4	Open	40	2UEW	$0.15 \Phi \times 2$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
S1	11	10	40	TEXE	$0.45 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
SH2	4	Open	0.9	Copper	7 mm	1	$25 \mu / 8.5 \mathrm{~mm}$	2
P2	5	4	20	2UEW	$0.15 \Phi \times 2$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
SH3	4	Open	1.1	Copper	7 mm (Epiboly)	1	$25 \mu / 8.5 \mathrm{~mm}$	2

P1 and P2 are Primary, S1 is Secondary (Bobbin: EPC19 Horizontal)

PCB Layout

Transformer Specification

Electrical Specifications

ITEM	DESCRIPTION	CONDITION	LIMITS
1	Electrical Strength	50Hz, 1 minute, from primary and secondary	3 kVAC
2	P1 Inductance	Inductance between pins 1 and 3 at 1VAC \& 1kHz	1.8 mH $\pm 7 \%$
3	P1 Leakage Inductance	Inductance between pins 1 and 3 with pins 5-4 and $11-10$ shorted	$75 \mu \mathrm{H}$

Input Voltage (V)

EVALUATION KITS	$\mathbf{V}_{\mathbf{I N}}$	$\mathbf{I}_{\mathbf{0}}$	LED(s)
ACT50UC-T-LED04	$85-264 \mathrm{VAC}$	$280-350 \mathrm{~mA}$	7

ACT50 DESIGN GUIDE
Innovative Power ${ }^{\text {TM }}$

35V, 12W, 350mA High Eficiency Solutions

Input Voltage	Device	LED(s)	Output Voltage	Power Output	Topology
$85-264 \mathrm{VAC}$	ACT50	10	35 V	12 W	Buck

FATURES

- Universal AC input
- High efficiency
- Constant Voltage Control \& Short Circuit Protection
- CC temperature compensation
- $\pm 5 \%$ current accuracy
- Exceed Energy Start 2.0 regulation
- Small SOT23-5 Package

APPUCATIONS

- Off-Line Non-isolated LED Driver

Operation and Application

Figure 1 is the schematic of an offline LED driver using ACT50 to provide a power output of 35 V , 350 mA . This circuit is a buck type power supply which includes the AC rectified circuit (BD1, L1, C1, C 2), power drive circuit (D9, R6, Q1), output rectified circuit (D10, C8, C9) and the IC supply and control circuit. ACT50 is a very low cost peak
current control PWM controller. Constant voltage control is through OPTO couple and ZD1. Accurate current control is through R10 and the TC compensation circuit (R9, R14, R13).

Key Component Selection

The inductance value is selected to enable to operate the circuit in the CCM mode. The ripple current can be designed to be $20 \%-40 \%$ of the load current. A fast efficiency rectifier D10 is required to achieve higher efficiency. The turn ratio of primary and auxiliary can be set as to make sure the $V_{D D}$ in a working range. The serial output voltage V_{0} should be in the range of $35 \mathrm{~V}-40 \mathrm{~V}$ voltage. The constant output current is set through R10 according formula (1). R14 is a thermal resistor to achieve good output current accuracy in high temperature. V_{BE} is 0.6 V at $25^{\circ} \mathrm{C}$ and 0.55 V at $50^{\circ} \mathrm{C}$ respectively.
$V_{B E}=I_{o} \times R 10 \times \frac{R 14(T)+R 13}{R 14(T)+R 13+R 9}$
ZD1 is selected to set the output voltage constant when it is in open circuit.

Figure 1:
Typical Application Circuit

ACT50 DESIGN GUDE
Innovative Power ${ }^{\text {TM }}$

Bill of Materials

REF．	DESCRIPTION	MFTR．
IC1	IC，ACT50UC	Active－ Semi
IC2	IC，EL817C，DIP－4	Everlight
C1，C2	Capacitor，Electrolytic， $10 \mu \mathrm{~F} / 400 \mathrm{~V}, 8 \times 12 \mathrm{~mm}$	KSC
C4	Capacitor，Electrolytic， $22 \mu \mathrm{~F} / 35 \mathrm{~V}, 5 \times 11 \mathrm{~mm}$	KSC
C5	Capacitor，Ceramic，1000pF／50V，0805，SMD	POE
C6，C10	Capacitor，Ceramic，3300pF／50V，0805，SMD	POE
C8，C9	Capacitor，Electrolytic，100 $\mathrm{F} / 50 \mathrm{~V}, 8 \times 12 \mathrm{~mm}$	KSC
BD1	Bridge Rectifier，1000V／1A，DI1010S，SDIP	Good－Ark
D6	Diode，Super Fast，HER103，200V／1．0A，DO－41	PANJIT
D9	Diode，Switching，75V／150mA 1N4148，DIP	Good－Ark
D10	Fast Efficient Rectifier，BYV26B，500V／1A， DO－204AP	GS
ZD1	Diode，Zener，GLZ39A，39V，0．5W，MINI－MELF	Good－Ark
L1	Axial Inductor， $300 \mu \mathrm{H}, 0410$ ，DIP	Amode Tech
Q1	Transistor，NPN，600V，1．5A，D13003X，TO－126	Hua Wei
Q2	Transistor，NPN，KTC9014，TO－92	KEC
F1	Fuse：1A 250V $3.6 \times 10 \mathrm{~mm}$ With Pigtail	Walter
R1	Chip Resistor，3k ${ }^{\text {，}}$ ， $0805,5 \%$	TY－OHM
R2	Chip Resistor，750k ${ }^{\text {，1206，}}$ \％	TY－OHM
R3	Chip Resistor，750k ${ }^{\text {，1206，}}$ \％	TY－OHM
R5	Chip Resistor，10』，0805，5\％	TY－OHM
R6	Chip Resistor，200』，0805，5\％	TY－OHM
R7	Chip Resistor，39k』，0805，1\％	TY－OHM
R8	Chip Resistor，6k ${ }^{\text {，}}$ ，0805，5\％	TY－OHM
R9	Chip Resistor， 1 k ，0805，5\％	TY－OHM
R10	Film Resistor，1．87 ${ }^{\text {，1／2W DIP，1\％}}$	TY－OHM
R12	Chip Resistor，100 ，1206，5\％	TY－OHM
R13	Chip Resistor，820』，0603，5\％	TY－OHM
R14	NTC Minus Thermistor Compensation 10k $2,5 \%$	Thinking
VR1	Varistor，TVR05471KSY， $45,470 \mathrm{~V}, \pm 10 \%$	Thinking
T1	Transformer， $\mathrm{L}_{P}=2.6 \mathrm{mH}, \mathrm{EE}-19$	

Transformer Specification

Build up

WINDING	TERMINAL		TURNS	WIRE			INSULATION	
	START	FINISH		TYPE	SIZE \times QTY	LAYER	THICK／WIDE	LAYER
P1	2	1	143	2UEW	$0.3 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
SH2	1	Open	30	2UEW	$0.15 \Phi \times 2$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
P2	4	3	55	2UEW	$0.15 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	3

PCB Top and Bottom Layers

Electrical Specifications

ITEM	DESCRIPTION	CONDITION	LIMITS
1	Electrical Strength	50Hz， 1 minute，from Primary and Secondary	3 kVAC
2	P1 Inductance	Inductance between pins 1 and 2 at 1VAC \＆ 1 kHz	2.6 mH $\pm 7 \%$
3	P1 Leakage Inductance	Inductance between pin 1 and pin 2 with pins 3－4 shorted	$75 \mu \mathrm{H}$

Typical Performance Characteristics

Output Current vs．Input Voltage

EVALUATION KITS	$\mathbf{V}_{\mathbf{I N}}$	$\mathbf{I}_{\mathbf{0}}$	LED（s）
ACT50UC－T－LED11	$85-264 \mathrm{VAC}$	$280-350 \mathrm{~mA}$	9 or 10

P1 and P2 are Primary，P2 is Secondary（Bobbin：EE－19 Horizontal）

ACT50 DESIGN GUIDE

PAR38 12W LED Lighting

Input Voltage	Device	LED(s)	Output Voltage	Power Output	Topology
$85-264 \mathrm{VAC}$	ACT50	12	42 V	12 W	Flyback

Operation and Application

Figure 1 is the schematic of an offline LED driver using ACT50 to provide a power output of 42 V , 350 mA . This circuit is a Flyback type power supply which includes the AC rectified circuit (D1-D4, R1, C3, C4), power drive circuit (D10, R9, Q1), output rectified circuit (D11, C10, C11, C12), and the IC supply and control circuit. ACT50 is a very low cost peak current control PWM controller. Constant
voltage control is through OPTO couple and ZD1. Accurate current control is through R14, R15, R16, and the TC compensation circuit (RT1, R17).

Key Component Selection

The inductance value is selected to enable to operate the circuit in the CCM mode. The ripple current can be designed to be designed to be 20\%40% of the load current. A fast efficiency rectifier D11 is required to achieve higher efficiency. The turn ratio of secondary and auxiliary can be set as to make sure the $V_{D D}$ in a working range. The serial output voltage V_{0} should be in the range of $42 \mathrm{~V}-48 \mathrm{~V}$ voltage. The constant output current is set through R14, R15 according formula (1). RT1 is a thermal resistor to achieve good output current accuracy in high temperature. V_{BE} is 0.6 V at $25^{\circ} \mathrm{C}$ and 0.55 V at $50^{\circ} \mathrm{C}$ respectively.
$V_{B E}=I_{o} \times \frac{R 14 \times R 15}{R 14+R 15} \times \frac{R T 1+R 17}{R T 1+R 16+R 17}$
ZD1 is selected to set the output voltage constant when it is in open circuit.

Figure 1:
Typical Application Circuit

Innovative Power ${ }^{\text {TM }}$
ACT50 DESIGNGUDE

Bill of Materials

REF.	DESCRIPTION	MFTR.
U1	IC, ACT50	ActiveSemi
U2	IC, EL817C, DIP-4	Everlight
C1	Cap-X2 0.22 $2 \mathrm{~F} / 250 \mathrm{~V}, 18 \times 8.2 \times 16.5 \mathrm{~mm}, \mathrm{P}=15 \mathrm{~mm}$	UTX
C2	Cap-X2 $0.1 \mu \mathrm{~F} / 250 \mathrm{~V}, 18 \times 5.2 \times 11.8 \mathrm{~mm}, \mathrm{P}=15 \mathrm{~mm}$	UTX
C3-C4	Capacitor, Electrolytic, $22 \mu \mathrm{~F} / 400 \mathrm{~V}, 10 \times 21 \mathrm{~mm}$	KSC
C5	Capacitor, Ceramic, $470 \mathrm{pF} / 1 \mathrm{kV}$, DIP	POE
C6	Capacitor, Electrolytic, $22 \mu \mathrm{~F} / 35 \mathrm{~V}, 5 \times 11 \mathrm{~mm}$	KSC
C7	Capacitor, Ceramic, 1000pF/50V, 0805	POE
C8	Capacitor, Ceramic, 3300pF/25V, 0805	POE
C9	Capacitor, Ceramic, 220pF/1kV, DIP	POE
C10-C12	Capacitor, Electrolytic, $47 \mu \mathrm{~F} / 50 \mathrm{~V}, 6.3 \times 11 \mathrm{~mm}$	KSC
C13	Capacitor, Ceramic, $0.1 \mu \mathrm{~F} / 25 \mathrm{~V}$, 0805	POE
Y1	Y1 Capacitor, 2200pF/400VAC, DIP	POE
D1-D7	Rectifier, 1000V/1A, 1N4007 DO-41	Good-Ark
D8	Diode, Ultra Fast, FR107, 1000V/1A DO-41	Good-Ark
D9	Diode, Ultra Fast, FR102, 100V/1A DO-41	Good-Ark
D10	Diode, Switching, 75V/150mA, LL4148	Good-Ark
D11	Diode, Ultra Fast, UF204, 400V/2.0A, DO-15	Good-Ark
ZD1	Diode, Zener, GMZJ47A, 47V, 0.5W, MICRO-MELF	PANJIT
Q1	Transistor, NPN, D13007, TO-220	Huawei
Q2	Amplifier Transistor, NPN, MMBT3904, SOT-23	
F1	Fuse: $3.15 \mathrm{~A} 250 \mathrm{~V} 3.6 \times 10 \mathrm{~mm}$ With Pigtail, Ceramic tube.	Walter
L1	Inductor, T9 $\times 5 \times 3 \mathrm{C}, \mathrm{R} 12 \mathrm{k} \Omega 13 \mathrm{~T} 800 \mu \mathrm{H}$	
L2	Inductor, LP $=28 \sim 40 \mathrm{mH}$, Bobbin UU10.5	
L3	Axial Inductor, $820 \mu \mathrm{H}, 0410$, DIP	
$\begin{array}{\|l} \hline \text { R1, R4, } \\ \text { R6, R7 } \end{array}$	Chip Resistor, 470k ${ }^{\text {, 1206, 5\% }}$	TY-OHM
R5	Chip Resistor, 10^, 1206, 5\%	TY-OHM
R8	Chip Resistor, 100』, 1206, 5\%	TY-OHM
R9	Chip Resistor, 47, 1206, 5\%	TY-OHM
R11	Chip Resistor, 39k Ω, 0805, 5\%	TY-OHM
R12	Chip Resistor, 47, 1206, 5\%	TY-OHM
R13	Chip Resistor, 4.7k , 0603, 5\%	TY-OHM
R14, R15	Chip Film Resistor, 3.6ת, 1206, 1\%	TY-OHM
R16	Chip Resistor, 1k , 0603, 5\%	TY-OHM
R17	Chip Resistor, 10k Ω, 0603, 5\%	TY-OHM
T1	Transformer EE-25, BobbinTF-2202 10Pin Vertical, $\mathrm{L}_{\mathrm{P}}=1.2 \mathrm{mH}$	
RT1	NTC minus Thermistor Compensation $10 \mathrm{k} \Omega, \phi 5 \mathrm{~mm}, 5 \%$	TY-OHM
VR1	Varistor, TVR07431KSY, $47,430 \mathrm{~V}, \pm 10 \%$, DIP	Thinking
H/S	Heat Sunk: JD-YI Series L=20mm, Black	JIEDA
For Q1	Silicon Insulation: TO-220	
For Q1	Insulation Washer: $\Phi 3 \mathrm{~mm}$	
For Q1	Pan Head Screw+Spring washer $\Phi 3 \times 8 \mathrm{~mm}$	
For Q1	Nut Ф3	

Transformer Specification

PCB Layout

Build Up

WINDING	TERMINAL			WIRE			INSULATION	
	START	FINISH	TURNS	TYPE	SIZE \times QTY	LAYER	THICK/WIDE	LAYER
P1	3	1	83	2 UEW	$0.25 \Phi \times 1$	2	$25 \mu / 8.5 \mathrm{~mm}$	2
SH1	5	Open	40	2 UEW	$0.15 \Phi \times 2$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
S1	10	P	41	TEXE	$0.2 \Phi \times 2$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
SH2	5	Open	0.9	Copper	7 mm	1	$25 \mu / 8.5 \mathrm{~mm}$	2
P2	4	5	12	$2 U E W$	$0.3 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
SH3	5	Open	1.1	Copper	7 mm $($ Core Outer)	1	$25 \mu / 8.5 \mathrm{~mm}$	2

P1 and P2 are Primary, P1 is Secondary (Bobbin: EE-25 Horizontal)

Electrical Specifications

ITEM	DESCRIPTION	CONDITION	LIMITS
1	Electrical Strength	$50 \mathrm{~Hz}, 1$ minute, from Primary and Secondary	3 kVAC
2	P1 Inductance	Inductance between pin 1 and pin 3 at 1VAC \& 1kHz	1.2 mH $\pm 7 \%$
3	P1 Leakage Inductance	Inductance between pin 1 and pin 3 with pins 5-4 and 10-P shorted	$75 \mu \mathrm{H}$

Efficiency vs. Input Voltage

Output Current vs. Input Voltage

Input Voltage (V)

EVALUATION KITS	$\mathbf{V}_{\mathbf{I N}}$	$\mathbf{I}_{\mathbf{0}}$	LED(s)
ACT50UC-T-LED06	$85-264 \mathrm{VAC}$	$280-350 \mathrm{~mA}$	12

ACT50 DESIGN GUIDE
Innovative Power ${ }^{\text {TM }}$

35V, 12W, 350mA High Eficiency Solutions

Input Voltage	Device	LED(s)	Output Voltage	Power Output	Topology
$85-264 \mathrm{VAC}$	ACT50	10	35 V	12 W	Flyback

FATURES

- Universal AC Input
- High Efficiency
- Constant Voltage Control \& Short Circuit Protection
- CC Temperature Compensation
- $\pm 5 \%$ Current Accuracy
- Exceed Energy Start 2.0 Regulation
- Small SOT23-5 Package

APPUCATIONS

- Off-Line Isolated LED Driver

Operation and Application

Figure 1 is the schematic of an offline LED driver using ACT50 to provide a power output of 35 V , 350 mA . This circuit is a flyback type power supply which includes the AC rectified circuit (D1-D4, L1, R1, C1, C2), power drive circuit (D9, R6, Q1), output rectified circuit (D10, C8, C9) and the IC supply and control circuit. ACT50 is a very low cost
peak current control PWM controller. Constant voltage control is through OPTO coupler and ZD1. Accurate current control is through R10 and the TC compensation circuit (R9, R13, R14).

Key Component Selection

The inductance value is selected to enable to operate the circuit in the CCM mode. The ripple current can be designed to be $20 \%-40 \%$ of the load current. A fast efficiency rectifier D10 is required to achieve higher efficiency. The turn ratio of secondary and auxiliary can be set as 2.8 to make sure the $V_{D D}$ in a working range. The serial output voltage V_{0} should be in the range of $35 \mathrm{~V}-40 \mathrm{~V}$ voltage. The constant output current is set through R10 according formula (1). R14 is a thermal resistor to achieve good output current accuracy in high temperature. V_{BE} is 0.6 V at $25^{\circ} \mathrm{C}$ and 0.55 V at $50^{\circ} \mathrm{C}$ respectively.
$V_{B E}=I_{0} \times R 10 \times \frac{R 14(T)+R 13}{R 14(T)+R 13+R 9}$
ZD1 is selected to set the output voltage constant when it is in open circuit.

Figure 1:
Typical Application Circuit

Innovative Power ${ }^{\text {TM }}$

ACT50 DESIGNGUDE

Innovative Power ${ }^{\text {TM }}$

Bill of Materials

REF．	DESCRIPTION	MFTR．
IC1	IC，ACT50UC－T，SOT23－5	Active－ Semi
IC2	IC，EL817C，DIP－4	Everlight
C1，C2	Capacitor，Electrolytic， $10 \mu \mathrm{~F} / 400 \mathrm{~V}, 8 \times 12 \mathrm{~mm}$	KSC
C3	Capacitor，Ceramic，1000pF／1kV	POE
C4	Capacitor，Electrolytic， $22 \mu \mathrm{~F} / 50 \mathrm{~V}, 5 \times 11 \mathrm{~mm}$	KSC
C5	Capacitor，Ceramic，1000pF／50V，0805，SMD	POE
C6，C10	Capacitor，Ceramic， $3300 \mathrm{pF} / 50 \mathrm{~V}, 0805$, SMD	POE
C7	Capacitor，Ceramic，220pF／50V，1206，SMD	POE
C8，C9	Capacitor，Electrolytic， $100 \mu \mathrm{~F} / 50 \mathrm{~V}, 8 \times 12 \mathrm{~mm}$	KSC
D1－D4	Diode，Ultra Fast，1000V／1A 1N4007 DO－41	Good－Ark
D5	Diode，Ulitra Fast，FR107，1000V／1．0A，DO－41	Good－Ark
D6	Diode，Switching，75V／150mA LL4148 MINI－MELF	Good－Ark
D9	Diode，Switching，75V／150mA 1N4148，DO－15	Good－Ark
D10	Diode，Super Fast，SF54，300V／3．0A，DO－201AD	Good－Ark
ZD1	Diode，Zener，GLZJ36A，36V，0．5W，MINI－MELF	Good－Ark
L1	Axial Inductor， $330 \mu \mathrm{H}, 0410$ ，DIP	Amode Tech
Q1	Transistor，NPN，600V，1．5A，D13003X，TO－26	Hua Wei
Q2	Transistor，NPN，KTC9014，TO－92	KEC
F1	Fuse：1A $250 \mathrm{~V} 3.6 \times 10 \mathrm{~mm}$ With Pigtail	Walter
R1	Chip Resistor，3k Ω ，0805，5\％	TY－OHM
R2	Chip Resistor，750k ${ }^{\text {，1206，5\％}}$	TY－OHM
R3		TY－OHM
R4	Chip Resistor，100k』，1206，5\％	TY－OHM
R5	Chip Resistor，100』，0805，5\％	TY－OHM
R6	Chip Resistor，200』，0805，5\％	TY－OHM
R7	Chip Resistor，39k ，0805，1\％	TY－OHM
R8	Chip Resistor，2k ，0805，5\％	TY－OHM
R9	Chip Resistor，1k ，0805，5\％	TY－OHM
R10	Meter Film Resistor，1．87，1／2W DIP，1\％	TY－OHM
R11	Chip Resistor，47 ，1206，5\％	TY－OHM
R12	Chip Resistor，100』，1206，5\％	TY－OHM
R13	Chip Resistor，820』，0603，5\％	TY－OHM
R14	NTC Minus Thermistor Compensation 10k, ，5\％	Thinking
VR1	Varistor，TVR05471KSY， $45,470 \mathrm{~V}, \pm 10 \%$	Thinking
YC1	Y1 Capacitor，1000pF／400V，DIP	UTX
T1	Transformer， $\mathrm{L}_{\mathrm{P}}=1.8 \mathrm{mH}$ ，EE19	

Build Up

WINDING	TERMINAL			WIRE			INSULATION	
	START	FINISH	TURNS	TYPE	SIZE \times QTY	LAYER	THICKMIDE	LAYER
	1	Open	30	2UEW	$0.15 \Phi \times 2$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
P1	2	1	110	2UEW	$0.25 \Phi \times 1$	2	$25 \mu / 8.5 \mathrm{~mm}$	2
SH2	3	Open	30	2UEW	$0.15 \Phi \times 2$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
S1	8	5	40	TEXE	$0.45 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
SH3	3	Open	1.1	Copper	7 mm	1	$25 \mu / 8.5 \mathrm{~mm}$	3
P2	4	3	18	2UEW	$0.15 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	3

P1 and P2 are Primary，S1 is Secondary（Bobbin：EE－19 Horizontal）

PCB Top and Bottom Layers

Transformer Specification

Electrical Specifications

ITEM	DESCRIPTION	CONDITION	LIMITS
1	Electrical Strength	50Hz，1 minute，from Primary and Secondary	3 kVAC
2	P1 Inductance	Inductance between pin 1 and pin 2 at 1VAC \＆1kHz	1.8 mH $\pm 7 \%$
3	P1 Leakage Inductance	Inductance between pin 1 and pin 2 with pins 3－4 and 5－8 shorted	$75 \mu \mathrm{H}$

Typical Performance Characteristics

Output Current vs．Input Voltage

EVALUATION KITS	$\mathbf{V}_{\text {IN }}$	$\mathbf{I}_{\mathbf{0}}$	LED（s）
ACT50UC－T－LED07	$85-264 \mathrm{VAC}$	$280-350 \mathrm{~mA}$	9 or 10

ACT50 DESIGN GUIDE
Innovative Power ${ }^{\text {TM }}$

28V, 21W, 350mA High Efficiency Solutions

Input Voltage	Device	LED(s)	Output Voltage	Power Output	Topology
$85-264 \mathrm{VAC}$	ACT50	7 LED or 300 mA or 600 mA or 900 mA	28 V	21 W	Buck

FATURES

- Universal AC input
- High Efficiency
- Constant Voltage Control \& Short Circuit Protection
- CC Temperature Compensation
- $\pm 5 \%$ Current Accuracy
- Exceed Energy Start 2.0 Regulation
- Small DIP-8 Package

APPLCATIONS

- Off-Line Isolated LED Driver

Operation and Application

Figure 1 is the schematic of an offline LED driver using ACT50 to provide a power output of 28 V , 350 mA . This circuit is a buck type power supply which includes the AC rectified circuit (D1-D7, L1L3, C1-C5), power drive circuit (D10, R11, Q1), output rectified circuit (D11, C11, C12) and the IC supply and control circuit. ACT50 is a very low cost peak current control PWM controller. Constant
voltage control is through OPTO couple and D12. Accurate current control is through R13 and LM358 control circuit.

Key Component Selection

The inductance value is selected to enable to operate the circuit in the CCM mode. The ripple current can be designed to be $20 \%-40 \%$ of the load current. A fast efficiency rectifier D11 is required to achieve higher efficiency. The turn ratio of secondary and auxiliary can be set as to make sure the $V_{D D}$ in a working range. The serial output voltage V_{0} should be in the range of $28 \mathrm{~V}-32 \mathrm{~V}$ voltage. The constant output current is set through R13 according formula (1, 2, 3).
$I_{01}=2.5 \times \frac{(R 18+R 19) / /(R 20+R 21)}{R 17 \times R 13}$
$I_{02}=2.5 \times \frac{(R 18+R 19) / /(R 22+R 23)}{R 17 \times R 13}$
$I_{03}=2.5 \times \frac{(R 18+R 19) / /(R 24+R 25)}{R 17 \times R 13}$
D12 is selected to set the output voltage constant when it is in open circuit.

Figure 1:
Typical Application Circuit

Innovative Power ${ }^{\text {TM }}$

Bill of Materials

REF．	DESCRIPTION	MFTR．
U1	IC，ACT50UC－T，DIP－8	Active
U2	IC，EL817C，DIP－4	Everlight
U3	IC，LM358，DIP－8	Everlight
U4	IC，TL431，TO－92	USE
C1－C3	Capacitor－X2 $0.1 \mu \mathrm{~F} 275 \mathrm{~V} 18 \times 6 \times 12 \times 15 \mathrm{~mm}$	UTX
C4，C5	Capacitor，Electrolytic， $22 \mu \mathrm{~F} / 250 \mathrm{~V}$ ， $10 \times 20 \mathrm{~mm}$	KSC
C6	Capacitor，Ceramic，2200pF／1kV，DIP	POE
C8	Capacitor，Electrolytic， $22 \mu \mathrm{~F} / 35 \mathrm{~V}, 5 \times 11 \mathrm{~mm}$	KSC
C10	Capacitor，Ceramic， $0.1 \mu \mathrm{~F} / 25 \mathrm{~V}$	POE
C11，C12	Capacitor，Electrolytic， $220 \mathrm{pF} / 35 \mathrm{~V}, 8 \times 12 \mathrm{~mm}$	KSC
C13	Mul－Cap Ceramic， $0.1 \mu \mathrm{~F} / 25 \mathrm{~V}$ ，DIP	POE
C15	Mul－Cap Ceramic， $0.01 \mu \mathrm{~F} / 25 \mathrm{~V}$ ，DIP	POE
C16	Safety Capacitor，Y2，2200pF／400V，P＝10mm，DIP	UTX
D1－D8	Diode，Ultra Fast，UF4007，1000V／1．0A，DO－41	Good－Ark
D9	Diode，Ultra Fast，UF102，200V／1．0A，DO－41	PANJIT
D10，D13	Diode，Switching，75V／150mA，LL4148 MINI－MELF	Good－Ark
D11	Diode，Schottky，HER204，300V／2A，DO－15	ST
D12	Diode，Zener，GDZJ27D，27V，0．5W，DO－35	PANJIT
L1	Inductor，UU10．5，28mH	
L2，L3	Axial Inductor， $220 \mu \mathrm{H}, 0410$ ，DIP	Amode Tech
Q1	Transistor，NPN，600V，1．5A，D13003X，TO－220	Hua Wei
F1	Fuse：2A 250V $3.6 \times 10 \mathrm{~mm}$ with Pigtail	Walter
R4	Meter Film Resistor， 27 k ，1／4W，1\％	TY－OHM
R5，R6	Carbon Film Resistor，750k ${ }^{\text {，1／4W，5\％}}$	TY－OHM
R7	Carbon Film Resistor，10Л，1／4W，5\％	TY－OHM
R8	Carbon Film Resistor，100k ${ }^{\text {，}} 1 \mathrm{~W}$ ，5\％	TY－OHM
R10	Carbon Film Resistor，10Л，1／2W，5\％	TY－OHM
R11， 15	Carbon Film Resistor，150，1／4W，5\％	TY－OHM
R12	Carbon Film Resistor，8．6k Ω ，1／4W， 5%	TY－OHM
R13	Meter Film Resistor，0．1越，1／4W，1\％	TY－OHM
R14	Carbon Film Resistor，6．2k $, 1 / 4 \mathrm{~W}, 5 \%$	TY－OHM
R16	Carbon Film Resistor，33k 2 ，1／4W，5\％	TY－OHM
R17	Carbon Film Resistor，15k 2 ，1／4W，5\％	TY－OHM
R18	Carbon Film Resistor，69，1／4W，5\％	TY－OHM
R19	Carbon Film Resistor，560』，1／4W，5\％	TY－OHM
R20	Carbon Film Resistor，270』，1／4W，5\％	TY－OHM
R21	Carbon Film Resistor，0，1／4W，5\％	TY－OHM
R22	Carbon Film Resistor，180』，1／4W，5\％	TY－OHM
R23	Carbon Film Resistor，820』，1／4W，5\％	TY－OHM
R24	Carbon Film Resistor，240，1／4W，5\％	TY－OHM
R25	Carbon Film Resistor， 5.1 k ，1／4W， 5%	TY－OHM
VR1	TVR07391KSY $47,390 \mathrm{~V} \pm 10 \%$	Thinking
T1	Transformer， $\mathrm{L}_{P}=0.8 \mathrm{mH}, \mathrm{EPC} 25$	TY－OHM

Build up

WINDING	TERMINAL		TURNS	WIRE			INSULATION	
	START	FINISH		TYPE	SIZE \times QTY	LAYER	THICK／WIDE	LAYER
P1	3	1	87	2UEW	$0.25 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
SH1	1	Open	30	2UEW	$0.15 \Phi \times 2$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
S1	10	11	28	TEXE	$0.6 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	2
SH2	6	Open	1.1	Copper	7 mm	1	$25 \mu / 8.5 \mathrm{~mm}$	2
P2	5	6	14	2UEW	$0.25 \Phi \times 1$	1	$25 \mu / 8.5 \mathrm{~mm}$	2

P1 and P2 are Primary，S1 is Secondary（Bobbin：EPC25 Horizontal）

PCB Top and Bottom Layers

Transformer Specification

Electrical Specifications

ITEM	DESCRIPTION	CONDITION	LIMITS
1	Electrical Strength	50Hz，1 minute，from Primary and Secondary	3 kVAC
2	P1 Inductance	Inductance between pin 1 and pin 3 at 1VAC \＆1kHz	0.8 mH $\pm 7 \%$
3	P1 Leakage Inductance	Inductance between pin 1 and pin 3 with pins 5－6 and 10－11 shorted	$75 \mu \mathrm{H}$

Typical Performance Characteristics

Output Current vs．Input Voltage

Input Voltage（V）

EVALUATION KITS	$\mathrm{V}_{\text {IN }}$	I_{0}	LED（s）
ACT50DH－LED08	85－264VAC	$\mathrm{I}_{01} 350 \mathrm{~mA} \pm 5 \%$	$\begin{aligned} & 7 \times 300 \mathrm{~mA} \text {, or } \\ & 7 \times 600 \mathrm{~mA} \text {, or } \\ & 7 \times 900 \mathrm{~mA} \end{aligned}$
		$\mathrm{I}_{02} 600 \mathrm{~mA} \pm 5 \%$	
		$\mathrm{l}_{03} 900 \mathrm{~mA} \pm 5 \%$	

