SWITCH TRANSITIONS IN THE SOFT-SWITCHING FULL-BRIDGE PWM PHASE-SHIFT DC/DC CONVERTER : ANALYSIS AND IMPROVEMENTS

ANALYSE ET AMELIORATION DES ETATS TRANSITOIRES DANS LE CONVERTISSEUR CONTINU-CONTINU EN PONT, PWM A COMMUTATION DOUCE ET REGULATION PAR VARIATION DE PHASE

Richard Redl ${ }^{\circ}$

ELFI S.A.

Derrey-la-Cabuche
CH-1756 Onnens FR
Switzerland
(Author for correspondence)

Resame

Est prósenté ici une analyse de la quantité de l'ónergie disponible pour la commutation du bras passif-actif (synchronisé), dans un convertisseur en pont à commutation douce, utilisant un réseau d'aide à la commutation on fonction du courant de la charge. On démontre que le choix approprié des inductances du circuit permet d'obtenir le commutation douce dans une large plage du courant de charge, sans que les pertes de conduction deviennent importantes. Les courante dens les diodes d'écrótage du réseau d'aide la commutation dépendent de l'emplacement de la self de commutation. Si la self se trouve entre le bres passif-actif (modul6) at le transformateur, des courents excessifs parcourent les diodes d'écratage, fésultant des pertes de commutation 6levtes et une défaillance óventuelle de ces diodes. Les courants de diodes ne sont pas excessifs si le réseau d'oide à la commutation est entre le bras actif-passif du pont of le transformateur. Les prédictions de l'analyse zont vérifiées par les expérimentations sur un convertisseur de 3 kW fonctionnant a 200 kHz .

Laszio Balogh and David W. Edwards

Ascom Energy Systems
Murtenstrasse 133
CH-3000 Berne 5
Switzerland

Abstract

An analysis is presented for determining the commutatiag energy available for the clocked or passive-to-active leg of the full-bridge softswitching conventer with external commatuing aid, in function of the load cerrent. It is shown that by properly choosing the values of the circuit inductances, soft swiching cas be achieved over a wide nage of load corrent without a sigaificant penalty is condection loss. The carreats in the clamp diodes of the commutatiag aid depend on the location of the commotating inductor. If the indactor is connected between the passive-to-active leg and the tratsformer, excess current circulates in the clamp diodes, leading to switching losses and potential failure of the diodes. The excess curreat is mot present if the commanting inductor is connected between tite active-co-passive leg and the transformer. The predietions of analysis are verified by compater simulation and by experimental results aken from a 3-kW converter with $200-\mathrm{kHz}$ clock frequency.

INTRODUCTION

IThe soft-switching fall-bridge PWM phase shift dc/dc converter is the preferred choice of topology in many high-power telecom applications. The main reason is that the converter offers a unique combination of two seemiagly matually exclusive advantages of the hardswitching (or square-wave) and soft-switching (load-resonant, quasiresonani, or malti-resonast) converters. Those advantages are:

- good exploitatios of the power transistors and diodes (i.e., small condection losses in the semicondactor devices) and
- small switchiag losses.

Additional begefis are:

- low EMI,
- fall integration of the stray components (janction capaciances, leakage indactance, body diodes) in the power processor, and
- minimum amonnt of stored energy in the additional pascive waveshaping componens.

If all four switches of the converter operate with soft switching there are no switch turn-on losses. The switch turn-off losees can also be made aegligible by asing fast drive circaits. The dyaamic losses of the outpat rectifier diodes remain significant, however (especially if relatively slow diodes are used, as, e.g. in medium-voltage or high-voluge applications). Also, at light load, the passive-to-active (or $P-A$) leg of the bridge loses soft switching. (The passive-to-sctive leg is the one which has oaly passive-lo-active transitions. The meaning of the terms octive and passive will be discassed in the sext section, rogether with a review of the operatios of the converter.)

A simple, but effective, solution to both problems is available [1], [2]. The solution is adding a commatating aid comprising a small inductor ("commatatiag" indactor) and two low-current diodes ("clamp" diodes) to the basic coaverter, as shown in Figure 1.

The preseace of the commatating indactor reduces the rate of change of curreat in the rectifier diode at turn-off and leads to redaced voltage overshoot. As additional benefit of the commetatiag indectance is that it increases the amonat of esergy (the "commatating" energy) available for charging or discharging the capacitance which loads the janction of the two switches of the PA leg. The increased commatating energy extends the aage of soft swithiag toward lighter loads.

At first, we analyze the leg transitions of the converter. The commutating energy of the $P A$ leg is determined as fusetion of the loed curreat. We show that at heavy lond the dominati sonree of energy are the commatuting indactance and the leakage indactance. At light load the emengy is supplied by the magnetizing inductance. At medium load all circuit iadactances (iaclading the ontput filter indactance) contribute. (Note that the contribation of the ontput filter inductance is aegative, i.e. it redices the commutatiag energy.) Our azalysis reveals that the available commutatiag energy has a misimum between the bordertine of continnons and discontinuons mode and the load current where the magnetizing curreat is equal to the valley of the reflected filter inductor carreat. By properly choosing the valaes of the magnetizing and commatating inductances, the minimum value of the commutaing energy can be selected to ensure soft swithing over a wide rage of lond carreat without a significant penalty in condection loss.

Figure 1. Soft-switching full-bridge PWM phase-shift dc/dc converter with commatating inductor and clamp diodes.

The purpose of the two clamp diodes placed between the junction of the commotating inductor/power transformer and the positive and negative supply bases is to prevent the voluge overshoot across the output rectifier diodes in a simple lossless manner. We demonstrate that the two possible locations of the commatating inductor - between the $P-A$ leg and the transformer and between the A-P leg and the transformer - are not equivaleat if clamp diodes are used. The main difference berween the two locations is in the cerrents of the clamp diodes. If the commotating indactor is connected between the P-A leg and the transformer, excess carrents circulate in the clamp diodes. The excess diode currents cause switching and condaction losses and can lead to failure of the converter. The excess carrents are not present if the commutating inductor is connected between the A-P leg and the transformer.

In addition to the analyses, we also give design considerations regarding (1) the choice of magnetizing and commatating inductances and (2) circoits which reduce the currents in the clamp diodes (in case the commotating inductor is between the P-A leg and the transformer).

The analyses are confirmed by extensive compoter simulations and experimental measurements on a $3-\mathrm{kW}$ telecom rectifier.

OPERATING STATES AND EOUIVALENT CIRCUITS DURING SWITCH TRANSITIONS OF THE CONVERTER

The operation of the basic soft-switching full-bridge PWM phase-shift converter has been described in detail in many references [3]-[9]. In this section we discass only the operating sates and the equivalent circuits doring the switch transitions. The addition of the commotating aid canses only minor changes in the operation. The effects are mostly quantiative; they will be discussed where appropriate.

Operating states

Each switch of the bridge is driven with approximately 50% duty ratio. (Note that in order to avoid shoot-throngh, a small dead time mast be inserted berween the drive signals of a leg.) Regulation is achieved by varying the position, or phase, of the switching instants of the two legs. Figure 2 shows the varions waveforms and states of the converter.

The converter has four main operating states, determined by the four main allowed on/off combinations of the switcb states. When two diagonally placed switches are conducting, energy is absorbed from the inpot voltage source. That state is called active. When two switches on the same side of the power bas are conducting, there is no energy absorption. That state is called passive.

As can be seen, the clocked leg of the converter (in our case the leg with the center point marked A) switches oaly from the passive state to the active state. For that reason, it is called the passive-to-active (or $P-A$)

Figure 2. Waveforms and operating states.
leg. The modulated leg (with the center point marked B) always switctes from the active state to the passive state and is called active-to-passive (ot $A-P$) leg. As will be shown, there is a significant difference betweed the switching processes of the two legs.

Besides the active and passive states during which two of the switubes are atways in conduction, the converter has four more states when pone of the switches (or their anti-parallel diodes) are in conduction. Those states are the transition slates. Agaid, there are two different types of transition states (or transitions, for stor). Dunag the $P-A$ transiboa. We $P-A$ leg switctes over from the passive to the active state. Danag tive $A-P$ transition, the $A \cdot P$ leg switbes over from the actuve to the passive state.

In addition to the two types of main states (active and passive) a ad row types of trasition states ($A \cdot P$ and $P-A$), other converter states can be also defined. Those states correspond to the conduction (or the lack of it) of the various diodes (anti-parallel, output, ciamp) in the converter. We shall discuss some of those states in the relevant parts of the paper.

Active-to-passive transition
Figure 3 shows an equivalent circait of the conventer during the A.P transition.

Figure 3. Equivalent circait daring the A-P transition.
In the equivalent circait the transformer is represented by the magnetizing indacunce L_{n}, the leakage inductance L_{k}, and an equivalent parasitic capacitance $C_{\text {, (}}$ (all transformed to the primary side). The location of the siagle equivaient parasitic capaciance is a function of the transformer geometry and winding configuration and is somewhat arbitrary. C_{i} is the sum of the equivalent capacitances of the two switches of the leg and the external stray and snubber capacitances loading the leg ceater point. (The equivalent capacitance of a switch is the linear capacitance which stores the same amount of energy as does the nonlinear janction capaciance when the voluge across it is V_{m}.) In Figure 3, the voluges across the
capacitances and the carreats in the iadactances are the initial conditions of the traasition. I_{m} is the peat value of the magnetizing currest, I_{p}^{\prime} is the peak value of the carrent in the output inductor transformed to the inpot side, V_{0}^{\prime} is the output voltage ransformed to the input side.

Above a very light load, the stored energy of the output inductor is much larger than the other stored energies. This fact makes the introduction of the mach simplified equivalent circuit of Figure 4 possible. That equivaleat circait yields a lizear capacitor-voltage vs. time fuaction. The simplified equivaleat circuit is usually valid down 10 a few percent of the full load carreat

Figare 4. Simplified equivalent circait dariag A-P tnasition.
The A-P transition is completed when either the anti-parallel diode of the ofter, second, switch in the leg (the body diode of the MOSFET swisch or an external diode) comes into condection, or the second switch is turned on, whichever happens earlier. A delay time must be iaserted berween the tran-off of the first swich and the tam-on of the second switch. Ia order to avoid lossy charge or discinarge of the capacitance losding the junction of the two switches, the delay time must be above a certala limit Assuming that the minimum cenreat in the primary windiag is large enough that the linear approximation of the leg-voltage transition is valid, the limit is

$$
\begin{equation*}
t_{d(1-M)}>\frac{V_{m(0 m)}\left(C_{1}+C_{p}\right)}{I_{m(1)}} \tag{1}
\end{equation*}
$$

Theoretically the apper timit for the delay time is the minimam daration of the passive state. In pracice, it is advisable to tarn on the second switch well before the $P \boldsymbol{A}$ trassition begins, 20 that the minority clarge carries are removed from the body diode before reverse voluge is forced acroses that diode.

Pastre-to-nctive tramstiton

Depending on the operating mode (continuons or discontinuons) and circuit panmeters, the converter can be characterized by three differeint equivalent circuits daring the $P A$ transition.

Figure 5 shows the equivalent circuit when the conventer is in DICM. (DICM is short for discontinnous indector current mode.)

Figure 5. Equivalent cirenit dariag the P_{A} transition, DICM.

In DICM, the magnetizing, leakage and commatatiag inducunces carry the same carrent (\mathbf{l}_{m}) whea the transition begias. The equivalent circoit remains valid throughout the transition.

In CICM, the transition begins with the equivaleat circrit shown in Figure 6. (CICM is short for continaous inductor carrent mode.)

Figure 6. Equivalent circait at the beginaing of the $P A$ transidion in CICM.

If the magnetizing curreat is smaller than the reflected valley current, the transformer remains in shoried condition entil the transition is over. (The trassition eads either because the voluge across C_{1} swings all the way to tie other bus, or because the other swinch is taned on by the drive signal.) If the magnetizing carrent is larger than the reflected valiey current, two things can happen: (1) The transition is over before the curreat in the leakage indactance drops below the difference between the magnetizing carreat and the reflected indsctor curreat. The equivaleat circait of Figure 6 remains valid throughont the trassition. (2) The curreat in the leakage inductance drops below the difference between the magnetizing carrent and the reflected inductior carrent. When that happeas the transformer comes ont from the shorted condition and the equivalent circuit of Figure 7 becomes applicable.

Figare 7. Equivalent circuit dariag the $P A$ transition in CICM when the transformer comes out from the shorted condition.

Is the figare, for simplicity, we ase the foltowing assumptions: 1 . The filter inductor carrent has sot changed daring the first part of the tranaition, i.e. its value is I_{p} (the valley carreni). 2. The ladder network of L_{A}, C_{p}, L_{e}, and C_{1} can be replaced by the aetwort comprising only one indector with an inductance of $L_{k}+L_{c}$ and one capacitor with a capacitance of $C_{p}+C_{1}$. The iaitial capecior voluge V_{1} is calcelared from the law of conservation of enerig; the resalt is

$$
\begin{equation*}
v_{1}=2 \sqrt{\frac{L_{c}+L_{u}}{C_{p}+C_{2}} I_{m}^{\prime}} \tag{2}
\end{equation*}
$$

COMMUTATION ENERGY FOR THE PA LEG

As the equivaleat circaits demonstrate, the energy stored in the filier indactor does not help the PA transition. This is why the $P A$ leg can lose soft switching at a much lower load carrent that the A-P leg. It is abo evideat that by storing energy in the magnetizing inductance, the rage of soft switching of the P_{A} leg can be extended.

For an optimization of the design, it is useful to determine the energy available for commatation of the P-A leg as function of the load current, with the magnetizing inductance and the leakage plus commatating inductances as parameters

In DICM, from the equivalent circuit of Figure 5 , the commutating energy is

$$
\begin{equation*}
E_{c}=-\frac{1}{\tau}\left(L_{z}+L_{i k}+L_{c}\right) I_{-}^{2} \tag{3}
\end{equation*}
$$

In DICN the magnetizing current is function of the load current because the duty atio also depend on the load corrent. A simple derivation yields

$$
\begin{equation*}
I_{m}=\frac{1}{\lambda L_{-}} \sqrt{\frac{2 J_{0} L_{0} N V_{0} V_{m} T}{\left(\frac{V_{m}}{N}-V_{0}\right)}} \tag{4}
\end{equation*}
$$

The components and voltages are those defined in Figure $1: T$ is the period ot the clock frequency (i.e. the outpot frequency)

The load carrent at the borderline of DICM and CICM is

$$
\begin{equation*}
I_{\bullet}=\frac{V_{0} T}{\lambda L_{\bullet}}\left(1-\frac{V_{\bullet}}{V_{n}}\right) \tag{5}
\end{equation*}
$$

In CICM, when the magnetizing current is smaller than the reflected valley carreat, the commatating energy is

$$
\begin{equation*}
E_{c}=\frac{1}{2}\left(L_{i t}+L_{e}\right)\left(I_{m}+I_{v}^{\prime}\right)^{2} \tag{6}
\end{equation*}
$$

In CICM the magnetizing current is

$$
\begin{equation*}
I_{-}=\frac{Y_{0} N T}{2 L_{0}} \tag{7}
\end{equation*}
$$

The reflected valley current is

$$
\begin{equation*}
I_{v}^{\prime}=\stackrel{\prime}{\nabla}-\frac{V_{0} T}{2 L_{\bullet} N}\left(1-\frac{V_{\bullet}}{V_{n}} N\right) \tag{8}
\end{equation*}
$$

For the case when the magnetizing carrent is larger than the valley correat, the commatation energy is

$$
\begin{equation*}
E_{c}=\frac{1}{2} L_{m}\left(I_{-}-I_{v}^{\prime}\right)^{2}+\frac{1}{2}\left(L_{i}+L_{j}\right)\left(I_{-}+I_{n}^{\prime}\right)^{2} \tag{9}
\end{equation*}
$$

Figure 8 shows the calcalated commatating energy in fanction of the load carrent for a converter with the following parameters:

V_{*}	$=$	380	V
V_{-}	$=$	52	V
T	$=$	5	μs
N	$=$	143	
L_{*}	$=18$	$\mu \mathrm{H}$	
I_{-}	$=50$	A	

The minimam commatating energy needed for ensuring soft switching of the $P A$ leg of the example converter is
$E_{\text {coul }}=200 \quad \mu \mathrm{~J}$
which corresponds to an equivalent loading capaciunce of
$C_{p}+C_{1}=2.77 \quad \mathrm{nF}$

The sum of the leakage and commutating inductances is

$$
L_{t}+L_{c}=11 \quad \mu \mathrm{H}
$$

Figure 8. Commutating energy vs. output curren (parameter: magnetizing inductance).

In Figure 8 the parameter is the magnetizing inductance. As can be seen, with $150 \mu \mathrm{H}$ magnetizing inductance, soft switching is maintained from full load down to practically zero load.

In Figure 9 the parameter is the sum of the leakage and commotating inductances. The magnetizing indactance is
$L_{m}=1.15 \quad \mathrm{mH}$

Figure 9. Commutating energy vs. output current (parameter: sum of leakage and commotating inductances)

By comparing Figures 8 and 9, it becomes obvious that reducing the magnetizing inductance is a more effective means of maintaining soft switching at light load than increasing the commutating indactance. Although a complete loss analysis is outside the scope of this peper, it is clear that the penslty of using low magnetizing indactance is iacreased condaction losses in the switches and in the windings of the transformer asd the commntuting inductor. Increasing the commatating inductance also increases the conduction losses, but moch more gradually.

CURRENTS IN THE CLAMP DIODES

A task of the commutating indactance added in series with the primary winding of the transformer is to increase the energy available for the transition of the $P-A$ leg. Without parasitic capacitances around the transformer asd the outpot rectifier diodes, the inductor itself wonld be sufficient to accomplish that task. Unfortuately, the parasitic capacitanc-
es cause ringing across the transformer windings and lead to excessive voltage overshoot across the rectifier diodes. To reduce the riaging and overshoot, dissipative [5] and nondissipative [10] clamps have been recommended. Another, less expensive but equally effective, solution was proposed in [1]. The idea is to add clamp diodes between the positive or aegative supply bus and the junction of the commutating inductor and the transformer termiaal. The clamp diodes prevent the ringing across the primary winding of the transformer, so now the ringing will be excited only by the energy stored in the leakage inductance. That energy is usually only about 10% of the rotal energy stored in the commutatiag inductance as is, therefore, much easier to absorb. The excess energy stored in the commatating inductance is returned either to the supply through the clamp diodes or to the output through the trassformer.

Dae to the presence of the clamp diodes, the two possible locations of the commatatiag inductor - berween the P_{-A} leg and the transformer and between the A-P leg and the trassformer - are not equivalent. The main difference between the two locations is in the carrents of the clamp diodes. Figare 10 shows the cerrent in the clamp diode D_{2} (in Figure i), wogether with the bridge voltage $v_{A B}$ and transformer voluge $v_{A C}$, for the case when the commatating inductor is at the P-A leg. (Note that in Figure 1, the leg marted with B is the PA leg.)

Figare 10. Bridge and tmasformer voltages and carreat in the elamp diode D_{2} whea the commutating indactor is at the $P-A$ leg.

Figere 11 shows the carrent is the clamp diode D_{1}, together with the bridge voluge v_{0} and transformer voltage vor, for the case when the commutating inductor is moved to the A-P leg. (Note that in Figure 1, the leg marked with A is the A.P leg.)

Figare 11. Bridge and trassormer voltages and curreat ia the champ diode when the commatating indector is at the A-P leg.

As can be seen, duriag the active state a carrent ramp flows in the clamp diode. The ramp begins atter the passive-to-active trassition, when the voltage acroas the traasformer reaches $V_{\text {in }}$. Note that the volage build-mp
across the transformer is delayed by the presence of the commatating inductor. The delay time $t_{1}-t_{2}$ is

$$
t_{1}-t_{2}=\frac{I_{v}^{\prime} L_{c}}{V_{m}}
$$

The peak I_{1} of the current ramp is approximately

$$
\begin{equation*}
I_{1}=\frac{V_{*}}{\sqrt{\frac{L_{i}+L_{c}}{C_{1}+C_{p}}}} \tag{11}
\end{equation*}
$$

The ramp decays with a slope which is approximately equal to the sum of the slopes of the magnetizing curreat and the reflected filter iadactor curreat plas the diode forward voltage divided by the commatating inductance. If the time constant $\left(L_{k}+L_{c}\right) / R_{\text {m }}$ is small, an exponential decay term also appears. Ia the active state the location of the commotatiag indactance has ao effect on the curreal waveform of the clamp diode.

Dae to various irasformer parasitics, cerrent flows in the clamp diode at the active-co-passive trensition, too. The peak value I_{2} of that currest caanot be as simply calculated as that of the carreat duriag the active stake.) The location of the commotuting inductance has a very distinet effect on the waveform. If the commatating indactor is at the P-A leg. the corrent will be nearly constant dering the whole daration of the passive state. The current circulates in the commutating indactor, the clamp diode, and the switch which is connected to the commatating indactor on the same side of the supply bus as is the clamp diode (S , in the case of D_{2}. The decay is influenced by several faciors, iscladiag the slope of the reflected filier iadsctor curreat and the effeet of the forward voltage drop of the clamp diode. The reflected slope increases the earreat, while the diode forward voltage drop decreases it Comperer simalations and observations of the operation of the actal convenci show that the resulting slope is aronad zero duriag normal operatios asd is positive (i.e. the current increases) at small duty rntios.

At the ead of the pessive stake, the clamp diode tarns off with e didd of $V_{i} \mathcal{L}_{e}$ That di/dt value is high enough to develop a large reverse cutreat palse in the clamp diode and to canse signaificant switchiag losess.

If the commatatigg indactor is at the A-P leg, carreat flows only very briefly in the clamp diode at the active-ro-passive trasition. The peak curreat I_{2} of the diode will be approximately the same as before, but the daration of the cerrent pulse will be very short. The reasor is that the excess current sow flows through the clamp diode which is connected to the opposile bas. This produces a high decay rate $\left(V \Omega_{\mu}\right)$ and quick termination of the curreat (Observed current palse derations are is the 50 to 100 as rage.) The high decay rate also causes switching loses in the diode but the rotal loss is still mach less than before.

It is interesting to note that in the secosd location of the commatatiag indactor, a third carreat palse appears ia the clamp diode at the monemat when the active-to-passive masition takes place in the other direction. The peak of the third corrent palse $I_{\text {, }}$ is the same as the reverse peak carrent of the other clamp diode. The carrent palse decays with the sum of the stope of the reflected filter indector curreat and the forward volage drop of the clamp diode divided by L_{r}

DESIGN CONSIDERATIONS AND EXPERIMENTAL RESULTS

The choice of the magnetizing and commatatiag indectasces depends on the operatiag conditions of the converter. If the converter operates close so full lood most of the time, it is sufficient to use only the commatatiag indectance for maintaining soft switching. If the load varies over a wide rage, it might become necessary to reduce the magnetizing indactance of the transformer to ensure soft swiching in the whole load-enrent nage.

As was shown in the section on commutation energy, it is possible to extend the range of soft switching practically all the way to zero load current b: reducing the magnetizing inductance. The excess magnetizing curtent, however, leads to excess conduction losses. We clearly have an optimizat on problem. To achieve the highest average efficiency, we must alsc take into account the probability distribution function of the load. A discussion of the optimization of the converter for efficiency is the subject of a planned future paper.

Circuits to reduce currents in the clamp diodes

When the commutating inductor is at the $P-A$ leg, the de and rms current and also the switching losses in the clamp diodes are much larger than when the inductor is at the A-P leg. At small duty ratios where there is not enough time for the current to decay to zero during the active state, the switching losses can easily cause thermal runaway and, eventually catastropnic failure, of the diodes.

Although there seems to be no practical reason which would justify keeping the commutating inductor at the $P-A$ leg, it is easy to prevent current runaway in the clamp diodes even in that position. Figure 12 shows a simple circuit which works satisfactorily. The resistor R speeds up the decay of the current. In another circuit (Figare 13), the same is achieved by using two back-to-back Zener diodes.

Figure 12. Resistive damping of the currents in the clamp diodes.

Tigure 13. Damping of the currents with Zener diodes.
The extra voluge drops introduced by the additional components (resistor or Zener diodes) appear across the output rectifiers. During the design of the converter, those extre voluge drops must be taken into account. The other desiga parameter is the dissipation. Because the currents in the clamp diodes are not easily predictable, computer simulations and/or laboratory tests are recommended to refine the paper designs.

Although not essential, a small amount of resistive damping might be also beneficial in the case when the commutating inductor is at the A-P leg. The damping ensures that the clamp diodes are not conducting when a transition ukes place in the converter and so it helps further reducing the switching losses.

Experimental results

We reccirded the current waveforms in the clamp diodes of a $3-\mathrm{kW}$ converter ander various conditions. Figures 14 through 16 show those waveforms. The parameters of the converter are given in a previous section discussing the commatating energy.

Figure 14. Current in a clamp diode without damping resistor at full load. The commutating inductor is at the $P-A$ leg. Scales: $1 \mathrm{~A} / \mathrm{div}$., $2 \mu \mathrm{~s} / \mathrm{div}$.

Figure 15. Current in a clamp diode with a 4.2 ohm damping resistor at full load. The commatating inductor is at the P-A leg. Scales: 1 A/div., $2 \mu \mathrm{~s} / \mathrm{div}$.

1
Figure 16. Current in a clamp diode without damping resistor at full load. The commutating inductor is at the $A-P$ leg. Scales: 1 Adiv., $2 \mu \mathrm{~s} / \mathrm{div}$.

Figure 17. Transition of the $P \mathcal{A}$ leg. $L_{\mu}=1.2 \mathrm{mH}, L_{c}=10 \mu H, L_{k}=1.7 \mu \mathrm{H}$. Parameser. ontpat carrent.

Figare 18. Trasition of the $P \cdot A$ leg. $L_{m}=150 \mu H_{c} L_{c}=0, L_{k}=1.7 \mu \mathrm{H}$. Parameter: ontpat cament.

Figure 19. Transition of the $P-A$ leg. $L_{m}=150 \mu \mathrm{H}, L_{c}=10 \mu \mathrm{H}, L_{k}=1.7 \mu \mathrm{H}$. Parameter: outpot carrent

RESULTS OF COMPUTER SIMULATIONS

We carried out SPICE simulation of the $3-\mathrm{kW}$ converter, to verify the validity of the simplified models ased for determining the trasitions and calculating the commatation energy available for the $P \wedge$ leg. Figures 17 through 19 show some of the resalts of the simulation.

Figure 17 shows the voluge transition of the $P-A$ leg with the parameter values $i_{m}=1.2 \mathrm{mH}$ and $L_{c}+L_{k}=11.7 \mu \mathrm{H}$. Figare 18 shows the voluge transition of the P_{x} leg with the parmeter values $L_{s}=150 \mu \mathrm{H}$ and $L_{c}+L_{k}=1.7 \mu \mathrm{H}$. Figure 19 shows the voltage transition of the $P-A$ leg with the parameter values $L_{\mathrm{s}}=150 \mu \mathrm{H}$ and $L_{\mathrm{c}}+L_{\mathrm{t}}=11.7 \mu \mathrm{H}$. On all three figures the parameter is the output current which varies between 1 A and 50 A .

The waveforms on Figure 17 show that with high magnetizing and commputing inductances soft switching is achieved only above 30 A , i.e. 60% of the foll load. This is expected from the data in Figure 8. Those data indicate that the commatating eaergy becomes insufficieat for soft switching at a load correat below about 27 A.

The waveforms on Figure 18 show that with low magnetizing inductance and without exterasily added commatating indnctance soft switching is achieved only below 10 A. The waveforms on Figure 19 show that with low magnetizing indactance and high commatating inducunce soft switching is achieved from almost zero load to foll load. This is also expected from the datu in Figare 8.

SUMMARY

We presented equivalent circnits for the switch transitions of the fallbridge soft-switching converter with an external commotating indactor and clamp diodes. We also determined the commutating energy available for the passive-to-active leg, taking into accomnt both the magnetizing inductance and the commntating inductance. The commotating energy stows a minimum in function of the load current.

In addition to the switch transitions, we investigated the corrents in the clamp diodes. Both the currents and the switching losses of the clamp diodes are smaller when the commatating inductor is located between the octive-to-passive leg and the transformer. If needed, farther reduction of the carrents can be achieved by adding a small resistor or two Zener diodes to the converier.

The predictions based on analyses using simple equivaleat cirenits were verified by experimental date tayen from a $3-\mathrm{kW}$ converter with $200-\mathrm{kHz}$ clock frequency and by extensive SPICE simulations.

REFERENCES

1] R. RedL. N. O. Sokal, L. Balogh, A novel soft-switching full-bridge DC/DC converter. analysls, design considerations, and experimental results at $1.5 \mathrm{~kW}, 100 \mathrm{kHz},{ }^{"}$ PESC 90 Record, pp. 162-172.
[2] R. Redl and L. Baiogh, "Soft-Switching Full-Bridge DCIDC Converting," U.S. Patent S,198,969, March 30, 1993.
[3] R. A. Fisher, et al, "A 500 kHz 250 W de-de converter with multiple outputs controlled by phase-shifted PWM and magnetic amplifiera," HFPC • May 1988 Proceedings, pp. 100-110.
[4] M. M. Walters and W. M. Polivka, *A high-density modular power processor for distributed military power systems," Proceedings of APEC '89, pp. 403-412.
[5] L. H. Mweene, et al, "A $1 \mathrm{~kW}, 500 \mathrm{kHz}$ frootend converter for a distributed power supply system," Procecaings of APEC '89, pp. 423-432.
[6] D. M. Sable and F. C. Lee, The operation of a full bridge, zero-voltage-switched PWM converter," Proceedings of VPEC Seminar '89, pp. 92-97.
[7] D. B. Dalal, "A $500-\dot{k} \mathrm{~Hz}$ multi-output converter with zero voltage switching." Proceedings of APEC '90, pp. 265-274.
[8] J. A. Sabate, et al, "Design considerations for bigh-voltage high-power full-bridge zeco-voltage-switebing PWM converter," Proceedings of APEC '90, pp. 275-284.
[9] O. Cben, et al, "Optimization and design isenes of low output voltage, off-line, zero-voltage-swisched PWM converters," Proceedings of APEC 92. pp. 73-80.
$[10]$ J. A. Sabate, et al, "High-voltage, high-power, ZVS, full-bridge PWM converter employing an active smubber," Proceedings of APEC'91, pp. 158-163.

