

Energy Star Charger and Adapter Design Guide

Jan 2011

www.active-semi.com

<u> Active-Semi</u>

AC/DC Converters – ActivePSR TM Chargers for Cell Phones, PDAs, MP3, PMPs, DSCs, and Other Portable Devices RCC Adapter or Linear Adapter Replacements Standby and Auxiliary Supplies White LED Lighting 					
Part Number	Output Power	Technology	echnology Standby Power Switching Consumption Frequency		
ACT364	6.5W	PSR [⊕]	< 150mW @ VAC = 230V	Adjustable to 80kHz	SOT23-6
ACT365	12.5W	PSR [⊕]	< 150mW @ VAC = 230V	Adjustable to 80kHz	SOP8
ACT366	14.5 W	PSR [⊕]	< 150mW @ VAC = 230V	Adjustable to 80kHz	SOP8-EP
ACT334	6.5W	PSR®	< 30mW @ VAC = 230V	Adjustable to 80kHz	SOT23-6
ACT336	6.0W	PSR [⊕]	< 30mW @ VAC = 230V	Adjustable to 80kHz	SOP8
ACT337	12.5W	PSR [⊕]	< 30mW @ VAC = 230V	Adjustable to 80kHz	SOP8

①: PSR is Primary-Side Regulation

Table of Contents

1. ACT364 5V 1000mA Universal Charger	3
2. ACT365 5V 2100mA Universal Charger	5
3. ACT366 12V 1000mA Universal Charger	7
4. ACT334 5V 1000mA Universal Charger	9
5. ACT336 5V 1200mA Universal Charger	11
6. ACT337 5V 2100mA Universal Charger	13

Active-Semi (Shanghai) Office Contact Information

Fast Technical Support

Contact Person1 : Peter : Director of Product Line

Tel: (86-21) 5108 2797#865; Mobile Phone :135 8558 2743; E-mail box:Peterhuang@active-semi.com. Address:RM1202,Sunplus Building,No.1077 Zuchongzhi Road,Zhangjiang High Tech Park,Shanghai 201203, China

Fast Technical Support

Contact Person 2: Ming: VP of Product Line Tel: (86-21) 5108 2797#856; Mobile Phone : 150 2122 6981; E-mail box: mchen@active-semi.com. Address: RM1202,Sunplus Building, No.1077 Zuchongzhi Road,Zhangjiang High Tech Park,Shanghai 201203, China

For information regarding Active-Semi products, sales and authorized distributors, please contact: sales@active-semi.com.

Active^{PS}[™]

High Efficiency AC/DC Primary Switching Solutions

ACT364 5V/1000MA CHARGER

Input Voltage	Device	Standby Power	Output Voltage	Power output	Transformer	Topology
85-264VAC	ACT364	150mW	5V	5W	EFD15	Flyback

L=41.3mm W=28.1mm H=13.2mm

Operation and Application

Figure 1 is the schematic of an offline charger using ACT364 to provide output power of 5V1000mA. This circuit is a typical flyback power supply which includes the AC rectified circuit (BD1,C1, L1, C2), power drive circuit (BD pin, Q1), secondary rectified circuit (D8, C5) and the IC control circuit. ACT364 is a Primary Side Regulator (PSR) so that the power supply unit can regulate current and voltage without Optocoupler. Pin 4 and Pin 2 are the VDD and ground pins to provide power for the IC. Pin 3 is the base drive for the NPN transistor. Pin 1 is the switching pin. Pin 5 is the feedback pin that senses the output current and output voltage. Pin 6 is the peak current sense pin. Resistance of R10 determines the output DC cord compensation percentage.

This circuit can be used as universal charger for Cell Phones, PDAs, MP3,Portable Media Players, DSCs, and Other Portable Devices and Appliances.

Figure 1:

Key Component Selection

The maximum output current is decided by formula(1).

$$I_{OUTCC} = \frac{1}{2} \times L_{P} \times (\frac{0.9 * 0.396}{R_{CS}})^{2} \times (\frac{\eta \times F_{SW}}{V_{OUTCC}})$$
(1)

Lp is the transformer inductance value, Rcs is the current sense resistor, which is shown as R9 in the schematic. Fsw is the switching frequency, which design value is 75kHz. η is the overall system efficiency, which value is approximately equal to 70%. Voutcc is the output voltage, which setting is through the flyback voltage of auxiliary winding and the feedback resistor R5, R6 as shown in formula (2).

$$V_{OUTCC} = V_{REF} \times (1 + \frac{R_5}{R_6}) \times \frac{N_s}{N_{AUX}} - V_{SEC_R}$$
⁽²⁾

Np/Ns/Naux (140/7/19) must be designed correctly to ensure it operates in DCM in all conditions. A design value Voutcc equal to 5V and loutcc_min equal to 1000mA are used to do the design. Ns and Naux are number of turns of secondary and auxiliary of the transformer. VSEC_R is the forward voltage drop of the output rectifier diode at approximately 0.1A bias. The peak current limit is set by (0.396×0.9)/Rcs.

High Efficiency AC/DC Primary Switching Solutions

ACT364 5V/1000MA CHARGER

Bill of Materials

REF	DESCRIPTION	MFTR
C1, C2	Capacitor, Electrolytic, 4.7µF/400V, 8 × 12mm	KSC
C3	Capacitor, Ceramic,1000pF/500V,1206,SMD	POE
C4	Capacitor, Electrolytic, 4.7µF/35V, 5 × 11mm	KSC
C5	Capacitor, Electrolytic, 680µF/10V, 8 × 12mm	KSC
C9	Capacitor, Ceramic,1000pF/50V,0805,SMD	POE
BD1	Bridge,B6S,600V/0.5A,MDI,SMD	PANJIT
D5,D6	Diode, Ultra Fast, FR107,1000V/1.0A, DO-41	Good-Ark
D8	Diode, Schottky, 40V/3A, SB340, DO-15	Good-Ark
L1	Axial Inductor, 1.5mH, 0410, DIP	Amode Tech
Q1	Transistor, NPN, 700V,1.5A, D13003, TO-126	Huawei
FR1	Fusible Resistor, 1W, 10Ω , 5%	TY-OHM
R1,R4	Chip Resistor, 22Ω, 0805, 5%	TY-OHM
R2	Chip Resistor, 750k, 1206, 5%	TY-OHM
R3	Chip Resistor, 470Ω, 1206, 5%	TY-OHM
R5	Chip Resistor, 49.9k, 0805, 1%	TY-OHM
R6	Chip Resistor, 8.87k, 0805, 1%	TY-OHM
R7,R8	Chip Resistor, 5.1MΩ, 1206, 5%	TY-OHM
R9	Chip Resistor, 1.0Ω, 1206, 1%	TY-OHM
R10	Chip Resistor, 162k, 0805, 5%	TY-OHM
R11	Chip Resistor, 1.1k, 0805, 5%	TY-OHM
R13	Chip Resistor, 10Ω, 0805, 5%	TY-OHM
T1	Transformer, $L_P = 1.5 \text{mH} \pm 7\%$, EFD15	
U1	IC, ACT364US-T, SOT23-6	Active-Semi

Transformer Specitication

Build up

Wind- ing	Terminal		_	Wire			Insulation	
	Start	Finish	Turns	Туре	Size*QTY	Layer	Thick/Wide	Layer
SH1	4	NC	16	2UEW	0.12Φ*4	1	0.025*8.5W	2
P1	2	1	140	2UEW	0.15 Φ *1	3	0.025*8.5W	2
SH2	4	NC	13	2UEW Reverse	0.12Ф*4	1	0.025*8.5W	2
S1	5	8	7	TEX-E	0.3Φ*2	1	0.025*8.5W	2
P2	3	4	19	2UEW	0.12Ф*2	1	0.025*8.5W	2
SH3	4	4	3	Copper	0.15 Φ *1	1	0.025*10	8

Note:1.SH1,SH2,andSH3 are shielding; P1 & P2 are primary and S1 is secondary.(Bobbin:EFD15)

Electrical specifications

Item	Description	Condition	Limits
1	Electrical Strength	50Hz, 1 minute, from primary and secondary	3000Vac
2	P1 Inductance	Inductance between pins 1 and 2 at 1Vac & 1kHz	1.5mH±%7
3	P1 Leakage Inductance	Inductance between pins 1 and 2 with pins 4-3 and 5-8shorted	75µH

PCB Top and Bottom Layers

Typical Performance Characteristics

EFFICIENCY

CC/CV CURVE

EVALUATION KITS	Vin 85-264Vac	Vo	lo
A01304-02	05-204 vac	4.75-5.254	1000-1300mA

ACT365 5V/2100MA CHARGER

Input Voltage	Device	Standby Power	Output Voltage	Power output	Transformer	Topology
85-264VAC	ACT365SH	150mW	5V	10.5W	EPC17	Flyback

Operation and Application

Figure 1 is the schematic of an offline charger

using ACT365 to provide output power of

5V2100mA. This circuit is a typical flyback power

supply which includes the AC rectified circuit

(BD1,C1, C2), power drive circuit (BD pin, Q1),

secondary rectified circuit (D8, C5,C6) and the IC

control circuit. ACT365SH is a Primary Side Regulator (PSR) so that the power supply unit can regulate current and voltage without Optocoupler. Pin 6 and Pin 2,4,7 are the VDD and

ground pins to provide power for the IC. Pin 8 is

the base drive for the NPN transistor. Pin 1 is the

switching pin. Pin 5 is the feedback pin that

senses the output current and output voltage. Pin

3 is the peak current sense pin. Resistance of

R10 determines the output DC cord compensa-

tion percentage. This circuit can be used as uni-

MP3, Portable Media Players, Shaver, DSCs, and

Other Portable Devices and Appliances.

for Cell Phones,

versal

charger

L=40.0mm W=28.1mm H=22.1mm

Key Component Selection

The maximum output current is decided by formula (1).

$$\mathbf{I}_{OUTCC} = \frac{1}{2} \times L_p \times (\frac{0.9 * 0.396}{R_{CS}})^2 \times (\frac{\eta \times F_{SW}}{V_{OUTCC}})$$
(1)

Lp is the transformer inductance value, Rcs is the current sense resistor, which is shown as R9 in the schematic. Fsw is the switching frequency, which design value is 75kHz. η is the overall system efficiency, which value is approximately equal to 70%. Voutcc is the output voltage, which setting is through the flyback voltage of auxiliary winding and the feedback resistor R5, R6 as shown in formula (2).

$$\mathbf{V}_{OUTCC} = V_{REF} \times (1 + \frac{R_5}{R_6}) \times \frac{N_s}{N_{AUX}} - V_{SEC_R}$$
(2)

Np/Ns/Naux (110/8/18) must be designed correctly to ensure it operates in DCM in all conditions. A design value Voutcc equal to 5V and loutcc_min equal to 2100mA are used to do the design. Ns and Naux are number of turns of secondary and auxiliary of the transformer. VSEC_R is the forward voltage drop of the output rectifier diode at approximately 0.1A bias. The peak current limit is set by (0.396×0.9)/Rcs.

PDAs.

ACT365 5V/2100MA CHARGER

Bill of Materials

REF	DESCRIPTION	MFTR
C1, C2	Capacitor, Electrolytic, 10µF/400V, 10×16mm	KSC
C3	Capacitor, Ceramic,1000pF/500V,1206,SMD	POE
C4	Capacitor, Ceramic, 10µF/35V,1206,SMD	KSC
C5	Capacitor, Electrolytic, 1000µF/6.3V, 8 ×16mm	KSC
C6	Capacitor, Electrolytic, 820µF/6.3V, 6.3 × 16mm	KSC
C9	Capacitor, Ceramic,1000pF/50V,0805,SMD	POE
CY1	Safety Y1,Capacitor,1000pF/400V,Dip	UXT
BD1	Bridge Rectifier,D1010S,1000V/1.0A,SDIP	PANJIT
D5	Fast Recovery Rectifier, RS1M,1000V/1.0A, RMA	PANJIT
D6	Fast Recovery Rectifier,RS1D,200V/1.0A,SMA	PANJIT
D8	Diode, Schottky, 45V/10A, S10U45S, SMD	Diodes
L1	Choke Coil, 1.5mH, ¢6x8mm, DIP	Amode
Q1	Transistor, NPN, 700V,D13005,TO-126	Huawei
F1	Fuse:1A 250V 3.6*10mm With Pigtail, ceramic tube	walter
R1	Chip Resistor, 22Ω, 0805, 5%	TY-OHM
R2	Chip Resistor, 300k,1206, 5%	TY-OHM
R3	Chip Resistor, 390Ω,1206, 5%	TY-OHM
R4	Chip Resistor, 15Ω, 0805, 5%	TY-OHM
R5	Chip Resistor, 80.6k,0805, 1%	TY-OHM
R6	Chip Resistor, 19.1k, 0805, 1%	TY-OHM
R7	Chip Resistor, 10MΩ, 1206, 5%	TY-OHM
R9	Chip Resistor, 0.65Ω,1206, 1%	TY-OHM
R10	Chip Resistor, 162k,0805, 5%	TY-OHM
R11	Chip Resistor, 1.1k, 0805, 5%	TY-OHM
R13	Chip Resistor, 10Ω, 0805, 5%	TY-OHM
T1	Transformer, $L_P = 1.25 \text{mH}\pm7\%$, EPC17	
USB	Double-layer USB Rev:A	
U1	IC, ACT365SH-T, SOP-8	ACT

Transformer Specitication

Build up

Wind- ing	Terminal			Wire			Insulation	
	Start	Finish	Turns	Туре	Size*QTY	Layer	Thick/Wide	Layer
P1	2	3	74	2UEW	0.22Φ*1	1	0.025*8.5W	2
SH1	>	4	0.9	Copper	0.7mm	1	0.025*8.5W	2
S1	в	A	8	TEX-E	0.75 Φ *1	1	0.025*8.5W	2
P2	5	4	18	2UEW	0.14¢*3	1	0.025*8.5W	2
P3	3	1	36	2UEW	0.22¢*1	1	0.025*8.5W	2
SH2	4	core	3	Copper wire	0.15Ф*1	1	0.025*8.5W	5

Note:1.SH1,SH2 are shielding; P1, P2 are primary and S1 is secondary.(Bobbin:EPC17)

Electrical Specifications

Item	Description	Condition	Limits
1	Electrical Strength	50Hz, 1 minute, from primary and secon- dary	3000Vac
2	P1 Inductance	Inductance between pins 1 and 3 at 1Vac & 1kHz	1.25mH±%7
3	P1 Leakage Inductance	Inductance between pins 1 and 3 with pins 4-5 and A-B shorted	75µH

PCB Top and Bottom Layers

Typical Performance Characteristics

EFFICIENCY

EVALUATION KITS	Vin	Vo	lo			
ACT365-08	85-264Vac	4.75-5.25V	>2100mA			

Active^{PS}[™]

High Efficiency AC/DC Primary Switching Solutions

ACT366 12V/1000MA CHARGER

Input Voltage	Device	Standby Power	Output Voltage	Power output	Transformer	Topology
85-264VAC	ACT366HY	150mW	12V	12W	EE20	Flyback

L=45.8mm W=33.3mm H=22.4mm

Operation and Application

Figure 1 is the schematic of an offline charger using ACT366YH to provide output power of 12V1000mA. This circuit is a typical flyback power supply which includes the AC rectified circuit (BD1,C1, C2), power drive circuit (BD pin, Q1), secondary rectified circuit (D8, C5,C6) and the IC control circuit. ACT366YH is a Primary Side Regulator (PSR) so that the power supply unit can regulate current and voltage without Opto-coupler. Pin 6 and Pin 2,4,7 are the VDD and ground pins to provide power for the IC. Pin 8 is the base drive for the NPN transistor. Pin 1 is the switching pin. Pin 5 is the feedback pin that senses the output current and output voltage. Pin 3 is the peak current sense pin. Resistance of R10 determines the output DC cord compensation percentage. This circuit can be used as universal charger for Cell Phones.PDAs. MP3, Portable Media Players, Shaver, DSCs, and Other Portable Devices and Appliances.

Key Component Selection

The maximum output current is decided by formula (1).

$$I_{OUTCC} = \frac{1}{2} \times L_{P} \times (\frac{0.9 * 0.396}{R_{CS}})^{2} \times (\frac{\eta \times F_{SW}}{V_{OUTCC}})$$
(1)

Lp is the transformer inductance value, Rcs is the current sense resistor, which is shown as R9 I the schematic. Fsw is the switchin frquency,which design value is 75kHz. η is the overall system efficiency, which value is approximately equal to 70%. Voutcc is the output voltage, which setting is through the flyback voltage of auxiliary winding and the feedback resistor R5, R6 as shown in formula (2).

$$V_{OUTCC} = V_{REF} \times (1 + \frac{R_5}{R_6}) \times \frac{N_s}{N_{AUX}} - V_{SEC_R}$$

(2)

Np/Ns/Naux (96/9/12) must be designed correctly to ensure it operates in DCM in all conditions. A design value Voutcc equal to 12V and loutcc_min equal to 1000mA are used to do the design. Ns and Naux are number of turns of secondary and auxiliary of the transformer. VSEC_R is the forward voltage drop of the output rectifier diode at approximately 0.1A bias. The peak current limit is set by (0.396×0.9)/Rcs.

ActivePS?[™] High Efficiency AC/DC Primary Switching Solutions

ACT366 12V/1000MA CHARGER

Bill of Materials

REF	DESCRIPTION	MFTR
C1	Capacitor, Electrolytic, 10µF/400V, 10 × 12mm	KSC
C2	Capacitor, Electrolytic, 15µF/400V, 10 × 12mm	KSC
C3	Capacitor, Ceramic,1000pF/500V,1206, SMD	POE
C4	Capacitor, Electrolytic, 47µF/35V, 5 × 11mm	KSC
C5	Capacitor, Electrolytic, 330µF/25V, 8 × 12mm?	KSC
C9	Capacitor, Ceramic,1000pF/50V,0805,SMD	POE
CY1	Safety Y1,Capacitor,1000pF/400V,Dip	UXT
BD1	Bridge,Rectifier,1000V/1A,MB10M, SMD	
D5	Diode, Ultra Fast, FR107,1000V/1.0A, DO-41	Good-Ark
D6	Diode, Switching,75V/150mA,LL4148, MICRO-MELF	Good-Ark
D8	Diode, Schottky, 60V/5A, SB560, DO-201AD	PANJIT
L1	Common choke mode, UU9.8,20mH, DIP	
Q1	Transistor, NPN, 700V,1.5A, D13003, TO-220	Huawei
F1	Fuse:1A 250V 3.6*10mm With Pigtail, ceramic tube	walter
R1	Chip Resistor, 22Ω, 0805, 5%	TY-OHM
R2	Chip Resistor, 750k, 1206, 5%	TY-OHM
R3	Chip Resistor, 390Ω, 1206, 5%	TY-OHM
R4	Chip Resistor, 10Ω, 0805, 5%	TY-OHM
R5	Chip Resistor, 59k, 0805, 1%	TY-OHM
R6	Chip Resistor, 9.09k, 0805, 1%	TY-OHM
R7	Chip Resistor, 2.7MΩ, 1206, 5%	TY-OHM
R9	Chip Resistor, 0.604Ω, 1206, 1%	TY-OHM
R10	Chip Resistor, 330k, 0805, 5%	TY-OHM
R11	Chip Resistor, 5K, 0805, 5%	TY-OHM
R12,R14	Chip Resistor, 2.2K, 0805, 5%	TY-OHM
R13	Chip Resistor, 10Ω, 0805, 5%	TY-OHM
T1	Transformer, $L_P = 1.2mH\pm7\%$, EE20	
U1	IC, ACT366YH-T, SOP8-EP	Active-Semi

Transformer Specitication

Build up

Wind-	Terminal		Wire			Insulation		
ing	Start	Finish	Turns	Туре	Size*QTY	Layer	Thick/Wide	Laye r
P1	5	>	32	2UEW	0.25 Φ *1	1	0.025*8.5W	
	>	3	32	2UEW	0.25Φ*1	1	0.025*8.5W	2
SH1	>	1	0.9	Copper	0.7mm	1	0.025*8.5W	2
S1	В	А	9	TEX-E	0.4Φ*2	1	0.025*8.5W	2
P2	2	1	12	2UEW	0.25Φ*3	1	0.025*8.5W	2
P1	3	4	32	2UEW	0.25 Φ *1	1	0.025*8.5W	2
SH2	1	core	3	Con- ductor	0.25 Φ *1	1	0.025*10	5

Note:1.SH1 and SH2 are shielding; P1 & P2 are primary and S1 is secondary.(Bobbin:EE20)

Electrical specifications

Item	Description	Condition	Limits
1	Electrical Strength	50Hz, 1 minute, from primary and secondary	3000Vac
2	P1 Inductance	Inductance between pins 4 and 5 at 1Vac & 1kHz	1.2mH±%7
3	P1 Leakage Inductance	Inductance between pins 4 and 5 with pins 2-1 and A-B shorted	75µH

PCB Top and Bottom Layers

Typical Performance Characteristics

Active^{PS}[™]

High Efficiency AC/DC Primary Switching Solutions

ACT334 5V/1000MA CHARGER

Input Voltage	Device	Standby Power	Output Voltage	Power output	Transformer	Topology
85-264VAC	ACT334	30mW	5V	5W	EPC13	Flyback

L=41.3mm W=28.1mm H=13.2mm

Operation and Application

Figure 1 is the schematic of an offline charger using ACT334 to provide output power of 5V1000mA. This circuit is a typical flyback power supply which includes the AC rectified circuit (D1,D2,D3,D4,C1, L1, C2),power drive circuit (BD pin, Q1), secondary rectified circuit (D8, C5,C6) and the IC control circuit. ACT334 is a Primary Side Regulator (PSR) so that the power supply unit can regulate current and voltage without Opto-coupler. Pin 4 and Pin 2 are the VDD and ground pins to provide power for the IC. Pin 3 is the base drive for the NPN transistor. Pin 1 is the switching pin. Pin 5 is the feedback pin that senses the output current and output voltage. Pin 6 is the peak current sense pin. Resistance of R10 determines the output DC cord compensation percentage.

This circuit can be used as universal charger for Cell Phones, PDAs, MP3,Portable Media Players, DSCs, and Other Portable Devices and Appliances.

Key Component Selection

The maximum output current is decided by formula(1).

$$I_{OUTCC} = \frac{1}{2} \times L_P \times (\frac{0.9 * 0.396}{R_{CS}})^2 \times (\frac{\eta \times F_{SW}}{V_{OUTCC}})$$
(1)

Lp is the transformer inductance value, Rcs is the current sense resistor, which is shown as R9 in the schematic. Fsw is the switching frequency, which design value is 75kHz. η is the overall system efficiency, which value is approximately equal to 70%. Voutcc is the output voltage, which setting is through the flyback voltage of auxiliary winding and the feedback resistor R5, R6 as shown in formula (2).

$$V_{OUTCC} = V_{REF} \times (1 + \frac{R_5}{R_6}) \times \frac{N_s}{N_{AUX}} - V_{SEC_R}$$
 (2)

Np/Ns/Naux (150/9/26) must be designed correctly to ensure it operates in DCM in all conditions. A design value Voutcc equal to 5V and loutcc_min equal to 1000mA are used to do the design. Ns and Naux are number of turns of secondary and auxiliary of the transformer. VSEC_R is the forward voltage drop of the output rectifier diode at approximately 0.1A bias. The peak current limit is set by (0.396×0.9)/Rcs

ACT334 5V/1000MA CHARGER

Bill of Materials

REF	DESCRIPTION	MFTR
C1, C2	Capacitor, Electrolytic, 6.8µF/400V, 8 × 12mm	KSC
C3	Capacitor, Ceramic,220pF/500V,1206,SMD	POE
C4	Capacitor, Ceramic,, 4.7µF/35V, 1206, SMD	POE
C5,C6	Capacitor, Electrolytic, 330µF/10V, 6.3 × 8mm	KSC
C9	Capacitor, Ceramic,1000pF/50V,0805,SMD	POE
D1-D5	Diode,Rectifier,1000V/1A,1N4007, DO-41	Good-Ark
D6	Fast Recovery Rectifier,RS1D,200V/1.0A,SMA	Good-Ark
D8	Diode, Schottky, 40V/3A, SB340, SMA	Good-Ark
L1	Axial Inductor, 1.5mH, 0410, DIP	Amode Tech
Q1	Transistor, NPN, 700V, 1.5A, D13003, TO-251AB	Huawei
FR1	Fusible Resistor, 1W, 10Ω , 5%	TY-OHM
R1,R4	Chip Resistor, 22Ω, 0805, 5%	TY-OHM
R2	Chip Resistor, 1.0M, 1206, 5%	TY-OHM
R3	Chip Resistor, 470Ω, 1206, 5%	TY-OHM
R5	Chip Resistor, 60.4K, 0805, 1%	TY-OHM
R6	Chip Resistor, 10.2K, 0805, 1%	TY-OHM
R7,R8	Chip Resistor, 15MΩ, 1206, 5%	TY-OHM
R9	Chip Resistor, 1.0Ω, 1206, 1%	TY-OHM
R10	Chip Resistor, 80K, 0805, 5%	TY-OHM
R11	Chip Resistor, 3.6K, 0805, 5%	TY-OHM
R13	Chip Resistor, 10Ω, 0805, 5%	TY-OHM
T1	Transformer, $L_P = 1.55 \text{mH}\pm7\%$, EPC13 5+5pin	
U1	IC, ACT334US-T, SOT23-6	Active-Semi

Transformer Specitication

Build up

	-							
Wind- ing	Terminal				Wire	Insulation		
	Start	Fin- ish	Turns	Туре	Size*QTY	Layer	Thick/Wide	Lay er
	3	^	50	2UEW	0.12Ф*1	1	0.025*8.5W	
P1	>	>	50	2UEW	0.12Φ*1	1	0.025*8.5W	2
	>	2	50	2UEW	0.12Φ*1	1	0.025*8.5W	2
SH1	5	NC	13	2UEW	0.12Φ*3	1	0.025*8.5W	2
S1	6	10	9	TEX-E	0.45 Φ *1	1	0.025*8.5W	2
P2	4	5	26	2UEW	0.12Φ*1	1	0.025*8.5W	2
SH2	5	NC	10	2UEW	0.12Φ*4	1	0.025*8.5W	2
SH3	Core	5	3	Conductor	0.12Φ*1	1	0.025*10	2

Note:1.SH1,SH2,and SH3 are shielding; P1 & P2 are primary and S1 is secondary.(Bobbin:EPC13)

Electrical specifications

Item	Description	Condition	Limits
1	Electrical Strength	50Hz, 1 minute, from primary and secondary	3000Vac
2	P1 Inductance	Inductance between pins 2 and 3 at 1Vac & 1kHz	1.55mH±%7
3	P1 Leakage Inductance	Inductance between pins 2 and 3 with pins 4-5 and 6-10 shorted	75µH

PCB Top and Bottom Layers

Typical Performance Characteristics

EFFICIENCY V-I Characteristic Vs Vin(25°C)

EVALUATION KITS	Vin	Vo	lo
ACT334-04	85-264Vac	4.75-5.25V	1000-1200mA

Active

ACT336 5V/1200MA CHARGER

Input Voltage	Device	Standby Power	Output Voltage	Power output	Transformer	Topology
85-264VAC	ACT336	30mW	5V	6W	EFD15	Flyback

L=26.4mm W=24.4mm H=26.0mm

Operation and Application

Figure 1 is the schematic of an offline charger using ACT336 to provide output power of 5V1200mA. This circuit is a typical flyback power supply which includes the AC rectified circuit (BD1,C1, L2,C2), power drive circuit (BD pin, Q1), secondary rectified circuit (D8, C5,C6) and the IC control circuit. ACT336 is a Primary Side Regulator (PSR) so that the power supply unit can regulate current and voltage without Opto-coupler. Pin 6 and Pin 2,4,7 are the VDD and ground pins to provide power for the IC. Pin 8 is the base drive for the NPN transistor. Pin 1 is the switching pin. Pin 5 is the feedback pin that senses the output current and output voltage. Pin 3 is the peak current sense pin. Resistance of R10 determines the output DC cord compensation percentage.

This circuit can be used as universal charger for Cell Phones, PDAs, MP3,Portable Media Players, Shaver, DSCs, and Other Portable Devices and Appliances.

Key Component Selection

The maximum output current is decided by formula (1).

$$I_{OUTCC} = \frac{1}{2} \times L_P \times \left(\frac{0.9 * 0.396}{R_{CS}}\right)^2 \times \left(\frac{\eta \times F_{SW}}{V_{OUTCC}}\right)$$
(1)

Lp is the transformer inductance value, Rcs is the current sense resistor, which is shown as R9 in the schematic. Fsw is the switching frequency, which design value is 75kHz.ŋ is the overall system efficiency, which value is approximately equal to 70%. Voutcc is the output voltage, which setting is through the flyback voltage of auxiliary winding and the feedback resistor R5, R6 as shown in formula (2).

$$\mathbf{V}_{OUTCC} = V_{REF} \times (1 + \frac{R_5}{R_6}) \times \frac{N_s}{N_{AUX}} - V_{SEC_R}$$
(2)

Np/Ns/Naux (140/8/23) must be designed correctly to ensure it operates in DCM in all conditions. A design value Voutcc equal to 5V and loutcc_min equal to 1200mA are used to do the design. Ns and Naux are number of turns of secondary and auxiliary of the transformer. VSEC_R is the forward voltage drop of the output rectifier diode at approximately 0.1A bias. The peak current limit is set by (0.396×0.9)/Rcs.

Figure 1:

ACT336 5V/2100MA CHARGER

Bill of Materials

REF	DESCRIPTION	MFTR
C1,C2	Capacitor, Electrolytic, 6.8uF/400V, 8x12mm	Koshin
C3	Capacitor, Ceramic,220pF/500V,0805,SMD	POE
C4	Capacitor, Ceramic,4.7uF/35V,0805,SMD	POE
C5,C6	Capacitor, Electrolytic, 330uF/10V, 8x12mm	KSC
C9	Capacitor, Ceramic,1000pF/50V,0805,SMD	POE
BD1	Bridge,B6S,600V/0.5A,MDI,SMD	PANJIT
D5,D6	Diode,Ultra Fast, FR107,1000V/1.0A,DO-41	Good-Ark
D8	Diode, schottky, 40V/5A, SK54, SMC	PANJIT
L1	Axial Inductor, 1.5mH,0410,Dip	Amode Tech
Q1	Transistor, HFE 20-25, NPN,D13003X,TO-251	Huawei
PCB1	PCB, L*W*T=26.4x24.4x0.8mm,Cem-1,Rev:A	Jintong
FR1	Wire Round Resistor,1W,10 ohm,KNP, 5%	TY-OHM
R1	Chip Resistor, 22 ohm, 0805, 5%	TY-OHM
R2	Chip Resistor, 1M ohm, 0805, 5%	TY-OHM
R3	Chip Resistor, 330 ohm, 0805, 5%	TY-OHM
R4	Chip Resistor, 22 ohm, 0805, 5%	TY-OHM
R5	Chip Resistor, 65K ohm, 0805,1%	TY-OHM
R6	Chip Resistor, 11.3K ohm, 0805,1%	TY-OHM
R7,R8	Chip Resistor, 15M ohm, 1206, 5%	TY-OHM
R9	Chip Resistor, 0.91 ohm, 1206,1%	TY-OHM
R10	Chip Resistor, 162K ohm, 0805, 5%	TY-OHM
R11	Chip Resistor, 3.6K ohm, 0805, 5%	TY-OHM
R13	Chip Resistor, 10 ohm, 0805, 5%	TY-OHM
T1	Transformer, Lp=1.53mH, EFD15	
U1	IC, ACT336SH,SOP-8	Active-Semi.

Transformer Specitication

Build up

Terminal			Wire			Insulation		
Winding	Start	Finish	Turns	Туре	Size*QTY	Layer	Thick/Wide	Layer
P2	3	1	23	2UEW	0.12Ф*2	1	0.025*8.5W	2
	4	>	47	2UEW	0.15Ф*1	1	0.025*8.5W	
P1	<	<	47	2UEW	0.15Φ*1	1	0.025*8.5W	2
	>	2	46	2UEW	0.15Φ*1	1	0.025*8.5W	
SH1	1	NC	17	2UEW	0.12Ф*3	1	0.025*8.5W	2
S1	А	В	8	TEX-E	0.30Φ*2	1	0.025*8.5W	2
SH2	NC	1	21	2UEW	0.12Ф*3	1	0.025*8.5W	2

Note:1.SH1 and SH2 are shielding; P1 ,P2 and P3 are primary and S1 is secondary.(Bobbin:EFD15)

Electrical specifications

Item	Description	Condition	Limits
1	Electrical Strength	50Hz, 1 minute, from primary and secondary	3000Vac
2	P1 Inductance	Inductance between pins 2 and 4 at 1Vac & 1kHz	1.53mH±%7
3	P1 Leakage Inductance	Inductance between pins 1 and 3 with pins 2-4 and A-B shorted	75µH

PCB Top and Bottom Layers

Typical Performance Characteristics

EFFICIENCY

El HolEito I						
EVALUATION KITS	Vin	Vo	lo			
ACT336-05	85-264Vac	4.75-5.25V	>1200mA			

ACT337 5V/2100MA CHARGER

Input Voltage	Device	Standby Power	Output Voltage	Power output	Transformer	Topology
85-264VAC	ACT337	30mW	5V	10.5W	EPC17	Flyback

L=40.0mm W=27.9mm H=22.0mm

Operation and Application

Figure 1 is the schematic of an offline charger using ACT337 to provide output power of 5V2100mA. This circuit is a typical flyback power supply which includes the AC rectified circuit (BD1,C1, L2,C2),power drive circuit (BD pin, Q1), secondary rectified circuit (D8, C5,C6) and the IC control circuit. ACT337 is a Primary Side Regulator (PSR) so that the power supply unit can regulate current and voltage without Opto-coupler. Pin 6 and Pin 2,4,7 are the VDD and ground pins to provide power for the IC. Pin 8 is the base drive for the NPN transistor. Pin 1 is the switching pin. Pin 5 is the feedback pin that senses the output current and output voltage. Pin 3 is the peak current sense pin. Resistance of R10 determines the output DC cord compensation percentage.

This circuit can be used as universal charger for Cell Phones, PDAs, MP3,Portable Media Players, Shaver, DSCs, and Other Portable Devices and Appliances.

Key Component Selection

The maximum output current is decided by formula (1).

$$I_{OUTCC} = \frac{1}{2} \times L_P \times (\frac{0.9 * 0.396}{R_{CS}})^2 \times (\frac{\eta \times F_{SW}}{V_{OUTCC}})$$
(1)

Lp is the transformer inductance value, Rcs is the current sense resistor, which is shown as R9 in the schematic. Fsw is the switching frequency, which design value is 75kHz.ŋ is the overall system efficiency, which value is approximately equal to 70%. Voutcc is the output voltage, which setting is through the flyback voltage of auxiliary winding and the feedback resistor R5, R6 as shown in formula (2).

$$\mathbf{V}_{OUTCC} = V_{REF} \times (1 + \frac{R_5}{R_6}) \times \frac{N_s}{N_{AUX}} - V_{SEC_R}$$
(2)

Np/Ns/Naux (110/8/18) must be designed correctly to ensure it operates in DCM in all conditions. A design value Voutcc equal to 5V and loutcc_min equal to 2100mA are used to do the design. Ns and Naux are number of turns of secondary and auxiliary of the transformer. VSEC_R is the forward voltage drop of the output rectifier diode at approximately 0.1A bias. The peak current limit is set by (0.396×0.9)/Rcs.

ACT337 5V/2100MA CHARGER

Bill of Materials

REF	DESCRIPTION	MFTR
C1, C2	Capacitor, Electrolytic, 10µF/400V, 10×16mm	KSC
C3	Capacitor, Ceramic,220pF/500V,1206,SMD	POE
C4	Capacitor, Ceramic, 10µF/35V,1206,SMD	KSC
C5	Capacitor, Electrolytic, 1000µF/6.3V, 8 ×16mm	KSC
C6	Capacitor, Electrolytic, 820µF/6.3V, 6.3 × 16mm	KSC
C9	Capacitor, Ceramic,1000pF/50V,0805,SMD	POE
CY1	Safety Y1,Capacitor,1000pF/400V,Dip	UXT
BD1	Bridge Rectifier,D1010S,1000V/1.0A,SDIP	PANJIT
D5	Fast Recovery Rectifier, RS1M,1000V/1.0A, RMA	PANJIT
D6	Fast Recovery Rectifier,RS1D,200V/1.0A,SMA	PANJIT
D8	Diode, Schottky, 45V/10A, S10U45S, SMD	Diodes
L1	Choke Coil, 1.5mH, ¢6x8mm, DIP	Amode Tech
Q1	Transistor, NPN, 700V,D13005,TO-126	Huawei
F1	Fuse:1A 250V 3.6*10mm With Pigtail, ceramic tube	walter
R1	Chip Resistor, 22Ω, 0805, 5%	TY-OHM
R2	Chip Resistor, 1M,1206, 5%	TY-OHM
R3	Chip Resistor, 390Ω,1206, 5%	TY-OHM
R4	Chip Resistor, 15Ω, 0805, 5%	TY-OHM
R5	Chip Resistor, 80.6k,0805, 1%	TY-OHM
R6	Chip Resistor, 18.2k, 0805, 1%	TY-OHM
R7	Chip Resistor, 30MΩ, 1206, 5%	TY-OHM
R9	Chip Resistor, 0.62Ω,1206, 1%	TY-OHM
R10	Chip Resistor, 162k,0805, 5%	TY-OHM
R11	Chip Resistor, 3k, 0805, 5%	TY-OHM
R13	Chip Resistor, 10Ω, 0805, 5%	TY-OHM
T1	Transformer, LP = 1.25mH±7%, EPC17	
USB	Double-layer USB Rev:A	
U1	IC, ACT337SH-T,SOP-8	Active-Semi

Transformer Specitication

Build up

Wind- ing	Tern	ninal	_	Wire			Insulation	
	Start	Finish	Turns	Туре	Size*QTY	Layer	Thick/Wide	Layer
P1	2	3	74	2UEW	0.22Φ*1	1	0.025*8.5W	2
SH1	>	4	0.9	Copper	0.7mm	1	0.025*8.5W	2
S1	В	A	8	TEX-E	0.75 Φ *1	1	0.025*8.5W	2
P2	5	4	18	2UEW	0.14¢*3	1	0.025*8.5W	2
P3	3	1	36	2UEW	0.22¢*1	1	0.025*8.5W	2
SH2	4	core	3	Copper wire	0.15Φ*1	1	0.025*8.5W	8

Note:1.SH1 and SH2 are shielding; P1 ,P2 and P3 are primary and S1 is secondary.(Bobbin:EPC17)

Electrical specifications

Item	Description	Condition	Limits
1	Electrical Strength	50Hz, 1 minute, from primary and secondary	3000Vac
2	P1 Inductance	Inductance between pins 2 and 3 at 1Vac & 1kHz	1.25mH±%7
3	P1 Leakage Inductance	Inductance between pins 2 and 3 with pins 4-5 and 6-10 shorted	75µH

PCB Top and Bottom Layers

Typical Performance Characteristics

STANDBY POWER

EFFICIENCY

EVALUATION KITS	Vin	Vo	ю
ACT337-06	85-264Vac	4.75-5.25V	>2200mA