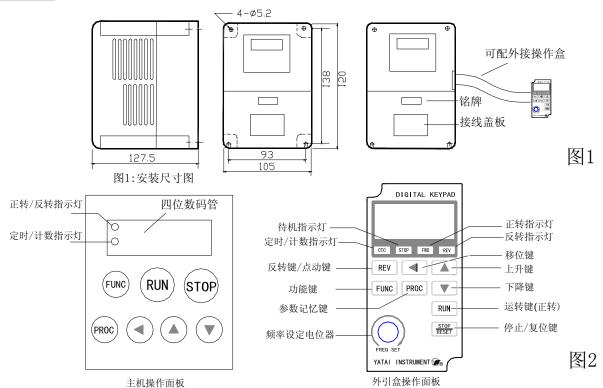

S5/T5 变频调速器 使 用 说 明 书

S5/T5 变频调速器简明使用说明书

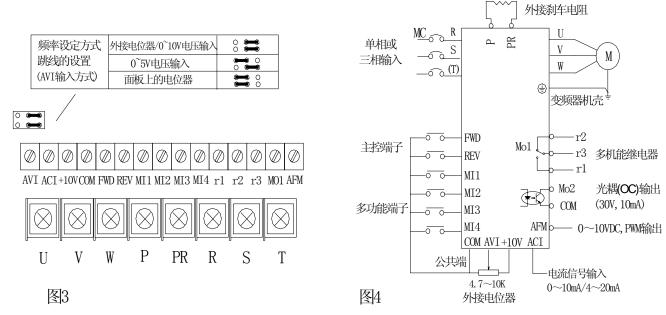
沭

本产品为我公司 YTB 系列变频器的最新品种,它保持了原系列产品的优点外,在操作、运行、控制、输入输出 等各方面都得到加强,并且部分机型还增加了 RS485 通讯功能,使得应用更为广泛、灵活和实用。

型号说明


技术参数

额定功率(KW)		S5 系列	0.4	<u>0.75</u>	<u>1.5</u>	<u>2.2</u>	T5	系列	<u>0.75</u>	<u>1.5</u>	<u>2.2</u>	<u>3.7</u>	<u>5.5</u>	<u>7.5</u>	<u>11</u>	<u>15</u>
额定输出电流(A)		(单相 220V)	2.5	4.5	7.0	10	(三木	目 380V)	2.5	3.7	5.0	8.5	13	18	24	32
输入电源要求 1 Φ 220VAC 、50HZ/60HZ						3Ф 38	0VAC	、50F	IZ/60HZ	Z						
使用	场所 室内无腐蚀气体,无导电尘埃,通风良好				风良好	控	频率剂	包围	0.00-	400.00	ΗZ					
环境	温度/湿度	Ē/湿度 -10℃~+40℃,相对湿度 90%以下,无结露				无结露		频率设	定定	按键、外部电位器、0~10V、4~20mA				1		
	标高/振动 海拔 1000 米以下,振动 0.5G 以下						制	调制力	式式	SVP	WM					
过载能力		150%	6,60秒	少				制动巧	力能	再生制动、能耗制动						
冷却方式	自冷/风冷						特	加减退	甚时间	0.1-6550.0 秒						
频率分辨率	数字设定: 0.01hz; 模拟设定: 0.2%						保护巧	力能	过电压、欠电压、过电流 、过负载、过热、			热、				
附加功能	能 16 段速、简易 PLC、定时器/计数器功能						性			失速	保护。					


安全事项 1. 本变频器仅适用于三相交流感应电动机。

- 2.变频器应垂直安装于金属或阻燃材料上,以免发生火灾。
- 3. 变频器外壳和电机必须可靠接地,否则有触电危险。
- 4. 接线操作前,必须断电几分钟后,待机内 LED 指示灯完全熄灭后方可进行,否则有触电危险。
- 5. 电源进线端应接有同容量以上具有漏电保护的空气开关和接触器,以便紧急时立即切断电源。
- 6. 变频器输出端(U、V、W)不允许接接触器、补偿电容器,否则将损坏变频器。
- 7. 电源输入端 R、S、T 端与变频器输出端 U、V、W 端千万不能接错,否则将损坏变频器。
- 8. 当使用 60Hz 以上输出频率时,务必对电机及负载的安全性作充分确认。以免危及设备和人身安全。

安装与结构(以 0.75/1.5KW 机型为例) 图 1 为结构示意图:图 2 为面板布置图

汪 息 事 坝

1. 安装

为了提高散热效果,应垂直安装变频器。安装底板应为铁质或为其它阻燃耐热材料,并留有足够的通风空间(周围至少留有 12CM 以上的空间)。

2. 接线 端子排列如图 3, 图 4 为典型接线图。

表二

	标志	名称	端子功能说明
主端子	PE(机壳)	保护接地	避免触电事故
说明	R, S, T	电源输入端子	单相接 R、S; 三相接 R、S、T
	U, V, W	变频器输出端子	连接三相电动机
	P, PR	制动电阻端子	连接制动电阻
	FWD/REV	外接命令端子	外部端子主控时,用以启动、停止变频器
控制回路	MI1~MI4	多功能输入端子	详见参数一览表中的说明
接线端子	COM	外接端子公共端	见接线示意图
说明	AVI	电位器或电压信号输入端子.	(需要频率设定跳线的配合)参见典型接线图
	ACI	电流信号输入(0~10mA/4~	需要设定参数来确定向 0~10mA 或 4~20mA 规
		20mA)	格
	AFM	0~10V 电压输出可接指示仪表	输出为 10V,0~100%占空比的 PWM 信号
	+10V	直流电压输出(正端)	外接电位器时用。
	r1,r2,r3	多能继电器 1 输出触点	r3 为继电器中间转换触点

S5/T5 的 0.75KW/1.5KW 外引型与普通型为同一主机体,通过主机体右侧外引插座,用扁平电缆可以连接外引操作盒。如果用户连接了外引盒,原主机体上的按键将失效,而改由外引盒上的按键操作。

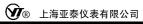
3. 模拟输入信号AVI端子的方法见图3上角的说明。

运行与操作

- 1. 用户在上电前须仔细检查接线是否正确、牢固。上电后,数码管陆续显示""""---"额定电压值"---"额定电流值"---"预设定的待机显示值(可以是输出频率/转速/计数值/定时值等)。如果数码管闪烁显示:则表示 变频器处在待机监控状态)。 出厂默认状态下,按"FWD"键正转运行。按"STOP"停止。
- 2. 运转中按上升键或下降键可增减输出频率。按下"PROC"记忆键,则可保存当前设定的频率值(当主频为数字设定方式并且为单段速运行时,上述操作有效,持续按住升/降键将加快操作速率)。在异常状态下,数码管显示错误代码。直流制动时显示"",各种状态灯指示当前的运行情况。
 - 点动功能:可以设置外端子点动和面板上 REV 键做为点动,设置方法请参阅参数一览表。
 - 3. 参数的设定:

在监控状态下(运行/或待机中均可),按一下"FUNC"键,(此时数码管显示"dXXX"),此后可按上升键,下降键选择要修 改的参数号(D000~D200)。 选定后,再按一下"FUNC"键数码管就可显示此参数数值。此时可按上升/下降/移位键 进行 数值修改。按移位键可以选择参数值要修改的位(如选择百位,数码管将闪烁显示百位),修改后,按下"PROC"记忆键可 以存贮参数并退回到监控状态。 而按下 FUNC 键则不存贮参数,退回到改参数号的状态。如果在设定参数过程中(包括修 改参数号,修改参数值)。按下了 STOP 键, 则不保存修改并退回到监控状态。(如果在运行中改参数,那么第一次按 STOP 键只退出改参数操作,并不会停止运行), 具体参数号及意义见表三。

注:修改参数必先开锁(D001=1)。 本机只使用四位数码管,用小数点移位的方法可以显示、修改5位数。当要修改 的参数最大有4或5位时,如果显示的单位为1,则显示成"XXXX"即末位数码管的小数点点亮,


当显示"XXXX"则表示显示的单位为10。即实际的参数值为"XXXX0"。 按移位键选择修改位时请注意小数 点会相应变化。如果参数值不满 4 位,则数码管最高位不会有显示。

表三

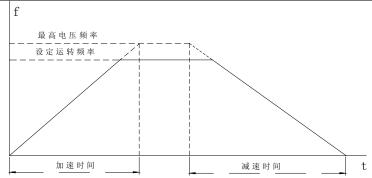
	参数	参数名称	参数值范围 及说明.	出厂设置
	D000	主频/第一段速	0.01Hz~D002. 输出时受 D002 最高操作频率的限制	50.00Hz
	D001	用户密码	0: 锁住(除密码本身) 1: 可以修改参数	1
	D002	最高操作频率	0.00~400.00Hz (限制变频器输出的最高频率)	50.00Hz
	D003	最大电压频率	D005~400.00Hz (输出电压达到最高时所对应的频率,参见注释 8 图)	50.00Hz
基	D004	最大输出电压.	D006~255. 0/单相 220; D006~510. 0/三相 400V	220. 0/380. 0
本	D005	中间频率设定	D007~D003	1.5
参	D006	中间电压设定	D008~D004	1. 7/3. 4
数	D007	最低频率设定	0.01~D005	0.50Hz
	D008	最低频率时电压	0.1∼D006	1.7/3.4
	D009	输出频率上限	D010~400. OHz	50.0Hz
	D010	输出频率下限	0~D009 (避免电机速度过低可能产生过热的现象)	0
	D011	第一加速时间选择	0.1~6550.0s (从 0 速上升至最大电压频率所需的时间)	10.0
	D012	第一减速时间选择	0.1~6550.0s (从最大电压频率下降至0速所需的时间)	10.0
	D013	第二加速时间选择	0. 1∼6550. 0s	10.0
	D014	第二减速时间选择	0. 1∼6550. 0s	10.0
	D015	第三加速时间选择	0. 1∼6550. 0s	10.0
	D016	第三减速时间选择	0. 1∼6550. 0s	10.0
	D017	第四加速时间选择	0. 1∼6550. 0s	10.0
	D018	第四减速时间选择	0. 1∼6550. 0s	10.0
	D019	点动加减速时间	0. 1∼6550. 0s	5. 0
	D020	点动频率	0.0~最高操作频率(D002)	6.00Hz
	D021	第二最大电压频率	D007~400. OHz, 规定了第二 V/F 曲线	50.00Hz
	D022~	保留		
	D030			
	D031	频率指令来源设定	0: 数字设定 1: AVI 端子 (0~10V) 或电位器	0
			2: ACI 端子(默认 4~20mA) 3: 通讯口	
	D032	运转指令来源设定	0: 内部键盘 1: 外部端子 2: 通讯口操控	0
操	D033	停止键有效	0: 外部端子或通讯口控制运转时, STOP 键无效。 1: 有效。	0
作	D034	停车方式选择	0: 减速停车。 1: 自由运转停止	0
应	D035	REV 键点动选择	0: 无效 1: 用作正向点动	1
用	D036	反转禁止	0: 不禁止 1: 禁止 (同时键盘上的 REV 反转键无效)。	0
参	D037	载波频率	$1\sim15$ K (1K 时,最高输出频率为 166.00 Hz, 2K 时为 333.00 Hz)	4Khz
数	D038	V/F 曲线选择	0:1次曲线(可使用低频转矩补偿);	0
			1: 任意 V/F 曲线(由低,中,高三点确定曲线)	
			2: 2 次方曲线; 3: 3 次方曲线;	
	D039	显示选择	0: 显示频率(名义) 1: 显示转速 2: CTC 值	0
			3: PLC 阶段, 4: PLC 时间 5: 保留	
			6: 测试模式: 频率、电流、功因角、输出电压 AC、DC 母线电压、模块或散热器温度	
	D040	转速折算系数	1%~200% 参见注解	100%
	D041	主频率修改恢复功能	0: 停车后保持此次修改的频率设定值。 1: 停车后恢复修改前的设定值。	0
	42~43	保留		
	D044	直流制动电压(起始)	220V型: 0.1~255.0V /380V型: 0.1~510.0V	100/200
	D045	直流制动准位	0~100% (以驱动器额定电流为 100%)	30
	D046	起动时直流制动时间	0~25.0s	0

特 D047	马达额定电流设定 马达无载电流设定 转矩补偿设定 G9 RB PID 检出值输入端子 PID 检出值增益 比例常数 P 积分时间 I 微分时间 D 积分值上限	0~25.0s 0~400.00Hz 0~400.00Hz 0~400.00Hz 0~2.55Hz (+-) 0: 瞬停电时不继续运转 1: 频率跟踪(由停电前速度往下追踪) 0.3~5.0s 驱动器额定电流的 30%~200% 0: 无效 1: 有效 (停车减速时取消) 0: 关闭 1: 开启(加减速时全压,定速中最大可节省 30%电压 30%~120% 00%~90% 0~20.0,驱动器输出额外的电压以得到较高的转矩(提高低频力矩) 0: 无 PID 功能	0 0 0 0 0.5 0 0.5s 150% 1 0 100 40 6
ボー・	跳跃频率 2 跳跃频率 3 跳跃频率 3 跳跃频率范围 瞬时停电再运转选择 速度追踪等待时间 速度追踪电流准位 自动稳压功能(AVR) 自动省能源功能 59 保留 马达额定电流设定 马达无载电流设定 转矩补偿设定 FID 检出值输入端子 PID 检出值增益 比例常数 P 积分时间 I 微分时间 D 积分值上限	0~400.00Hz 0~400.00Hz 0~2.55Hz (+-) 0: 瞬停电时不继续运转 1: 频率跟踪(由停电前速度往下追踪) 0.3~5.0s 驱动器额定电流的 30%~200% 0: 无效 1: 有效 (停车减速时取消) 0: 关闭 1: 开启(加减速时全压,定速中最大可节省 30%电压 30%~120% 00%~90% 0~20.0,驱动器输出额外的电压以得到较高的转矩(提高低频力矩) 0: 无 PID 功能	0 0 0.5 0 0.5s 150% 1 0 100 40 6
应用 D050 力051 D052 力053 D054 力056 57~5 特別 D060 財務 D061 かの62 63~6 財務 D070 特殊 D071 かの72 D073 カ075 D076 カ077 78~7 カ080 D081 サカの82 カの84 かの85 カの86 カの87 カの86 カの87 カの88 カの87 カの88	跳跃频率 3 跳跃频率范围 瞬时停电再运转选择 速度追踪等待时间 速度追踪电流准位 自动稳压功能(AVR) 自动省能源功能 59 保留 马达额定电流设定 马达无载电流设定 转矩补偿设定 69 保留 PID 检出值输入端子 PID 检出值增益 比例常数 P 积分时间 I 微分时间 D 积分值上限	0~400.00Hz 0~2.55Hz (+-) 0: 瞬停电时不继续运转 1: 频率跟踪(由停电前速度往下追踪) 0.3~5.0s 驱动器额定电流的 30%~200% 0: 无效 1: 有效 (停车减速时取消) 0: 关闭 1: 开启(加减速时全压,定速中最大可节省 30%电压 30%~120% 00%~90% 0~20.0,驱动器输出额外的电压以得到较高的转矩(提高低频力矩) 0: 无 PID 功能 1: ACI,注(主频率来源 D031)可为面板设定或模拟端子 AVI 输入但不能为 ACI 同一端子,否则 PID 功能失效。) 0~1000% 0~1000% 0.01~655.00s 0.00~10.00s	0 0.5 0 0.5s 150% 1 0 100 40 6
用	跳跃频率范围 瞬时停电再运转选择 速度追踪等待时间 速度追踪等待时间 速度追踪电流准位 自动稳压功能(AVR)自动省能源功能 69 保留 马达额定电流设定 马达无载电流设定 转矩补偿设定 69 保留 PID 检出值输入端子 PID 检出值增益 比例常数 P 积分时间 I 微分时间 D 积分值上限	0~2.55Hz (+-) 0: 瞬停电时不继续运转 1: 频率跟踪(由停电前速度往下追踪) 0.3~5.0s 驱动器额定电流的 30%~200% 0: 无效 1: 有效 (停车减速时取消) 0: 关闭 1: 开启(加减速时全压,定速中最大可节省 30%电压 30%~120% 00%~90% 0~20.0,驱动器输出额外的电压以得到较高的转矩(提高低频力矩) 0: 无 PID 功能 1: ACI,注(主频率来源 D031)可为面板设定或模拟端子 AVI 输入但不能为 ACI 同一端子,否则 PID 功能失效。) 0~1000% 0~1000% 0~1000% 0.01~655.00s 0.00~10.00s	0. 5 0 0. 5s 150% 1 0 100 40 6
参数 D052 D053 D054 D055 D056 57~5 特 D060 D061 D062 用 63~6 参数 D070 特殊 D071 D072 用 D073 D074 D075 D076 D077 78~7 D080 D081 D082 D083 D084 D085 D086 D087 D088	瞬时停电再运转选择 速度追踪等待时间 速度追踪电流准位 自动稳压功能(AVR) 自动稳压功能(AVR) 自动省能源功能 69 保留 ——马达额定电流设定 ——马达额定电流设定 ——转矩补偿设定 ——转矩补偿设定 ————————————————————————————————————	0: 瞬停电时不继续运转 1: 频率跟踪(由停电前速度往下追踪) 0.3~5.0s 驱动器额定电流的 30%~200% 0: 无效 1: 有效(停车减速时取消) 0: 关闭 1: 开启(加减速时全压,定速中最大可节省 30%电压 30%~120% 00%~90% 0~20.0,驱动器输出额外的电压以得到较高的转矩(提高低频力矩) 0: 无 PID 功能 1: ACI,注(主频率来源 D031)可为面板设定或模拟端子 AVI 输入但不能为 ACI 同一端子,否则 PID 功能失效。) 0~1000% 0~1000% 0~1000% 0.01~655.00s 0.00~10.00s	0 0.5s 150% 1 0 100 40 6
数 D053 D054 D055 D056 57~5 特 D060 外 D061 D062 用 63~6 参数	速度追踪等待时间 速度追踪电流准位 自动稳压功能 (AVR) 自动稳压功能 (AVR) 自动省能源功能 (AVB) 日动省能源功能 (AVB) 日动省能源功能 (AVB) 日动省能源功能 (AVB) 日动 (AVB) 日动省能源功能 (AVB) 日动 (AVB) (AVB) 日动 (AVB) (A	0.3~5.0s 驱动器额定电流的 30%~200% 0: 无效	0.5s 150% 1 0 100 40 6
D054 D055 D056 57~5 P060 R株 D061 D062 用 63~6 数 D070 P D070 P D071 D072 D073 D074 D075 D076 D077 78~7 D080 D081 D082 D083 D084 D085 D086 D087 D087 D087 D087 D088	速度追踪电流准位 自动稳压功能(AVR) 自动省能源功能 59 保留 马达额定电流设定 马达无载电流设定 转矩补偿设定 69 保留 PID 检出值输入端子 PID 检出值增益 比例常数 P 积分时间 I 微分时间 D 积分值上限	 驱动器额定电流的 30%~200% 0: 无效 1: 有效 (停车減速时取消) 0: 关闭 1: 开启 (加減速时全压,定速中最大可节省 30%电压 30%~120% 00%~90% 0~20.0,驱动器输出额外的电压以得到较高的转矩(提高低频力矩) ○: 无 PID 功能	150% 1 0 100 40 6 0 100% 100%
D055 D056 57~5 特 D060 D061 D062 63~6 数	自动稳压功能(AVR) 自动省能源功能 (AVR) 自动省能源功能 (AVR) (0: 无效 1: 有效 (停车减速时取消) 0: 关闭 1: 开启 (加减速时全压,定速中最大可节省 30%电压 30%~120% 00%~90% 0~20.0,驱动器输出额外的电压以得到较高的转矩 (提高低频力矩) 0: 无 PID 功能 1: ACI,注(主频率来源 D031)可为面板设定或模拟端子 AVI 输入但不能为 ACI 同一端子,否则 PID 功能失效。) 0~1000% 0~1000% 0~1000% 0.01~655.00s 0.00~10.00s	1 0 100 40 6
サージャック (中央) (中央) (中央) (中央) (中央) (中央) (中央) (中央)	自动省能源功能 (保留 马达额定电流设定 马达无载电流设定 转矩补偿设定 (保留 PID 检出值输入端子 PID 检出值增益 比例常数 P 积分时间 I 微分时间 D 积分值上限	0: 关闭 1: 开启(加减速时全压,定速中最大可节省 30%电压 30%~120% 00%~90% 0~20.0,驱动器输出额外的电压以得到较高的转矩(提高低频力矩) 0: 无 PID 功能 1: ACI,注(主频率来源 D031)可为面板设定或模拟端子 AVI 输入但不能为 ACI 同一端子,否则 PID 功能失效。)0~1000% 0~1000% 0.01~655.00s 0.00~10.00s	0 100 40 6
特 D060 殊 D061	59 保留 马达额定电流设定 马达无载电流设定 转矩补偿设定 69 保留 PID 检出值输入端子 PID 检出值增益 比例常数 P 积分时间 I 微分时间 D 积分值上限	30%~120% 00%~90% 0~20.0, 驱动器输出额外的电压以得到较高的转矩(提高低频力矩) 0: 无 PID 功能 1: ACI, 注(主频率来源 D031)可为面板设定或模拟端子 AVI 输入但不能为 ACI 同一端子, 否则 PID 功能失效。) 0~1000% 0~1000% 0.01~655.00s 0.00~10.00s	100 40 6 0 100%
ボー D061	马达无载电流设定 转矩补偿设定 69 保留 PID 检出值输入端子 PID 检出值增益 比例常数 P 积分时间 I 微分时间 D 积分值上限	00%~90% 0~20.0, 驱动器输出额外的电压以得到较高的转矩(提高低频力矩) 0: 无 PID 功能	40 6 0 100%
ボー D061	马达无载电流设定 转矩补偿设定 69 保留 PID 检出值输入端子 PID 检出值增益 比例常数 P 积分时间 I 微分时间 D 积分值上限	00%~90% 0~20.0, 驱动器输出额外的电压以得到较高的转矩(提高低频力矩) 0: 无 PID 功能	40 6 0 100%
应	转矩补偿设定 G9 保留 PID 检出值输入端子 PID 检出值增益 比例常数 P 积分时间 I 微分时间 D 积分值上限	0~20.0, 驱动器输出额外的电压以得到较高的转矩(提高低频力矩) 0: 无 PID 功能	6 0 100% 100%
用 参数 二 D070 特殊 D071 D072 用 D073 参 D074 D075 D076 D077 78~7 D080 D081 RR D082 护 D083 D084 能 D085 参数 D086 数 D087 D087 D087	FID 检出值输入端子 PID 检出值增益 比例常数 P 积分时间 I 微分时间 D 积分值上限	0: 无 PID 功能 1: ACI, 注(主频率来源 D031)可为面板设定或模拟端子 AVI 输入但不能为 ACI 同一端子, 否则 PID 功能失效。) 0~1000% 0~1000% 0.01~655.00s 0.00~10.00s	0 100% 100%
特殊 D070 特殊 D071 应 D072 用 D073 参 D074 数 D075	PID 检出值增益 比例常数 P 积分时间 I 微分时间 D 积分值上限	模拟端子 AVI 输入但不能为 ACI 同一端子,否则 PID 功能失效。) 0~1000% 0~1000% 0.01~655.00s 0.00~10.00s	100%
应 D072 用 D073 参 D074 数 D075 D076 D077 78~7 D080 D081 D082 护 D083 功 D084 能 D085 参 D087 D088	比例常数 P 积分时间 I 微分时间 D 积分值上限	0~1000% 0.01~655.00s 0.00~10.00s	100%
用 D073	积分时间 I 微分时间 D 积分值上限	0.01~655.00s 0.00~10.00s	
参数 D074 数 D075 D076 D077 78~7 D080 D081 保 D082 护 D083 功 D084 能 D085 参 D086 数 D087 D088~	微分时间 D 积分值上限	0.00~10.00s	1.00s
数 D075 D076 D077 78~7 D080 D081 D082 D083 D084 D085 D086 D087 D088^	积分值上限		T :
三 D076 D077 78~7 D080 D081 RR D082 护 D083 功 D084 能 D085 参 D086 数 D087 D088^		1 00~1000 和分上阻频索-县真晶作频索*木值	0.00s
D077 78~7 D080 D081 Q D082 P D083 D084 E D085 D086 D087 D088^		00~100% 你刀工限频平-取同採下频平~平且	100%
78~7 D080 D081 保 D082 护 D083 功 D084 能 D085 参 D086 数 D087 D088	保留		
D080 D081 保 D082 护 D083 功 D084 能 D085 参 D086 数 D087 D088^	PID输出频率限制	00~110% 输出上限频率=最高操作频率*本值	100%
照り (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本)		(200 761)	
保 D082 护 D083 功 D084 能 D085 参 D086 数 D087 D088~	软件煞车电压准位设定	370~430Vdc (220V 型) 640~760V (380V 型)	380/690
が D083 功 D084 能 D085 参 D086 数 D087 D088~	过压失速防止功能	0: 无效 1: 有效	1
功 D084 能 D085 参 D086 数 D087 D088~	加速中过电流准位	20~250%	170
能 D085 参 D086 数 D087 D088~	运转中过电流准位	20~250%	170
参数 D086 数 D087 D088~	减速中过电流准位	20~250%	170
数 D087 D088~	过转矩检测准位	0~200%额定电流	150%
D088~	过转矩检测时间	0.1~20.0s, 0: 不检测	0
	电子热继电器功能	0: 不动作 1: 开启 (150%, 1 分钟)	0
D090	~089 保留 电流输入 ACI 端子	0 4 00 4 1 0 10 4 (+n=#t+\(\) 0 00 4 \(\forall \) FOO \(\forall \) + \(\forall \) \(\forall \)	
	****	0: 4~20mA 1: 0~10mA (如要输入 0~20mA 将 500 欧电阻接入 ACI) 0.0~400.00Hz	0
D091 D092	模拟量低端频率 模拟量低端偏压方向	0: 0~400.00Hz 0: 正方向 1: 负方向	0
D092	模拟量高端频率	0: 止方向 1: 災方向 0.0~400.00Hz	50. 00Hz
D093	模拟量高端偏压方向	0: 正方向 1: 负方向	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
D094 D095	「快級単同場側匹刀円 	0: 正万问 1: 页万问 1: 页万问 1: 可反转	0
D096	运转控制端子功能	0: 正转/停止,反转/停止。	
输 D097			1
入 D098	多功能输入端子 MI1	1~20 详见后表	1
输 D099	多功能输入端子 MI2		2
出 D100	多功能输入端子 MI3	1	3
D101	多功能输入端子 MI4	1	4
D102	保留		
D103		1~20ms, 此数值加大可防止某些不明干扰,但响应时间会有延迟	2
D104	输入端子响应时间	0: 无效 1: 运行中 2: 故障指示 3: 零速 4: 任意频率一到达	0
D105		5: 任意频率二到达 6: 频率区域到达 7: 计数/定时器到达 8: 保留	0
D106	输入端子响应时间	0, 正心然十二的是 0, 然中区域的是 1, 有数/ 是可能的是 0, 水田	0
D107	输入端子响应时间 多能输出端子 Mo1	9: 程式运转中指示 10: 程式阶段完成(维持 0.5s) 11: 低压报警 12: 过载报警 13: 驱动器准备完成 14: 备用 15: 备用	

		正浆区农有限公司		
	D108	多能输出端子(AFM) 0~10V(PWM)输出,	0: 频率表(0~最高操作频率) 1: 电流表(0~200%额定电流) 2: 电压表(0~150%额定电压电压) 3: 负载功因(cos90~cos0) 4. 频率到法 1(0 或 100)	0
		最大负载能力 80mA	4: 频率到达 1(0 或+10V) 5: 频率到达 2(0 或+10V) 6: 频率区域到达	
	D109	AFM 输出增益	0~100% (用于适应不同量程的表头)	100%
	D110	任意频率到达1	0~400.00Hz	0.00
	D111	任意频率到达 2	0∼400.00Hz	0.00
	D112	CTC 设定值	0~65500 (定时器的单位为秒) 注: CTC 为定时器/计数器的简称	0
	113~119	保留	区。 (70,700,111,11,11)	
	D120	简易 PLC 功能	0: 不启用程式运转功能	0
	D121	保留	0: 有相加强风色积为能 1: 中风色1 2: 烟杯色10。	U
	D122	第二段速	0.01Hz~D002	20. 00Hz
	D123	第三段速	0.01Hz~D002	30. 00Hz
多	D123	第四段速	0.01Hz~D002	
段				40. 00Hz
速	D125	第五段速	0.01Hz~D002	0
及	D126	第六段速	0.01Hz~D002	0
P	D127	第七段速	0.01Hz~D002	0
L	D128	第八段速	0.01Hz~D002	0
C	D129	第九段速	0.01Hz~D002	0
有	D130	第十段速	0.01Hz~D002	0
7 关	D131	第十一段速	0.01Hz~D002	0
大参	D132	第十二段速	0.01Hz~D002	0
彡 数	D133	第十三段速	0.01Hz~D002	0
釵	D134	第十四段速	0.01Hz~D002	0
	D135	第十五段速	0.01Hz~D002	0
	D136	第十六段速	0.01Hz~D002	0
	D137	1~08 段速运转方向	$0\sim255,8$ 位二进制数规定了 $1\sim8$ 段速的运转方向。见 PLC 使用方法一节	0
	D138	9~16 段速运转方向	0~255,8位二进制数规定了9~16多段速的运转方向。见PLC使用方法	0
	DIGO	0 10 PX 20 20 PV	一节	
	D139	保留		
	D140	保留		
	D140	第一段运行时间	0~65000s	0
	D141	第二段运行时间		_
			0~65000s	0
	D143	第三段运行时间	0~65000s	0
	D144	第四段运行时间	0~65000s	0
	D145	第五段运行时间	0~65000s	0
	D146	第六段运行时间	0~65000s	0
	D147	第七段运行时间	0∼65000s	0
	D148	第八段运行时间	0∼65000s	0
	D149	第九段运行时间	0∼65000s	0
	D150	第十段运行时间	0~65000s	0
	D151	第十一段运行时间	0~65000s	0
	D152	第十二段运行时间	0~65000s	0
	D153	第十三段运行时间	0~65000s	0
	D154	第十四段运行时间	0∼65000s	0
	D155	第十五段运行时间	0∼65000s	0
	D156	第十六段运行时间	0∼65000s	0
	D157~	保留		
	D159			
	D160	通讯位址	01-254	1
通	D161	通讯速度(波特率)	0: 4800Band/s 1: 9600Band/s 2: 19200Band/s 3: 38400Band/s	1
讯	D162	传输错误处理	0: 继续运转 1: 警告并减速停车 2: 日2200balld/8 3: 保留	0
参	D163	通讯格式	0: %疾疫疫 1: 膏百开碱及肾中 2: 床由 3: 床由 0: 7, N, 2for ASCII 1: 7, E, 1for ASCII 2: 7, 0, 1 for ASCII	0
数数	0100	他WITA	3: 8, N, 2 for RTU 4: 8, E, 1 for RTU 5: 8, 0, 1 for RTU	0
双	DICA	III sa	5: 0, N, 2101 KIU 4: 0, E, 1101KIU 5: 0, U, 1 10f KIU	
	D164~	保留		
	D167	E 11 1- 2 13 7 1 15	17 3 7 6 4 B 11 B 12 B	
	D168	累计运行时间(小时)	记录运行的累计时间	0
	D169	累计运行时间(秒)	记录运行的累计时间	0
	D170	错误记录 1	最新错误记录。(参看说明书后面的错误码对照表)	

地址: 上海市四川北路 1851 号荣欣大厦 8 楼 808 室 Email: ytbpq@yatai.sh.cn 销售热线: (021)51053128 36160122 技术咨询: 3616096.

	D171	错误记录 2	前一次错误记录。	
	D172	错误记录 3	次错误记录。	
其	D173	清除错误	设成 1 后,按"PROC"键将清除错误记录	0
它	D174	错误复位次数	0~5, 0: 表示不限制次数	5
参	D175	保留		
数	D176	恢复出厂值	当此参数设成1后,按 PROC 键将会载入参数的默认出厂值	0
	D177	保留		0
	D178	版本号	03. 11	不可改
	D179	驱动器代码	0~30	不可改
	D180~	保留		
	D200			


功能、参数说明

D000	主频/第一段速		50.00Hz
当用。	户设定运转频率来源为	b数字设定时,D000 做为主频。此时可以在运转中按上升,下降键改变主频率,	并可以在运转中按
PROC 键存	贮修改后的主频。 在	E多段速运行时,D000 做为第一段速。(如果设定运转频率来源为模拟 AVI/ACI 🗈	寸,则第一段速由
外部端子	ACI 或 AVI 模拟量给泵	定。 主频率的设定受最高操作频率的限制。	
D001	用户密码		1
此参	数主要为了避免非相差	关人员误设定。 当设定为 0 时,参数将锁定不能修改(除密码本身) 1: 可!	以修改参数
D002	最高操作频率	0.00~400.00	50.00Hz
此参	数限制变频器输出的基	最高频率,以避免过高速度可能对机械或设备造成损害。	
D003 最	大电压频率	D005~400.00Hz	50.00Hz
输出电压:	达到最高时所对应的制	项率。 此设定值必须根据电机铭牌上的电机额定运转电压频率设定,具体意义见	D038 的说明
D004 最	大输出电压。	D006~255. 0/单相 220,D006~510. 0/三相 400V	220. 0/380. 0
设定	值必须小于等于电机镇	名牌上的电机额定电压。具体意义见。 D038 的说明。	
D005 中I	间频率设定	D007~D003	1. 5
D006 中I	间电压设定	D008~D004	1. 7/3. 4
这两个	个参数设定了任意 V/I	F 曲线上的中间点。具体意义见.D038 的说明	
D007 最个	低频率设定	0.01~D005	0. 50Hz
设定	V/F 曲线上最低起动频	页率值。	_
D008 最付	低频率电压	0.1~D006	1. 7/3. 4
设定	V/F 曲线的最低起动E	电压。具体意义见.D038 的说明	
D009 输	出频率上限	D010~400.0Hz	50. 0Hz
一般」	此值=D002 最高操作频	〔率。	,
D010 输	出频率下限	0~D009	0
当运	转频率小于此频率,图	变频器将输出为零;(避免电机速度过低可能产生过热的现象).	
	一加速时间选择	0. 1∼6550. 0s	10.0
D012 第-	一减速时间选择	0. 1∼6550. 0s	10.0
D013 第	二加速时间选择	0. 1∼6550. 0s	10.0
D014 第	二减速时间选择	0. 1∼6550. 0s	10.0
	三加速时间选择	0. 1∼6550. 0s	10.0
D016 第	三减速时间选择	0.1~6550.0s	10. 0
D017 第	四加速时间选择	0. 1∼6550. 0s	10.0
D018 第	四减速时间选择	0.1~6550.0s	10. 0

加速时间是从0速上升至最大电压频率所需的时间;减速时间是从最大电压频率下降至0速所需的时间

在默认状态下变频器使用 D011/D012 来控制加减速的速率,数值越小,系统的加减速越快。但根据用户负载的情况,加速过快可能会引起过流,而减速过快可能会因电机的电压泵升过程(机械能转化成电能)而引起过压。因此用户应设置适当的加减速时间。 使用多功能端子可设定不同的加减速时间(见 D098~D101 的说明)

设成加减速切换一的端子状态	设成加减速切换一的端子状态	有效的加减速值	注:
0	0	D011, D012	0表示此端子不与 COM 连通
0	1	D013, D014	1表示此端子与 COM 连通
1	0	D015,D016	
1	1	D017,D018	

D019 点动加减速时间 0.1~6550.0s 1.0 规定了点动状态下加减速的速率, (加速,减速时间相同) D020 点动频率 0.0~最高操作频率(D002) 6.00Hz

D021 第二最大电压频率 D007~400.0Hz

利用多功能端子可以选择不同的最大电压频率,物理意义同最大电压频率

D022~D030 保留

D031 频率指令来源设定

0

50.0Hz

- 0: 数字设定, 主速/第一段速由 D000 决定, 运转时可以用上升键, 下降键进行修改
- 1: 主速/第一段速由 AVI 端子(0~10V)或电位器来决定
- 2: 主速/第一段速由 ACI 端子(默认 4~20mA)
- 3: 运转速度由通讯口向 RS485 频率寄存器 (2001) 写入

使用模拟信号做为主频率来源时(D031=1 或 2),应当注意 D090~D095的设置,如果设置的最高操作频率不等于默认

50.00Hz,应同时改变 D093 的值为所需最高频率值。

D032 运转指令来源设定

0

- 由面板上的 RUN 键正转启动, REV 键反转启动, STOP 键停止
- 由外部 FWD/REV 端子启动,停止。
- 由通讯口向 RS485 命令寄存器(2000)写入

停止键有效 D033

0

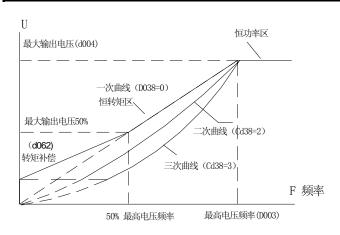
- 外部端子或通讯口控制运转时, STOP 键无效。
- 1: 外部端子或通讯口控制运转时,按一下停止键可以暂停输出,减速至0,再按一下,可以恢复运转。方便两地操作。

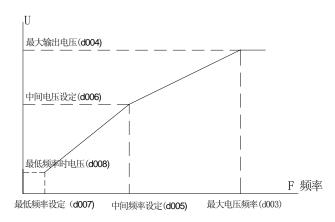
D034	停车方式选择			0
	0: 减速停车	1: 自由停车,	即变频器立即停止输出,依靠电机及负载惯性自然减速并停止	
D035	REV 键功能	0: 无效	1: 用作正向点动	1
	0: 面板上的 REV 键用来反	1: 用作正向点动。		
D036	反转禁止	0: 不禁止	1:禁止(同时键盘上的反转键无效).	0

D037 载波频率 1~15K (1K时,最高输出频率166.00Hz, 2K时,333.00Hz) 4Khz

选择高的载波频率,可以降低电机噪声,但也会有热损耗加大现象(电机,变频器散热器温升变大),对外部环境干扰加大。 选择较低的载波频率可以使变频器有较高的出力效率。建议大于 7.5kw 的变频器的载波设定值设在 4KHz 以下。另外使用较低载波 频率(1、2、3K)时,应当限制输出的最高频率分别为 100Hz、200Hz、300Hz,因为这样可以得到较好的输出波形。

注: 在运转中改变载波频率参数 D037 不会立即生效,必先执行一次停止命令,再启动才会生效。


D038	V/F 曲线选择	0:	1 次曲线(恒转矩负载。)(可使用 D062 进行低频转矩补偿)	0
		1:	任意 V/F 曲线(由低,中,高三点确定曲线)	
		2:	2 次方曲线 3: 3 次方曲线;	
	- 1/ 1/1 11/ /- PR // -1 1	/ L.A 1	47 - 11 11 15 - 11 - 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 (37.3.47.3.


简单地说,V/F 即输出电压/输出频率的比值正比于输出转矩。对大多数电机来说,输出电压/输出频率=额定电压/额定频率。 本机可以有 4 种 V/F 曲线可以选择,其中: D038=0 为恒转矩特性较为常用; D038=2、3 为风机泵类特性。

当 D038=0 时,如果电机起动困难或低频段力矩不足时,可加大 D062(转矩补偿设定)的值以得到较高的低速(起动)转矩。但 增大 D062 应适可而止,以免补偿过大造成过电流冲击,使变频器出现过电流报警或极限跳闸。

当 D038=0,如用外端子切换成第二最高电压时,左下图中 D003 将由 D021 代替。(仅 D038=0 时,第二最高电压有效)。

当 D038=1 时,提供三个设定点来确定 V/F 曲线(如右下图示,中间电压既可上提,也可下拉),供有经验的人员使用。

d038=0/2/3 时的V/F特性曲线

D038=1时的V/F特性曲线

D039	显示选择	0: 显示频率		1:	显示转速	2:	CTC 值,		0
		3: PLC 阶段		4:	PLC 时间	5:	保留		
		6: 测试模式	: 频率、	电流、	功因系数、	输出 AC 电压、	母线 DC 电压、	模块温度	

本机只使用四位数码管,用小数点移位的方法可以显示 5 位数。如果显示的单位为 1,则末位数码管的小数点会亮,末位数码管的小数点不亮则表示显示的单位为 10。

D039=3 时, PLC 不运行时显示的样式

__, PLC 运行时则显示 _X。

D039=4 时, PLC 不运行时显示的样式

__, PLC 运行时则显示 PLC 时间。

D039=6 时为测试模式,可以用移位键切换显示各个物理量:电流(XXX 输出电流(部分机型为直流母线电流,仅供参考)),功因系数(X.XX,没有此功能的机型恒显示 1.00)。输出交流电压(XXX)、DC 母线电压(XXX)、 散热器或模块温度(XXX)。

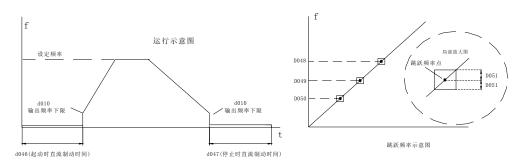
D040 转速折算系数

1%~200% 参见注解

100%

配合 D039=1 显示转速使用, 显示的数值=输出频率*60*D040 %, 如输出频率 50.00Hz,D040=100,则显示值为 50.00*60*100%=3000rad/m。 如果用户电机 2 对极以上,或存在转速误差,则可调整此参数,以显示所需的转速。

D041 主频率修改恢复功能 0: 停车后保持此次修改的频率设定值 1: 停车后恢复修改前的设定值 0


有时用户在运行中修改主频率,但希望停止后恢复为原设定的主频值。 此时可设定 D041=1。(如果在运行中按过 PROC 键则 会将修改过的主频值存贮,则不论 D041 为何值,停止后显示的都为修改过的主频值。)

D042~043	保留		
D044	直流制动电压	220V型: 0.1~255.0/ 380V型: 0.1~510.0V	100/200
D045	直流制动准位	0~100% (以驱动器额定电流为 100%)	30

D044 参数确定直流制动起始电压, 但直流制动过程中会跟据制动电流 D045 改变直流制动电压, 但最高输出直流电压不会超出 D044。

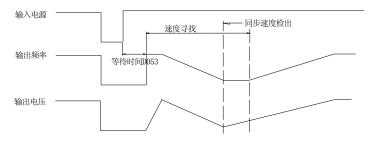
D046	起动时直流制动时间	0~25.0s	0
D047	停止时直流制动时间	$0{\sim}25.0{\rm s}$	0

这两个参数控制制动时间。如果 D046/D047=0,则表示这个取消这个制动阶段。见左下图

D048	跳跃频率 1	0∼400.00Hz	0
D049	跳跃频率 2	0∼400.00Hz	0
D050	跳跃频率 3	0∼400.00Hz	0
D051	跳跃频率范围	0~2.55Hz (+−)	0. 5

为了避免机械共振点,设此三个频率跳跃点,示意图如右上,实际跳跃频率范围是两倍 D051

D052 | 瞬时停电再运转选择 | 0: 瞬停电时不继续运转 | 1: 频率跟踪(由停电前速度往下追踪) | 0

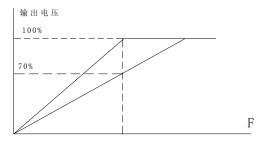

如果变频器运转中发生电源暂时中断,一般情况下,变频器将会停止输出,等电源恢复并重新接收运转指令,从零速重新启动。 而有些负载惯性大,如果重新启动将会浪费大量时间。使用频率跟踪的功能(D052=1)不需机械完全停止,可以以中断前的频率从上而下作频率跟踪,跟踪以后再继续加速到设定频率。

 D053
 速度追踪等待时间
 0.3~5.0s
 0.5s

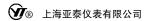
变频器侦测到电源中断后,驱动器停止输出,等待一固定时间 D053 才会执行追踪。这一时间最好是设定在驱动器启动前输出侧的残余电压接近 OV。

 D054
 速度追踪电流准位
 驱动器额定电流的 30%~200%
 150%

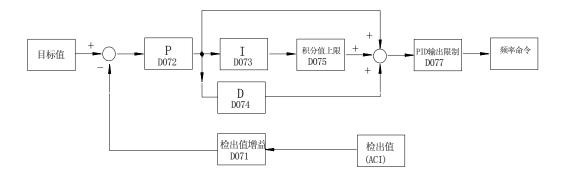
当速度追踪时,驱动器输出电流大于 D054 的设定时,才会开始执行速度寻找。追踪时的 V/F 曲线以 D038=1 来确定.



D055 自动稳压功能(AVR) 0: 无效 1: 有效(停车减速时取消) 1


由于输入电压会经常变化,电机转矩也会随之变化。如果输入电压过高,电机在超过额定电压的情况下会造成电机温度增加,绝缘遭破坏。输出转矩不稳定,使用自动稳压功能可以使输出到电机的电压稳定在额定电压。(由于输出电压不可能大于输入电压,所以当输入电压过低时,输出电压会正比于输入电压),如果此项=0,则输出电压有波动。

 D056
 自动省能源功能
 0: 关闭
 1: 开启
 0

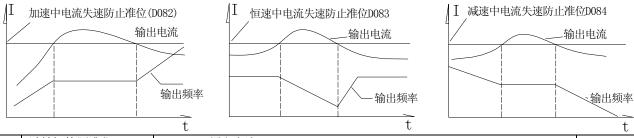

此项为1时,加减速时全压,定速运转中会跟据负载功率自动计算最佳电压值供应给负载,最大可节省30%电压此功能不适用于负载变动频繁,或已接近于满载的情况。

D057~	059 保留		
.			
D060	马达额定电流设定	30%~120%	100
此	参数必须跟据电机的铭牌规	见格设定。出厂设定值为 100%变频器标称输出电流,允许有经验的人员跟据实际	电流微调。
D061	马达无载电流设定	00%~90%	40
	比参数设置电机空载时的	的电流,以 D060 的值为 100%。	
D062	转矩补偿设定	0~20.0, 驱动器输出额外的电压以得到较高的转矩(提高低频力矩)	6
此	比值为 D038=0 时,V/F	曲线上的低频转矩补偿量,以最高输出电压为 100%。见 D038 的说明].
D063~0	069 保留		0
D070	PID 检出值输入端子	0: 无 PID 功能 1: ACI	0
		主频率来源 DO31 应为面板设定或模拟端子 AVI 输入但不能为 ACI,否则 PID 功	能失效。
AC	I 的最低信号对应 0Hz,最	大信号对应最高操作频率 D002。	
D071	PID 检出值增益	0~1000%	100%
耳	「以对 PID 检出作调整,	以满足与目标值的误差.	
D072	比例常数 P	0~1000%	100%
	如 I, D均=0,则只作比	2例控制。	
D073	积分时间 I	0.01~655.00s	1.00s
科	R分时间越大,响 <mark>应越慢</mark>	曼, 积分时间设定太小,会引起振荡。	
D074	微分时间 D	0.00~10.00s	0.00s
D	值加大会增加响应速度	E,但也易产生过补偿的情形。	

D075	积分值上限	00~100%.	100%			
积	积分上限频率=最高操作频率*本值					
D076	保留					
D077	PID 输出频率限制	00~110% 输出上限频率=最高操作频率*本值	100%			

D080 软件煞车电压准位设定 370~430Vdc (220V 型) 640~760V(380V型) 380/690 当减速或刹车时,DC 母线上的电压会上升,当此电压>=D080 的值时,制动晶体管会接通。释放多余的能 量,实现快速制动或减速。

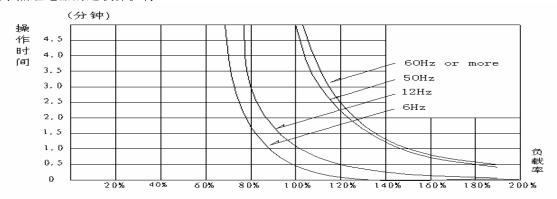
D081 过压失速防止功能 0: 无效 1: 有效 当 D081=1 时,变频器会暂停减速,直到 DC 电压下降后才会继续减速。D081=0 时,不会有暂停动作,除非出现过压保护(E_0U)


加速中过电流准位 20~250% 170

当驱动器执行加速时,由于加速过快或电机负载过大,输出电流会急速上升,超出 D082 的值,这时驱动器会暂停加速,当电流 低于该设定值时,驱动器才会继续加速.

D083 运转中过电流准位 $20 \sim 250\%$ 170 若驱动器运转中,输出电流超出 D083 的值,驱动器会降低输出频率,以免电机失速.电流变小后,才会重新加速到设定频率

D084 减速中过电流准位 $20 \sim 250\%$ 170

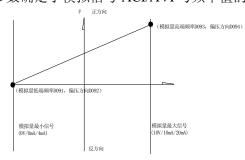

若驱动器减速中,输出电流超出 D084 的值,驱动器会暂停减速,以免电机失速,电流变小后,驱动器才会重新减速。

D085 过转矩检测准位 0~200%额定电流 150% D086 过转矩检测时间 0.1~20.0s, (D086=0 不检测) 0

且持续时间大于 D086, 将会停机并发出过转矩指示 E_0L2, 当变频器输出电流大于 D085, 当 D086=0 将不检测过转矩 0: 不动作。 D087 电子热继电器功能 1: 开启 (150%, 1分钟) 0

电子热继电器的过载保护特

性图如下

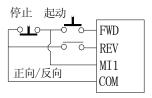

D088~D089		保留			
D090	电流输入	、ACI 端子	0: 4∼20mA	1: 0∼10mA	0

当 D031=2 时,此参数有效。另外使用 PID 功能 D070=1 时此参数亦有效。

若输入 0~20mA 时,可将 D090=1,并用一个 500 欧的电阻接入 ACI 和 COM 端。

D091	模拟量低端频率	0.0∼400.00Hz		0
D092	模拟量低端偏压方向	0: 正方向	1: 负方向	0
D093	模拟量高端频率	0.0∼400.00Hz		50.00Hz
D094	模拟量高端偏压方向	0: 正方向	1: 负方向	0
D095	负偏压可反转	0: 不可	1: 可反转	0

前四个参数确定了模拟信号 ACI/AVI 与频率值的对应关系(包括方向).



在左右两纵轴上任意各取两点可构成不同的(模拟信号---频率)对应关系,这种曲线可以很容易与其它系统结 合做各种复杂的应用。

D096 运转控制端子功能 0~2

当外端子主控时(D032=1) 端子 FWD, REV 专门做为运转控制端子,有以下三种操作方式,其中三线式的 REV 端子只在起动时有效,运转中改变此端子无作用。

D096=2 (三线式,原MI1功能设置无效)

D097	保留		
D098	多功能输入端子 MI1	1~20	1
D099	多功能输入端子 MI2		2
D100	多功能输入端子 MI3		3
D101	多功能输入端子 MI4		4

D098~D101 为可配置多功能输入端子用途。 共有 20 种功能.

MI1~MI4	00: 无功能
功能	01: 多段速指令 1
	05: 错误复位:
(未加特	06: 加减速禁止指令
别说明的	07:加减速时间切换一 08:加减速时间切换二,(由 D011~D018 确定当前的升降速率)
均为该端	09: 暂停. 减速至 0, (闭合后,保持 0 速, PLC 暂停计时)信号消除后恢复原先运行的频率.
子与 COM	10: 紧急停止(,变频器将立即切断输出,即自由滑行停车)
端相连为	11: 连锁(常闭), 即此端子与 COM 连通时, 正常操作, 否则自由停车, 并给出 E_CH 错误信号
有效。)	12: 停止
	13: 正点动 14: 负点动
	15: 第二 VF 曲线(作为当前的最高电压频率,同时系统的升降速率将会随之重新计算)
	16, 17: 保留
	18: 计数器功能(只在 MI3 中设定, 且 PLC 工作时无效.) 固定分配 MI3 为计数输入, MI4 为计数清除.
	19: 定时器功能(只在 MI3 中设定, 且 PLC 工作时无效.) 固定分配 MI3 为定时允许, MI4 为定时清除.
	20: PLC 控制(只在 MI3 中设定)固定分配 MI3 为触发启动(单次运行), MI4 为 PLC 停止.

多段速指令的用法: 当设定了功能号 01, 02, 03, 04 时,可以使用多段速进行调速。现假设 D098=1, D099=2, D100=3, D101=4

设成 04 功 能的输入	设成 03 功能的输	设成 02 功能的输	设成 01 功 能的输入	对应的 段速	设成 04 功能的入	设成 03 功能的输	设成 02 功能的输	设成 01 功 能的输入	对应的 段速
端子状态 (MI4)	入端子状 态 (MI3)	入端子状 态 (MI2)	端子状态 (MI1)		端子状态 (MI4)	入端子状 态 (MI3)	入端子状 态 (MI2)	端子状态 (MI1)	
0	0	0	0	第1段速	1	0	0	0	第9段速
0	0	0	1	第2段速	1	0	0	1	第 10 段速
0	0	1	0	第3段速	1	0	1	0	第 11 段速
0	0	1	1	第4段速	1	0	1	1	第 12 段速
0	1	0	0	第5段速	1	1	0	0	第 13 段速
0	1	0	1	第6段速	1	1	0	1	第 14 段速
0	1	1	0	第7段速	1	1	1	0	第 15 段速
0	1	1	1	第8段速	1	1	1	1	第 16 段速

注: 端子与 COM 端子接通为状态"1",未通为"0"。 以上符合二进制数的变化规律, 如果用户只用 $1\sim3$ 个端子,那么将相应的二进制位置为 0, 查以上表可得所需的段速。例:只设定 MI1 功能为 01,其它端子功能=0,则当 MI1 与 COM 端不连时,对应第一段速,相连时对应第二段速。其它以此类推。 多段速的运行方向,运行命令仍需面板上的 Run 键、Rev 键,或端子 FWD,REV 确定。见 D032,D096 等相关参数。

D103	输入端子响应时间	1~20ms, 此数值加	大可防止某些不	明干扰。但响应时间会	会有延迟.	2
此参数	数是将数位输入端子信号值	b延迟及确认处理, i	单位为 1ms,此位	值加大可防止某些不明	干扰而造成误动作。	但响应时间会有些
延迟。						
	4. 41. 44. 1. 1.11 4. 1. 1.			. 11	1 .) . 1=0)	

D104	多能输出端子(Mo1)	0: 无效 1: 运行中		2: 故障指示 3: 零速 4: 任意频率一到过	0
D105	多能输出端子(Mo2)	5: 任意频率二到达	6:	频率区域到达 7: 计数/定时器到达 8: 保	留 0
D106	多能输出端子(Mo3)*	9:程式运转中指示 1	0:	程式阶段完成(维持 0.5s) 11: 低压报警	0
D107	多能输出端子(Mo4)*	12: 过载报警 1	.3:	驱动器准备完成 14: 备用 15: 备用	0

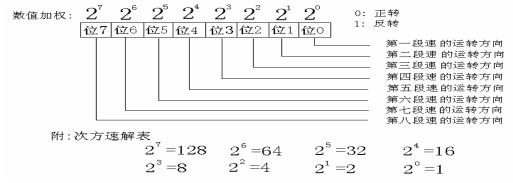
这四个参数可以设置输出端子的功能,跟据不同机型,可能配置为继电器输出或光耦 0C 输出,(*:某些机型 Mo3/Mo4 未引出),具体见接线示意图。 有效的动作为:继电器吸合或光耦 0C 导通。

D108	多能输出端子(AFM)	0: 频率表(0~最高操作频率) 1: 电流表(0~200%额定电流)	0
	0~10V 输出。	2: 电压表(0~150%额定电压) 3: 负载功因(cos90~cos0)	
	最大负载能力 80mA	4: 频率到达 1(0 或+10V) 5: 频率到达 2(0 或+10V) 6: 频率区域到达	

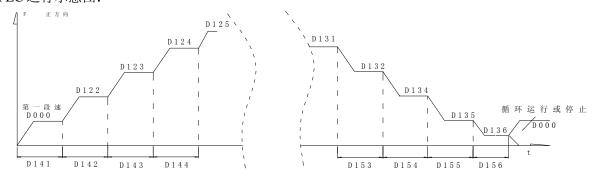
AFM 输出为 PWM 信号, $0\sim3$ 功能为连续的 PWM 信号。 功能 $4\sim6$ 为 0V/或 10V, 利用此端子可以连接指示仪表。

D109	AFM 输出增益	0~100%	100%					
此参	此参数可使 AFM 输出适应不同量程的表头							
D110	任意频率到达1	0∼400.00Hz	0.00					
D111	任意频率到达 2	0∼400.00Hz	0.00					
	频率比较值 1、2 用于多功能端子中 4、5 功能, 当变频器输出频率大于等于此值时,相应输出端子动作,可方便用户做相应控制连线。 当使用多能输出端子功能 6 时:变频器输出频率在 D110 与 D111 之间时,输出端子才动作。							
D112	CTC 设定值	0~65500 (定时器的单位为秒) 注: CTC 为定时器/计数器的简称.	0					
用于	用于定时器/计数器的设定值,配合多功能输入端子功能 18/19 使用。							
113~11	19 保留							

	用十分	官时器/计数器的设定值,	配合多功能输入端子功能 18	3/19 使用。		
	113~11	9 保留				
-						
	D120	简易 PLC 功能	0: 不启用程式运转功能	1: 单次运行	2: 循环运行	0

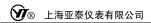

简易 PLC 可程式运行模式

使用 PLC 可以让变频器在不同阶段(时间)以不同速度地程式运行。


当设定 D120=1 或 2 时,就可使用 PLC。

- 1. 设定运转指令来源 D032=0 时,由面板上的 RUN/STOP (REV 键实际上与 RUN 键作用相同)来启动停止.
- 2. 设定 D032=1 时,均可以启动简易 PLC
- 注: 如果设定外端子主控,D096=0/1,PLC 为单次运行模式。 单次运行完毕后如需重启动,则须先发出一个停止信号,再发出运转信号方能有效。(外端子控制时反转命令的意义同正转命令,因为实际的运转方向是预先设定好的方向)PLC 运行完毕后 CTC 指示灯会点亮。
- PLC 使用方法:

1. 首先设定 D000、D122~D136 为所需的速度值,每段速的运转方向由参数 D137(1~8 段速方向),D138(9~16 段速方向)相应的位决定.如下图所示,参数 D137/D138 是一个二进制 8 bit 数,设定时,需转成十进制数



- 例:设定 1, 2, 3, 4, 7 段速为正转, 5, 6, 8 段为反转.则 Cd67 的二进制表示成(10110000), 转成十进制数= $(1\times2^7)+(0\times2^6)+(1\times2^5)+(1\times2^4)+(0\times2^3)+(0\times2^2)+(0\times2^1)+(0\times2^0)$ 参照数位的加权,上述值=128+0+32+16+0+0+0+0=176。
- 2 如果需要 PLC 启动后循环运行,则可设定 D120=2。
- 3 设定每段速的运行时间: D141~D156 用户如果并不需要最多 16 段速,则可合并速度,以便使运行时间的范围扩展。将某段速时间设为 0,则实际运行中会跳过此段速,执行下一段速。
- 4 PLC运行示意图:

- 注: 1 如果设定主频率来源 D031=1 或 2 时(模拟设定)。上述 D000 (第一段速)将由可变的模拟信号代替。
 - 2 运行时间是从发出改变频率指令后开始计算的,包括了升降速时间,上图假定只为同一方向运行,如其间改变了方向,那么升降速消耗的时间,就更为可观了,用户对定时较为严格时,需要考虑这些额外时间。
 - 3 如果用户定义了暂停端子,暂停信号对 PLC 也有效. 暂停端子与 COM 相连时,变频器将减速至 0,同时暂停内部的定时器,一旦暂停端子与 COM 断开,变频器将按先前的断点,继续运行。
 - 4 PLC 运行中, CTC 指示灯将会闪烁。PLC 完成后, CTC 灯会常亮

	4 PLC 运行中,CIC	指示灯将会闪烁。PLC完成后,CTC灯会常壳。	
D121	保留		
D122	第 2~16 段速	0.01Hz~D002	
~			
D136			
D137	1~08 段速运转方向	0~255, 1~8 段速的运转方向 见 PLC 使用方法一节。	0
D138	9~16 段速运转方向	0~255, 9~16 段速的运转方向 见 PLC 使用方法一节。	0
D139	保留		
~			
D140			
D141	第 2~16 段速运行时	$0\sim65000s$	0
~	间		
D156	见 PLC 使用方法		
D157	保留		
D159			

D100				01.054								Τ.	
D160	通讯位址			01-254	1 /	1 00000	1/	0 100	00D 1/	0 00	400D 1/	1	
D161	通讯速度			0: 4800Bai							400Band/s		
D162	传输错误			0: 继续运							LOGIT	0	
D163	通讯格式			0: 7, N, 2fd								0	
				3: 8, N, 2fo						0, 1 for	RTU		
			185 通订	接口未引出	」。 其余	凡说明书	末美于 RS	485 通讯-	-节.			1	
D164~		保留											
D167													
D16	68	法行时间	(小財)	记录运行	- 的 思 社 চ	上间						0	
D10		运行时间			了的累计时 了的累计时							0	
				,记录下总			、时间=D16	8(小时)+	D169(秒),	出厂初	始化为 0.	0	
D170	错误记录			最新错误记:									
D171	错误记录			前一次错误									
D172	错误记录			次错误记录									
当变	频器出错时	将会自动	记录错	误,以便以	后维护人	员分析之员	目。 错误	号见后面	的错误码	对照表			
D173	清除错误		Ì	设成 1 后,	按"PROC	"键将清	除错误记	录				0	
此项3	功能将使 D1					, = , , , , ,							
D174	错误复位)~5,	0: 表	示不限制	次数					5	
				重的错误,				为了避免这	E 未排除タ	小部故障而	ī反复复位	重启而描	弱坏变频
				位重启次数									(1)
D175	保留	20,00 = 0		E = /H // //		, , , , , , , , , , , , , , , , , ,	11 17 4 5	/ L/ / (1)	1 6/4/ 1	1 1 1 1 2	31/2///	1	
D110	ИКШ		I										
D176	恢复出厂	 信		当此参数设	成 1 后 . 扌	安 PROC 键	将会载λ	参数的默	认出厂值。			0	
				使用 D176 的							と参数 时应	ŭ	001=1)
D177	/II เรก												
D177	保留											0	
D150	ilc - L II		1,	20. 11								T - T - T -	L
D178	版本号	7'71		03. 11								不可言	
D179	驱动器代)~30	I. I. V. I.	t	et tramera.	1 >>-				不可言	<u>又</u>
驱动	器代码决定	「	的谷重.	、规格。开	机电流显差	下为该机	押的额定 り	 毛流。					
20V 系列:	功率(KW)	0.4	0. 75	1.5	2. 2	3. 7	5. 5	7. 5	10. 0				
L种代码		0	1	2	3	4	5	6	7	1			
定电流(A)	2. 5	5. 0	7. 0	10.0	17. 0	25. 0	33. 0	49. 0	1			
,, C 11/11 (/		1 0.0	1	1 20.0	2		1 55. 0	10.0	<u> </u>			
80V 系列:	功率(KW)	0.75	1.5	2. 2	3. 7	5. 5	7. 5	11.0	15	18. 5	22	30	37
L种代码		8	9	10	11	12	13	14	15	16	17	18	19
定电流(A)	3. 0	4. 2	5. 5	8. 5	13. 0	18. 0	24. 0	32. 0	38. 0	45. 0	60.0	73. 0
,, = 3,010 (•	1			1							1	
30V 系列:	功率(KW)	45	55	75	90	110	132	160	185	200	220	300	
1 工上 / い アコ		0.0	0.1	00	00	0.4	0.5	0.0	0.7	00	00	0.0	

D180	保留	
~		
D200		1

制动电阻的使用

机种代码

额定电流(A)

91.0

制动电阻主要用于频繁进行急减速和停止操作、或因负荷的机械惯性大而要缩短减速时间所需的耗能元件。用户根据所需,可向我厂另购,或自行在市面上购买合适的电阻。下表作为参考.

电机功率(220V)	0.75Kw	1.5KW	2.2KW	3.7KW	5.5KW
制动电阻	80W-200 Ω	300W-100	300W-70 Ω	400W-40 Ω	500W-30 Ω

地址: 上海市四川北路 1851 号荣欣大厦 8 楼 808 室 Email: ytbpq@yatai.sh.cn 销售热线: (021)51053128 36160122 技术咨询: 3616096.

销售热线: (021)51053128 36160122 技术咨询: 3616096%

电机功率(380V)	0.75Kw	1.5KW	2.2KW	3.7KW	5.5KW
制动电阻	80W-750 Ω	300W-400	300W-250 Ω	400W-150	500W-100 Ω

没有制动要求的用户可以不接制动电阻,但应注意调整减速时间(D012),使电机在降速或停机时,不致出现 过压、过流和紧急极限保护。

注意: 1. 端子 P、PR 间不应短路, 否则将烧毁变频器内部的放电晶体管。

2. 刹车电阻应安装在耐高温不易燃的安全地方,否则有引起火灾的危险!

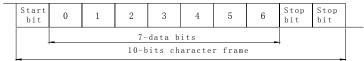
异常保护与处理

当变频器出现故障时,将会自动停机。数码管显示错误代号,用户可查阅代码表,采取相应措施。 错误代码表:

显示代码	代码意义	处理方法	错误记录代号
	无异常记录		0
	硬件保护	检查有否短路、堵转; 电机还未停稳, 又急速起动情况	1
	加速中过电流	一般由加速太快引起,注意调整加速时间。	2
	等速中过电流	注意是否有突加性负载	3
	减速中过电流	一般由减速太快引起,注意调整减速时间。	4
	过压	电源电压过压,减速或停车过快时, 造成泵升电压过高(可增大	5
		减速时间的数值)	
	驱动器过热	检查环境温度是否过高,变频器是否散热通风良好,负载太重。	6
	电子热继电器动作	检查电机功率是否超过变频器功率;是否长期处于低速大电流状态	7
		(参见电子热继电器:过载保护特性图)	
	过转矩保护动作	超过设定的过转矩值,查过转矩相关参数和外部转矩	8
	低压	电源输入过低,是否负载过重引起母线压降,有掉电发生	9
	连锁断	D098~D101 中设为连锁的端子处在断开状态,须重新连通	10
		后并按复位后才能恢复正常操作.	

RS485 通讯

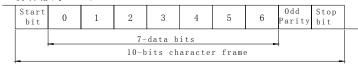
使用 RS-485 联接时, 需先设定每台变频器的的通讯位址, 且在同一个连结网中的每个位址不可重复。通讯协定以 MODBUS ASCII 模式.每 Byte 由 2 个 ASCII 字元组合而成。如 64Hex 表示成'64',分别由'6'(36Hex)、 '4' (34Hex) 组合而成。


1. 编码意义:

字元	'0'	' 1'	'2'	' 3'	' 4'	' 5'	' 6'	' 7'
ASCII Code	30H	31H	32H	33H	34H	35H	36H	37H
字元	' 8'	'9'	'A'	'B'	'C'	ʻD'	'E'	'F'
ASCII Code	38H	39H	41H	42H	43H	44H	45H	46H

2 字元结构:

2.1 10-bit 字元框(For ASCII)



资料格式 7. E. 1

资料格式 7.0.1

2.2 11-bit 字元框(For RTU)

资料格式 8.N.2

3 通信资料格式:

3.1 ASCII 格式:

STX	起始字元=': ' (3AH)
Address Hi	通信位址: 8-bit, 由 2 个 ASCII 码组成
Address Lo	
Function Hi	功能码: 8-bit,由 2 个 ASCII 码组成
Function Lo	
Data(n-1)	资料内容: n*8-bit 资料内容.,由 2n 个 ASCII 码组成(n<=25)
Data0	
LRC CHK Hi	LRC 检查码,由 2 个 ASCII 码组成
LRC CHK Lo	
END Hi	结束字元: END Hi =CR(0DH), END Lo =LF(0AH)
END Lo	

3.2 RTU 模式:

START	保持无输入讯号≧20ms
Address	通信位址: 8-bit 二进制位址
Function	功能码: 8-bit, 二进制位址
Data(n-1)	资料内容: n*8-bit 资料内容(n<=16)
Data0	
CRC CHK Low	CRC 检查码,由 2 个 8-bit 二进制码组成
CRC CHK High	
END Hi	保持无输入讯号≧20ms

3.3 功能码: 03H: 读出寄存器内容; 06H: 写入一个 WORD 至寄存器; 08H: 回路侦测;

3.3.1 功能码=08H, 回路侦测

RTU 模式: 询问格式:

回应格式:

Address	01H	Address	01H
Function	08H	Function	08H
Sub-Func-Hi	00H(任意)	Sub-Func-Hi	00H
Sub-Func-Lo	00H(任意)	Sub-Func-Lo	00H
Data content	12H(任意)	Data content	12H
	34H(任意)		34H
CRC Lo	EDH	CRC Lo	EDH
CRC Hi	7CH	CRC Hi	7CH

ASCII 模式。 询问格式: 回应格式:

ASCII 侯氏:	即門俗以:	<u> </u>	
STX	': '(3AH)	STX	·: '
Address	'0'	Address	'0'
	' 1'		'1'
Function	'0'	Function	'0'
	' 8'		'8'
Sub-FunHi	' 0'	Sub-FunHi	'0'
	' 0'		'0'
Sub-FunLo	' 0'	Sub-FunLo	'0'
	' 0'		'0'
Data (任意)	' 1'	Data (任意)	'1'
	' 2'		'2'
	' 3'		'3'
	'4'		'4'
LRC Check	'B'	LRC Check	'B'
	' 1'		'1'
END	CR (0DH)	END	CR
	LF (0AH)		LF

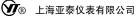
功能码=03H, 读出寄存器内容。 如从起始暂存器(位址 2000)读出 2 个连续资料内容, 假设寄存器(2000)=0, 3.3.2 (2001)=1388H。(以下只给出 RTU 格式的例子, ASCII 格式参见 3.3.1 的 ASCII 格式)

RTU 模式: 询问格式:

回应格式:

1110 1000	H ~ 4.		
Address	01H	Address	01H
Function	03H	Function	03H
Data Addr	20H	Number of Data	04H
		(Count by byte)	
	00H	Content of data	H00
Number of Data	00H	(Address 2000)	00H
(Count By Word)	02H	Content of data	13H
CRC Low	CFH	(Address 2001)	88H
CRC High	СВН	CRC CHK Low	F7H
		CRC CHK High	65H

3.3.3 功能码=06H: 写入一个 WORD 至暂存器。 例:对驱动器位址 01H, 写入 1388H 到参数 d000。


RTU 模式: 询问格式:

回应格式:

1110 DC2 (1 1131 3 1H	• •	百渔品~**	
Address	01H	Address	01H
Function	06H	Function	06H
Data Addr	00H	Data Addr	00H
	00H		00H
Data Content	13H	Data Content	13H
	88H		88H
CRC Low	84H	CRC CHK Low	84H
CRC High	9CH	CRC CHK High	9CH

3.4 错误通信时的额外回应: 例如对一个不存在的地址写入。将回应如下错误信息.

RTU 模式:

Function 86	П	0.111		
1 unction 00	111	01H	功能号错	
Except code 02	H	02H	地址错	
CRC CHK Low C3	BH	03H	数值错	
CRC CHK High A1	1H	04H	系统忙	

其中将原功能号 AND 80H 后返回。并在 Except code 中返回错误码,(见右上表格)

3.5.1 ASCII 模式检查码(LRC Check): 将从 Address 到 Data Content 结束加起来的值再取 2 的补数. 如 01H+08H+00H+00H+12H+34H=4FH, 取补码=B1H。 (见回路侦测的例子)

3.5.2 RTU 模式的检查码 (CRC Check) 由 Address 到 Data Content 结束。用 C 所写的运算范例如下 unsigned char* data;

unsigned char length;

unsigned int crc chk (unsigned char * data, unsigned char length)

unsigned int reg_crc=0xffff;

while (length--) { reg_crc^=*data++; for (j=0; j<8; j++) { if (reg_crc&0x01) { reg_crc=(reg_crc>>1) 0xa001;} else { reg_crc=reg_crc>>1; }

return reg_crc;}

3.6 参数位址定义

0000~00FF 为 d000~d255 参数.

2000: RS485 运转命令寄存器: 各位意义如下

> bit0/1: 00: 无功能 01: 停止 10: 启动 11: JOG启动 bit4/5: 00: 无功能 01: 正方向 10: 反方向 11: 改变方向 bit6 =1: 急停(自由停车) bit7=1: 复位 Bit2/3 未用应设为0.

2001: RS485 频率寄存器. (50.00Hz 表示成5000d, 即 0 x1388)

2002: 保留

2100: 运转状态寄存器: bit0: 点动中; bit1: 直流制动中; bit2: 频率追踪; bit3: 运行中 bit4: 运转方向,0为正; bit5/6/7; Not Care

2101: 错误号寄存器: 见错误代码表.

2102: 指示灯状态: bit0: 正转灯亮; bit1: 反转灯亮; bit2: CTC灯亮: bit3: 通讯灯

2103: 待运行频率(单位: 0.01Hz) 2104: 输出频率 (单位: 0.01Hz) 2105: 输出电流(单位: 0.1A) 2106: 直流母线电压(单位: 0.1Vdc) 2107: 输出电压(单位: 0.1Vac) 2108: COS(功因角)(单位: 0.01)

2109: 驱动模块温度(单位: 1℃) 210A: 保留

210B: 保留

开箱检查

- 1 确认在运输过程中是否造成损坏。
- 2 检查变频器的铭牌以确定在您手中的产品就是所订货品。
- 3 检查包装箱内含变频器本体一台,使用说明书一份,出厂合格证一张及其它选购品。

保修期及售后服务

附 1: 部分机型外形尺寸

(2.2~5.5kw 机型)

(7.5~15kw 机型)

附 2: 外接操作器外形与安装开孔尺寸

(A、B、C、D型外接操作器外型与安装开孔尺寸)

保修卡