

Design Example

Title	20W Non-isolated LED Driver Using PT4207					
Specification	175-265VAC Input; 76V(24 LEDs in Series), 240mA					
	Output					
Application	T8/T10 Tube LED Driver					
Author	Ou Xuanhong					
	System Application Engineering Department					
Document	DE-4207-01					
Number						
Date	April 25, 2011					
Revision	1.0					

FEATURES

- AC Input Range 175-265VAC; 24 LEDs in Series Output, 240mA
- Over 92% Efficiency, More than 0.89 Power Factor
- \pm 5% Output Current Accuracy including Line, Load(-90%Vo to +10%Vo),

Temperature, and Component Tolerance

- Meet CISPR22B/EN55022B EMI(>6dB margin)
- Soft-Start/Output Short Protection

1. Introduction

This design example describes the design and specification of a 175-265VAC input, 76V(24LEDs in series) 240mA output LED driver, using the PT4207 from Powtech's LED driver ICs family.

2. Prototype Photo

Figure 1 – Top View

3. Power Supply Specification

Output: 24 LEDs in series (See Note 1.).

DESCRIPTION	CONDITION	MIN	ТҮР	MAX	UNITS	
INPUT CHARATERISTIC						
Input Voltage		175		265	VAC	
Frequency		47	50	63	Hz	
Power Factor	Vin=175~265Vac	0.89				
Efficiency	Vin=175~265Vac	92			%	
	OUTPUT CH	IARATERISTIC				
Rated Output Voltage	24 LEDs in series		76		V	
Rated Output Current		228	240	252	mA	
Ripple Output Voltage	Vin=230Vac		2000		mVpp	
Ripple Output Current	Vin=230Vac		50	160	mA	
Output Open Voltage	Vin=230Vac, No-Load (See Note 1.)		320		V	
	TIME SI	EQUENCE	-			
Turn-on Time	Vin=230Vac			300	mS	
Turn-off Time	Vin=230Vac			100	mS	
	PROT	ECTION				
Output Short Circuit Protection	Vin=230Vac		PASS			
Power on-off	Vin=230Vac, No Load, Ton=Toff=2s, 3000times		PASS			
	Vin=230Vac 24LEDs in Series Ton=Toff=2s, 3000times		PASS			
ENVIRONMENTAL						
EMI		ſ	Veets CISPR22	2B / EN55022E	}	
Ambient Temperature	Free convection	-20		80	°C	

Note 1. Make sure that connect the LED strings before power-on. If not, the high output voltage will destroy the LEDs. Figure 11 shows the solution for this issue.

4. Schematic

5. PCB Layout

Figure 3 – PCB Layout (240mm*16mm)

6. Bill of Materials

Item	Reference	Description		Manufacturer	
1	C1,C2	Electrolytic, 22uF/200V, RD series, Φ 10mm*16mm		SAMWHA	
2	C3	CBB Cap, 10nF/400V, P=7.5mm	1	Panasonic	
3	C4	CBB Cap, 0.22uF/400V, P=10mm	1	Panasonic	
4	C5	Ceramic, 0.01uF/10V, X7R, 0805	1	FENGHUA	
5	C6	Ceramic, 10uF/10V, X7R, 0805	1	FENGHUA	
6	C7	Ceramic, 4.7uF/50V, X7R, 1206	1	FENGHUA	
7	C8,C9	Ceramic, 0.01uF/630V, X7R, 1206	2	FENGHUA	
8	XC1,XC2	X2 Cap, 0.1uF/275VAC, P=10mm	2	VISHAY	
9	R1,R2	Chip Resistor, 10K, ±5%, 1206	2	FENGHUA	
10	R3	MetalFilm Resistor, 100R/1W	1	YAGEO	
11	R4,R5	Chip Resistor, 470K, ±5%, 1206	2	FENGHUA	
12	R6	Chip Resistor, 150K, ±5%, 0805	1	FENGHUA	
13	R7	Chip Resistor, 220R, ±5%, 1206	1	FENGHUA	
14	R8	Chip Resistor, 100K, ±1%, 0805	1	FENGHUA	
15	R9,R10	Chip Resistor, 2.2R, ±1%, 1206	2	FENGHUA	
16	D1,D2,D3	Diode, General Rectifier, 1A/1kV, SMA	3	SIYU	
17	D4	Diode, Ultra fast, ER1J, 1A/600V, SMB	1	DIODES	
18	D5,D6	Diode, Fast recover, 1N4148, 0.1A/75V, SOD123	2	VISHAY	
19	BD1	Bridge Rectifier, MB6S, 0.5A/600V, TO269AA	1	GENERAL SEMI	
20	FS1	Fuse, 0.5A/250V	1	TY-OHM	
21	T1,T2	Transformer Bobbin, E1312, Horizontal, 10pins	2	KANGSHUN	
22	L1,L2	Power Inductor, SL1012-222	2	YAGEO	
23	TF1	Ferrite Bead Inductor, Axial Φ3.5mm*5mm	1	TDK	
24	Q1	MOSFET, N-Channel, 4N50, TO252	1	UTC	
25	VR1	Varistor, TVR05431	1	THINKING	
26	U1	IC, PT4207, SOP8	1	POWTECH	

7. Transformer Specification

7.1. Physical Dimension

Figure 4 – Physical Dimension

7.2. Build-up Table

Winding	Terr	ninal	Turns	Method	Wire		Insula	tion	
	Start	Finish			Туре	Size*QTY	Layer	T/W	Layer
P1	1	10	180	Distribute Center	2UEW	0.23*1		0.025*8	2

7.3. Electrical Specifications

Item	Description	Description Condition	
1	Inductance	Pin 1 to Pin10, measured at 40KHz, 1Vrms	2.4 mH \pm 5%

8. Demo Test Data

24 LEDs in series, 240mA output.

Vin	lin	Pin	PF	lo	Vo	Eff.
(Vac)	(mA)	(W)		(mA)	(V)	(%)
175	121.3	19.611	0.925	239.0	75.97	92.58
200	106.2	19.527	0.915	238.2	75.91	92.60
230	93.46	19.495	0.903	238.6	75.85	92.83
265	82.43	19.46	0.891	238.0	75.80	92.71

9. Key Design Points

- 9.1. If lower average efficiency is acceptable (a 1% to 2% drop), change resisitor R3 from 100R to 300R make a average power factor 0.02 increase.
- 9.2. Capacitor C4 can be chosen as a low ESR, X7R type ceramic to lower the output current ripple.
- 9.3. Use 1% tolerance resistors R8/R9/R10 for better output current accuracy.
- 9.4. Use 105°C type electrolytic capacitors C1/C2, and ferrite core that over 130°C cure temperature to meet the lifetime requirement.
- 9.5. Place the BYPASS pin capacitors C5/C6/C7 and the off-time setting resistor R8 physically close to U1 on the PCB. Make sure that pin3 of U1, ground pad of C6 and C7 are connected at the same node on the PCB, away from the switching ground nodes.See Figure 6.
- 9.6. Minimize output loop areas(See Figure 5) to reduce EMI.

Figure 5 – Output Loop Areas

9.7. Space the U1 away from switching nodes and the large current paths to minimize noise coupling. See Figure 6.

Figure 6 – U1 Placing

10. EMC Test

10.1. Conducted EMI

Figure 7 – EN55022B Limit, L-Line, Vin=230VAC, 24LEDs in series 240mA output

EMI TEST REPORT

Figure 8 – EN55022B Limit, N-Line, Vin=230VAC, 24LEDs in series 240mA output

10.2. Radiated EMI

Figure 9 – EN55022B Limit, Horizontal, Vin=230VAC 24LEDs in series 240mA output

Audix Technology (Shanghai) Co., Ltd. 3F #34Bldg. No.680 GuiPing Rd., CaoHeJing Hi-Tech Park, Shanghai 200233, China Tel:+86-21-64955500 Fax:+86-21-64955491 audixaci@audix.com

Figure 10 – EN55022B Limit, Vertical, Vin=230VAC, 24LEDs in series 240mA output

11. Improvements

11.1. Output Voltage Clamping

Figure 11 show the output voltage clamping circuit, using optocoupler. And output voltage can be clamped at 90VDC.

Figure 11 – Output Voltage Clamping Circuit