几乎所有电源电路中,都离不开磁性元件-电感器或变压器。例如在输入和输出端采 用电感滤除开关波形的谐波;在谐振变换器中用电感与电容产生谐振以获得正弦波的电压 和电流;在缓冲电路中,用电感限制功率器件电流变化率;在升压式变换器中,储能和传 输能量;有时还用电感限制电路的瞬态电流等。而变压器用来将两个系统之间电气隔离, 电压或阻抗变换,或产生相位移(3 相 Δ—Y 变换),存储和传输能量(反激变压器),以及 电压和电流检测(电压和电流互感器)。可以说磁性元件是电力电子技术最重要的组成部分之 一。

磁性元件一电感器和变压器与其他电气元件不同,使用者很难采购到符合自己要求的 电感和变压器。对于工业产品,应当有一个在规定范围内通用的规范化的参数,这对磁性 元件来说是非常困难的。而表征磁性元件的大多数参数(电感量,电压,电流,处理能量, 频率,匝比,漏感,损耗)对制造商是无所适从的。相反,具体设计一个磁性元件可综合考 虑成本,体积,重量和制造的困难程度,在一定的条件下可获得较满意的结果。

由于很难从市场上购得标准的磁性元件,开关电源设计工作的大部分就是磁性元件的 设计。有经验的开关电源设计者深知,开关电源设计的成败在很大程度上取决于磁性元件 的正确设计和制作。高频变压器和电感固有的寄生参数,引起电路中各色各样的问题,例 如高损耗、必须用缓冲或箝位电路处理的高电压尖峰、多路输出之间交叉调节性能差、输 出或输入噪声耦合和占空度范围限制等等,对初步进入开关电源领域的工程师往往感到手 足无措。

磁性元件的分析和设计比电路设计复杂得多,要直接得到唯一的答案是困难的。因为 要涉及到许多因素,因此设计结果绝不是唯一合理的。例如,不允许超过某一定体积,有 几个用不同材料的设计可以满足要求,但如果进一步要求成本最低,则限制了设计的选择 范围。因此最优问题是多目标的,相对的。或许是最小的体积,最低成本,或是最高效率 等等。最终的解决方案与主观因素、设计者经验和市场供应情况有关。另一方面,正确的 设计不只是一般电路设计意义上的参数计算。还应当包含结构、工艺和散热等设计,而且 是更重要的设计。高频开关电源的很多麻烦是由于磁性元件工艺、结构和制造不合理引起 的。

尽管磁性元件设计结果是相对的,不是唯一的。但至少设计结果应当是合理的。因此, 开关电源设计者应当有比较好的磁学基础。遗憾的是在现今中等专业学校和高等院校中磁 的讲解偏少,尤其是应用于开关电源的实际磁的概念更少涉及。为此,本书试图在讲清工 程电磁的最基本概念的基础上,介绍磁性材料性能和选用以及高频条件下磁性元件工作的 特殊问题、磁性元件设计的一般方法和工艺结构。给初学者初步提供理论依据和经验数据, 为进入"黑色艺术殿堂"打下必要的基础,并通过自己的不断实践,也成为开关电源磁性 元件的专家。

本书由丁道宏教授主审,并提出了不少很宝贵的意见。詹晓东副教授提供不少有益的 资料,给予很大帮助,在此一并表示衷心的感谢。

第一部分 磁学基础

第一章 磁的基本概念

1.1 磁的基本现象

自然界中有一类物质,如铁,镍和钴,在一定的情况下能相互吸引,这种性质我们称 它们具有<u>磁性</u>。使他们具有磁性的过程称之为<u>磁化</u>。能够被磁化或能被磁性物质吸引的物 质叫做<u>磁性物质</u>或磁介质。

能保持磁性的磁性物质称为永久磁铁。磁铁两端磁性最强的区域称为<u>磁极</u>。将棒状磁 铁悬挂起来,磁铁的一端会指向南方,另一头则指向北方。指向南方的一端叫做<u>南极</u>S, 指向北方的一端叫做<u>北极</u>N。如果将一个磁铁一分为二,则生成两个各自具有南极和北极 的新的磁铁。南极或北极不能单独存在。

如果将两个磁极靠近,在两个磁极之间产生作用力一同性相斥和异性相吸。磁极之间 的作用力是在磁极周围空间转递的,这里存在着磁力作用的特殊物质,我们称之为<u>磁场</u>。 磁场与物体的万有引力场,电荷的电场一样,都是有一定的能量。但磁场还具有本身的特性:

(1) 磁场对载流导体或运动电荷表现作用力;

(2) 载流导体在磁场中运动时要做功。

为形象化描述磁场,把小磁针放在磁铁附近,在磁力的作用下,小磁针排列成图 1.1(a) 所示的形状。从磁铁的 N 极到 S 极小磁针排成一条光滑的曲线,此曲线称为<u>磁力线(</u>图 1.1(b)),或称为磁感应线,或磁通线。我们把 N 极指向 S 极方向定义为力线方向。磁力线 在磁铁的外部和内部都是连续的,是一个闭合曲线。曲线每一点的切线方向就是磁场方向。 在磁铁内部是 S 极指向 N 极。以下用磁力线方向代表磁场正方向。力线的多少代表磁场的 强弱,例如在磁极的附近,力线密集,就表示这里磁场很强;在两个磁极的中心面附近力 线很稀疏,表示这里磁场很弱(图 1.1(c))。但是,应当注意,磁场中并不真正存在这些实在 的线条,也没有什么物理量在这些线条中流动,只是在概念上形象地说明磁现象。

1.2 电流与磁场

将载流导体或运动电荷放在磁场中,载流导体就要受到磁场的作用力,这说明了电流 产生了磁场。由此产生的磁场和磁体一样受到磁场的作用力。现代物理研究表明,物质的 磁性也是电流产生的。永久磁铁的磁性就是分子电流产生的。所谓分子电流是磁性材料原 子内的电子围绕原子核旋转和自转所形成的。电子运动形成一个个小的磁体,这些小磁体 在晶格中排列在一个方向,形成一个个小的磁区域一<u>磁畴</u>。可见电流和磁场是不可分割的, 即磁场是电流产生的,而电流总是被磁场所包围。

运动电荷或载流导体产生磁场。根据实验归纳为安培定则,即右手定则,如图 1.2 所 示。右手握住导线,拇指指向电流流通方向,其余四指所指方向即为电流产生的磁场方向: 如果是螺管线圈,则右手握住螺管,四指指向电流方向,则拇指指向就是磁场方向。

图 1.3 示出了围绕两根平行导体的磁场,每根导体流过相等的电流但方向相反,即一 对连接电源到负载的导线。实线代表磁通,而虚线代表磁场等位面(以后说明)的截面图。每 根导线有独立的磁场,磁场是对称的,并从导线中心向外径向辐射开来,磁场的强度随着 离导体的距离增加反比减少。因为产生场的电流方向相反,两个场数值是相等的,但极性 相反。两个场叠加在一起,在导线之间区域相互加强,能量最大。而在导线周围的其它地 方,特别是远离两导线的外侧磁场强度相反,且近乎相等而趋向抵销。

图 1.4 示出了空心线圈磁场。每根导线单个的场在线圈内叠加产生高度集中和线条流畅 的场。在线圈外边,场是发散的,并且很弱。虽然存储的能量密度在线圈内很高,在线圈 以外的弱磁场中,还存储相当大的能量,因为体积扩展到无限大。

图 1.3 围绕双导体的场

(#)#)#)# 图 1.4 空心线圈

磁场不能被"绝缘"物体与它的周围隔离开来一

磁"绝缘"是不存在的。但是,磁场可以被短路一将 图 1.4 的线圈放到一个铁盒子中去,盒子提供磁通返回的路径,盒子将线圈与外边屏蔽开 来。

1.3 磁的单位和电磁基本定律

磁场可用以下几个物理量来表示。

1.3.1 磁感应强度(B-磁通密度)

为了测量磁场的强弱,可通过电磁之间作用力来定义。用单位长度的导线,放在均匀的磁场中,通过单位电流所受到的力的大小(*B=F/II*)表示磁场的强弱一磁感应强度(*B*)。它表示磁场内某点磁场的强度和方向的物理量。*B*是一个矢量。力*F*,电流*I*(在导线*l*内流通)和磁感应强度*B*三者是正交关系,通常用左手定则确定:伸开左手,四手指指向电流方向,拇指指向力的方向,则磁场指向手心。如果磁场中各点的强度是相同的且方向相同,则此磁场是均匀磁场。

 \overline{B} 的单位在国际单位制(SI)中是特斯拉(Tesla),简称特,代号为 T。在电磁单位制(CGS)中为高斯,简称高,代号为 Gs。两者的关系为 $1T=10^4Gs$ 。

1.3.2 磁通(**þ**)

垂直通过一个截面的磁力线总量称为 该截面的磁通量,简称磁通。用¢表示。通 常磁场方向和大小在一个截面上并不一定 相同(图 1.5(a)),则通过该截面积 *A* 的磁通 用面积分求得

$$\phi = \int_{A} d\phi = \int B \cos \alpha dA$$

(a) (b)图 1.5 穿过某一截面的磁通

或

$$\phi = \int_{A} \overline{B} d\overline{A}$$

式中 $d\phi$ 一通过单元 $d\overline{A}$ 截面积的磁通; α 一截面的法线与 \overline{B} 的夹角。在一般铁芯变压器和 电感中,在给定结构截面上,或端面积相等的气隙端面间的磁场 B 基本上是均匀的(图 1.5(b)),则磁通可表示为

$$\phi = BA$$

(1.1)

(1.2)

磁通是一个标量。它的单位在 SI 制中为韦伯,简称韦,代号为 Wb,可由 B 和 A 的单位导出

$$1(Wb)=1(T)\times 1(m^2)$$

在 CGS 单位制中磁通单位为麦克斯韦,简称麦,代号为 Mx。而

1Mx = 1Gs $\times 1$ cm²

因为 $1T=10^4Gs$, $1 \text{ m}^2=10^4\text{cm}^2$, 则

В

$$1Mx = 10^{-8}Wb$$

在均匀磁场中,磁感应强度可以表示为单位面积上的磁通,由式(1.1)可得

$$=\frac{\Phi}{A}$$

所以磁感应强度也可以称为磁通密度。因此磁通密度的单位特斯拉也可用韦/米²,可见

$$1Gs = 10^{-4} Wb / m^2 = 10^{-8} Wb / cm^2$$

因为磁力线是无头无尾的闭合线,因此对于磁场内任意闭合曲面,进入该曲面的磁力 线应当和穿出该曲面的力线数相等,所以穿过闭合曲面磁通总和为零,称为高斯定理。 1.3.3 磁导率(μ)和磁场强度 \overline{H}

1.3.3.1 磁介质的磁导率(µ)和磁场强度(H)

电流产生磁场,但电流在不同的介质中产生的磁感应强度是不同的。例如,在相同条件下,铁磁介质中所产生的磁感应强度比空气介质中大得多。为了表征这种特性,将不同的磁介质用一个系数μ来考虑,μ称为介质磁导率,表征物质的导磁能力。在介质中,μ越大,介质中磁感应强度*B*就越大。

真空中的磁导率一般用μ₀表示。空气、铜、铝和绝缘材料等非磁材料的磁导率和真空 磁导率大致相同。而铁、镍、钴等铁磁材料及其合金的磁导率都比μ₀大10~10⁵倍。

1.3.3.2 磁场强度(H)

用磁导率表征介质对磁场的影响后,磁感应*B*与µ的比值只与产生磁场的电流有关。即在 任何介质中,磁场中的某点的*B*与该点的µ的比值定义为该点的磁场强度*H*,即

$$\overline{H} = \frac{\overline{B}}{\mu}$$
(1.3)

 \overline{H} 也是矢量,其方向与 \overline{B} 相同.

相似于磁力线描述磁场,磁场强度也可用磁场强度线表示。但与磁力线不同,因为它 不一定是无头无尾的连续曲线,同时在不同的介质中,由于磁导率μ不一样,*H*在边界处 发生突变。

应当指出的是所谓某点磁场强度大小,并不代表该点磁场的强弱,代表磁场强弱是磁 感应强度 B。比较确切地说,矢量 \overline{H} 应当是外加的磁化强度。引入 \overline{H} 主要是为了便于磁场 的分析计算.

1.3.4 安培环路定律

安培发现在电流产生的磁场中,矢量 \overline{H} 沿任意闭合曲线的积分等于此闭合曲线所包围的所有电流的代数和(图 1.6),即

$$\oint_{l} \overline{H} d\overline{l} = \oint_{l} H \cos \alpha dl = \sum_{l} I$$

(1.4)

式中 \overline{H} 一磁场中某点A处的磁场强度; $d\overline{l}$ 一磁场 中A点附近沿曲线微距离矢量; $\alpha - \overline{H} 与 d\overline{l}$ 之间的夹 角。 ΣI 一闭合曲线所包围的电流代数和。电流方向和磁 场方向的关系符合右螺旋定则。如果闭合回线方向与电 流产生的磁场方向相同,则为正。反之为负。式(1.4) 称为安培环路定律,或称为全电流定律。

图1.6(a)环路包围只有I,所以 $\Sigma I=I$,而图1.6(b)环路 包围的是正的 I_1 和负的 I_2 ,尽管图中有 I_3 存在,但它不包 含在环路之内,所以 $\Sigma I=I_1-I_2$ 。

图 1.6 安培环路定律

以环形线圈为例(图1.7)来说明安培定律的应用。环内的介质是均匀的,线圈匝数为N, 取磁力线方向作为闭合回线方向,沿着以r为半径的圆周闭合路径I,根据式(1.4)的左边可得 到

$$\oint \overline{H}d\overline{l} = Hl = 2\pi r \times H \qquad (1.5)$$

方程的右边

$$\sum I = IN$$

因此

 $H \times 2\pi r = Hl = IN$ (1.6)

即

$$H = \frac{IN}{2\pi r} = \frac{IN}{l} \tag{1.7}$$

式中r 是环的平均半径, 如果环的内径与外径之比接近

1,认为环内磁场是均匀的, *l*=2πr为磁路的平均长度。*H*为半径r处的磁场强度。如果内径 与外径相差较大,可以用下式计算平均长度

$$l = \frac{2\pi(r2 - r1)}{\ln\frac{r2}{r1}}$$
(1.8)

在SI制中磁场强度的单位为安/米,代号为A/m。在CGS制中为奥斯特,代号为Oe。它 和A/m之间的关系为

$$1A / m = 10^{-2} A / cm = 0.4\pi \times 10^{-2} Oe$$

即

1*A/cm*=0.4π *Oe*

由式(1.7)可见, H与电流大小、匝数和闭合路径有关,而与材料无关。

式(1.6)中线圈电流和匝数的乘积IN称为磁动势F,即

在引出磁场强度以后,根据式(1.3)得到

$$\mu = \frac{B}{H}$$

由此得到磁导率μ的单位:

$$\mu$$
的单位 = $\frac{Wb/m^2}{A/m}$ = $\frac{V \cdot S}{A \cdot m}$ = $\frac{\Omega \cdot S}{m}$ = H/m (亨/米)

在SI制中是亨/米,代号为H/m。在CGS制中是高/奥,与SI制关系为

$$1H/m = \frac{10^7}{4\pi}Gs/Oe$$

由实验测得,真空磁导率为

$$\mu_0 = 4\pi \times 10^{-7} H / m = 0.4\pi \times 10^{-8} H / cm$$

在CGS制中, μ₀的单位为高/奥,数值为1。

1.3.5 电磁感应定律

式中*ψ=Nφ*是各线圈匝链的总磁通,称为<u>磁链</u>。由上式可见,磁通单位韦伯,也就是伏秒。即单匝线圈匝链的磁通在1秒内变化1韦伯时,线圈端电压为1伏。可见,可以利用这个关系定义磁通单位(伏秒--VS),再由磁通单位定义磁通密度B的单位。

上式就是<u>法拉第定律</u>。但此定律只说明感应电动势与磁通变化率之间的关系,并没有 说明感应电动势的方向。楞次阐明了变化磁通与感应电势产生的感生电流之间在方向上的 关系。即在电磁感应过程中,感生电流所产生的磁通总是阻止磁通的变化。即当磁通增加 时,感生电流所产生的磁通与原来磁通方向相反削弱原磁通; 当磁通减少时,感生电流产 生的磁通与原来的磁通方向相同,加强原磁通。感生电流总是试图维持原磁通不变。这就 是<u>楞次定律</u>。习惯上,规定感应电动势的正方向与磁通的正方向符合右螺旋定则,因此上 式可写为

$$= -N\frac{d\phi}{dt} = -\frac{d\psi}{dt} \tag{1}$$

这种感生电流企图保持磁场现状的特性,正表现了磁场的能量性质。因此楞次定律也称为磁场的惯性定律.。法拉第定律和楞次定律总称<u>电磁感应定律</u>。

1.3.6 电磁能量关系

为使研究问题简化,我们考察图1.9所示的N匝环形线圈。环的外径D与内径d之比接近1, 磁路的平均长度为l= π (D+d)/2线圈电流在环的截面A内产生的磁场是均匀的。环的磁介质 磁导率 μ 为常数。当电压u加到线圈输入端时,在线圈中产生电流,引起磁芯中磁场变化。 根据电磁感应定律有

$$u = -e = N \frac{d\phi}{dt} = NA \frac{dB}{dt}$$
(1.10)

线圈中磁通增长,相应的磁化电流

е

$$i = \frac{Hl}{N}$$

因此,电路输入到磁场的能量We为

.9)

$$W_e = \int_0^t \frac{H}{u} dt = \int_0^t \frac{H}{N} NA \frac{dB}{dt} dt \qquad (1.11)$$

在经过时间t, 线圈中磁场达到了B,因此上式可改写为

$$W_e = \int_0^B AlH dB = V \int_0^B H dB \tag{1.12}$$

式中V=Al-磁场的体积。上式左边是电源提供给磁场的能量 W_e ,右边是磁场存储的能量 W_m 。因 μ 为常数,即 $B=\mu$ H,则存储在磁场中能量为

$$W_m = V \int_0^B \frac{B}{\mu} dB = V \frac{B^2}{2\mu} = \frac{BH}{2} V = \frac{\mu V H^2}{2} \qquad (1.13)$$

图 1.9 电磁能量关系

由式(1.13)可见,在磁导率为常数的磁场中,单位体积磁场能量是磁场强度与磁感应 强度乘积的1/2。

例1: 磁导率为 $\mu = 60 \times 10^{-7}$ 亨/米的环形磁芯,如图1.9所示,磁芯截面积A=2cm²,平均磁路长度l = 16cm,线圈匝数N = 50匝,通过线圈电流为1A。求磁芯中存储的能量。 解: 磁芯中平均磁场强度

$$H = \frac{IN}{l} = \frac{1 \times 50}{16} = 3.125A / cm = 312.5A / m$$

磁芯的体积

$$V = l \times A = 16 \times 2 = 32cm^3 = 32 \times 10^{-6}m^3$$

磁芯中存储的能量

$$W_m = V \frac{\mu H^2}{2} = 32 \times 10^{-6} \times \frac{60 \times 10^{-7} \times 312.5^2}{2} = 9.35 \times 10^{-6} \, \text{\rassurements}$$

本章要点

- 只要有电流,不管是恒定的还是变化的,都会产生磁场。这个电流可能是电路中电流, 也可能是分子电流。
- 磁场用磁力线形象描述。磁力线是无头无尾的光滑曲线,其切线方向表示磁场方向。
 在磁铁外部,磁力线是由南极指向北极;而在内部是北极指向南极。
- 磁场和电场以及万有引力场一样,是有能量的。因此建立磁场需要送入能量,使磁场 消失需释放能量,同时送入或释放能量都需要时间。
- 磁与电之间的关系服从于两个基本定律:1.全电流定律(安培环路定律)-沿闭合回路磁场强度的线积分等于闭合回路包围的电流代数和。2.电磁感应定律(法拉第定律和楞次定律)---个线圈包围的磁通(或导体在磁场中切割磁通运动,这里不讨论)发生变化时,在线圈端产生感应电势,感应电势如产生电流,此电流产生的磁场阻止线圈包围的磁通变化。这两个定律是双向的。
- 磁场计量单位有两种单位制:非有理化单位制一实用单位制,即CGS制和有理化单位 制一国际单位制,即SI制。它们的转换关系如表10.1。

参考文献

- 1. 《电工原理》 梁福如 甘世骥 赵秀珠 编 航空工业技工教材编审委员会 1985年
- 2.《电工基础》 秦曾煌 高等教育出版社 1990
- 3. 《Magnetic Powder Cores-Powder Core Division 》 The Arnold Engineering Company.
- 4. «Unitrode Magnetics Design Handbook »—Magnetics Design for Switching Power Supplies Lloyd H. Dixon
- 5. 《Permanent Magnets and Magnetism》D. Hadfield London Iliffe Books LTD 1962
- «Permanent Magnets and Their Application» Rollin J. Parker, Robert J. Studders . John Wiley and Sons, Inc. 1962

2.1 自感

通常磁通或磁链是流过线圈的电流*i*产生的。如果线圈中磁介质的磁导率μ是常数时, ψ(φ)与*i*成正比关系,即

$$\psi = Li$$

如果磁通(ø)匝链全部激励线圈匝数N,则

$$L = \frac{\psi}{i} = \frac{N\phi}{i} \tag{2.1}$$

式中*L*称为线圈*N*的<u>自感系数</u>,通常简称为<u>自感</u>或电感。由式(2.1)得到电感*L*的定义为单位电流产生的总磁通链。对于给定线圈磁路,线圈电流越大,产生的磁链越多。

将*ψ=Li*代入式(1.9),可以得到

$$e = -L\frac{di}{dt} \tag{2.2}$$

由式(2.2)也可以定义电感量的单位:流过电感线圈电流在1秒内均匀地变化1安培时,如果产生感应电压正好为1伏,则此电路中线圈电感量定义为1亨利,简称为亨,代号为H。即

$$L = \frac{1V \times 1S}{1A} = 1(H) \tag{2.3}$$

从式(2.3)可见,亨利是伏秒/安培,故电感单位也可表示为欧•秒。

式(2.2)右边的负号表示电感两端的感应电势e总是阻止电流的变化。当电流增大时,感应 电势与电流方向相反;电流减小时,自感的感应 电势与电流方向相同(图2.1所示)。总是试图维 持电感电流不变,即试图维持线圈包围的磁通 不变。

电感阻止电流变化的性质表明电感的储能特性。当电压加到电感量为 L 的线圈上时,在线圈两端产生感应电势(式(2.2)),在线圈中产生电流。在时间 *t* 内,电流达到 *i*,电源传输到电感的能量:

$$W_{e} = \int_{0}^{t} uidt = \int_{0}^{t} iL \frac{di}{dt} dt = \int_{0}^{t} Lidi = \frac{1}{2} Li^{2} \quad (\texttt{KI})$$
(2.4)

由式(1.11~1.13)和(2.4)可见,电源输出的能量变为磁场能量。在电路上存储能量的大 小与电感的一次方成正比,与电流的二次方成正比。反映在电路中磁场能量是电感电流。 电感电流存在,磁场存在;电流为零,磁场消失。建立磁场或使磁场消失,需要从电源向 电感输入或从电感释放能量。要使一定电感电流减少或增加某一数值,因为有能量的输出 和输入,都必须经过一定的时间完成,不可能在瞬间改变。特别是载流电感要使磁场为零 时必须将电感转接到一个闭合损耗回路,提供能量释放。

还应当注意,本质上,电感阻止电流变化的特性就是阻止电感磁芯中磁通变化的特性。

2.2 互感

2.2.1 线圈之间的互感

如果绕在一个磁芯上的两个线圈匝数分别是N₁和N₂,即互相间有磁通链合,如图2.2所 示。当N₁中流过的电流*i*₁发生变化时,此电流产生的磁通 ϕ_{11} 也发生变化。根据电磁感应定 律,在N₁上产生感应电势,这就是自感电势。由于N₁和N₂有磁的联系,即磁通 ϕ_{11} 不仅链合 N₁,而且其中一部分 ϕ_{12} 穿过N₂,*i*₁变化时, ϕ_{12} 也随之变化。因此在N₂中也产生感应电势;反 之,如果在N₂中电流*i*₂发生变化时,同样也会在N₁中产生感应电势,这种现象称为<u>互感现象</u>。 由互感现象产生的电势称为互感电势。由*i*₁(*i*₂)在N₂(N₁)中产生的磁通 $\phi_{12}(\phi_{21})$ 称为互感磁通. 各线圈之间的磁通相互匝链的关系称为<u>磁耦合</u>。

2.2.2 互感系数

在图2.2中 ϕ_{11} 产生的磁通 ϕ_{12} 与线圈 N_2 交链, 其磁链为 $\psi_{12}=N_2\phi_{12}$ 。因磁通大小与电流 i_1 的大小 成正比,对于一定的匝数 N_2 ,磁链 ψ_{12} 也与电流 i_1 成正比,可表示为:

$$M_{12} = \frac{\Psi_{12}}{i_1} \tag{2.6}$$

同理, N_2 和 N_1 之间的互感系数为 M_{21} 。一般 $M_{12} \neq M_{21}$ 。取其几何平均值 $M = \sqrt{M_{12}M_{21}}$ 。 互感定义为单位电流流过线圈 N_1 时,在 N_2 中产生的磁链。互感M越大,表明在 N_1 中的电流 在 N_2 中产生的磁链越多。互感单位与自感相同,也是亨利。

线圈之间的互感M是线圈间的固有参数。它与两线圈的匝数,几何尺寸,相互位置和磁介质有关。当用磁性材料作为耦合磁介质时,由于磁导率 μ 不是常数,故M不是常数; 若磁介质是非磁性材料, M则为常数。

2.2.3 互感电动势

根据电磁感应定律,互感电动势的参考方向应以互感磁通为准,用安培定则决定。线圈*N*₁中电流*i*₁在*N*₂上产生的互感电势为:

$$e_{M2} = -\frac{-d\psi_{12}}{dt} = -\frac{M_{12}di_1}{dt}$$
(2.7a)

同样地在线圈N2中电流i2在N1中产生的感应电势为:

$$e_{M1} = \frac{-d\psi_{21}}{dt} = -\frac{M_{21}di_2}{dt}$$
(2.7b)

由上两式表明,互感电势大小取决于电流的变化率。感应电势的方向不仅取决于互感 磁通的增加还是减少,而且还取决于线圈的绕向。但绕好的线圈有时无法在外形上判断绕 向,同时在绘图时,画出实际绕组绕向显得十分不便,因此通常线圈的一端用'•'表示 所谓同名端。即电流从两个线圈的同名端流入,磁通是互相加强的;反之磁通互相抵消。 用同名端画出互感线圈如图2.3所示。这样不必画出线圈的绕向, *M*和箭头表示两个线圈互 感为*M*的磁耦合。这样当*i*₁增加时,线圈上感应电势的符号如图2.3(a)所示。根据自感电势 判断 '1' 端为 '+', '2' 端为 '一';根据同名端定义,立即判断出 '4' 端为 '+', '3' 端为 '一'。 当*i*₁减少时,线圈上感应电势维持电感电流不变,感应电势符号如图2.3(b) 所示。 '1' 端为 '一', '2' 端为 '+';根据同名端定义,立即判断出 '4' 端为 '一', '3' 端为 '+'。

2.2.4 互感电路和变压器

2.2.4.1 电压平衡方程

在研究两个线圈的磁耦合时,产生 自感电势的磁通是本身线圈电流产生的 (式2.1);而互感电势磁通是另一个线圈 电流产生的(式2.7)。如果分别从具有互 感的两个线圈的同名端流入增量电流*i*,

和*i*₂(图2.4(a)),它们所产生的磁通方向相同,磁通相互叠加,因此线圈上感应电势增大,即自感电势与互感电势极性相同。根据电势和电压降之间的关系,两个线圈电压分别表示为

$$u_{1} = -e_{L1} - e_{M2} = L_{1} \frac{di_{1}}{dt} + M \frac{di_{2}}{dt}$$
(2.8)
$$u_{2} = -e_{L2} - e_{M1} = L_{2} \frac{di_{2}}{dt} + M \frac{di_{1}}{dt}$$
(2.9)

如果一个线圈的电流从 '•' 端流入,而另一线圈从非 '•' 端一异名端流入(图2.4(b)),

两个线圈电流产生的磁通方向相反,线圈上感应电势减小,即自感电势与互感电势极性相反,两个线圈端电压为:

端电压为: $u_1 = -e_{L1} + e_{M2} = L_1 \frac{di_1}{dt} - M \frac{di_2}{dt}$

$$u_2 = -e_{L2} + e_{M1} - L_2 \frac{dt}{dt} - M \frac{dt}{dt}$$

图 2.4 同名端 从上面分析可见,如果在一个线圈中流过直流 电流,即耦合的磁通不变化,则在另一个线圈中是不会产生互感电势的。

2.2.4.2 耦合系数

当两个有互感的线圈N₁通过电流*i*₁时(图2.5),线圈N₁产生的磁通φ₁₁(第一个下标表示产 生磁通线圈号,第二个下标表示磁通通过的线圈号)可分为两个部分:一部分是同时匝链两 个线圈的互感磁通φ₁₂,另一部分磁通只与激励线圈N₁匝链,不与N₂链合,称为<u>漏磁通</u>φ_{1s}, 它是激励源产生的。漏磁通的大小与线圈间耦合紧密程度、线圈绕制工艺、磁路的几何形 状、磁介质性能等因素有关。应当指出,本书中的漏磁和在以后提到的漏感仅在磁耦合线 圈(变压器或耦合电感)中存在。漏感是相对互感存在的。独立电感不存在漏感问题。

如果将互感磁通与总磁通之比称为线圈N2对线圈N1的耦合度k1,则

$$k_1 = \frac{\phi_{12}}{\phi_{11}}$$

同理, 线圈 N_2 的电流产生的互感磁通 ϕ_{21} 与其总磁 通φ22比称为线圈N1对线圈N2的耦合度k2为:

$$k_2 = \frac{\phi_{21}}{\phi_{22}}$$

如两个线圈都有电流流通,通过互感互相影 响,为了表明耦合程度,通常采用k1和k2的几何 平均值k来表示,即

 $k = \sqrt{k_1 k_2} = \sqrt{\frac{\phi_{12}}{\phi_{11}} \cdot \frac{\phi_{21}}{\phi_{22}}} = \sqrt{\frac{N_1 N_2}{N_1 N_2} \frac{\phi_{12} \phi_{21}}{\phi_{11} \phi_{22}} \frac{i_1 i_2}{i_1 i_2}} = \frac{M}{\sqrt{L_1 L_2}}$ (2.10)

由于 \u03c8 12 < \u03c9 11, \u03c9 22, 所以 k < 1。只有在没有漏磁通的情况下 k = 1。铁芯闭合磁路互感线圈可 近似k=1,称为全耦合,此时互感M最大:

$$M_m = \sqrt{L_1 L_2} \tag{2.11}$$

所以,在一般情况下,耦合系数可表示为

$$k = \frac{M}{M_m}$$
(2.12)

它是实际互感和最大互感的比值。

2.2.4.3. 互感的串联与并联

2.2.4.3.1 互感线圈的串联

电感值分别为L1、L2的两个线圈,它们之间如果没有磁耦合,串联后的总的等效电感 量为两个线圈电感之和L=L1+L2。如果两个线圈之间存在互感,同时异名端相连一正接(图 2.6(a))时,也就是电流都是从两个线圈的同名端流入或流出,假定电流从同名端流入,则有

$$U_1 = (L_1 \frac{di}{dt} + M \frac{di}{dt}) + (L_2 \frac{di}{dt} + M \frac{di}{dt})$$
$$= (L_1 + 2M + L_2)\frac{di}{dt} = L_p \frac{di}{dt}$$

式中

$$L_{p}=L_{1}+L_{2}+2M$$

(2.13)

为正接时的等效电感,也称互感线圈的全电感。 如果两个线圈的同名端相接(图2.6(b)),则有

$$U_1 = (L_1 \frac{di}{dt} - M \frac{di}{dt}) + (L_2 \frac{di}{dt} - M \frac{di}{dt})$$
$$= (L_1 + L_2 - 2M)\frac{di}{dt} = L_n \frac{di}{dt}$$

式中

$$L_n = L_1 + L_2 - 2M$$
 (2.14)
为反接时等效电感。可见 $L_p > L_n$ 。因为 L_n 不可能为负值,故互感必须满足

13

$$M \le (L_1 + L_2) / 2$$

$$L_p - L_n = (L_1 + L_2 + 2M) - (L_1 + L_2 - 2M) = 4M$$

或

$$M = (L_p - L_n) / 4$$

(2.15)

(b)

式(2.15)表示了互感与正接和反接电感的关系。我们可以利用这一关系测试两个线圈之间的 互感大小。还可以利用互感串联原理判别线圈的同名端。

(a)

2.2.4.3.2 互感线圈的并联

电压方程为

将没有互感的两个电感量 为L₁和L₂的两个线圈并联,其等 效电感为

$$L = \frac{L_1 L_2}{L_1 + L_2} \tag{2.16}$$

 $L_1 + L_2$ 如果两个有互感的线圈相连时,有两种情况: 同名端相连和异名端相连(图2.7(a), (b))。端

$$U = L_1 \frac{di_1}{dt} \pm M \frac{di_2}{dt}$$
$$U = L_2 \frac{di_2}{dt} \pm M \frac{di_1}{dt}$$

式中的±按如下原则决定:同名端并联时取 正,异名端连接时取负。因*i=i*₁+*i*₂,代入上 式,经化简得到等效电感为

$$L = \frac{L_1 L_2 - M^2}{L_1 + L_2 \mp 2M}$$
(2.17)

显然式中L不会为负值,k < 1, $L_1 L_2 - M^2 > 0$,则

$$M < \sqrt{L_1 L_2}$$

可以证明,同名端并联,当L1=L2且k→1时,等效输入电感为

$$L = \frac{L_1 L_2 - k^2 L_1 L_2}{L_1 + L_2 - 2k\sqrt{L_1 L_2}} = \frac{(1 - k^2)L_1 L_2}{L_1 + L_2 - 2k\sqrt{L_1 L_2}} = \frac{1 + k}{2} L_1 = L_1$$

这相当于同一磁芯上的线圈并联,如果它们之间耦合不好k<1,并联后电感小于单线圈电感。如果两线圈电感量不等($L_2 \neq L_1$)而 $k \rightarrow 1$,由上式可见,等效电感为零。这是因为形成短路环流。

由式(2.17)读者可推导异名端并联时等效电感。

例2:在开关电源中,直流输出接成差模滤波如例图1(a)所示。测得L₁=0.51mH=L₂。如果 将输出端短路,测得总电感为L=2mH。求互感系数M和耦合系数k。如果接成共模滤 波(图1(b)),当输出短路时,输入端差模等效电感量是多少?输出输入端分别短接,

图 2.6 互感线圈的串联

图 2.7 互感线圈的并联

输入与输出端之间的等效电感是多少?

解:因为总电感量大于两个线圈的电感量之和,所以是耦合电感。 根据式(2.13)得到总电感

$$M = \frac{L - (L_1 + L_2)}{2} = \frac{2 - 0.51 \times 2}{2} = 0.49 \text{ mH}$$

耦合系数

$$k = \frac{M}{M_m} = \frac{M}{\sqrt{L_1 L_2}} = \frac{0.49}{0.51} = 0.96$$

如果接成共模滤波,相当于互感同名端连接,输入端等效差 模电感为

$$L_d = L_1 + L_2 - 2M = 0.51 + 0.51 - 2 \times 0.49 = 0.04mH$$

输入输出端分别等效短接(例如输入和输出端分别接有电容,对所研究的频率阻抗很 小)时,共模电感是耦合电感同名端并联,等效输入电感

$$L_p = \frac{L_1 L_2 - M^2}{L_1 + L_2 - 2M} = \frac{0.51 \times 0.51 - 0.49^2}{0.51 + 0.51 - 2 \times 0.49} = 0.5 \,\mathrm{mH}$$

2.3 变压器

变压器是一个具有多线圈的耦合电感,即具有互 感的一个或更多线圈构成的。图2.8(a)示出了两线圈变 压器结构图,(b)为简化等效电路图。磁芯保证所有线 圈产生的大部分磁通经过高磁导率磁路。图中接输入 电压的线圈N₁为初级(也可称为原边,一次边,原方 等),输出线圈N,为次级(也可称为副边,二次边,副 方等)。

2.3.1 变压器空载

在变压器的初级加一电压u;,而次级不接任何负 载(图2.8中S打开),称为空载。并假定初级与次级线 圈全耦合k=1, 目所有线圈电阻为零。根据电磁感应 定律, N₁的端电压为

$$u_i = N_1 \frac{d\phi_{11}}{dt} = L_1 \frac{di_1}{dt}$$
 (2.18)

式中L1-次级开路时的初级电感;在时间t时,磁芯中磁通和线圈中电流分别为

$$\phi_{11t} = \int_0^t \frac{u_i}{N_1} dt$$
$$i_{1t} = \int_0^t \frac{u_i}{L} dt$$

(2.19)

线圈产生的感应电势等于输入电压,引起 N_1 中电流 i_{1t} ,产生磁芯中磁通 ϕ_{1t} 。所以电流 i_{1t} 称 为激磁电流。对应的如称为主磁通。

15

因为是全耦合,在 N_2 中磁通变化率 $d\phi_{12}/dt$ 与 N_1 中相同, $d\phi_{12}/dt = d\phi_{11}/dt$ 。 N_2 的端电压为

$$u_{2} = e_{M2} = M \frac{di_{1}}{dt} = N_{2} \frac{d\phi_{12}}{dt}$$
(2.20)

根据式(2.18)和(2.20),次级输出电压与输入电压的关系为

$$\frac{u_i}{u_2} = \frac{N_1}{N_2} = n = \frac{L_1}{M}$$
(2.21)

式中 $n=N_1/N_2$ 称为变比。因为是全耦合, $M = \sqrt{L_1L_2}$, 则变比

$$n = \frac{L_1}{\sqrt{L_1 L_2}} = \sqrt{\frac{L_1}{L_2}}$$
(2.22)

式中L2为初级N1开路时次级电感。

2.3.2 变压器负载状态

如果将次级与负载接通,在次级线圈中就产生电流 $i_2 = u_2/Z$ 流经负载(图2.8中开关S合上)。电流 i_2 在线圈 N_2 中产生磁势 i_2N_2 将产生磁通 ϕ_2 ,与初级 i_1N_1 产生的磁通 ϕ_1 的方向相反。为了维持与空载一样的感应电势 e_1 所需的磁通变化量 $\phi_{11}=\phi_1-\phi_2$,必须加大输入电流 i_1 保持激磁磁势 $i_{11}N_1$ 基本不变,即

$$i_{1t}N_1 = i_1N_1 - i_2N_2 \tag{2.23}$$

或

$$i_1 = i_{1t} + \frac{N_2}{N_1} i_2 = i_{1t} + i'_2$$
(2.24)

式中 $i'_2 = \frac{N_2}{N_1} i_2$ 为负载反射电流。负载电流越大,反射到初级电流也就越大。当激磁电感很大时,理想时为无穷大。则激磁电流为零。由式(2.24)可以得到

$$i_1 = i'_2 = \frac{N_2}{N_1} i_2 \tag{2.25}$$

由此可见,初级和次级电流变化量之比与其匝数成反比。因此变压器也可称为电流变 换器。

由图2.8可见,输入电流从初级(N₁同名端)流入,从次级(N₂)同名端流出,变压器输出功率

$$P_o = i_2 \times u_2$$

变压器如果是理想的,即线圈电阻为零,激磁电流为零,初次级紧耦合,次级感应电势等于输出端电压,根据式(2.21)和(2.25)得到

$$P_o = i_2 \times u_2 = \frac{N_1 i_1}{N_2} \cdot \frac{u_1 N_2}{N_1} = u_1 i_1$$
(2.26)

可见,输入功率等于输出功率。激磁磁场只是提供能量传输条件,不需要在磁场中存 储能量,变压器作为能量传输之用。为了减小激磁电流,增大激磁电感,磁路应采用高磁 导率材料。

注意:

- 变压器负载时,次级电流产生的磁势是去磁磁势。要在次级线圈中产生相同的磁通变化, 激励源应提供抵销去磁磁场电流,并且还要保证与空载相同的磁通变化。没有相同的磁 通变化,次级电压就不存在。激磁是保证能量传输的基础。
- 全耦合时,如果初级激磁电流i_{1m}断开,为保持磁通不变,在任意闭合的次级产生感应电流,在初级断开瞬时,应当满足i_{1m}N₁ = i_{2m}N₂。i_{2m}一断开初级瞬时维持断开时磁芯磁通的次级电流。理想情况下, i_{1m}到 i_{2m}的转换是瞬时的。
- 3. 设次级线圈电阻为零,如果用一个电流源i_{1m}激励初级,次级处于短路状态,应满足 i_{1m}N₁ = i_{2m}N₂。次级电流将一致保持下去,磁芯中磁状态保持不变。如果线圈有电阻, 次级电流在电阻上有压降。次级将有相应的感应电势,磁芯磁通将发生变化。磁通变化, 初级激励i_{1m}也对应变化。这就是电流互感器工作状态。
- 2.3.3 变压器等效电路

理想变压器

如果磁芯磁导率µ=∞,激磁电流为零。同时初级与次级线圈全耦合,且线圈电阻为零。 也不考虑磁芯损耗和饱和。这种变压器称为理想变压器。

当输出端有负载时,输入电流增加。考虑到式(2.25)和(2.21)。因此变压器的等效 输入阻抗

$$Z' = \frac{u_1}{i_1} = \left(\frac{N_1}{N_2}\right)^2 \frac{u_2}{i_2} = n^2 Z \qquad (2.27)$$

式中Z^{*}称为反射阻抗。负载阻抗折算到初级 要乘以变比的平方。变压器除了变换电压和 能量传输外,还可以获得阻抗匹配。根据式 (2.24)及式(2.27)画出理想变压器负载等效电 路如图2.9所示。

图 2.9 理想变压器及其等效电路

实际变压器

实际变压器中,由于磁芯和线圈都不是

理想的,存在许多寄生参数。在变压器建模时应当考虑这些寄生参数。

首先磁芯µ不是无限大,有一定电感量,即激磁电感。根据式(2.24)激磁电感与理想变 压器并联(图2.10(a))。

其次,次级和初级线圈不是全耦合,如图2.5所示。次级包围的磁通 Φ_{12} 是总磁通 Φ_{11} 的一部分。根据电磁感应定律有

$$u_{i} = N_{1} \frac{d\phi_{11}}{dt} = N_{1} \frac{d\phi_{s}}{dt} + N_{1} \frac{d\phi_{12}}{dt} = u_{s} + u_{1}$$
(2.28)

式中u₁=N₁d \u03c6₁₂/dt-有互感的磁通部分压降;次级电压

$$u_2 = N_2 \frac{d\phi_{12}}{dt} = \frac{N_2 u_1}{N_1}$$
(2.29)

 $mu_s = N_1 d\phi/dt - 漏感电压降。
 或$

$$u_s = L_s \frac{di_1}{dt} = N_1 \frac{d\phi_s}{dt}$$

因此,初级的漏感

$$L_{1s} = \frac{\Phi_s}{i_1} \tag{2.30}$$

式中*i*₁-初级电流。从式(2.28)可见,漏感抗*L*_s与理想变压器是串联的(图2.10(b))。因此,如果输出短路,同时次级线圈电阻为零,初级电压全部加在漏感上。因此,耦合越好,短路电流越大。即变压器不能短路。

再其次,初级和次级线圈有导线电阻损耗,磁芯也有损耗,可用电阻*R*₁和*R*₂的损耗等效。线圈对地之间以及线圈之间存在寄生电容(C)等等。另外,还有初级漏感以及次级之间的漏感等等。

综合以上各种寄生参数,实际变压器等效电路如图2.10(c)所示。

应当注意的是尽管变压器寄生参数复杂,但在不同的情况下可以简化。例如在低频时, 磁芯的磁导率很高,初次级线圈耦合很好,线圈导线电流密度选取又比较低,这种情况下, 可用理想变压器模型代替实际变压器。在高频时,如果线圈间采取屏蔽,可忽略其寄生电 容,同时通常损耗限制了磁芯磁感应的选取,磁化电流很小,可不考虑激磁电感的影响等 等。

本章要点:

- 电感量表示通电流导体产生磁场的能力。电感电流表征电感存储能量的大小。电感有 电流流过,表示电感存储能量。电感电流为零,电感没有存储能量。电感的目的是存 储能量,电感量越大,表示能存储的能量越多。
- 电感是储能载体。当能量存储和释放时,都需要时间,表现对电流变化起阻挡作用。
 储能时,电流与感应电势方向相反;放能时,电流和感应电势方向相同。只有磁场(电流)发生变化时,才发生阻碍(感应电势)作用。所以电感对流过的电流有平滑作用。
- 两个线圈之间的互感表示主线圈电流在副线圈中产生磁通的能力。只有变化的电流(磁场),才表现出互感作用。
- 主线圈磁通全部匝链副线圈,称为全耦合。通过主线圈也通过副线圈的磁通称为主磁 通。如果部分磁通不通过副线圈,此部分磁通称为漏磁通,对应漏磁通的电感为漏感。 变压器是一个耦合电感。
- 耦合电感异名端串联时,等效总电感量增大;同名端串联总电感减少。耦合电感并联

应当特别注意,避免线圈之间环流,而使总电感量大大下降。

- 变压器是能量传输器件。激磁电流提供能量传输条件,不参加能量传输。因此激磁存 储能量越小越好,即希望用高磁导率材料的磁芯。
- 变压器次级与初级全耦合不好时,存储在漏感中的能量不能传输到相应的次级,即漏 感不参与能量传输。同理,当次级变为激磁线圈时,初级对次级的漏感中能量也不能 传输到初级。漏感是变压器的寄生参数,应当越小越好。
- 在不计寄生参数时,变压器初级与次级感应电势之比等于输入与输出电压之比,并等 于匝比,电流比反比于匝比。负载阻抗反射到初级阻抗为负载阻抗乘以匝比平方。

参考文献

- 1. 《电工原理》 梁福如 甘世骥 赵秀珠 编 航空工业技工教材编审委员会 1985年
- 2.《电工基础》 秦曾煌 高等教育出版社 1990
- 3. 《Unitrode Magnetics Design Handbook 》 -Magnetics Design for Switching Power Supplies Lloyd H. Dixon

第三章 磁路和电感计算

不管是一个空心螺管线圈,还是带气隙的磁芯线圈,通电流后磁力线分布在它周围的 整个空间。对于静止或低频电磁场问题,可以根据电磁理论应用有限元分析软件进行求解, 获得精确的结果,但是不能提供简单的、指导性的和直观的物理概念。在开关电源中,为 了用较小的磁化电流产生足够大的磁通(或磁通密度),或在较小的体积中存储较多的能量, 经常采用一定形状规格的软磁材料磁芯作为磁通的通路。因磁芯的磁导率比周围空气或其 他非磁性物质磁导率大得多,把磁场限制在结构磁系统之内,即磁结构内磁场很强,外面 很弱,磁通的绝大部分经过磁芯而形成一个固定的通路。在这种情况下,工程上常常忽略 次要因素,只考虑导磁体内磁场或同时考虑较强的外部磁场,使得分析计算简化。通常引 入磁路的概念,就可以将复杂的场的分析简化为我们熟知的路的计算。

3.1 磁路的概念

从磁场基本原理知道,磁力线或磁通总是闭合的。磁通和电路中电流一样,总是在低 磁阻的通路流通,高磁阻通路磁通较少。

所谓磁路指凡是磁通(或磁力线)经过的闭合路径称为磁路。

3.2 磁路的欧姆定律

以图3.1(a)为例,在一环形磁芯磁导率为µ的磁芯上,环的截面积A,平均磁路长度为l, 绕有N匝线圈。在线圈中通入电流l,在磁芯建立磁通,同时假定环的内径与外径相差很小, 环的截面上磁通是均匀的。根据式(1.7),考虑到式(1.1)和(1.3)有

$$F = NI = Hl = \frac{Bl}{\mu} = \frac{\phi}{\mu A} l = \phi R_m$$
(3.1)

或

$$\phi = F/R_m$$

式中F=NI是磁动势;而

$$R_{\rm m} = \frac{l}{{\rm u}A} \tag{3.3}$$

R_m一称为磁路的磁阻,与电阻的表达式相似,正比于 路的长度*l*,反比于截面积*A*和材料的磁导率μ;其倒数 称为磁导

$$G_m = \frac{1}{R_m} = \frac{\mu A}{l}$$
(3.3a)

式(3.1)即为磁路的欧姆定律。在形式上与电路欧姆 ^{磁压} 定律相似,两者对应关系如表3.1所示。

磁阻的单位在 SI 制中为安/韦,或 1/亨;在 CGS 制中为安/麦。磁导的单位是磁阻单位 的倒数。同理,在磁阻两端的磁位差称为磁压降 U_m,即

$$U_{\rm m} = \phi R_{\rm m} = BA \times \frac{l}{\mu S} = Hl(\dot{\Xi} \overline{\Box})$$
(3.4)

(3.2)

表 3.1 磁电模拟对应关系

磁路	电 路
磁动势 F	电动势 E
磁通φ	电流 I
磁通密度 B	电流密度 J
磁阻 R _m =l/µA	电阻 R=l/γA
磁导 G _m =µA/l	电导 G=γA/l
磁压降 U _m =Hl	电压 U=IR

引入磁路以后,磁路的计算服从于电路的克希荷夫两个基本定律。根据磁路克希菏夫 第一定律,磁路中任意节点的磁通之和等于零,即

 $\sum \phi = 0$

(3.5)

根据安培环路定律得到磁路克希菏夫第二定律,沿某一方向的任意闭合回路的磁势的 代数和等于磁压降的代数和

$$\sum IN = \sum \phi R$$

(3.6)

或

 $\sum IN = \sum Hl \qquad (3.6a)$

式(3.5)对应磁场的高斯定理,即穿过任何闭 合曲面的磁通之和为零。而式(3.6)则为磁路 的欧姆定律。

应当指出的是磁路仅在形式上将场的问 题等效成路来考虑,它与电路根本不同:

(1) 电路中,在电动势的驱动下,确实 存在着电荷在电路中流动,并因此引起电阻 的发热。而磁路中磁通是伴随电流存在的, 对于恒定电流,在磁导体中,并没有物质或

图 3.1 环形磁芯线圈和等效磁路

能量在流动,因此不会在磁导体中产生损耗。即使在交变磁场下,磁导体中的损耗也不是磁通 '流动'产生的。

(2) 电路中电流限定在铜导线和其它导电元件内,这些元件的电导率高,比电路的周围材料的电导率一般要高 10¹² 倍以上(例如空气或环氧板)。因为没有磁"绝缘"材料,周围介质(例如空气)磁导率只比组成磁路的材料的磁导率低几个数量级。实际上,磁导体周围空气形成磁路的一部分,有相当部分磁通从磁芯材料路径中发散出来,并通过外部空气路径闭合,称为<u>散磁通</u>。对于磁路中具有空气隙的磁路,没有磁芯的空心线圈更是如此。一般情况下,在磁路中各个截面上的磁通是不等的。

附带说明:这里所谓"散磁通"是指所有不经过整个磁芯磁路的磁通。因为在上一章 我们定义了漏磁通只在耦合磁路中存在。散磁通也可能是互感的一部分,如果采用电磁电 器中不经过主气隙的磁通(不产生力)就是漏磁,对应的电感称为漏感,就会在变压器中 造成混淆,故引出散磁通。

(3) 在电路中,导体的电导率与导体流过的电流无关。而在磁路中,磁路中磁导率是 与磁路中磁通密度有关的非线性参数。即使磁通路径铁磁结构保证各处截面积相等,但由 于有散磁通存在,在磁芯中各截面的磁通密度仍不相等。磁芯材料非线性使得μ不同,导致 相同磁路长度,不同的磁压降。需要由磁通求磁阻,又由磁阻求磁通反复试探,作出系统 的磁化曲线,这样工作量很大。虽然空气的磁导率是常数,但气隙磁场与结构有关,很难 准确计算。

(4) 由于有散磁通的存在,即使均匀绕在环形磁芯上的两个线圈也不能做到全耦合, 漏磁通一般很难用分析的方法求得,通常采用经验公式计算。 (5) 直流(即恒定)磁场已经相当复杂,如果是交流激励的磁场,在其周围有导体, 在导体中产生涡流效应,涡流对激励线圈来说相当于一个变压器的次级,涡流产生的磁通 对主磁通产生影响,磁场分布更加复杂。

可见,磁路计算是近似的。为了得到较精确的结果,首先应对静态磁场分布情况应当 有较清晰的概念,才能作出合乎实际的等效磁路。

- 例 3: 一个环形磁芯线圈的磁芯内径 d=25mm,外径 D=41mm,环高 h=10mm(见图例3)。
 磁芯相对磁导率µ_r=50。线圈匝数 N=50 匝。通入线圈电流为 0.5A。求磁芯中最大、最小以及平均磁场强度,磁通,磁链和磁通密度。
 解: 磁芯的截面积
 - $A = \frac{D-d}{2} \times h = \frac{41-25}{2} \times 10 = 80mm^2 = 0.8cm^2$

磁路平均长度

$$l = \pi \frac{D+d}{2} = \pi \frac{41+25}{2} = 119.4mm = 11.94cm$$

线圈产生的磁势

 $F = NI = 50 \times 0.5 = 25A$ 磁芯中最大磁场强度发生在内径处

$$H_{max} = \frac{F}{l_{min}} = \frac{25}{\pi \times 2.5} \approx 3.2 \, A \, / \, cm$$

最小磁场强度发生在外径处

$$H_{min} = \frac{F}{l_{max}} = \frac{25}{\pi \times 41} \approx 1.94 \, A \,/ \, cm$$

平均磁场强度

$$H = \frac{F}{l} = \frac{25}{11.94} \approx 2.1A / cm = 210A / m$$

磁芯中平均磁通密度

$$B = \mu H = \mu_0 \mu_r H = 4\pi \times 10^{-7} \times 50 \times 210 = 0.0132T = 132Gs$$

磁芯中磁通

$$\phi = BA = 0.0132 \times 0.8 \times 10^{-4} = 1.058 \times 10^{-6} Wb = 105.8 Mx$$

或

$$\phi = \frac{F}{R} = FG = IN \frac{\mu_0 \mu_r A}{l}$$

磁芯线圈的磁链

 $\psi = N\phi = 50 \times 1.058 \times 10^{-6} = 5.29 \times 10^{-5} Wb$

从磁芯中最大和最小磁场强度可以看到,内外径相差很大,可见磁芯中磁通密度是不均匀的。一般希望内径与外径比在0.8左右。

3.3 磁芯磁场和磁路

3.3.1 无气隙磁芯磁场

如果电路中两点之间有电位差,就可能在两点之间产生电流。同理,在磁路中两点之间有磁位差,在两点之间就可能产生磁通。图 3.2(a)所示为一等截面环形磁芯,线圈均匀分布在磁芯上。这种磁路系统完全对称,可以应用相似于电路中电位分析方法,作出磁位分布图。根据磁位分布图,可以了解散磁场的分布,确定等效磁路。

(A) 均匀绕线环形磁芯

首先在磁路的平均长度上选取一点(或一个截面)作为磁位的参考点(即 x=0),并假定沿磁芯中磁通的正方向 x 取正值,然后求磁路中某 x 点相对于参考点的磁位差 U_x。根据磁路 克希荷夫第二定律,沿图示虚线闭合回路得到

 $F_x = U_{cx} + U_x$

(3.7)

(3.8)

式中 $F_x = 0 \rightarrow x$ 段磁路所匝链的线圈磁势, $U_{cx} = 0 \rightarrow x$ 段磁芯的磁阻压降。 由于线圈均匀绕,所以 x 段线圈匝数为 $N_x = Nx/l$, x 段磁势

图 3.2 等截面均匀绕线环形磁芯磁位分布图和等效磁路

磁芯中的磁场强度 H=IN/l, 应有

$$U_{cx} = \int_0^x H dx = \frac{IN}{l} x \tag{3.9}$$

式中 *IN*—线圈总磁势; *I*—磁路平均长度。因此,沿磁路平均长度展开, F_x和 U_{cx}的分布情况如图 3.2(b)所示。

由图 3.2(b)可见, U_{cx} 的分布和 F_x 完全相同。由式(3.7)得到 x 点与基准的磁位差

 $U_x = F_x - U_{cx}$

(3.10)

也就是说,将图形 F_x减去 U_{cx} 图形,就得到 U_x 分布情况。显然, U_x处处为零(式(3.8)~(3.9)。 即等截面均匀绕线的环形磁铁任意点间没有磁位差,即等磁位。在环外不会有任何散磁通, 磁力线局限于导磁体内。

根据式(3.1)和(3.3),因为磁场集中在线圈磁芯内,各截面磁通相等,故可将磁势和磁阻画成集中元件。图 3.2(a)的等效磁路如图 3.2(c)所示。

(B) 集中绕线的等截面环形磁芯

将图 3.3(a)中磁芯线圈集中绕在一边。如果线圈长度为 l,, 取其线圈中点为参考点。应

用相似的方法,得到磁势 F_x 分布图(图 3.3(b))。在 x 方向 $l_w/2 \cong l \cdot l_w/2$ 段,没有增加匝链磁势,故为一水平线。如果有散磁存在,磁芯各截面的磁通密度和 H_x 不再是常数, U_{cx} 也就不能用式(3.9)来计算。如果散磁通的比例很小,假设 H_x 为常数,可以作出 U_{cx} 分布图如图 3.3 (b)。由上述两个图相减,就得到磁位差 U_x 分布图。由图可见,除对称轴(x=0 和 l/2)外,磁路中 U_x 都不等于零,因此有散磁通 ϕ_σ 分布于圆环周围空间,如图 3.3(c)所示。由于对称,通过 x=0 和 x=l/2 的平面定义为 0 等磁位面。在磁芯中存在若干磁位相等的磁位面,简称

图 3.3 等截面集中绕线环形磁芯磁位分布图和等效磁路

等位面。和电场一样,在周围空间也存在等磁位面,磁力线垂直于等位面,终止在电流上(图 1.3~1.4 和图 3.3(a))。

由图 3.3(a)可见,在磁芯中 x=0 处磁通最大,由于磁芯截面积是均匀的, x=0 处的磁通 密度也就最大;而 x=l/2 处,磁通最小,磁通密度最低。在+ l_w/2 和- l_w/2 之间磁位差最大, 因此磁力线最密。尽管散磁通是分布的,在画等效磁路时,可近似等效为散磁通是在最大 磁位差的地方(± l_w/2)流出的。因此有

 $\phi = \phi_{c} + \phi_{s}$

式中 \[\phi_s- \] 全部经过磁芯的磁通; \[\phi_s-"\] *散"磁通。散磁通 \[\phi_s 是部分通过磁芯经过周 围空气路径闭合的磁通。如果是电感线圈,它是电感磁通的一部分;如果是变压器, \[\phi_s] 能是主磁通的一部分,其余是漏磁通,也可能全部是漏磁通,即部分或全部不与次级耦合。

等效磁路如图 3.3(c)所示。图中 $\mathbf{R}_{i=} l_{w} / \mu A - l_{w}$ 段磁阻,相当于总磁势的内阻;而 $\mathbf{R}_{i=}(l-l_{w})/\mu A - l_{k}$ 以外的磁芯磁阻。 \mathbf{R}_{s} 一散磁磁阻,则由经验决定。

(C)有气隙时环形磁芯磁场

图 3.4(a)为线圈均匀绕,等截面环形有气隙为δ的磁芯线圈。线圈磁势降落在磁芯和气隙两部分

$$\mathbf{F} = IN = H_{c}l + H_{\delta}\delta$$

式中 H_c 和 H_δ 分别为磁芯和气隙的磁场强度。虽然气隙不大,因空气磁导率比磁芯磁导率低得多,所以气隙磁场强度 H_δ 比磁芯磁场强度 H_c 大得多。因此, H_δ 占有总磁势的较大的比例。

仍然取线圈中心为参考。F, H_{cl} 和 $H_{\delta}\delta$ 的分布图如图 3.4(b)中实线所示,磁芯的磁势图 为线性增加。如仍假设 H_{c} 为常数,与没有气隙一样, U_x 不等于零,因此,也有散磁通 ϕ_s ,所不同的是对称面左右两侧的磁位差比前者大,所以散磁通也大。

当磁芯有气隙时,集中绕线将对称线圈放置在气隙正对面(图 3.4(c))时,磁位分布图 如图 3.4 (b)中虚线所示,在大部分磁通路径上,磁位差很大,从图(c)看到,集中绕线比 均匀分布绕线具有更大的散磁。如果将集中对称线圈放置在气隙上,在绕线长度上磁势大部分降落在气隙上,在线圈以外的磁芯上磁位差很小,散磁也很小,如图(b)中虚线所示。

图 3.4 磁路中有气隙时磁位分布图

3.3.2 E型磁芯磁场和等效磁路

E型磁芯是最常用的磁芯形状。其它形状如 C型(硅钢片), ETD型, EC型, RM 型等等(铁氧体)的等效磁路与 E型相似。这些磁芯,为了便于装配线圈,通常是两个相 同的"E"形状磁芯开口相对合成一个封闭磁芯。根据等截面原理, E型磁芯(图 3.5)的 两个边柱的截面积之和等于中柱截面积。线圈一般绕在中柱上。

(A) 无气隙时等效磁路和磁位图

半个 E 型磁芯尺寸如图 3.5 所示。中柱的截面积

 $A_1 = C \times D$

边柱截面积

$$A_2 = \frac{(A-E)}{2} \times C = \frac{A_1}{2}$$

端部面积

$$A_3 = F \times C$$

将两个磁芯柱端相对合在一起,形成闭合磁路,称为 变压器磁芯(图 3.6(a))。中柱上绕有激励线圈 N。假设忽 略散磁通,则在磁芯整个截面上磁通密度是均匀的,磁通 的平均路径如图中虚线所示。因此

$$l_2 = 2B - F = l_1$$
 $l_3 = \frac{E}{2} + \frac{A - E}{4}$

因此各磁路段磁阻为

$$R_1 = \frac{l_1}{\mu A_1}$$
 $R_2 = \frac{l_2}{\mu A_2}$ $R_3 = \frac{l_3}{\mu A_3}$

磁路总激励磁势 F=NI,其等效磁路如图 3.6(b)所示。如果进行磁位分析,磁位分布图 相似于图 3.4。因集中线圈占平均磁路长度的大部分,比环形磁路短,磁芯磁导率很高,散 磁通很少,通常忽略周围空气中磁场。

图 3.5 E 型磁芯尺寸图

25

因为两个边柱是对称的,可合并成一路, $R_2'=R_2/2=l_2/2 \mu A_2$, $R_3'=R_3/2=l_3/2 \mu A_3$ 。简化的等效磁路如图 3.6(c)所示。中柱通过的磁通

$$\phi_1 = \frac{F}{R_1 + R_2' + 2R_3'} \tag{3.11}$$

因为 A₁=2A₂=2A₃,因此 R= R₁+ R₂'+2 R₃'=2(l₁+l₃)/ µ A₁=1/G。式(3.11)可简化为

$$\phi_1 = \frac{F}{R} \phi_1 = \frac{\mu A N I}{2(l_1 + l_3)} = NIG$$
(3.11a)

式中G-总磁导。最后等效磁路如图 3.6(d)所示。

(B) 带气隙 E 型磁芯

带气隙的 E 型磁芯线圈一般作为直流滤波电感或反激变压器。如果线圈匝数为 N,激磁 磁势为 F=NI。它的磁位分布图类似集中线圈的带气隙环形磁芯磁位图。当带有气隙时,一 般可能有两种情况: EE 型磁芯中柱和边柱相同的空气隙,边柱气隙和中柱气隙相等,以及 只有中柱气隙。

因磁芯磁导率远大于空气磁导率,尽管气隙长度很小,但磁阻很大(式 3.3)。两种 情况磁位图 3.7(b)和图 3.7(c)所示。比较图(b)和图(c)可见,图(b)在很长的磁路上磁位差较大, 尤其在边柱部分较大,这样引起较大的散磁通。如果磁场是脉动的,将对周围电路引起严 重的干扰磁场。而图(c)仅在中柱有较大的磁位差,在相同的磁势下,磁位差明显小于图(b)。 这说明仅中柱有气隙比三个芯柱都有气隙好。

3.3.3 气隙磁导的计算

(A) 气隙尺寸相对端面尺寸很小时磁导计算

在图 3.4 和图 3.7 中,如果气隙相对气隙端面尺寸很小(<5%),可以忽略散磁,认为磁芯 气隙端面面积就是气隙截面积。因此气隙磁导

$$G_{\delta} = \frac{\mu_0 A}{\delta} \tag{3.12}$$

对于 E 型磁芯,如果只是中柱带有气隙,同时气隙尺寸 δ <<(C,D)时,气隙磁导

$$G_{\delta} = \frac{\mu_0 C \times L}{\delta}$$

如果中柱和边柱都带有相同的气隙 δ ,则中柱 ($G_{1\delta}$)和一个边柱($G_{2\delta}$)磁导分别 (尺 寸参看图 3.5)为

$$\mathbf{G}_{1^{\delta}} = \frac{\mu_0 C \times D}{\delta} \quad \text{fl} \quad \mathbf{G}_{2^{\delta}} = \frac{\mu_0 C (A - E)}{2\delta}$$

总的气隙磁导

$$G = \frac{2G_{1\delta}G_{2\delta}}{G_{1\delta} + 2G_{2\delta}}$$

(B) 气隙较大时, 气隙磁导计算

在大多数情况下,气隙相对端面尺寸较大,磁通不仅经 过磁芯的端面,而且还通过气隙的边缘,尖角,气隙附近的 磁芯侧表面流通(图 3.8),这些磁通通常统称为<u>边缘磁通</u>。 端面磁导仍然可按式(3.12)计算。边缘磁通计算十分复杂, 有分析法,经验公式法,许多文献进行了讨论。对于规则形 状可按以下经验公式求得:

● 相对正方形端面气隙磁导(图 3.9)

端面 G =
$$\mu_0 a \left[\frac{a}{\delta} + \frac{0.36}{2.4 + \delta / a} + \frac{0.14}{ln(1.05 + \delta / a)} + \frac{\delta}{ln(1.05 + \delta / a)} + \frac{\delta}{ln(1.05 + \delta / a)} \right]$$

当
$$\frac{\delta}{a} < 0.2$$
时, $G = \mu_0 \frac{a^2}{\delta}$

由端面至 x 处的侧表面

$$G = \mu_0 \frac{xa}{0.17\delta + 0.4x}$$
(3.14a)

通常取 x=2~3δ。总磁导为式(3.14),(3.14a)之和。 图 3.9 正方形端面气隙 如果正方形端面对一个比端面大得多的平板,式(3.14)和(3.14a)计算值放大一倍。

● 相对圆形端面气隙磁导(图 3.10)

$$\dot{\Psi}_{\overline{m}}^{\text{H}} \overline{\text{II}} \quad \mathbf{G} = \mu_0 d \left[\frac{\pi d}{4\delta} + \frac{0.36d}{2.4d + \delta} + 0.48 \right]$$
(3.15)

 a
 δ

 B 3.8 边缘磁通

(3.13)

当
$$\frac{\delta}{d} < 0.2$$
时, $G = \mu_0 \frac{\pi d^2}{4\delta}$

由端面至 x 处的侧表面

$$G = \mu_0 \frac{xd}{0.22d + 0.4x}$$
(3.15a)

一般 *x*=(2~3)δ。

● 两个相等的矩形端面间气隙磁导

用有限元以及电磁场相似原则分析磁场虽然准确,但使用的情况毕竟有限。比较实用的方法是可以 估计磁通可能的路径,把整个磁场分成几个简单的几 何形状的磁通管。然后用分析法求解,或用以下近似 公式:

$$G_{bk} = \mu_0 \frac{A_{bav}}{l_{bav}} = \mu_0 \frac{V_b}{l_{bav}^2}$$
(3.16)

式中 A_{bav}一磁通管的平均截面积(米²);*l_{bav}*一磁通管内 力线的平均长度(m);*V_b*一磁通管的体积(m³);*k*一磁通 管号码。整个气隙磁导是这些磁导总和。

(a) 方形磁极

式中 m=(1~2) 8。

图 3.11 是一个正方形磁极。将气隙磁通路径分成的几 何形状如图 3.11 中 1-半圆柱, 2-半圆筒, 3-1/4 圆球, 4-1/4 圆球壳。分割的各磁通管如图 3.12 所示。

以2号半圆筒为例,平均磁路长度 *l_{bav}*=π(δ+m)/2。 截面积 *A_{bav}=m×a*。根据式(3.16)求得半圆筒磁导

$$G_2 = \mu_0 \frac{A_{bav}}{l_{bav}} = \mu_0 \frac{m \times a}{\pi (\delta + m) / 2} = \frac{2\mu_0 a}{\pi \left(\frac{\delta}{m} + 1\right)} \quad (3.17)$$

当
$$\delta < 3m$$
时, $G_2' = \mu_0 \frac{a}{\pi} ln \left(1 + \frac{2m}{\delta} \right)$ (3.17a)

同理得到其它分割的磁导

半圆柱:
$$G_1 = \mu_0 \times 0.26a$$
 (3.18)
1/4 球 $G_3 = \mu_0 \times 0.077\delta$ (3.19)

(3.20)

1/4 球壳 $G_4 = \mu_0 \times \frac{1}{4}$

由式 (3.12) 得到端面间气隙磁导

$$G_0 = \frac{\mu_0 a^2}{\delta}$$

图 3.11 矩形磁极之间的边缘磁导

(3.21)

总的气隙磁导为

 $G = G_{0} + 4(G_{1} + G_{2} + G_{3} + G_{4})$ $\text{如果端面是 a \times b 的矩形。 取 m= \delta, 则总磁导为}$ $G = G_{0} + 4(G_{3} + G_{4}) + 2(G_{1a} + G_{2a} + G_{1b} + G_{2b})$ $= 4\mu_{0} \left[\frac{a \times b}{4\delta} + \frac{m(a+b)}{\pi(\delta+m)} + 0.13(a+b) + 0.077\delta + \frac{m}{4} \right]$ (3.22)

(b) 圆柱形磁极

圆柱形磁极之间的气隙磁导也可用正方形的分割法计算,将边缘磁导分成圆环和圆环 壳。如柱的直径为 *d*,气隙长度为 δ,用分割法求得圆柱总气隙磁导为

$$G = \mu_0 \left[\frac{\pi d^2}{4} + 1.63 \left(\frac{2d+\delta}{4} \right) + \left(d+\delta \right) ln \left(1 + \frac{2m}{\delta} \right) \right]$$
(3.23)

(C) 气隙磁导粗略估算

从图3.4和图3.7可见,在气隙附近磁位差很大,存在强烈的边缘磁通,向外扩展超过气隙的边界,有效的气隙截面积大于磁芯端面截面积,即等效的气隙截面积加大了。为避免过大的误差,计算时必须根据有效截面积,而不是极端面积。经验近似方法是加一个气隙长度到磁芯端面尺寸上。对于边长*a*和*b*矩形极,有效气隙面积*A*_&近似为:

 $A_{\delta e} = (a + \delta) \times (b + \delta)$ (3.23a)

对于直径为D园端面截面:

$$A_{\delta e} = \frac{\pi}{4} (D + \delta)^2 \tag{3.23b}$$

当 $\delta = 0.1D$ 时,面积校正系数 $A_{\delta e}$ /A为1.21。A一磁极端面面积。

当校正系数低于20%以上的校正系数是有帮助的。较精确计算用前面经验公式。更加 精确的校正需要用有限元求解,

- **例4:** 磁极尺寸如图例5(a),磁芯中柱一边短3mm,即磁极气隙δ=3mm。求中柱气隙磁导。
- 解:从图例5(a)得到磁极的尺寸C=27mm,D=19.8mm,是一个矩形截面。中柱边缘磁通 扩展宽度m和边柱与中柱之间的距离(m<(E-d)/2)有关,这里选取m=1.5δ.由式(3.22) 得到气隙总磁导

$$G_{\delta} = 4\mu_0 \left[\frac{a \times b}{4\delta} + \frac{m(a+b)}{\pi(\delta+m)} + 0.13(a+b) + 0.077\delta + \frac{m}{4} \right]$$
$$= 4\mu_0 \left[\frac{19.8 \times 27}{4 \times 3} + \frac{3 \times 1.5(19.8 + 27)}{\pi \times 3(1+1.5)} + 0.13(19.8 + 27) + 0.077 \times 3 + \frac{3 \times 1.5}{4} \right] \times 10^{-3}$$

 $=0.3062 \times 10^{-6}$ (H)

如果采用粗略估算公式(3.12)和(3.23a)计算

$$G = \mu_0 \frac{(a+\delta)(b+\delta)}{\delta} = \mu_0 \frac{(19.8+3)(27+3)}{3} \times 10^{-3} = 0.2865 \times 10^{-6} \,(\text{H})$$

式中 μ_0 =4 π ×10⁻⁷H/m。上述两种方法计算结果相差小于10%。

例5: 图例5所示变压器磁芯为EE65。标称尺寸A=65mm, B=32.6mm, C=27mm, D=19.8mm, E=44.2mm, F=22.6mm。假定磁芯µ = µ₀×2000,线圈绕在中柱上,匝数N₁=25匝, N₂=5匝。初级加一个幅值为400V,脉冲宽度T_{on}=3.6µs。次级电流峰值为I_{2p}=30A的矩形波。求: 1.作出等效磁路图; 2.计算磁芯最大磁感应B_{max}; 3.计算次级电压u₂; 4.计算初级电流最大幅值。如果在两半磁芯结合部有一个0.05mm的气隙,重复以上的计算。

解: 1. 磁芯是由两半的一副组成。上下两半是对称的。平均磁路参考图3.7(a):

$$l_1 = \frac{B+F}{2} = \frac{32.6+22.6}{2} = 27.6 \text{ mm} = 2.76 \text{ cm} = l_2$$
$$l_3 = \frac{A+E-D}{4} = \frac{65+44.2-19.8}{4} = 22.4 \text{ mm} = 2.24 \text{ cm}$$

中柱截面积

 $A_{1} = D \times C = 1.98 \times 2.7 = 5.35 cm^{2}$ $idetation R_{1}$ $A_{2} = \frac{A - E}{2} \times C = \frac{6.5 - 4.42}{2} \times 2.7$ $= 2.81 cm^{2}$ $idetation R_{1}$ $A_{3} = (B - F) \times C = (3.26 - 2.26) \times 2.7$ $= 2.7 cm^{2}$ (a) $B(M 5 \in \mathbb{Z})$ (b) $B(M 5 \in \mathbb{Z})$ (b) $B(M 5 \in \mathbb{Z})$ (b) $B(M 5 \in \mathbb{Z})$ (c) $B(M 5 \in \mathbb{Z})$ (c) $B(M 5 \in \mathbb{Z})$ (c) (c) $B(M 5 \in \mathbb{Z})$ (c) (c)

$$R_3 = \frac{l_3}{\mu A_3} = \frac{2.24 \times 10^{-2}}{4\pi \times 2000 \times 10^{-7} \times 2.7 \times 10^{-4}} = 3.3 \times 10^4 (H^{-1})$$

得到等效磁路中R₁, R₂, R₃。等效磁路如图例5(b)所示。

2. 当输入电压为400V,持续时间Ton=3.5µS,由式(2.19)得到中柱中磁通

$$\phi_{11t} = \int_0^t \frac{u_i}{N_1} dt = \frac{U_1}{N_1} T_{on} = \frac{400}{25} \times 3.5 \times 10^{-6} = 56 \times 10^{-6} (Wb)$$

中柱中最大磁通密度

$$B_{1max} = \frac{\phi_{1r}}{A_1} = \frac{56 \times 10^{-6}}{5.35 \times 10^{-4}} = 0.1047(T)$$

因中柱总磁通分成相等两部分通过边柱,边柱(端部)面积之和大于中柱面积,故磁通密 度小于中柱。

3. 根据式(2.21)得到

$$u_2 = \frac{u_1 N_2}{N_1} = \frac{400 \times 5}{25} = 80(V)$$

4. 根据式(2.24)得到初级电流

$$i_1 = i_m + i_2 \frac{N_2}{N_1} = i_m + i_2'$$

次级反射电流

$$i_2' = \frac{N_2}{N_1} i_2 = \frac{5}{25} \times 30 = 6(A)$$

根据磁势平衡定律,由式(3.6)得到

$$i_m N_1 = 2R_1 \phi_1 + (2R_3 + 2R_2) \phi_1 / 2$$

因此得到

$$i_m = \frac{\phi_1}{N_1} (2R_1 + R_2 + R_3) = \frac{56 \times 10^{-6}}{50} (2 \times 2.045 + 3.91 + 3.3) \times 10^4$$

=0.127(A)

输入峰值电流

$$i_1 = i_m + i_2 = 0.127 + 6 = 6.127A$$

如果两半磁芯结合处有0.05mm气隙,仅在每个磁路中增加一个气隙磁阻,因气隙相对 端面尺寸很小,可忽略边缘磁通,两边柱气隙磁阻相等

$$R_{\delta_2} = \frac{\delta}{\mu_0 A_2} = \frac{5 \times 10^{-5}}{4\pi \times 10^{-7} \times 2.81 \times 10^{-4}} = 14.2 \times 10^4 (H^{-1})$$

中柱磁阻

$$\mathbf{R}_{\delta_1} = \frac{5 \times 10^{-5}}{4\pi \times 10^{-7} \times 5.35 \times 10^{-4}} = 7.44 \times 10^4 (H^{-1})$$

初级磁化电流

$$i_m = \frac{\phi_1}{N_1} (2R_1 + R_{\delta 1} + R_2 + R_3 + \frac{R_{\delta 2}}{2})$$

= $\frac{56 \times 10^{-6}}{50} (2 \times 2.045 + 3.91 + 3.3 + 7.44 + 14.2 / 2) \times 10^4$
= 0.29(A)

磁芯仅50µm气隙,气隙磁阻比总磁芯磁阻还要大,磁化电流增加一倍多,磁芯气隙对磁 化电流影响很大。初级总的输入电流

 $i_1 = i_m + i_2 = 0.29 + 6 = 6.29A$

3.4 电感计算

有电流流通,就建立磁场。根据式(2.1)电感系数的定义

$$L = \frac{\Psi}{i} \tag{3.24}$$

这就是说,一段导线,一个线圈都存在电感,只是大小不同。在有些情况下必须考虑,

而在有些情况下,则可以忽略。在开关电源中,电路的工作状态一直处于瞬时变化状态, 某些在前面讨论的静态磁场和低频磁场可以忽略的问题,随着工作频率的提高,变得越来 越重要,而且成为主要矛盾,因此,定量或至少定性分析电感量是十分必要的。

从式(3.24)可见,一般计算载流导体的电感是十分困难的。除了线圈带有高磁导率 磁路闭合磁芯,或磁路中很小气隙外,磁链Ψ的计算十分复杂。一般采用经验公式。 3.4.1 导线和无磁芯线圈的电感计算一经验公式

A.导线电感

(1) 一定长度的导线电感

载流导线总是闭合的,包围的面积越大,磁链ψ越大,电感就越大。一段导线是总自 感的一部分。导线长度为*l*(cm),直径为*d*(cm),磁导率为μ=μ₀,则低频电感

$$L_0 = 2l(ln\frac{4l}{d} - 0.75) \times 10^{-7} (\text{H})$$
(3.25)

如果导线长度很短(*l*<100*d*),在括号内增加一项*d*/2*l*。在很高频率(大于1GHz)时,导线 电感趋于极限值

$$L_{\infty} = 2l(ln\frac{4l}{d} - 1) \times 10^{-7} (\text{H})$$
(3.25a)

高频时,由于导线的集肤效应减少了磁场空间,使得磁场减少,电感量减少。一般用式(3.25)计算,中频时(数百kHz)最大有6%的误差,高频时只有2%误差。这在工程上完全允许的。

例6: 求一段直径为1mm,长50cm的铜连接线的低频电感量。

解: 根据公式(3.25)得到

$$L_0 = 2l(ln\frac{4l}{d} - 0.75) \times 10^{-7} = 2 \times 0.5 \left(ln\frac{0.5}{0.001} - 0.75 \right) \times 10^{-7}$$

=0.546 \mu H

(2) 单导线对大平面(地回路)之间电感(图3.13)

单导线直径为*d*(m),长度为*l*(m),导线与平面之间平行,导线与平面间距离为*h*(m),其 电感量

$$L = 2l \left[ln \left(\frac{l + \sqrt{l^2 + d^2 / 4}}{l + \sqrt{l^2 + 4h^2}} \right) + ln \frac{4h}{d} \right] \times 10^{-7} (\text{H}) + 2 \left[\sqrt{l^2 + 4h^2} - \sqrt{l^2 + d^2 / 4} + -2h + d / 2 \right] \times 10^{-7} (\text{H})$$
(3.26)

如果d<<l,

式中
$$p = \frac{2h}{l} - 0.228 \left(\frac{2h}{l}\right)^2$$

当 $2h/l \ge 1$ 时: $L = 2l(ln\frac{4h}{d} - q) \times 10^{-7}$ (H) (3.26b)

式中
$$q = 1 + 0.5 \frac{l}{2h} - 0.0352 \left(\frac{l}{2h}\right)^2$$

其中*p=2h/l*

如果l>>h时,以上公式可进一步简化为

$$L = 2l(ln\frac{4h}{d}) \times 10^{-7} (\mathrm{H})$$

(3) 两根平行导线电感(图3.14)

两根平行导线,电流从一根导线流进,从另一根流出。平行导线长为*l*(m),导线直径 为d(m),导线距离为a(m)。导线电感为

$$L = 4l\left(ln\frac{2a}{d} - \frac{a}{l}\right) \times 10^{-7} (\mathrm{H})$$
(3.27)

图 3.13 导线平行地线

(3.26c)

$$=4l\left(ln\frac{2a}{d}-\frac{a}{l}\right)\times10^{-7}(\mathrm{H})$$
(3.27)

$$\xrightarrow{\rightarrow} d \xrightarrow{\leftarrow} a \xrightarrow{\rightarrow} d \xrightarrow{\leftarrow} a$$

图 3.14 平行导线

例7:远程输出双铜导线长25米,导线直径为2.5mm,两线间距

- 离15cm。求低频电感量。
- 解: 根据式(3.27)得到

$$L = 4l\left(ln\frac{2a}{d} - \frac{a}{l}\right) \times 10^{-7} = 4 \times 25\left[ln\frac{2 \times 15}{0.25} - \frac{0.15}{25}\right] \times 10^{-7}$$
$$= 47.8(\mu H)$$

(4) 单根同轴电缆的电感(图3.15) 低频时单根同轴电缆的电感为

$$L = 2l \left(ln \frac{D}{d} + 0.25 \right) \times 10^{-7} (\text{H})$$
 (3.28)

式中D一外导体的内径; d一内导体的外径。l-导线长度。

- B. 单匝空心线圈电感
 - (1) 圆导线直径为 d(m) 的单匝直径为 D(m) (图 3.16) 的线圈低频电感

$$L = 2\pi D \left(ln \frac{8D}{d} - 2 \right) \times 10^{-7} (\text{H})$$
 (3.29)

(2) 宽度为 b(m)的铜带(厚度与宽度比可以忽略不计)的电感

图 3.15 同轴电缆

$$L = 2\pi D \left(ln \frac{4D}{b} - 0.5 \right) \times 10^{-7} (\text{H})$$
(3.30)

(3) 单匝规则形状线圈电感的一般公式为

$$L_{c} = 2l(ln\frac{4l}{d} - C) \times 10^{-7} (\text{H})$$
(3.31)

式中*l*-导线长度(m); d-导线直径; C-与导线或线圈形状有关 图 16 单匝线圈的系数。圆形: C=2.451; 正方形: C=2.853; 等边三角形: C=3.197。

- C. 单层线圈的电感
 - (1) 圆导线做成的单层圆柱形线圈电感

$$L = kN^2 D \times 10^{-7} (\mathrm{H})$$

(3.32a)

式中 D-线圈的平均直径(m); *l*-线圈的长度(m); *k*-与 D/l 有关的系数,可采用以下的拟合公式

$$k = a \ln \frac{D}{l} + b \frac{D}{l} + C$$

式中的系数 a,b,c 如表 3.2, 与实际误差在 5%以下。

	_ 表 3.2 k	的拟合糸数ネ	支	
例 8 : 用 1.6mm 铜导线绕成 1 层圆柱形电感,	D/l	a	b	с
共20匝。圆柱平均直径2cm,柱长4cm。	<1	1.2317	3.745	3.05
	1~4.5	4.663	0.3803	6.4147
求低频电感量。	4.5~100	6.135	0.007	5.71

解:因 D/I 小于 1,从 k 拟合系数表中得到,a=1.2317,b=3.745 和 c=3.05。由式(3.32a)求得

$$k = a \ln \frac{D}{l} + b \frac{D}{l} + C = 1.232 \times \ln 0.5 + 0.5 \times 3.744 + 3.05 = 4.08$$

根据式(3.32)得到

$$L = kN^2 D \times 10^{-7} = 4.07 \times 20^2 \times 0.02 \times 10^{-7} = 3.256 \,\mu \text{ H}$$

(2) 圆截面环形线圈电感(图 3.17) 圆截面直径为 D₁,环的平均直径为 D₂,匝数为 N,低频时电感为

$$L = 2\pi N^{2} \left(D_{2} - \sqrt{D_{2}^{2} - D_{1}^{2}} \right) \times 10^{-7} (\text{H})$$
 (3.33)

如果 D₁/ D₂小于 0.1 时,可近似表示为

$$L = \frac{\pi N^2 D_1^2}{D_2} \times 10^{-7} \,(\mathrm{H}) \tag{3.33a}$$

(3) 矩形截面的环形线圈电感(图 3.18)

$$L = 2N^{2}h \ln \frac{D}{d} \times 10^{-7} \,(\text{H})$$
(3.34)

图 3.17 圆截面环形线圈

式中 h-环高度(m); d-环内径(m); D-环外径(m)。

(4) 圆导线扁线圈低频电感(图 3.19)

导线绕成扁环形 N 匝线圈,环的平均直径为 D,环宽 w,低频电感量为

式中

例 9:紧贴在印刷电路板上的扁平线圈平均直径为 5cm,环宽 为1cm,共25匝。求低频电感。

解: 根据公式(3.35a) 求得

 $L = DN^2 k \times 10^{-7} (H)$

 $k = 6.194(ln\frac{D}{w} + 0.92)$

$$k = 6.194(ln \frac{D}{w} + 0.92) = 6.194 \times (ln 5 + 0.92) = 15.667$$

由式(3.35)得到

$$L = DN^2 k \times 10^{-7} = 0.05 \times 25^2 \times 15.667 \times 10^{-7} = 48.96 \,\mu \text{ H}$$

(5) 扁平框形线圈的电感

扁平长框的平均边长为 l_1 和 l_2 ,平均对角线 $g = \sqrt{l_1^2 + l_2^2}$,匝数为N。导线线径d,匝 间距离为 D(图 3.20)。低频时电感为

(3.35)

(3.35a)

$$L = 4N^{2} \left[(l_{1} + l_{2}) ln \frac{2l_{1}l_{2}}{DN} - l_{1} ln(l_{1} + g) - l_{2} ln(l_{2} + g) + 2g - \frac{l_{1} + l_{2}}{2} + 0.447 ND \right]$$

-4N(l_{1} + l_{2})(A + B) (3.36)

式中A与d/D关系为

$$A = ln\frac{d}{D} + 0.557$$
 (3.36a)

B 与匝数 N 的关系

$$B = 0.33 (0.98 - e^{-N/4.95})$$
(3.36b)

D. 多层线圈

(1) 长圆柱形线圈低频电感

图 3.21 所示圆柱多层线圈的长度 l 大于等于线圈厚度 h 时,称为长圆柱线圈。低频时 电感为

$$L = N^{2} D \left[k - \frac{2\pi h}{l} (0.693 + C) \right] \times 10^{-7} (\text{H})$$
 (3.37)

式中 N-总匝数; D-平均直径(m); k-根据 D/l 由式(3.32a) 决定; h-线圈厚度(m); l-线圈长度(m); C-与 l/h 有关的函数由下式决 定:

$$C = 0.32 \left(1 - e^{-\frac{l}{4.2h}} \right)$$
(3.37a)

(2) 矩形截面的多层线圈电感(图 3.22)

图 3.18 矩形截面环形线圈

图 3.20 扁平框形线圈

图 3.21 长圆柱形线圈

$$L = 4N^{2} (l_{1} + l_{2}) \left[ln \frac{2l_{1}l_{2}}{b+c} - \frac{l_{1}}{l_{21} + l_{2}} ln (l_{1} + g) - \frac{l_{2}}{l_{1} + l_{2}} ln (l_{2} + g) + \frac{2g}{l_{1} + l_{2}} - \frac{1}{2} + 0.447 \frac{b+c}{l_{1} + l_{2}} \right] \times 10^{-7} (\text{H})$$
(3.38)

式中*N*一匝数; l_1 , l_2 一矩形平均边长(m); b, c一线圈的厚度和宽度(m); $g = \sqrt{l_1^2 + l_2^2}$ 一 对角线长度(m)。

E. 互感

导线之间互感

(1) 两根平行导线之间的互感

两根导线距离为 D (cm),导线长为 l(m),设导线之间距 离 D 远远大于导线的直径,它们之间的互感为

$$M = 2l \left(ln \frac{2l}{D} - 1 + \frac{D}{l} \right) \times 10^{-7} (\text{H})$$
(3.39)

(2) 两根一端相靠近并列的导线段之间的互感(图 3.23) 两根导线分别长 *l*₁(m)和 *l*₂(m),其互感为

$$M = l_1 \ln \frac{l_1 + l_2}{l_1} + l_2 \ln \frac{l_1 + l_2}{l_2} \times 10^{-7} \,(\text{H})$$
(3.40)

如果两导线接近端分开距离为 D(m), 其互感为

$$M = \left[\left(l_1 + l_2 + D \right) ln \left(l_1 + l_2 + D \right) + D ln D \right] \times 10^{-7} - \left[\left(l_1 + D \right) ln \left(l_1 + D \right) + \left(l_2 + D \right) ln \left(l_2 + D \right) \right] \times 10^{-7}$$
(H) (3.41)

图 3.22 矩形截面线圈

	Í	
$ l_1 $		l_2
E		

图 3.23 并列导线互感

(3) 两根平行导线段之间的互感(图 3.24)

两根平行导线段长分别是 l₁(m)和 l₂(m),分开距离是 D(m)。他们之间的互感为

$$M = 2 \left[2l_1 \cdot ln \left(\frac{l_1 + l_2 + \sqrt{(l_1 + l_2)^2 + D^2}}{D} \right) + (l_1 + l_2) ln \left(\frac{l_1 + l_2 + \sqrt{(l_1 + l_2)^2 + D^2}}{l_2 - l_1 + \sqrt{(l_2 - l_1)^2 + D^2}} \right) \right] \times 10^{-7} + \left[\sqrt{(l_1 - l_2)^2 + D^2} - \sqrt{(l_1 + l_2)^2 + D^2} \right] \times 10^{-7}$$
(H) (3.42)

例 10: 求两根相距 1cm,长分别为 50cm 和 45cm 的导线的互感。 解:在式(3.42)中先计算

$$\begin{aligned} & = \chi (3.42) + \pi \mathbb{E} \, \mathbb{V} \, \mathbb{P} \\ & L_1 = \sqrt{\left(l_1 + l_2\right)^2 + D^2} = \sqrt{\left(0.45 + 0.50\right)^2 + 0.01^2} = 0.95m \\ & L_2 = \sqrt{\left(l_2 - l_1\right)^2 + D^2} = \sqrt{\left(0.50 - 0.45\right)^2 + 0.01^2} = 0.051m \\ & L_3 = l_1 + l_2 = 0.95m \\ & L_4 = l_2 - l_1 = 0.05m \end{aligned}$$
(B) 3.24 平行线段

代入式(3.42)得到两导线之间的互感为

$$M = 2 \left[2l_1 \times ln \left(\frac{L_3 + L_1}{D} \right) + L_3 ln \left(\frac{L_3 + L_1}{L_2 + L_4} \right) + \left(\frac{L_3 - L_4}{2} \right) \right] \times 10^{-7}$$

= $2 \left[2 \times 0.45 \times ln \frac{0.95 + 0.95}{0.01} + 0.95 ln \frac{0.95 + 0.95}{0.05 + 0.051} + \frac{0.95 - 0.05}{2} \right] \times 10^{-7}$
= 1.6×10^{-6} (H)
(4) 两对长 *l* 的对称导线之间的互感 (图 3.25)

$$M = 4l \cdot ln\frac{b}{a} \tag{3.43}$$

线圈互感

$$M = \xi \sqrt{r_1 r_2} \times 10^{-7} \,(\mathrm{H}) \tag{3.44}$$

式中 r_1 和 r_2 -圆线圈半径(m)。 ξ 一与b/d有关的系数, 线段d和b是两个圆周间最大和最小距离:

$$b = \sqrt{a^{2} + (r_{1} - r_{2})^{2}} \qquad d = \sqrt{a^{2} + (r_{1} + r_{2})^{2}}$$

$$\xi = m + n\frac{b}{d} + p\left(\frac{b}{d}\right)^{1.5} \qquad (3.44a)$$

式中拟合系数 m、n 和 p 由表 3.3 决定(误差在 7%以内)。

(6) 两个大小相等,平行并同轴边长 *l*₁×*l*₂长方线圈, 相距为 D 之间的互感

实际上,长方框线圈电感是相对边互感之和。邻近边 互感大,远离边互感小。又因相对两边电流方向相反,互 感相减。两长方框互感

图 3.25 两对导线

图 3.26 同轴圆线圈

表 3.3 5 拟合系数表

范围	0.01`0.1	0.1~0.5	0.5~0.99
m	57.69	32.59	18.04
n	796	153	52.6
р	4439	135.4	34.6

$$M = 4 \left[l_1 \left(l_1 \frac{l_1 + \sqrt{l_1^2 + D^2}}{l_1 + \sqrt{l_1^2 + l_2^2} + D^2} \times \frac{\sqrt{l_1^2 + D^2}}{D} \right) + l_2 \left(l_1 \frac{l_2 + \sqrt{l_2^2 + D^2}}{l_2 + \sqrt{l_1^2 + l_2^2} + D^2} \times \frac{\sqrt{l_2^2 + D^2}}{D} \right) \right] \times 10^{-7} + 8 \left(\sqrt{l_1^2 + l_2^2 + D^2} - \sqrt{l_1^2 + D^2} - \sqrt{l_2^2 + D^2} + D \right) \times 10^{-7} (\text{H}) \quad (3.45)$$

如果是正方形,只要将式(3.45)中 l₁=l₂=l。式(3.45)可大大简化。

(7) 同平面各边彼此平行长方线圈的互感(图 3.27)

 $M = (M_{15} + M_{26} + M_{37} + M_{48} - M_{17} - M_{28} - M_{35} - M_{46}) \times 10^{-7} (H)$ (3.46) 若两长方形同心排列,则 $M_{15}=M_{37}, M_{26}=M_{48}, M_{17}=M_{35}, M_{28}=M_{46}, 因此$

M = 2(M₁₅ + M₂₆ - M₁₇ - M₂₈)×10⁻⁷ (H) (3.47)
式中各单项互感按式 (3.24) 计算。
(8) 两个同轴同心的圆柱形单层线圈之间的互感(外线 圈长)(图(3.28))
两个长分别为 2l₁, 2l₂(l₁<l₂),半径分别为

图 3.27 同平面平行框互感

圆柱形线圈, 其互感为

$$M = 2\pi^2 \frac{r_1^2 N_1 N_2}{g} \left[1 + \frac{r_2^2 r_1^2}{8g^4} \left(3 - 4 \frac{l_1^2}{r_1^2} \right) \right] \times 10^{-7} (\text{H})$$

式中 $g = \sqrt{r_2^2 + l_1^2}$,两个线圈之间的耦合系数近似为

$$k = \frac{r_1^2 \times l_1}{r_2^2 l_2}$$

如果外边线圈短(l₂)而里面线圈长(l₁),上式同样适用。 (9)两个方截面同轴多层圆线圈之间互感(3.29)

两个线圈的匝数分别为 N_1 , N_2 , 平均半径分别为 r_1 , r_2 , 同轴中心相距 a。其互感为 $M = N_1 N_2 M_0$ (3.49) _____2

 $M = N_1 N_2 M_0$ 其中 M_0 由式(3.44)决定。

3.4.2 磁芯电感

当电感线圈有磁芯时,因磁芯的磁导率比周围空气的磁导率高得多,磁通被限制在磁路中。即使高磁导率 磁芯在磁路中开有气隙,散磁发生在气隙附近,其它部 分散磁较少。一般线圈产生的磁通与全部线圈匝链,即 $\Psi = N \Phi$ 。同时 $iN = \phi R_{\Sigma} \cdot R_{\Sigma}$ - 整个磁路等效磁阻。根据 式(3.24)电感定义

$$L = \frac{\Psi}{i} = \frac{N\phi}{\phi R_{\Sigma} / N} = N^2 \frac{1}{R_{\Sigma}} = N^2 G_{\Sigma} \qquad (3.50)$$

(3.48)

图 3.28 两个单层圆柱线圈

图 3.29 同轴环形多层线圈

磁芯线圈电感存在两种情况。一是磁芯磁导率较低,磁芯一般没有气隙的闭合磁路; 另一类是磁芯磁导率很高,磁路中带有气隙。在以下的讨论中认为磁芯磁导率为常数。非 线性问题在以后章节讨论。

A. 低磁导率闭合磁芯电感

低磁导率磁芯做电感一般采用环形。如图 3.29(a)所示。磁芯相对磁导率为µ_r,环的截面积为 A。平均磁路长度为 *l*,线圈的电感为

$$L = \frac{\Psi}{i} = \frac{NBA}{lH / N} = N^2 \frac{\mu_0 \mu_r A}{l} = N^2 G$$
(3.51)

例 11: 有一个未知磁导率的环形磁芯,如图 3.30(a)所示。内径 d=2cm,外径 D=4cm,

高 *h*=1cm。为了测量磁芯的相对磁导率,在磁芯上绕 40 匝线圈.测得电感量为 100μH。 求磁芯的初始磁导率。

解: 磁路的平均长度为

$$l = \pi \frac{(D+d)}{2} = \pi \frac{4+2}{2} = 3\pi(cm) \ \text{I} \ 0.03\pi(m)$$

磁芯截面积

$$A = \frac{D-d}{2}h = \frac{4-2}{2} \times 1 = 1(\,cm^2\,) \stackrel{}{\rightrightarrows} 10^{-4} (m^2)$$

根据式(3.51)可得相对磁导率

$$\mu_r = \frac{Ll}{N^2 S \mu_0} = \frac{100 \times 10^{-6} \times 0.03\pi}{40^2 \times 10^{-4} \times 4\pi \times 10^{-7}} \approx 47$$

在上述计算中,尺寸用 m, $\mu_0=4\pi \times 10^{-7}$ (H/m),如果用 cm,则 $\mu_0=0.4\pi \times 10^{-8}$ (H/cm)。

B. 带有气隙高磁导率磁芯电感

如果图 3.31(a)的环的材料磁导率很高,环上开有 一个气隙δ。则开气隙的等效磁路如图 3.31(b)所示。 线圈的电感为

$$L = N^2 \frac{1}{R_c + R_\delta}$$

(b)等效磁路 图 3.30 环形磁芯电感

式中
$$R_c = \frac{l_c - \delta}{\mu A_c} \approx \frac{l_c}{\mu_0 \mu_r A_c}, R_\delta = \frac{\delta}{\mu_0 A_\delta}.$$
如果 $R_c << R_\delta$, 上式可近似为
$$L = N^2 G_\delta$$

式中G。一考虑边缘散磁的气隙磁导。

- **例 12:** E 型磁芯尺寸如例 5,只有中柱开气隙 δ = 3mm,线圈绕在中柱上,共 25 匝,求线 圈电感量。
- 解: 由例 4 得到中柱的气隙磁导

$$G_{\delta} = = 0.3062 \times 10^{-6} (\mathrm{H})$$

气隙磁阻为

$$R_{\delta} = \frac{1}{G_{\delta}} = \frac{1}{0.3062 \times 10^{-6}} = 3.27 \times 10^{6} \,(\mathrm{H}^{-1})$$

由例 5 得到磁芯中总磁阻为

$$R_{c} = 2R_{1} + R_{2} + R_{3}$$

=(2×2.045+3.91+3.3)×10⁴(H⁻¹)=11.3×10⁴(H⁻¹) 线圈的电感

$$L = N^{2} \frac{1}{R_{c} + R_{\delta}}$$

= 25² $\frac{1}{3.27 + 0.113} \times 10^{-6} = 0.185 \times 10^{-3} (H)$

在本题中,磁芯磁阻与气隙磁阻比较,气隙磁阻远远 大于磁芯的磁阻。如果不考虑磁芯磁阻,电感计算如下

$$L = N^{2} \frac{1}{R_{\delta}} = N^{2} G_{\delta} = 25^{2} \times 0.3062 \times 10^{-6}$$
$$= 0.191 \times 10^{-3} \text{ (H)}$$

图 3.31 带气隙磁路

如果不考虑边缘磁通,也不考虑磁芯磁阻时的电感

$$L = N^{2} \frac{\mu_{0}A}{\delta} = 25^{2} \times 4 \times \pi \times 10^{-7} \frac{2.7 \times 1.98}{0.3} \times 10^{-2}$$

 $=0.1336 \times 10^{-3}$ (H)

从以上计算结果可以看出,当磁芯磁导率很高时,忽略磁芯磁阻对电感影响不大。但 如果忽略气隙的边缘磁导,则会带来非常大的误差。

本章要点:

- 磁场的计算可简化为路的计算,尤其是带有高磁导率磁芯的磁通路。可使场的问题变为我们熟知的路问题来分析。但磁路与电路只是形式上相似,磁阻与电阻不同,磁阻中没有象电路里确实有电子流流动的物质,它不消耗能量。
- 磁场没有"绝缘"体,只能将其短路。磁路周围的空气可能是磁路的一部分,散磁和 漏磁(变压器)总是存在的。精确计算是困难的。通常采用经验公式计算。
- 要分析散磁或漏磁,应当考虑激磁磁势在磁路中位置和分布情况。必要时,应作出磁 位图。有磁位差,就可能有磁通路径。磁位差越大,磁通分流就越大。
- 磁芯气隙是磁路的一部分。气隙附近存在边缘磁通,气隙越大,边缘磁通影响越大。
 工程上,可采用近似计算。
- 无磁芯的线圈电感或互感的计算采用经验公式。误差一般在10%之内。
- 带有磁芯的电感计算主要是磁路磁阻或磁导的计算。有气隙时,必须考虑边缘磁导的 影响。

参考文献

- 1. 《航空电器》 航空电器编写组 编 航空工业出版社 北京 1981
- 2. «Электроматниты Постоянного Тока» АВ Гордон АГСИИИнская 1960 МОСКВА
- 3.《电感计算》亨利 海特维西 李远译 1954 国防工业出版社
- 4. «Unitrode Magnetics Design Handbook »—Magnetics Design for Switching Power Supplies Lloyd H. Dixon