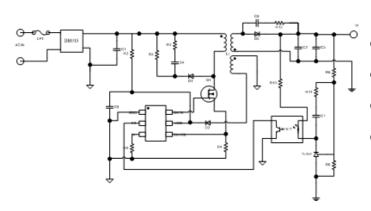


电流模式 PWM 控制器 ME8200


概述

ME8200 为小功率电源设计提供了最佳选择,该芯片能使系统设计轻易实现超低的待机功耗、精准的过流保护、无Y电容的低成本方案,和优良的 EMI 性能。相对于同领域的其它芯片,ME8200 具有极高的性价比。

特点

- 适用于小功率电源
- 待机功耗小于 0.3W
- 内置 OCP 补偿
- 过载保护(OLP)
- 过压保护(OVP)
- 频率扩展(shuffling)功能,改善系统的 EMI 特性

应用电路

典型应用

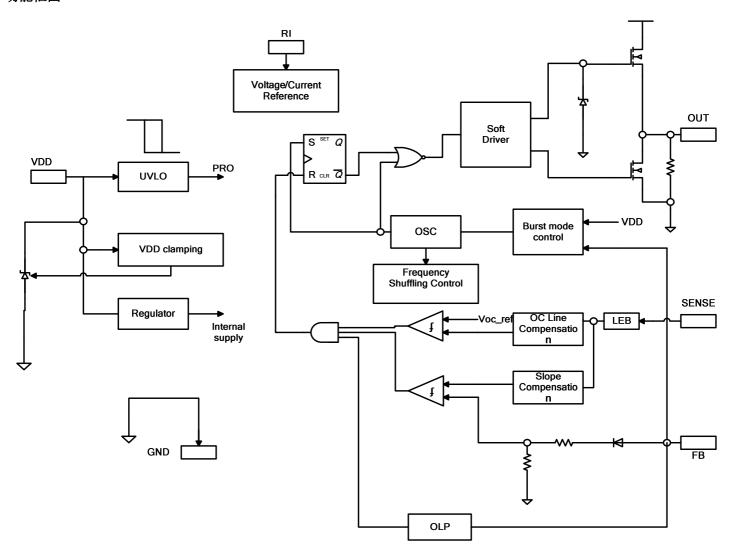
- 机顶盒电源
- LCD TV 待机电源
- PC 待机电源
- 低功率开关电源

V2.0 <u>www.microne.com.cn</u> 1

引脚排列

引脚分配

引脚名称	引脚描述	说明
GND	地	地
FB	输入	反馈
RI	输入	频率设置
SENSE	输入	电流检测
VDD	电源	电源
GATE	输出	驱动

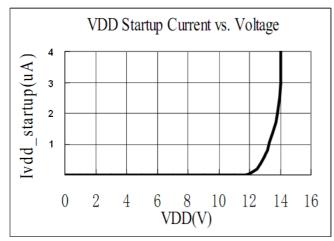

极限参数

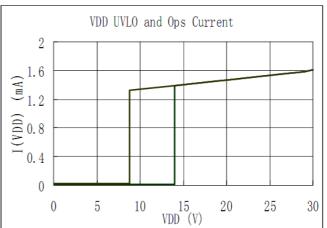
参数	极限值
VDD 电压	40 V
VDD 电流	10 mA
VFB 电压	-0.3 to 7V
VSENSE 电压	-0.3 to 7V
VRI 电压	-0.3 to 7V
工作温度	-20 to 120 °C
存放温度	-55 to 160 °C

V2.0 <u>www.microne.com.cn</u> 2

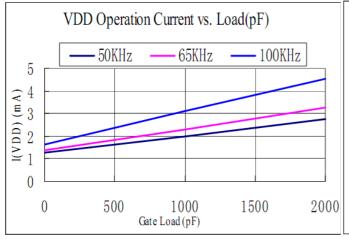
功能框图

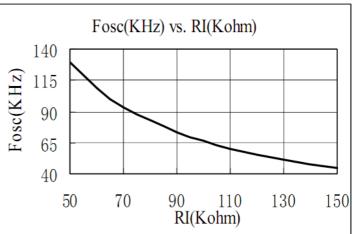
电气特性(非特殊说明时为工作温度 25℃ 时的数据)


符号	参数	测试条件	最小值	典型值	最大值	单位
VDD 脚						
I_VDD_Startu	p VDD 启动电流	VDD =12.5V, RI=100K 流进 VDD 的电流		0.54	3	uA
I_VDD_Ops	工作电流	VDD=16V, RI=100Kohm, VFB=3V		1.5		mA
UVLO(ON)	VDD 欠压锁定电压		7.5	8.5	9.5	V
UVLO(OFF)	VDD 欠压锁定解除电压		13.5	14.5	15.5	V
VDD_Clamp	VDD 嵌位电压	IVDD = 5 mA		33		V
FB脚			·			
AVCS	PWM 增益	ΔVFB /ΔVcs		2.0		V/V
VFB_Open	VFB 开路电压			4.8		V
IFB_Short	FB 短路电流	FB短路时流到地的电流		1.2		mA
VTH_0D	零占空比时的 FB 电压	VDD = 16V, RI=100Kohm			0.75	V
VTH_PL	最大功率的 FB 电压			3.5		V
TD_PL	功率限制延时			35		mS
ZFB_IN	输入阻抗			6		Kohm
DC_MAX	最大占空比	VDD=18V, RI=100Kohm, FB=3V,CS=0		75		%
Sense 脚						
T_blanking	前沿消隐时间	RI = 100 Kohm		300		nS
ZSENSE_IN	输入阻抗			40		Kohm
TD_OC	过流延时	VDD = 16V, CS>VTH_OC, FB=3.3V		75		nS
VTH_OC	过流极限电压	FB=3.3V, RI=100 Kohm	0.65	0.7	0.75	V
振荡器						
FOSC	工作频率	RI = 100 Kohm	60	65	70	KHZ
Δf_Temp	频率随温度的变化	VDD = 16V, RI=100Kohm, TA -20°C to 100 °C		5		%
Δf_VDD	频率随 VDD 的变化	VDD = 12-25V, RI=100Kohm		5		%



ME8200


RI_range	RI 电阻的范围		50	100	150	Kohm	
V_RI_open	RI 开路电压			2		٧	
Fosc_BM	突发模式的频率	VDD = 16V, RI = 100Kohm		22		KHZ	
驱动							
VOL	低电位	VDD = 16V, lo = -20 mA			0.8	٧	
VOH	高电位	VDD = 16V, lo = 20 mA	10			٧	
V_Clamp	输出嵌位			18		V	
T_r	输出上升时间	VDD = 16V, CL = 1nf		220		nS	
T_f	输出下降时间	VDD = 16V, CL = 1nf		70		nS	
抖频							
Δf_OSC	频率抖动范围	RI=100K	-3		3	%	
f_shuffling	频率抖动周期	RI=100K		64		HZ	


特性曲线 (VDD=16V,RI=100Kohm,T_A=25°C 特殊说明除外)

功能描述

● 启动电流

ME8200 的启动电流低至 1uA,可有效地减少系统启动电路的损耗,缩短系统的启动时间。

● 工作电流

ME8200 的工作电流约 1mA,可有效降低系统的损耗,提高系统的效率。

● 频率抖动

ME8200 内置的频率抖动设计可以很有效的改善系统的 EMI 特性,同时可以降低系统的 EMI 成本。

● 间隙工作模式

在系统工作在空载或者轻载的时候,ME8200进入间隙工作模式,有效降低系统空载和轻载时候的功耗。

● 振荡器

ME8200 允许设计者根据系统的使用环境需要自行调整系统的工作频率,RI 和 GND 之间的电阻(RI)的取值决定了系统的工作频率,工作频率的设定可以通过以下公式计算出来: $F_{osc} = \frac{6500}{RI(Kohm)}(Khz)$

电流检测和前沿消隐

开关电流经过一检测电阻流进 SNESE 脚,进行 PWM 调制。另外内置一前沿消隐电路,可以为系统节省一外部 R-C 网络。

● 内置斜坡补偿

内置斜坡补偿电路是在 SENSE 脚上叠加一斜线上升的电压,可以有效改善连续模式下的环路稳定性,防止偕波振荡,减少输出纹波。

● 驱动

ME8200 采用图腾结构驱动输出,可直接驱动 MOSFET。同时芯片还内置了一个 18V 的驱动输出嵌位电路,防止由于某种原因导致系统驱动输出电压过高使 MOSFET 的栅极击穿。另外芯片设计时对驱动进行了软驱动优化处理,改善系统 EMI。

● 保护电路

好的电源系统一定有完善的保护装置包括:环路电流限制(OCP)、过载保护(OLP)、输入过压嵌位、驱动过压 嵌位、欠压锁定(UVLO)等。

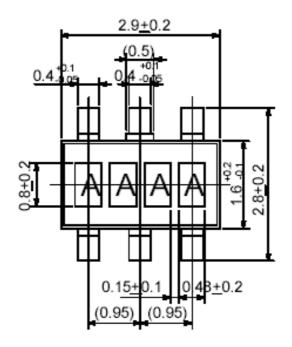
1. OCP和OLP

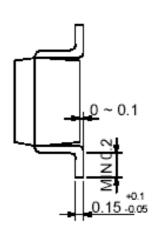
芯片 SENSE 脚通过检测系统初极侧流过主开关管的电流信号活动,芯片能检测到系统过流或者过功率的状况。当系统输出发生短路、过流或过功率现象时,如果 SENSE 脚的电压 VTH-oc 超过 0.75V(典型值)时,GATE 脚输出脉宽将会被限制输出,这时系统处于恒功率输出状态 Po=Vo*lo。

2. 输入过压嵌位

ME8200 芯片 VDD 脚内置有优异的过压嵌位电路,当 VDD 脚电压由于系统发生异常导致 VDD 电压上升到 34V (典型值)时,芯片会自动进入过压嵌位状态,同时 GATE 停止输出脉宽,从而保护整个系统的安全。

3. 欠压保护(UVLO)


ME8200 芯片内置有欠压保护(UVLO)电路,当 VDD 脚电压小于 8.5(典型值)时,芯片就会进入欠压保护状态,这时 GATE 脚停止输出 PWM 脉宽。


V2.0 www.microne.com.cn 7



封装尺寸

SOT23-6

- 本资料内容,随产品的改进,可能会有未经预告之更改。
- 本资料所记载设计图等因第三者的工业所有权而引发之诸问题,本公司不承担其责任。另外,应用电路示例为产品之代表性应用说明,非保证批量生产之设计。
- 本资料内容未经本公司许可,严禁以其他目的加以转载或复制等。
- 本资料所记载之产品,未经本公司书面许可,不得作为健康器械、医疗器械、防灾器械、瓦斯关联器械、车辆器械、航空器械及车载器械等对人体产生影响的器械或装置部件使用。
- 尽管本公司一向致力于提高质量与可靠性,但是半导体产品有可能按照某种概率发生故障或错误工作。为防止因故障或错误动作而产生人身事故、火灾事故、社会性损害等,请充分留心冗余设计、火势蔓延对策设计、防止错误动作设计等安全设计。