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 When designing a closed-loop system, a switch-mode power supply for instance, a path is created 
between the  variable you want to monitor and the control pin of your converter. This control pin can be the peak 
current set point in a current-mode power supply or the duty-cycle input with a voltage-mode controller. If the 
monitored variable deviates from its imposed target, the controller reacts by either increasing or decreasing the 
delivered power to the load via an amplified error signal fed to its control pin. The power stage, however, is 
affected by a gain and a phase that are frequency dependent, H(s). To make sure the resulting power supply will 
behave per the specified data, it is the designer task to shape the return path G(s) to compensate for the power 
stage response at certain frequency points. Among the important parameters are the dc gain for the smallest static 
error and the lowest output impedance, but also the cross over frequency for the required response speed. At the 
cross over point, where the loop gain module T(s) equals 1, the returning signal will be affected by a certain 
phase rotation. If the signal returns in phase with the control signal, we have conditions to form an oscillator, 
something you want to avoid. To make sure the signal does not return in phase, that is to say with a 360° phase 
rotation, you must plan a certain amount of margin between the phase rotation of T(s) at the cross over frequency 
and the 360° limit: this is the phase margin. However, how much phase margin should you ask to combine 
performance and stable answer? 45° as often found in the books, more than that? Let us discover how much 
through the following lines. 
 
A second order system 
 
 Figure 1 shows a LC low-pass filter where the resistor R illustrates the losses in the network. This 
architecture could be seen as a simplified lossy output filter of an unloaded buck converter. In that case, the input 
voltage Vin represents the average level of the square wave signal present at the power switch/freewheel diode 
cathode junction. For the purpose of this study, this average voltage will be ac modulated and we are looking for 
the expression of the output voltage across the output capacitor. We will then calculate the transfer function H(s) 
= Vout(s)/Vin(s) of this structure. 
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Figure 1: a buck converter can be represented by a simple low-pass filter. The script at the bottom automates the 
calculation of R when changing the Q value. 
 
Using Laplace notation, (1) describes the transfer function H(s) of this RLC network: 
 

  ( ) 2

1
1

H s
LCs RCs

=
+ +

 (1) 

 
By re-arranging the expression, it becomes possible to identify the quality coefficient Q and the resonant 
frequency ωr.  
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Where, ωr is the resonant frequency, ζ (zeta) is the damping factor and Q, the quality coefficient: 
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The idea is now to evaluate the response to a 1-V input step and change the quality coefficient values by 
tweaking the resistor R1. This resistor is representative of the losses in the network such as the Equivalent Series 
Resistor of the inductor for instance. As you can read in Figure 1, we have automated the calculation of R whose 
value is evaluated according to the selected Q. We could also multiply (1) by 1/s and calculate the inverse 
Laplace transform to obtain the temporal response. A SPICE simulation will be faster in our case. The results 
appear in Figure 2. 
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Figure 2: when Q is swept from 0.1 to 5, the answer to a step is either slow (Q = 0.1) but without overshoot or 
faster, with a large overshoot for big Q values. 

As one can see, low Q values lead to a completely oscillation free response whereas values above 0.5 give birth 
to overshoots. As Q increases, meaning less losses, the overshoot gets larger. If Q would go to infinity, it would 
imply an undamped LC network keeping oscillations going further to an excitation. 
 
Looking for roots 
 
 The study of (2) denominator will reveal the roots for which H(s) goes to infinity. Mathematically, it 
corresponds to the following characteristic equation: 
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Where the roots come easily as follows: 
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In (7), the term under the square root can either be positive or negative, depending on the quality coefficient 
value. For Q values below 0.5, the so-called overdamped case, the term under the square root remains positive 
and both roots s1 and s2 are separated real roots. The step response is sluggish as shown in Figure 2. When Q 
reaches 0.5, called the critically damped case, the roots are still real but are now coincident. The step response is 
much faster but still does not exhibit overshoot. Now, if Q further grows, we are in an underdamped case and the 
roots welcome an imaginary portion that increases as Q goes up: we have a fast step response now featuring 
overshoot and oscillations. If Q reaches infinity, the real portion of roots s1 and s2 fades away and the system 
freely oscillates: there is no more damping (losses) brought by the real terms. Analysing the trajectory of these 
roots is called root locus analysis: it shows how the roots are positioned in the s-plane and give indication on 
how they move in relationship to some parameters. It is Q in this example but it could be the gain k of a system 
where, at some point when k is increased, the roots migrate in the right half plane and create an instability. 
Figure 3 describes the path taken by s1 and s2 as Q changes. 
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Figure 3: root locus analysis helps to understand how the roots move in relationship to a selected parameter, 
here the quality coefficient of our LC network. 

 
Approximation of an open-loop response 
 
 Based on what we have already disclosed, it would be interesting to model our closed-loop dc-dc 
converter with an equation where a quality coefficient term would appear. That way, we could select the 
parameter that affects this Q to shape the output response we are looking for: slow but without any overshoot or, 
on the opposite, faster but accepting a little overshoot. Let us start the derivation process by looking at Figure 4: 
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Figure 4: the open-loop response of a compensated buck converter can be approximated to a second-order 
system in the vicinity of the cross over frequency. 

This figure shows the complete loop gain T(s) made of the converter power stage transfer function H(s) further 
shaped by the compensator transfer function, G(s). This example is dealing with a CCM buck converter operated 



in voltage-mode control. In this figure, we concentrate on the area around the cross over frequency fc which 
represents one important design parameter of the dc-dc converter you try to stabilize. Asymptotically looking at 
the curve within the frame reveals the effects of an origin pole ω0 and a high frequency pole ω2. Mathematically, 
this approximation can be formulated by: 
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In this approximated expression, we consider extra poles and zeros far away from fc, naturally limiting their 
impact on the transfer function. However, our interest lies in the response the dc-dc converter is going to deliver 
once its loop is closed. In other terms, let us identify the closed-loop transfer function derived from (8). To 
obtain the closed expression, we can evaluate ( ) ( )( )1T s T s+ : 
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Equation (9) appears arranged in form that recalls that of (2). Therefore, we can put it under the familiar form of 
a second order system as described by (10): 
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The identification of the quality coefficient Q and the resonant frequency ωr is straightforward: 0

2
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and 0 2rω ω ω=  (12). 

We now have an equation that describes the approximated closed-loop response of our dc-dc and it 
includes a quality coefficient. The next step is to establish a relationship between the closed-loop Q and the key 
design parameter, the open-loop phase margin. First, based on (8), let us calculate the cross over frequency 
brought by the location of the origin pole ω0 and its associated high frequency pole ω2. At the cross over point, 
we know that the T(s) module equals 1. Therefore: 
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Extracting ωc and re-arranging gives: 
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If we substitute ( (12)) into (14), we obtain a Q-dependent cross over frequency : 
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Equation (15) shows us how the closed-loop quality coefficient and the open-loop cross over frequency are 
linked. It is important for this remark to be well understood: Q represents the resulting closed-loop response 
quality coefficient based on the open-loop pole/zero arrangement describing the approximated open-loop 
compensated transfer function T(s) in (8). 

To continue further with our analysis, we evaluate the phase rotation of T(s) at the cross over frequency: 
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The phase margin ϕm represents the distance between the total phase rotation at the cross over frequency – given 
by (16) – and the –180° limit. In this case, we purposely neglect the phase reversal brought by the operational 
amplifier. Hence, we have: 
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Substituting (16) into (17), we obtain: 
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Remembering our “far far away” trigonometric classes (!), we have: 
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Thanks to (19), we can update (20)(16): 
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We have already defined the cross over frequency versus the closed loop quality coefficient in (15). If we 
capitalize on this definition in (20) 
, we have: 
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The next step is to extract the closed-loop quality coefficient from (21) and simplify the result: 
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This is it! We now have a relationship between our main design criterion the open-loop phase margin and the 
quality coefficient our loop will exhibit once closed. The best is to explore the various Q different phase margin 
choices will bring though a graph as proposed by Figure 5. 
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Figure 5: the graph shows the evolution of the closed-loop quality coefficient as you select different phase 
margin. 

If you want to combine speed and lack of overshoot, Figure 2 suggests a Q of 0.5. Reading the corresponding 
phase margin in Figure 5, we can see a design criterion of 76° satisfies this request for such a Q, far away from 
the 45° found in the majority of text books! What does it mean then? In the response to a load step, once the loop 
is closed, the open-loop phase margin mostly affects the recovery shape and a little the undershoot depth. 
Therefore, it really depends on the kind of response you are looking for or what the customer specifications 
impose on your design. If a fast recovery is needed and a little overshoot accepted, then reducing the phase 
margin can be an option. On the contrary, if absolutely no overshoots are tolerated, you have no choice than 
increasing the phase margin to the detriment of the recovery speed. Whatever solution you select, you have to 
make sure that whatever the operating conditions, input/output, temperature and normal parametric variations 
(ESRs for instance), the phase margin never goes below 45°. In other words, shooting for a typical value around 
70° should become a good design practice. 
 
Transient response and phase margin 
 
 We have stabilized the buck converter using one of the automated simulation platforms described in 
Ref. [1]. The technique allows to keep the same cross over frequency while playing on the phase margin only. 
The overall shape is the same as that presented in Figure 4 with a 10-kHz cross over frequency. The output is 
subjected to step ranging from 1 A to 2 A in 1 µs. The results appear in Figure 6. The 76° phase margin gives a 
little overshoot of 0.05% whereas the 49° margin triples that overshoot, still reasonable though given the vertical 
axis scale of 20 mV per division. However, you can observe a faster recovery in the 49° phase case (70 µs) 
versus the 76° case (227 µs). Why do we still have overshoot with the 76° when theory states there should be 
none? It is because (8) is a simplified view of the transfer function in the vicinity of the cross over frequency. As 
detailed in Ref. [2], if you have three or more poles installed near the cross over frequency, the Q factor 



approximation we have been through does not work anymore and extra work is required. Nevertheless, as 
exemplified by Figure 6, a small phase margin leads to a peaky closed-loop response. 
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Figure 6: the phase margin has been adjusted at different values and it clearly affects the transient response in 
both the recovery time and the overshoot above the 5-V target. 

 
Conclusion 
 
 The design of a power converter requires cares when it comes to loop control. Numerous text books 
just recommend to design for a 45° phase margin without any explanations. This article shows how to 
analytically derive a phase margin target which is surprisingly higher than 45° and close to 76°. Despite some 
approximations at the beginning of the study, the final result is backed up by simulation results that confirm the 
need for a phase margin greater than the classical 45° recommendations. 
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