ON

ON Semiconductor ${ }^{\circledR}$

The TL431 in the Control of Switching Power Supplies

Agenda

\square Feedback generalities
The TL431 in a compensator
\square Small-signal analysis of the return chain
A type 1 implementation with the TL431
A type 2 implementation with the TL431
A type 3 implementation with the TL431
\square Design examples

- Conclusion

Agenda

\square Feedback generalities

\square The TL431 in a compensator
\square Small-signal analysis of the return chain
A type 1 implementation with the TL431
\square A type 2 implementation with the TL431
A type 3 implementation with the TL431
D Design examples

- Conclusion

What is a Regulated Power Supply?

- $V_{\text {out }}$ is permanently compared to a reference voltage $V_{\text {ref }}$.

The reference voltage $V_{\text {ref }}$ is precise and stable over temperature.
\square The error $\varepsilon=V_{\text {ref }}-\alpha V_{\text {out }}$, is amplified and sent to the control input.
\square The power stage reacts to reduce ε as much as it can.

How is Regulation Performed?

\square Text books only describe op amps in compensators...

The market reality is different: the TL431 rules!

TL431

How do we Stabilize a Converter?

We need a high gain at dc for a low static error
We want a sufficiently high crossover frequency for response speed
$>$ Shape the compensator $G(s)$ to build phase and gain margins!

How Much Phase Margin to Chose?

\square a Q factor of 0.5 (critical response) implies a φ_{m} of 76°
\square a $45^{\circ} \varphi_{m}$ corresponds to a Q of 1.2: oscillatory response!

\square phase margin depends on the needed response: fast, no overshoot...
\square good practice is to shoot for 60° and make sure φ_{m} always $>45^{\circ}$

Which Crossover Frequency to Select?

crossover frequency selection depends on several factors:

- switching frequency: theoretical limit is $F_{\text {sw }} / 2$
$>$ in practice, stay below $1 / 5$ of $F_{s w}$ for noise concerns
- output ripple: if ripple pollutes feedback, «tail chasing» can occur.
> crossover frequency rolloff is mandatory, e.g. in PFC circuits
- presence of a Right-Half Plane Zero (RHPZ):
> you cannot cross over beyond 30\% of the lowest RHPZ position
- output undershoot specification:
$>$ select crossover frequency based on undershoot specs

What Compensator Types do we Need?

There are basically 3 compensator types:
$>$ type 1, 1 pole at the origin, no phase boost
$>$ type 2, 1 pole at the origin, 1 zero, 1 pole. Phase boost up to 90°
$>$ type 3,1 pole at the origin, 1 zero pair, 1 pole pair. Boost up to 180°

Type 1

Type 2

Type 3

Agenda

\square Feedback generalities

- The TL431 in a compensator
\square Small-signal analysis of the return chain
\square A type 1 implementation with the TL431
A type 2 implementation with the TL431
A type 3 implementation with the TL431
\square Design examples
\square Conclusion

The TL431 Programmable Zener

The TL431 is the most popular choice in nowadays designs
It associates an open-collector op amp and a reference voltage
\square The internal circuitry is self-supplied from the cathode current
When the R node exceeds 2.5 V , it sinks current from its cathode

The TL431 is a shunt regulator

The TL431 Programmable Zener

The TL431 lends itself very well to optocoupler control

$\square R_{L E D}$ must leave enough headroom over the TL431: upper limit!

The TL431 Programmable Zener

This LED resistor is a design limiting factor in low output voltages:

$$
R_{L E D, \text { max }} \leq \frac{V_{\text {out }}-V_{f}-V_{\text {TL431, min }}}{V_{\text {dd }}-V_{\text {CE,sat }}+I_{\text {bias }} C T R_{\text {min }} R_{\text {pullup }}} R_{\text {pullup }} \mathrm{CTR}_{\text {min }}
$$

When the capacitor C_{1} is a short-circuit, $R_{L E D}$ fixes the fast lane gain

The TL431 - the Static Gain Limit

Let us assume the following design:

$$
\begin{array}{lc}
V_{\text {out }}=5 \mathrm{~V} & R_{L E D, \text { max }} \leq \frac{5-1-2.5}{4.8-0.3+1 \mathrm{~m} \times 0.3 \times 20 \mathrm{k}} \times 20 \mathrm{k} \times 0.3 \\
V_{f}=1 \mathrm{~V} \\
V_{\text {IT431, min }}=2.5 \mathrm{~V} & \square \\
V_{d d}=4.8 \mathrm{~V} \\
V_{\text {CE,sat }}=300 \mathrm{mV} & R_{L E D, \text { max }} \leq 857 \Omega \\
I_{\text {bias }}=1 \mathrm{~mA} \\
\mathrm{CTR}_{\text {min }}=0.3 & \square \\
R_{\text {pullup }}=20 \mathrm{k} \Omega & G_{0}>\operatorname{CTR} \frac{R_{\text {pullup }}}{R_{\text {LED }}}>0.3 \frac{20}{0.857}>7 \text { or } \approx 17 \mathrm{~dB}
\end{array}
$$

In designs where $R_{\text {LED }}$ fixes the gain, G_{0} cannot be below 17 dB
$\xrightarrow{\longrightarrow}$ You cannot "amplify" by less than 17 dB

The TL431 - the Static Gain Limit

Y You must identify the areas where compensation is possible

TL431 - Injecting Bias Current

- A TL431 must be biased above 1 mA to guaranty its parameters

If not, its open-loop suffers - a 10-dB difference can be observed!

Agenda

\square Feedback generalities
\square The TL431 in a compensator
\square Small-signal analysis of the return chain
\square A type 1 implementation with the TL431
\square A type 2 implementation with the TL431
\square A type 3 implementation with the TL431
\square Design examples
\square Conclusion

TL431 - Small-Signal Analysis

The TL431 is an open-collector op amp with a reference voltage
\square Neglecting the LED dynamic resistance, we have:

TL431 - Small-Signal Analysis

\square In the previous equation we have:
\checkmark a static gain $G_{0}=\operatorname{CTR} \frac{R_{\text {pullup }}}{R_{L E D}}$
\checkmark a $0-\mathrm{dB}$ origin pole frequency $\omega_{p o}=\frac{1}{C_{1} R_{\text {upper }}}$
\checkmark a zero $\omega_{\bar{z}_{1}} \frac{1}{R_{\text {upper }} C_{1}}$
\square We are missing a pole for the type 2 !

TL431 - Small-Signal Analysis

The optocoupler also features a parasitic capacitor
> it comes in parallel with C_{2} and must be accounted for

TL431 - Small-Signal Analysis

\square The optocoupler must be characterized to know where its pole is

\square Adjust $V_{\text {bias }}$ to have $V_{F B}$ at 2-3 V to be in linear region, then ac sweep
The pole in this example is found at 4 kHz

$$
C_{\text {opto }}=\frac{1}{2 \pi R_{\text {pullup }} f_{\text {pole }}}=\frac{1}{6.28 \times 20 k \times 4 k} \approx 2 n F \quad \Perp \square \square \begin{gathered}
\text { Another design } \\
\text { constraint! }
\end{gathered}
$$

Agenda

\square Feedback generalities
\square The TL431 in a compensator
\square Small-signal analysis of the return chain
\square A type 1 implementation with the TL431
\square A type 2 implementation with the TL431
\square A type 3 implementation with the TL431
\square Design examples
\square Conclusion

The TL431 in a Type 1 Compensator

To make a type 1 (origin pole only) neutralize the zero and the pole

$$
\begin{aligned}
& \frac{V_{F B}(s)}{V_{\text {out }}(s)}=-\frac{R_{\text {pullup }} \mathrm{CTR}}{R_{\text {LED }}}\left[\frac{1+s R_{\text {upper }} C_{1}}{s R_{\text {upper }} C_{1}\left(1+s R_{\text {pullup }} C_{2}\right)}\right] \\
& s R_{\text {upper }} C_{1}=s R_{\text {pullup }} C_{2} \xrightarrow{\longrightarrow} C_{1}=\frac{R_{\text {pulup }}}{R_{\text {upper }}} C_{2} \xrightarrow{\text { substitute }} \omega_{\text {po }}=\frac{1}{\frac{R_{\text {upper }} R_{L E D} C_{1}}{R_{\text {pullup }} C T R}} \\
& \omega_{\text {po }}=\frac{\text { CTR }}{C_{2} R_{L E D}} \| \longrightarrow C_{2}=\frac{\text { CTR }}{2 \pi f_{\text {po }} R_{L E D}}
\end{aligned}
$$

Once neutralized, you are left with an integrator

$$
G(s)=\frac{1}{\frac{s}{\omega_{p o}}} \rightarrow\left|G\left(f_{c}\right)\right|=\frac{f_{p o}}{f_{c}} \rightarrow f_{p o}=G_{f_{c}} f_{c} \quad \llbracket \longmapsto C_{2}=\frac{\mathrm{CTR}}{2 \pi G_{f_{c}} f_{c} R_{L E D}}
$$

TL431 Type 1 Design Example

\square We want a $5-\mathrm{dB}$ gain at 5 kHz to stabilize the $5-\mathrm{V}$ converter

$$
\begin{aligned}
& V_{\text {out }}=5 \mathrm{~V} \\
& V_{f}=1 \mathrm{~V} \\
& V_{T \text { TL33, , min }}=2.5 \mathrm{~V} \\
& V_{d d}=4.8 \mathrm{~V} \\
& V_{C E, s a t}=300 \mathrm{mV} \\
& I_{\text {bias }}=1 \mathrm{~mA} \\
& \mathrm{CTR}_{\text {min }}=0.3 \\
& R_{\text {pullup }}=20 \mathrm{k} \Omega \\
& \left.\begin{array}{l}
G_{f c}=10^{\frac{5}{20}}=1.77 \\
f_{c}=10 \mathrm{kHz}
\end{array}\right\} C_{2}=\frac{\mathrm{CTR}}{2 \pi G_{f_{c}} f_{c} R_{\text {LED }}}=\frac{0.3}{6.28 \times 1.77 \times 5 \mathrm{k} \times 728} \approx 7.4 \mathrm{nF} \\
& C_{\text {opto }}=2 \mathrm{nF} \\
& \xrightarrow[\text { apto }]{\longrightarrow} C=7.4 n-2 n=5.4 n F \quad C_{1}=\frac{R_{\text {pulup }}}{R_{\text {upper }}} C_{2} \approx 14.7 n F
\end{aligned}
$$

TL431 Type 1 Design Example

\square SPICE can simulate the design - automate elements calculations...

TL431 Type 1 Design Example

We have a type 1 but 1.3 dB of gain is missing? $\odot \odot^{k} \mathrm{Hu}$?

TL431 Type 1 Design Example

\square The 1-k Ω resistor in parallel with the LED is an easy bias
\square However, as it appears in the loop, does it affect the gain?

\square Both bias and dynamic resistances have a role in the gain expression

TL431 Type 1 Design Example

A low operating current increases the dynamic resistor

SFH615A-2 -FORWARD CHARACTERISTICS

Make sure you have enough LED current to reduce its resistance

TL431 Type 1 Design Example

The pullup resistor is $1 \mathrm{k} \Omega$ and the target now reaches 5 dB

Agenda

\square Feedback generalities
\square The TL431 in a compensator
\square Small-signal analysis of the return chain
\square A type 1 implementation with the TL431
\square A type 2 implementation with the TL431
\square A type 3 implementation with the TL431
\square Design examples
\square Conclusion

The TL431 in a Type 2 Compensator

Our first equation was already a type 2 definition, we are all set!

\square Just make sure the optocoupler contribution is involved...

TL431 Type 2 Design Example

- You need to provide a $15-\mathrm{dB}$ gain at 5 kHz with a 50° boost

$$
\begin{aligned}
& f_{p}=\left[\tan (\text { boost })+\sqrt{\tan ^{2}(\text { boost })+1}\right] f_{c}=2.74 \times 5 \mathrm{k}=13.7 \mathrm{kHz} \\
& f_{z}=f_{c}^{2} / f_{p}=25 \mathrm{k} / 13.7 \mathrm{k} \approx 1.8 \mathrm{kHz} \quad G_{0}=\operatorname{CTR} \frac{R_{\text {pullup }}}{R_{\text {LED }}}=10^{15 / 20}=5.62
\end{aligned}
$$

\square With a $250-\mu \mathrm{A}$ bridge current, the divider resistor is made of:

$$
R_{\text {lower }}=2.5 / 250 u=10 \mathrm{k} \Omega \quad R_{1}=(12-2.5) / 250 u=38 \mathrm{k} \Omega
$$

The pole and zero respectively depend on $R_{\text {pullup }}$ and R_{1} :

$$
C_{2}=1 / 2 \pi f_{p} R_{\text {pullup }}=581 \mathrm{pF} \quad C_{1}=1 / 2 \pi f_{2} R_{1}=2.3 \mathrm{nF}
$$

\square The LED resistor depends on the needed mid-band gain:

$$
R_{\text {LED }}=\frac{R_{\text {pullup }} \mathrm{CTR}}{G_{0}}=1.06 \mathrm{k} \Omega \xrightarrow{\mathrm{ok}} \quad R_{\text {LED, } \max } \leq 4.85 \mathrm{k} \Omega
$$

TL431 Type 2 Design Example

The optocoupler is still at a $4-\mathrm{kHz}$ frequency:

\square Type 2 pole capacitor calculation requires a 581 pF cap.!
$\xrightarrow[\square]{\square}$ The bandwidth cannot be reached, reduce f_{c} !

- For noise purposes, we want a minimum of 100 pF for C \square With a total capacitance of 2.1 nF , the highest pole can be:

$$
f_{\text {pole }}=\frac{1}{2 \pi R_{\text {pullup }} C}=\frac{1}{6.28 \times 20 \mathrm{k} \times 2.1 \mathrm{n}}=3.8 \mathrm{kHz}
$$

\square For a 50° phase boost and a $3.8-\mathrm{kHz}$ pole, the crossover must be:

$$
f_{c}=\frac{f_{p}}{\tan (\text { boost })+\sqrt{\tan ^{2}(\text { boost })+1}} \approx 1.4 \mathrm{kHz}
$$

TL431 Type 2 Design Example

The zero is then simply obtained:

$$
f_{z}=\frac{f_{c}^{2}}{f_{p}}=516 \mathrm{~Hz}
$$

We can re-derive the component values and check they are ok

$$
C_{2}=1 / 2 \pi f_{p} R_{\text {pullup }}=2.1 \mathrm{nF} \quad C_{1}=1 / 2 \pi f_{2} R_{1}=8.1 \mathrm{nF}
$$

G Given the 2-nF optocoupler capacitor, we just add 100 pF
In this example, $R_{L E D, \max }$ is $4.85 \mathrm{k} \Omega$

$$
G_{0}>\operatorname{CTR} \frac{R_{\text {pullup }}}{R_{\text {LED }}}>0.3 \frac{20}{4.85}>1.2 \text { or } \approx 1.8 \mathrm{~dB}
$$

You cannot use this type 2 if an attenuation is required at f_{c} !

TL431 Type 2 Design Example

The 1-dB gain difference is linked to R_{d} and the bias current

TL431 - Suppressing the Fast Lane

The gain limit problem comes from the fast lane presence

\square Its connection to $V_{\text {out }}$ creates a parallel input

> The solution is to hook the LED resistor to a fixed bias

TL431 - Suppressing the Fast Lane

The equivalent schematic becomes an open-collector op amp

TL431 - Suppressing the Fast Lane

The small-signal ac representation puts all sources to 0

TL431 - Suppressing the Fast Lane

The op amp can now be wired in any configuration!
Just keep in mind the optocoupler transmission chain

$$
O(s)=\frac{R_{\text {pullup }}}{R_{\text {LED }}} \operatorname{CTR} \frac{1}{1+s R_{\text {pullup }} C_{\text {pole }}}
$$

Wire the op amp in type 2A version (no high frequency pole)

$$
G_{1}(s)=\frac{1+\mathrm{R}_{2} \mathrm{C}_{1}}{s R_{1} C_{1}}
$$

When cascaded, you obtain a type 2 with an extra gain term

$$
\begin{aligned}
& G(s)=\frac{R_{\text {pullup }}}{R_{\text {LED }}} \mathrm{CTR} \\
& \frac{1+R_{2} C_{1}}{s R_{1} C_{1}\left(1+s R_{\text {pullup }} C_{\text {pole }}\right)} \\
& G_{2}
\end{aligned}
$$

TL431 Type 2 Design Example - No Fast Lane

We still have a constraint on $R_{\text {LED }}$ but only for dc bias purposes

$$
R_{L E D, \text { max }} \leq \frac{V_{z}-V_{f}-V_{\text {TL431, min }}}{V_{d d}-V_{C E, s a t}+I_{\text {bias }} \mathrm{CTR} \mathrm{~m}_{\text {min }} R_{\text {pullup }}} R_{\text {pullup }} \mathrm{CTR}_{\text {min }}
$$

\square You need to attenuate by $-10-\mathrm{dB}$ at 1.4 kHz with a 50° boost
The poles and zero position are that of the previous design

TL431 Type 2 Design Example - No Fast Lane

We need to account for the extra gain term:

$$
G_{2}=\frac{R_{\text {pullup }}}{R_{\text {LED }}} \mathrm{CTR}=\frac{20 \mathrm{k}}{1.27 \mathrm{k}} 0.3=4.72
$$

The required total mid-band attenuation at 1.4 kHz is -10 dB

$$
G_{f_{c}}=10^{-10 / 20}=0.316
$$

- The mid-band gain from the type 2A is therefore:

$$
G_{1}=\frac{G_{0}}{G_{2}}=\frac{0.316}{4.72}=0.067 \text { or }-23.5 \mathrm{~dB}
$$

$$
R_{2}=G_{1} R_{1} \frac{\sqrt{\left(\frac{f_{c}}{f_{p}}\right)^{2}+1}}{\sqrt{\left(\frac{f_{z}}{f_{c}}\right)^{2}+1}}=2.6 \mathrm{k} \Omega
$$

TL431 Type 2 Design Example - No Fast Lane

- An automated simulation helps to test the calculation results

parameters

Vout=12
Rupper=(Vout-2.5)/250u
$\mathrm{fc}=1.4 \mathrm{k}$

Gfc=10

Vf=1
Ibias=1m
Vref=2.5

VCEsat $=300 \mathrm{~m}$

Vdd=5
$\mathrm{Vz}=6.2$
Rpullup $=20 \mathrm{k}$
Fopto $=4 \mathrm{k}$
Copto $=1 /(2 *$ pi*Rpullup*Fopto)

CTR=0.3

G1=Rpullup*CTR/RLED
$\mathrm{G} 2=10^{\wedge}(-\mathrm{Gfc} / 20)$
$\mathrm{G}=\mathrm{G} 2 / \mathrm{G} 1$
$\mathrm{pi}=3.14159$
$\mathrm{fz}=516$
$\mathrm{fp}=3.8 \mathrm{k}$
$\mathrm{C} 1=1 /\left(2 * \mathrm{pi}^{*} \mathrm{fz} * \mathrm{R} 2\right)$
Cpole2=1/(2*pi*fp*Rpullup)
C2=Cpole2-Copto
$\mathrm{a}=(\mathrm{fz} \wedge 2+\mathrm{fc} \wedge 2) *(\mathrm{fp} \wedge 2+\mathrm{fc} \wedge 2)$
$\mathrm{c}=(\mathrm{fz} \wedge 2+\mathrm{fc} \wedge 2)$
R2 $=(\operatorname{sqrt}(\mathrm{a}) / \mathrm{c}) * \mathrm{G} * \mathrm{fc} *$ Rupper/fp

Rmax1=(Vz-Vf-Vref)
Rmax2=(Vdd-VCEsat+Ibias*(Rpullup*CTR))
RLED=(Rmax1/Rmax2)*Rpullup*CTR*0.85

TL431 Type 2 Design Example - No Fast Lane

The simulation results confirm the calculations are ok

Agenda

\square Feedback generalities
The TL431 in a compensator
\square Small-signal analysis of the return chain
\square A type 1 implementation with the TL431
A A type 2 implementation with the TL431
A type 3 implementation with the TL431
\square Design examples

- Conclusion

The TL431 in a Type 3 Compensator

The type 3 with a TL431 is difficult to put in practice

$$
\begin{aligned}
& f_{z_{1}}=\frac{1}{2 \pi R_{1} C_{1}} \quad f_{z_{2}}=\frac{1}{2 \pi\left(R_{L E D}+R_{p z}\right) C_{p z}} \\
& f_{p_{1}}=\frac{1}{2 \pi R_{p z} C_{p z}} \quad f_{p_{2}}=\frac{1}{2 \pi R_{p u l l u p}\left(C_{2} \| C_{o p t o}\right)} \\
& G=\frac{R_{\text {pulup }}}{R_{\text {LED }}} \text { CTR }
\end{aligned}
$$

$R_{L E D}$ fixes the gain and a zero position

Suppress the fast lane for an easier implementation!

The TL431 in a Type 3 Compensator

\square Once the fast lane is removed, you have a classical configuration

TL431 Type 3 Design Example - No Fast Lane

We want to provide a $10-\mathrm{dB}$ attenuation at 1 kHz
The phase boost needs to be of 120°
> place the double pole at 3.7 kHz and the double zero at 268 Hz
Calculate the maximum LED resistor you can accept, apply margin

$$
R_{L E D, \text { max }} \leq \frac{V_{z}-V_{f}-V_{\text {TL431, min }}}{V_{d d}-V_{\text {CE,sat }}+I_{\text {bias }} \mathrm{CTR}_{\text {min }} R_{\text {pullup }}} R_{\text {pullup }} \mathrm{CTR}_{\text {min }} \leq 1.5 \mathrm{k} \Omega \xrightarrow{\mathrm{X} 0.85} 1.3 \mathrm{k} \Omega
$$

We need to account for the extra gain term:

$$
G_{2}=\frac{R_{\text {pullup }}}{R_{\text {LED }}} \mathrm{CTR}=\frac{20 \mathrm{k}}{1.3 \mathrm{k}} 0.3=4.6
$$

The required total mid-band attenuation at 1 kHz is -10 dB

$$
G_{f_{c}}=10^{-10 / 20}=0.316
$$

TL431 Type 3 Design Example - No Fast Lane

The mid-band gain from the type 3 is therefore:

$$
G_{1}=\frac{G_{0}}{G_{2}}=\frac{0.316}{4.6}=0.068 \text { or }-23.3 \mathrm{~dB}
$$

\square Calculate R_{2} for this attenuation:

$$
\begin{aligned}
& R_{2}=\frac{G_{1} R_{1} f_{p_{1}}}{f_{p_{1}}-f_{z_{1}}} \frac{\sqrt{1+\left(\frac{f_{c}}{f_{p_{1}}}\right)^{2}} \sqrt{1+\left(\frac{f_{c}}{f_{p_{2}}}\right)^{2}}}{\sqrt{1+\left(\frac{f_{z_{1}}}{f_{c}}\right)^{2}} \sqrt{1+\left(\frac{f_{c}}{f_{z_{2}}}\right)^{2}}}=744 \Omega \\
& C_{1}=800 n F C_{2}=148 p F C_{3}=14.5 n F C_{\text {opto }}=2 n F
\end{aligned}
$$

The optocoupler pole limits the upper double pole position
The maximum boost therefore depends on the crossover frequency

TL431 Type 3 Design Example - No Fast Lane

\square The decoupling between $V_{\text {out }}$ and $V_{\text {bias }}$ affects the curves

Agenda

\square Feedback generalities
\square The TL431 in a compensator
\square Small-signal analysis of the return chain
\square A type 1 implementation with the TL431
\square A type 2 implementation with the TL431
\square A type 3 implementation with the TL431
\square Design examples
\square Conclusion

Design Example 1 - a Single-Stage PFC

The single-stage PFC is often used in LED applications
\square It combines isolation, current-regulation and power factor correction
Here, a constant on-time BCM controller, the NCL30000, is used

Design Example 1 - a Single-Stage PFC

O Once the converter elements are known, ac-sweep the circuit
\square Select a crossover low enough to reject the ripple, e.g. 20 Hz

Design Example 1 - a Single-Stage PFC

\square Given the low phase lag, a type 1 can be chosen
$>$ Use the type 2 with fast lane removal where f_{p} and f_{z} are coincident

Design Example 1 - a Single-Stage PFC

\square A transient simulation helps to test the system stability

Design Example 2: a DCM Flyback Converter

\square We want to stabilize a 20 W DCM adapter

- $V_{\text {in }}=85$ to $265 \mathrm{~V} \mathrm{rms}, V_{\text {out }}=12 \mathrm{~V} / 1.7 \mathrm{~A}$
$\square F_{s w}=65 \mathrm{kHz}, R_{\text {pullup }}=20 \mathrm{k} \Omega$
\square Optocoupler is SFH-615A, pole is at 6 kHz
\square Cross over target is 1 kHz
\square Selected controller: NCP1216

1. Obtain a power stage open-loop Bode plot, $H(s)$
2. Look for gain and phase values at cross over
3. Compensate gain and build phase at cross over, $G(s)$
4. Run a loop gain analysis to check for margins, $T(s)$
5. Test transient responses in various conditions

Design Example 2: a DCM Flyback Converter

Capture a SPICE schematic with an averaged model

\square Look for the bias points values: $V_{\text {out }}=12 \mathrm{~V}$, ok

Design Example 2: a DCM Flyback Converter

\square Observe the open-loop Bode plot and select $f_{c}: 1 \mathrm{kHz}$

Design Example 2: a DCM Flyback Converter

Apply k factor or other method, get f_{z} and f_{p}
$>f_{z}=3.5 \mathrm{kHz} f_{p}=4.5 \mathrm{kHz}$

Design Example 2: a DCM Flyback Converter

\square Check loop gain and watch phase margin at f_{c}

Design Example 2: a DCM Flyback Converter

\square Sweep ESR values and check margins again

Excellent!

Use an Automated Design Tool

\square To speed-up your design studies, use the right tool!

Conclusion

\square Classical loop control theory describes op amps in compensators
E Engineers cannot apply their knowledge to the TL431
Examples show that the TL431 with an optocoupler have limits
Once these limits are understood, the TL431 is simple to use
\square All three compensator types have been covered
\square Design examples showed the power of averaged models
\square Use them to extensively reproduce parameter dispersions
\square Applying these recipes is key to design success!

For More Information

- View the extensive portfolio of power management products from ON Semiconductor at www.onsemi.com
- View reference designs, design notes, and other material supporting the design of highly efficient power supplies at www.onsemi.com/powersupplies

