Enabling Energy Efficient Solutions

www.onsemi.com

ON Semiconductor®

The TL431 in the Control of Switching Power Supplies

Agenda

□ Feedback generalities

□ The TL431 in a compensator

□ Small-signal analysis of the return chain

□ A type 1 implementation with the TL431

□ A type 2 implementation with the TL431

□ A type 3 implementation with the TL431

Design examples

Conclusion

Agenda

□ Feedback generalities

□ The TL431 in a compensator

□ Small-signal analysis of the return chain

□ A type 1 implementation with the TL431

□ A type 2 implementation with the TL431

□ A type 3 implementation with the TL431

Design examples

□ Conclusion

What is a Regulated Power Supply?

□ V_{out} is permanently compared to a reference voltage V_{ref} . □ The reference voltage V_{ref} is precise and stable over temperature. □ The error $\varepsilon = V_{ref} - \alpha V_{out}$, is amplified and sent to the control input. □ The power stage reacts to reduce ε as much as it can.

How is Regulation Performed?

□ Text books only describe op amps in compensators...

□ The market reality is different: the TL431 rules!

How do we Stabilize a Converter?

We need a high gain at dc for a low static error
 We want a sufficiently high crossover frequency for response speed
 Shape the compensator G(s) to build phase and gain margins!

How Much Phase Margin to Chose?

□ a *Q* factor of 0.5 (critical response) implies a φ_m of 76° □ a 45° φ_m corresponds to a *Q* of 1.2: oscillatory response!

□ phase margin depends on the needed response: fast, no overshoot... □ good practice is to shoot for 60° and make sure φ_m always > 45°

Which Crossover Frequency to Select?

- □ crossover frequency selection depends on several factors:
- switching frequency: theoretical limit is $F_{sw}/2$
- > in practice, stay below 1/5 of F_{sw} for noise concerns
- *output ripple*: if ripple pollutes feedback, «tail chasing» can occur.
- crossover frequency rolloff is mandatory, e.g. in PFC circuits
- presence of a Right-Half Plane Zero (RHPZ):
- > you cannot cross over beyond 30% of the lowest RHPZ position
- *output undershoot specification*:
- select crossover frequency based on undershoot specs

What Compensator Types do we Need?

- □ There are basically 3 compensator types:
- > type 1, 1 pole at the origin, no phase boost
- > type 2, 1 pole at the origin, 1 zero, 1 pole. Phase boost up to 90°
- ➤ type 3, 1 pole at the origin, 1 zero pair, 1 pole pair. Boost up to 180°

Agenda

□ Feedback generalities

□ The TL431 in a compensator

□ Small-signal analysis of the return chain

□ A type 1 implementation with the TL431

A type 2 implementation with the TL431

- □ A type 3 implementation with the TL431
- Design examples
- Conclusion

The TL431 Programmable Zener

The TL431 is the most popular choice in nowadays designs
 It associates an open-collector op amp and a reference voltage
 The internal circuitry is self-supplied from the cathode current
 When the R node exceeds 2.5 V, it sinks current from its cathode

□ The TL431 is a shunt regulator

The TL431 Programmable Zener

□ The TL431 lends itself very well to optocoupler control

The TL431 Programmable Zener

□ This LED resistor is a design limiting factor in low output voltages:

$$R_{LED,\max} \leq \frac{V_{out} - V_f - V_{TL431,\min}}{V_{dd} - V_{CE,sat} + I_{bias} \text{CTR}_{\min} R_{pullup}} R_{pullup} \text{CTR}_{\min}$$

 \Box When the capacitor C_1 is a short-circuit, R_{LED} fixes the fast lane gain

ON Semiconductor⁴

The TL431 – the Static Gain Limit

Let us assume the following design:

 \Box In designs where R_{LED} fixes the gain, G_0 cannot be below 17 dB

■ You cannot "amplify" by less than 17 dB

The TL431 – the Static Gain Limit

□ You must identify the areas where compensation is possible

TL431 – Injecting Bias Current

A TL431 must be biased above 1 mA to guaranty its parameters
 If not, its open-loop suffers – a 10-dB difference can be observed!

Agenda

- □ Feedback generalities
- □ The TL431 in a compensator

□ Small-signal analysis of the return chain

- □ A type 1 implementation with the TL431
- □ A type 2 implementation with the TL431
- □ A type 3 implementation with the TL431
- Design examples
- Conclusion

The TL431 is an open-collector op amp with a reference voltage
 Neglecting the LED dynamic resistance, we have:

□ In the previous equation we have:

✓ a static gain
$$G_0 = \text{CTR} \frac{R_{pullup}}{R_{LED}}$$

✓ a 0-dB origin pole frequency $\omega_{po} = \frac{1}{C_1 R_{upper}}$
✓ a zero $\omega_{z_1} = \frac{1}{R_{upper} C_1}$

□ We are missing a pole for the type 2!

□ The optocoupler also features a parasitic capacitor

 \succ it comes in parallel with C_2 and must be accounted for

□ The optocoupler must be characterized to know where its pole is

□ Adjust V_{bias} to have V_{FB} at 2-3 V to be in linear region, then ac sweep □ The pole in this example is found at 4 kHz

$$C_{opto} = \frac{1}{2\pi R_{pullup} f_{pole}} = \frac{1}{6.28 \times 20k \times 4k} \approx 2 nF \qquad \text{Monother design} constraint!$$

Agenda

□ Feedback generalities

□ The TL431 in a compensator

□ Small-signal analysis of the return chain

□ A type 1 implementation with the TL431

□ A type 2 implementation with the TL431

- □ A type 3 implementation with the TL431
- Design examples
- Conclusion

The TL431 in a Type 1 Compensator

□ To make a type 1 (origin pole only) neutralize the zero and the pole

$$\frac{V_{FB}(s)}{V_{out}(s)} = -\frac{R_{pullup}CTR}{R_{LED}} \left[\frac{1 + sR_{upper}C_1}{sR_{upper}C_1\left(1 + sR_{pullup}C_2\right)} \right]$$

$$sR_{upper}C_1 = sR_{pullup}C_2 \qquad \square \qquad > \qquad C_1 = \frac{R_{pullup}}{R_{upper}}C_2 \qquad \square \qquad > \qquad O_{po} = \frac{1}{\frac{R_{upper}R_{LED}}{R_{pullup}}C_1}$$

$$\omega_{po} = \frac{CTR}{C_2R_{LED}} \qquad \square \qquad > \qquad C_2 = \frac{CTR}{2\pi f_{po}R_{LED}}$$

□ Once neutralized, you are left with an integrator

$$G(s) = \frac{1}{\frac{s}{\omega_{po}}} \longrightarrow |G(f_c)| = \frac{f_{po}}{f_c} \longrightarrow f_{po} = G_{f_c} f_c \quad \text{mess} \quad C_2 = \frac{\text{CTR}}{2\pi G_{f_c} f_c R_{LED}}$$

□ We want a 5-dB gain at 5 kHz to stabilize the 5-V converter

□ SPICE can simulate the design – automate elements calculations...

 \Box We have a type 1 but 1.3 dB of gain is missing? $\bigcirc \bigcirc^{\flat}$ Hu?

The 1-kΩ resistor in parallel with the LED is an easy bias
 However, as it appears in the loop, does it affect the gain?

□ Both bias and dynamic resistances have a role in the gain expression

□ A low operating current increases the dynamic resistor

SFH615A-2 -FORWARD CHARACTERISTICS

□ Make sure you have enough LED current to reduce its resistance

 \Box The pullup resistor is 1 k Ω and the target now reaches 5 dB

ON Semiconductor[®]

Agenda

□ Feedback generalities

□ The TL431 in a compensator

□ Small-signal analysis of the return chain

□ A type 1 implementation with the TL431

□ A type 2 implementation with the TL431

- □ A type 3 implementation with the TL431
- Design examples
- Conclusion

The TL431 in a Type 2 Compensator

□ Our first equation was already a type 2 definition, we are all set!

□ Just make sure the optocoupler contribution is involved...

□ You need to provide a 15-dB gain at 5 kHz with a 50° boost

$$f_p = \left[\tan\left(boost\right) + \sqrt{\tan^2\left(boost\right) + 1} \right] f_c = 2.74 \times 5k = 13.7 \ kHz$$

$$f_z = f_c^2 / f_p = 25k/13.7k \approx 1.8 \ kHz$$
 $G_0 = \text{CTR} \frac{R_{pullup}}{R_{LED}} = 10^{15/20} = 5.62$

□ With a 250-µA bridge current, the divider resistor is made of:

$$R_{lower} = 2.5/250u = 10 k\Omega$$
 $R_1 = (12 - 2.5)/250u = 38 k\Omega$

 \Box The pole and zero respectively depend on R_{pullup} and R_1 :

$$C_2 = 1/2\pi f_p R_{pullup} = 581 \ pF$$
 $C_1 = 1/2\pi f_z R_1 = 2.3 \ nF$

□ The LED resistor depends on the needed mid-band gain:

$$R_{LED} = \frac{R_{pullup} \text{CTR}}{G_0} = 1.06 \ k\Omega \quad \underbrace{\text{ok}}_{R_{LED,\text{max}}} \le 4.85 \ k\Omega$$

□ The optocoupler is still at a 4-kHz frequency: $C_{pole} \approx 2 \, nF$ Already above! □ Type 2 pole capacitor calculation requires a 581 pF cap.! The bandwidth cannot be reached, reduce $f_c!$ \Box For noise purposes, we want a minimum of 100 pF for C □ With a total capacitance of 2.1 nF, the highest pole can be: $f_{pole} = \frac{1}{2\pi R_{pole}C} = \frac{1}{6.28 \times 20k \times 2.1n} = 3.8 \ kHz$ □ For a 50° phase boost and a 3.8-kHz pole, the crossover must be: $f_c = \frac{J_p}{\tan(boost) + \sqrt{\tan^2(boost) + 1}} \approx 1.4 \, kHz$

□ The zero is then simply obtained:

$$f_z = \frac{f_c^2}{f_p} = 516 Hz$$

□ We can re-derive the component values and check they are ok

$$C_2 = 1/2\pi f_p R_{pullup} = 2.1 \, nF$$
 $C_1 = 1/2\pi f_z R_1 = 8.1 \, nF$

Given the 2-nF optocoupler capacitor, we just add 100 pF

 \Box In this example, $R_{LED,max}$ is 4.85 k Ω

$$G_0 > \text{CTR} \frac{R_{pullup}}{R_{LED}} > 0.3 \frac{20}{4.85} > 1.2 \text{ or} \approx 1.8 \text{ dB}$$

 \Box You <u>cannot</u> use this type 2 if an attenuation is required at $f_c!$

 \Box The 1-dB gain difference is linked to R_d and the bias current

ON Semiconductor*

ON

TL431 – Suppressing the Fast Lane

□ The gain limit problem comes from the fast lane presence □ Its connection to V_{out} creates a parallel input

The solution is to hook the LED resistor to a fixed bias

TL431 – Suppressing the Fast Lane

TL431 – Suppressing the Fast Lane

□ The small-signal ac representation puts all sources to 0

TL431 – Suppressing the Fast Lane

The op amp can now be wired in any configuration!
 Just keep in mind the optocoupler transmission chain

$$O(s) = \frac{R_{pullup}}{R_{LED}} \operatorname{CTR} \frac{1}{1 + sR_{pullup}C_{pole}}$$

□ Wire the op amp in type 2A version (no high frequency pole)

$$G_1(s) = \frac{1 + R_2 C_1}{s R_1 C_1}$$

□ When cascaded, you obtain a type 2 with an extra gain term

$$G(s) = \frac{R_{pullup}}{R_{LED}} \operatorname{CTR} \frac{1 + R_2 C_1}{s R_1 C_1 \left(1 + s R_{pullup} C_{pole}\right)}$$
$$G_2$$

 \Box We still have a constraint on R_{LED} but only for dc bias purposes

$$R_{LED,\max} \leq \frac{V_z - V_f - V_{TL431,\min}}{V_{dd} - V_{CE,sat} + I_{bias} \text{CTR}_{\min} R_{pullup}} R_{pullup} \text{CTR}_{\min}$$

You need to <u>attenuate</u> by -10-dB at 1.4 kHz with a 50° boost
 The poles and zero position are that of the previous design

$$V_{z} = 6.2 V$$

$$V_{f} = 1 V$$

$$V_{TL431,\min} = 2.5 V$$

$$V_{dd} = 4.8 V$$

$$V_{cE,sat} = 300 mV$$

$$I_{bias} = 1 mA$$

$$CTR_{\min} = 0.3$$

$$R_{pullup} = 20 k\Omega$$

$$f_{z} = 516 Hz \quad f_{p} = 3.8 kHz$$

□ We need to account for the extra gain term:

$$G_2 = \frac{R_{pullup}}{R_{LED}}$$
 CTR $= \frac{20k}{1.27k}$ 0.3 $= 4.72$

□ The required total mid-band <u>attenuation</u> at 1.4 kHz is -10 dB

$$G_{f_c} = 10^{-10/20} = 0.316$$

□ The mid-band gain from the type 2A is therefore:

$$G_1 = \frac{G_0}{G_2} = \frac{0.316}{4.72} = 0.067 \text{ or} - 23.5 dB$$

 \Box Calculate R_2 for this attenuation:

$$R_2 = G_1 R_1 \frac{\sqrt{\left(\frac{f_c}{f_p}\right)^2 + 1}}{\sqrt{\left(\frac{f_z}{f_c}\right)^2 + 1}} = 2.6 \ k\Omega$$

An automated simulation helps to test the calculation results

parameters

□ The simulation results confirm the calculations are ok

TL431

Agenda

□ Feedback generalities

□ The TL431 in a compensator

□ Small-signal analysis of the return chain

□ A type 1 implementation with the TL431

□ A type 2 implementation with the TL431

□ A type 3 implementation with the TL431

- Design examples
- □ Conclusion

The TL431 in a Type 3 Compensator

□ The type 3 with a TL431 is difficult to put in practice

□ Suppress the fast lane for an easier implementation!

TL431

The TL431 in a Type 3 Compensator

□ Once the fast lane is removed, you have a classical configuration

□ We want to provide a 10-dB attenuation at 1 kHz

- □ The phase boost needs to be of 120°
- Place the double pole at 3.7 kHz and the double zero at 268 Hz

Calculate the maximum LED resistor you can accept, apply margin

$$R_{LED,\max} \leq \frac{V_z - V_f - V_{TL431,\min}}{V_{dd} - V_{CE,sat} + I_{bias} \text{CTR}_{\min} R_{pullup}} R_{pullup} \text{CTR}_{\min} \leq 1.5 \ k\Omega \quad \xrightarrow{\text{X 0.85}} 1.3 \ k\Omega$$

□ We need to account for the extra gain term:

$$G_2 = \frac{R_{pullup}}{R_{LED}}$$
 CTR $= \frac{20k}{1.3k}$ 0.3 = 4.6

□ The required total mid-band attenuation at 1 kHz is -10 dB

$$G_{f_c} = 10^{-10/20} = 0.316$$

TL431

□ The mid-band gain from the type 3 is therefore:

$$G_1 = \frac{G_0}{G_2} = \frac{0.316}{4.6} = 0.068 \text{ or} - 23.3 dB$$

 \Box Calculate R_2 for this attenuation:

$$R_{2} = \frac{G_{1}R_{1}f_{p_{1}}}{f_{p_{1}} - f_{z_{1}}} \frac{\sqrt{1 + \left(\frac{f_{c}}{f_{p_{1}}}\right)^{2}} \sqrt{1 + \left(\frac{f_{c}}{f_{p_{2}}}\right)^{2}}}{\sqrt{1 + \left(\frac{f_{z_{1}}}{f_{c}}\right)^{2}} \sqrt{1 + \left(\frac{f_{c}}{f_{z_{2}}}\right)^{2}}} = 744 \ \Omega$$

 $C_1 = 800 \ nF \ C_2 = 148 \ pF \ C_3 = 14.5 \ nF \ C_{opto} = 2 \ nF$

The optocoupler pole limits the upper double pole position
 The maximum boost therefore depends on the crossover frequency

 \Box The decoupling between V_{out} and V_{bias} affects the curves

TL431

Agenda

□ Feedback generalities

□ The TL431 in a compensator

□ Small-signal analysis of the return chain

□ A type 1 implementation with the TL431

□ A type 2 implementation with the TL431

□ A type 3 implementation with the TL431

Design examples

Conclusion

The single-stage PFC is often used in LED applications
 It combines isolation, current-regulation and power factor correction
 Here, a constant on-time BCM controller, the *NCL30000*, is used

Once the converter elements are known, ac-sweep the circuit
 Select a crossover low enough to reject the ripple, e.g. 20 Hz

Given the low phase lag, a type 1 can be chosen

> Use the type 2 with fast lane removal where f_p and f_z are coincident

□ A transient simulation helps to test the system stability

□ We want to stabilize a 20 W DCM adapter

J
$$V_{in} = 85$$
 to 265 V rms, $V_{out} = 12$ V/1.7 A

$$\Box F_{sw} = 65 \text{ kHz}, R_{pullup} = 20 \text{ k}\Omega$$

- Optocoupler is SFH-615A, pole is at 6 kHz
- Cross over target is 1 kHz
- □ Selected controller: NCP1216
 - 1. Obtain a power stage open-loop Bode plot, H(s)
 - 2. Look for gain and phase values at cross over
 - 3. Compensate gain and build phase at cross over, G(s)
 - 4. Run a loop gain analysis to check for margins, T(s)
 - 5. Test transient responses in various conditions

□ Capture a SPICE schematic with an averaged model

□ Look for the bias points values: $V_{out} = 12$ V, ok

 \Box Observe the open-loop Bode plot and select f_c : 1 kHz

□ Apply *k* factor or other method, get f_z and f_p > f_z = 3.5 kHz f_p = 4.5 kHz

ΠN

 \Box Check loop gain and watch phase margin at f_c

□ Sweep ESR values and check margins again

ON Semiconductor^e

ÛN

ΟN

Conclusion

- □ Classical loop control theory describes op amps in compensators
- □ Engineers cannot apply their knowledge to the TL431
- Examples show that the TL431 with an optocoupler have limits
- □ Once these limits are understood, the TL431 is simple to use
- □ All three compensator types have been covered
- Design examples showed the power of averaged models
- □ Use them to extensively reproduce parameter dispersions
- □ Applying these recipes is key to design success!

For More Information

- View the extensive portfolio of power management products from ON Semiconductor at <u>www.onsemi.com</u>
- View reference designs, design notes, and other material supporting the design of highly efficient power supplies at <u>www.onsemi.com/powersupplies</u>

