

带PFC的原边控制模式LED驱动控制芯片

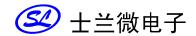
描述

SD6857是集成PFC功能的原边控制模式的LED驱动控制芯片。它采用PFM调制技术,提供精确的恒流控制,具有非常高的平均效率。

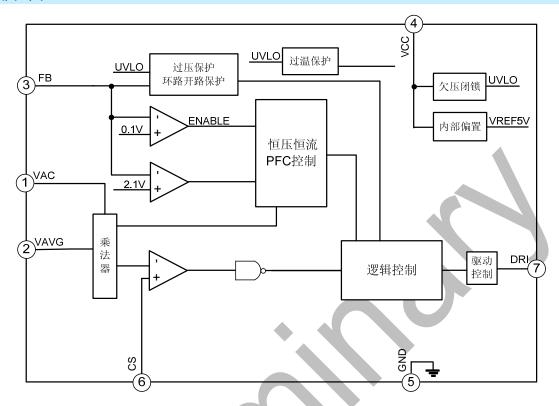
采用SD6857设计系统,可以省去光耦、次级反馈控制、环路补偿,精简电路,降低成本。

主要特点

- * 低启动电流
- * 一次侧控制模式
- * 前沿消隐
- * PFM调制
- * 过压保护
- * 欠压锁定
- * 过温保护
- * 逐周期限流
- * 环路开路保护
- * 峰值电流补偿


应用

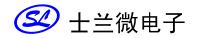
LED灯泡


* AC输入LED照明

产品规格分类

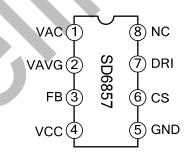
产品名称	封装形式	打印名称	材料	包装	
SD6857	SOP-8-225-1.27	SD6857	无铅	料管	
SD6857TR	SOP-8-225-1.27	SD6857	无铅	编带	

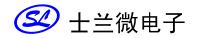
内部框图



极限参数

参数	符号	参 数 范 围	单 位
供电电压	V_{DD}	-0.3~25	V
FB输入电压	V _{FB}	-20~22	V
其他输入电压	V _{IN}	-0.3~ 5.3	V
输入电流	I _{IN}	-10~10	mA
工作结温	TJ	+160	
工作温度范围	T _{amb}	-25~ +85	
贮存温度范围	T _{STG}	-55~+150	


电气参数(除非特殊说明, V_{CC}=18V, T_{amb}=25°C)


		_			_	_	
参	数	符号	测试条件	最小值	典型值	最大值	单位
供电电源部分		_					
启动电流		I _{start}	V _{CC} =12V		5	10	μΑ
工作电流		I _{op}	Fs=50kHz	500	700	900	μΑ
欠压部分							
启动阈值电压		V_{start}		14	16	18	٧
关断阈值电压		V_{stop}		7.0	8.0	9.0	٧

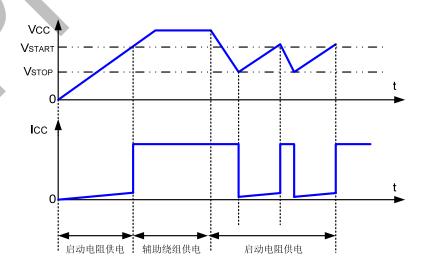
参数	符 号	测试条件	最小值	典型值	最大值	单位	
FB反馈部分							
过压保护比较器阈值	V_{OVP}		2.6	2.8	3.0	V	
S&H 基准	V _{S&HREF}		1.9	2.1	2.3	V	
动态特性部分							
消隐时间	T _{LEB}		0.15	0.35	0.55	us	
过压保护恢复时间	T _{OVP}		11	19	30	ms	
限流部分							
CS 异常过流保护点	V_{cs1}		1.3	1.4	1.5	V	
乘法器							
CS 比较点	V_{cs2}	V _{AC} =2V, V _{AVG} =1V	0.35	0.45	0.55	V	
驱动部分							
DRI 上升时间	T_R	C=1nF	200	300	600	ns	
DRI下降时间	T _F	C=1nF	30	50	80	ns	
DRI 高电平钳位电压	DRCLAMP	Y	15	16.5	18	V	
驱动高电平	DRH	DRI 下拉 I _O =20mA	11	13		V	
驱动低电平	DRL	DRI 上拉 Io=20mA	-	0.3	0.5	V	
过热保护部分							
过热检测	T_{sd}		125	140		°C	
过热迟滞	T _{sdhys}		15	25	40	°C	

管脚排列图

管脚说明

管脚号	管脚名称	I/O	功能描述
1	VAC	I	AC 输入电压波形采样
2	VAVG	I	AC 输入电压平均值
3	FB	I	反馈检测
4	VCC	I	芯片供电端
5	GND	I	芯片地脚
6	CS	I	电流采样脚
7	DRI	0	栅驱动脚
8	NC	/	空脚

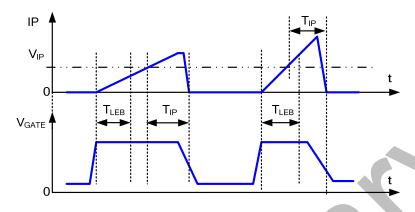
功能描述


SD6857是集成PFC的离线式LED驱动集成电路,通过检测变压器初级线圈的电流,间接控制系统的输出电流,从而达到输出恒流的目的。SD6857采用PFM调制技术,提供精确的恒流控制,具有较高的稳定性和平均效率。

完整的工作周期分为峰值电流检测和反馈电压检测:

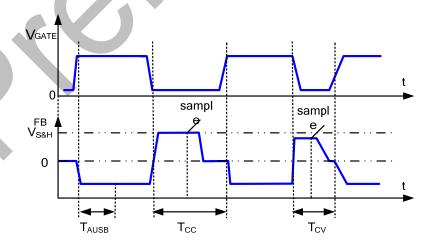
当MOSFET导通,通过采样电阻检测初级线圈的电流,此时FB端电压为负,输出电容对负载供电,输出电压 V_0 下降;当初级线圈的电流到达峰值时,MOSFET关断,FB端电压检测开始。存储在次级线圈的能量对输出电容充电,输出电压 V_0 上升,并对负载供电。经过与反馈电压相关的 T_{CV} 时间的停顿(恒压环路)和 T_{CC} 时间的保持(恒流环路),当同时满足恒压、恒流环路控制的开启条件后,MOSFET才开启。随之,芯片再次进入峰值电流检测。

1. 启动电路和欠压锁定


开始时,电路由高压直流母线通过启动电阻对 VCC 脚的电容充电。当 VCC 充到 16V,电路开始工作。电路正常工作以后,如果电路发生保护,输出关断,由于电路此时供电由辅助绕组提供,VCC 开始降低,当 VCC 低于 8V,控制电路整体关断,电路消耗的电流变小,又开始对 VCC 脚的电容充电,启动电路重新工作。

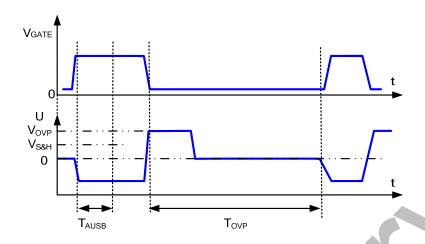
2. 驱动电路

驱动电路直接由VCC供电。当DRI=1,MOSFET导通;当DRI=0,MOSFET关断。为了消除MOSFET导通瞬间的可能引起误触发的毛刺,设置前沿消隐时间T_{LEB}=0.35μs。


3. 峰值电流检测

内置 MOSFET 和采样电阻。当 MOSFET 导通,此时 FB 端电压为负,通过采样电阻检测初级线圈电流,该电流呈线性增大,当超过电流限制值即峰值电流,峰值电流数值由乘法器给出,DRI=0,MOSFET 关断。

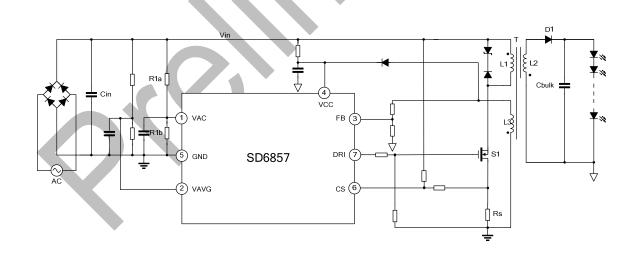
4. 反馈电压检测


当 MOSFET 关断,此时 FB 端电压为正,在 FB 电压为正的 2/3 时间点进行采样,采样得到的电压经过放大、保持、比较用来控制恒压环路的停顿时间 Tcv。

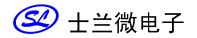
电路同时对FB电压为正、为负或衰减振荡的时间进行计算,FB为正的时间为 T_{OFF1} 表示变压器的次级有电流流过,FB为负的时间为 T_{ON} 、FB衰减振荡的时间为 T_{OFF2} ,在这两个时间内变压器的次级没有电流流过。在峰值电流恒定的条件下,为达到输出恒流的目的,需要保持 $T_{OFF1} = T_{OFF2} + T_{ON}$ 。恒流环路就是利用所检测的FB的高、低电平时间,来确定恒流环路的停顿时间 T_{CC} ,从而达到控制保持输出电流恒定。

5. 过压保护

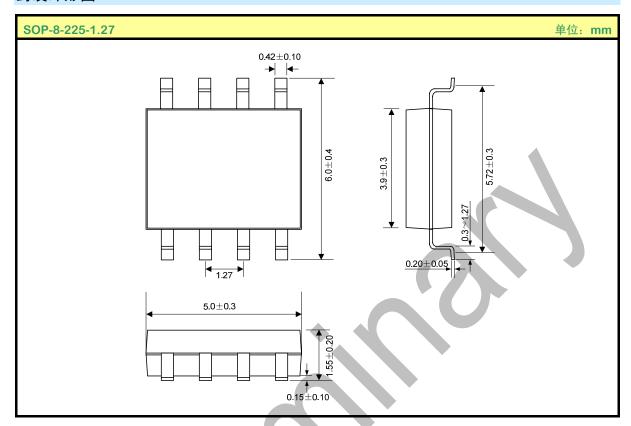
当 FB 脚的电压超过过压保护的阈值电压时,输出关断。该状态保持 19ms 后电路重新启动。


6. 过温保护

当电路处于过温保护状态,输出驱动电路被关断,以防止电路由于过热而导致的损坏。过温保护有迟滞特性。在过温保护以后,要恢复电路正常工作,需要电路的温度降到比过温保护温度约低 35°C 的温度。这样,可以防止过温保护与正常工作状态的反复来回变化。


7. 电路环路开路保护

当 DRI=1,功率 MOSFET 导通时,如果此时 FB 的电压高于-1V,则为环路开路状态,进入环路开路保护,输出驱动被关断,该状态持续 19ms 后电路重启。


应用电路图

注: 以上线路及参数仅供参考,实际的应用电路请在充分的实测基础上设定参数。

封装外形图

MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止MOS电路由于受静电放电影响而引起的损坏:

- •操作人员要通过防静电腕带接地。
- 设备外壳必须接地。
- 装配过程中使用的工具必须接地。
- 必须采用导体包装或抗静电材料包装或运输。

声明:

- 士兰保留说明书的更改权,恕不另行通知!客户在下单前应获取最新版本资料,并验证相关信息是否完整和最新。
- 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情况的发生!
- 产品提升永无止境,我公司将竭诚为客户提供更优秀的产品!